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Abstract 

Prokaryotes are constantly being infected by large mobile genetic elements such as 

conjugative elements and temperate phages. The fitness of these elements is tightly 

linked with the evolutionary success of the host. This leads to selectionagainst 

disruptive effectstheir integration might have on the organization and structure of the 

chromosome. Seamless genetic accommodation of the mobile elements also involves 

silencing infectious mechanisms and expressing functions adaptive to the host. 

Ironically, these characteristics favor the host ability to domesticate the mobile element. 

Recent data suggests that the domestication of mobile elements might be 

frequent.Importantly, it might affect the evolution of chromosome organization and 

drive the diversification of social traits. 
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Introduction 

The genomes of Prokaryotes are extremely plasticbecause of the joint action of 

horizontal gene transfer (HGT) and differential gene loss [1-3]. Most genetic information 

arrives into the genome in large mobile genetic elements (MGEs), such as plasmids, 

integrative conjugative elements (ICEs) andtemperate phages [4,5]. These large 

elements are the focus of the present review. MGEs are important motors of bacterial 

adaptation,rapidly spreadingnew functions and social traits, even if they have short 

residence times in genomes [6].Several striking examples show the profound impact of 

MGEs. ICEsand insertion sequences make a third of the genomes of 

Orientiatsutsugamushi[7]. Certain genomes of Escherichia coli encode up to 18 

prophages[8]. The symbiotic ICE of Mesorhizobium lotiis ~500 kb [9], which is more 

than certain bacterial chromosomes. The integration of such large genetic elements may 

impose a significant burden to the cell[10].The cost of transfer, in particular,leads to a 

trade-off between vertical and horizontal transmission [11]. Too much horizontal 

transfer decreases bacterial fitness and therefore vertical transmission. Infrequent 

transfer increases vertical at the cost of horizontal transmission. Importantly, both the 

element and the host are favored by the vertical transmission of host-MGE associations. 

The interaction between integrative MGE and the host is therefore favored when it 

leadsits smooth accommodation in the host genetic background. 

Chromosomal accommodation 

The genetic information encoded in prokaryotic chromosomes is highly organized 

[12](Figure 1). A very large fraction of the genome encodes genes or regulatory 

sequences needed for the interactions between the chromosome and cellular molecular 

machines. Since random MGE integration is likely to impose a fitness cost on the host, 

these elements have evolved strategies to integrate at permissive locations using site-

specific recombinases. MGEs integrating at ubiquitous highly conserved sequences are 

also more likely to find an integration site in another host and thus proliferateboth 

vertically and horizontally. Different mobile elements encoding closely related 

integrases tend to use the same integration regions in the chromosome. For example, 

the highly conserved tmRNAsite in Escherichia, Salmonella,and Klebsiellais an integrative 

hotspot for pathogenicity islands, prophages, and integrative conjugative elements. The 

high sequence conservation of stable RNA genes might contribute to the frequency with 
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which they are used as integration sites[13,14]. Interestingly, several temperate 

phagesintegrate the genome of E. coli in intergenic regions that are highly conserved and 

used by other phages in Salmonella[15]. The high conservation of these non-coding 

sequences suggests the existence of selection for theirpreservation as integration sites. 

Since vertical replication is in general less costly than horizontal propagation,site-

specific integration might result from host-MGE co-evolution towards a seamless and 

reproducible accommodation of the mobile element.  

Site-specific integration may facilitate the organization of genome plasticity in relation 

to the structure of the chromosome, which is highly condensed in the nucleoid to be able 

to fit the prokaryotic cell[16]. Depending on the methods and the species, chromosomes 

are structured at different scales that includemacrodomains(>500 kb) [17], 

chromosome interaction domains (30-420 kb, CID) [18],and negatively supercoiled 

loops (2-66kb)[19]. The association between chromosome structure and transcriptional 

networks renders gene expression dependent on chromosome organization [20]. In a 

similar way, chromosome structure is tightly linked with segregation [21]. The 

integration of MGEs alters the structure of the chromosome and might thus affect many 

cellular processes. While there are few reports on this subject, it has recently been 

observed that phage Mu, which integrates almost randomly the chromosome, forms an 

autonomous stable chromosomal domain in E. coli [22]. This might facilitate 

transposition of the element and favor the expression of adaptive genes harbored by the 

prophage. Interestingly, phage lambda shows strong preference for integration at one 

very specific site in the chromosome and does not form a folding domain. It is tempting 

to speculate that MGEs integrating at specific sites in the chromosome, such as phage 

lambda,have co-evolved with the chromosome such that their integration does not lead 

to deleterious consequences in terms of chromosome structure. Elements integrating 

randomly in the chromosome, such as phage Mu, must evolve ways of doing so without 

disturbing chromosomal structure, like producing autonomous structural units.  

In E. coli and Salmonella, prophages tend to integrate at the macrodomains closer to the 

terminus of replication [15], even though this region encodes fewer typical integration 

targets such as stable RNA genes [23].Several MGEs even integrate specifically at difsites 

using the host Xer recombination system [24]. These patternssuggest that integration 

tropismand/or natural selection drive the large-scale distribution of MGEs in the 
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chromosome. Integration of elements carrying their own recombinasescould be favored 

by DNA accessibility becauseTer-proximal macrodomainsare at the periphery of the E. 

coli nucleoid [25], or by the region of the chromosome closer to the infection site [26]. 

MGE integration sitescould also be counter-selectedin certain chromosomal regions. For 

example, MGEs integration close to highly expressed genes might be disfavored because 

transcription spillover from these genes into the MGE might reduce repression on its 

genes and favor excision and transfer. Accordingly, the tRNAs most frequently used as 

integration targets by E. coli phages are those corresponding to the rarer codons, which 

are also the least expressed [15]. Genes near the origin of replication are on average 

more expressed.They can also be over-expressed by replication-associated gene dosage 

effects, especially in periods of fast-growth or stress[23,27]. This may produce an effect 

similar to transcriptional spillover and explain why these regions usually encode few 

prophages. Non-lethalmobile elements, whose expression might be highly adaptive in 

certain circumstances,show different patterns of distribution. For example, 

pathogenicity islands concentrate in theorigin-proximal half of the E. coli chromosome 

(Figure 1). Finally, chromosomal genes flanking frequent MGE integration sites often 

have higher recombination rates [28,29], and this might lead to selection for integration 

close genes encoding specific functions. These few studies on the global and local 

patterns of distribution of MGEs suggest that site-specific integration has evolved 

towards loweringits disruptive effects on chromosome organization.Further studies will 

be required to disentangle the effects of integration tropism and natural selection on 

this co-evolutionary process. 

MGEs endure selection to adapt to their genetic background. This involves the ability of 

the temperate phage to integrate and manipulate the host genetic networks. A classical 

example concerns the stress-induced excision of prophages and integrative conjugative 

elements by sensing the host SOS response [30,31]. Recent works have shown that the 

integration or manipulation of the host genetic networks by the MGE may stabilize its 

integrative state. For example, the stabilization of several prophagesin E. coli is under 

the control of the highly conserved transcriptional terminator Rho protein [32]. Several 

Staphylococcus aureusprophages are regulated by the host alternative H factor, also 

involved in the regulation of natural competence[33]. The high mutation rates of 

prophages provide them with ample opportunity to avoid DNA motifs used by hosts to 

control their gene expression. The conservation of these regulatory dependencies 
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suggests the existence of co-evolution between host and MGE to stabilize the integrative 

state. The integration of MGEs in the host genetic network allows them to regulate the 

trade-off between horizontal and vertical transmission in relation to cell physiology.  

Adaptation to the genetic context of the host can also include selection for MGE-encoded 

DNA motifs associated with housekeeping cellular functions, such as chromosome 

replication, recombination, and segregation[34-36]. Accordingly, prophages closer to 

the terminus of replication are enriched in segregation-related motifs and those in the 

rest of the chromosome under-represent Ter-macrodomain associated motifs(Figure 1) 

[15]. The accommodation of MGEto the host chromosome by selecting for DNA motifs 

that are only relevant in the integrative state may superficially seem in contradiction 

with theirshort residence times in genomes. Yet, most well-studied integrative mobile 

elements have relatively narrow host ranges and integrate at the same genomic position 

in the different hosts.They will therefore endure the same type of selection pressures in 

the different hosts. This should favor their accommodation to the traits that are often 

encountered in its range of host chromosomes.  

Domestication of mobile elements 

MGEsencode many traits useful for the host. These traits increase indirectly the fitness 

of the element. Famously, many conjugative elements encode antibiotic resistance genes 

[37], and many phages provide toxins to bacterial pathogens [38]. In some cases it is 

unclear if a trait is directly advantageous to the MGE or if it is favored because it 

increases the host fitness. For example, someMGEs favor bacterial growth under certain 

conditions[39-41]. Interestingly, even costly core MGE functions, such as conjugation 

and transduction, can provide advantages to the host. Conjugative pili facilitate the 

formation of biofilms [42], and can be co-opted to secrete virulence factors to eukaryotic 

cells[43]. Horizontal transfer of the host DNA can occur by co-transfer with the MGE 

[44,45]. Occasional lysis caused by prophagesfavors the production of biofilms [46], 

promotes the bacterial adhesion to eukaryotic cell [47,48], and acceleratesniche 

colonization by removing sensitive strains [49].  

Genes encoding the mechanisms of horizontal transmissionare strongly repressed some 

time after transfer, presumably to lower theirburden on the host metabolism[50,51]. We 

have discussed above on how seamless integration of the MGE in the chromosome will 

lower its cost and therefore increase its fitness. Ironically, long-term repression of the 
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genes encoding genetic mobilization poses a threat to MGE integrity because 

inactivating mutations may accumulate silently. Elementsrendered incapable of 

autonomous horizontal transmission are much more dependent on the host fitness and 

evolve predominantly towards favoring vertical transmission.  

Silent genetic information is rapidly lost from bacterial lineages by a joint effect of a bias 

towards deletions and by selection against non-adaptive genesand pseudogenes [1,3,52]. 

Most prophages are able to excise and eventually kill the cell but many are incapable of 

producing autonomous infectious virions[8,48]. One would therefore expect strong 

selection for the rapid loss of these elements. Surprisingly, degraded prophages of E. coli 

and Salmonellaenterica evolve predominantly under strong purifying selection - most of 

the non-synonymous mutations occurring in prophagesare lost - suggesting that natural 

selection removes variants with inactivating mutations [53]. Importantly, this affects 

most strongly thegenes encoding phage housekeeping functions, like lysins and 

terminases, raising the intriguing possibility that bacteria may systematically select for 

phage-related functions in degraded genetic elements. 

What could be the use of these domesticated phage functions? A sparse but long string 

of observations shows that inactive prophages or prophage-derived components can be 

adaptive[54]. They could favor horizontal gene transfer like transducing phages. They 

could antagonize other mobile elementslike many phages, either by competing with 

them[55], or by inhibiting their entry and expression [56]. They could also 

makevirionsunable to produce viable offspring but capable of killingsensitive 

competitors [54]. Finally, prophagesprovide many accessory functions, like adhesion, 

regulation, anddefense; several of which are used by bacteria in mutualistic or 

antagonistic interactions with eukaryotes[48,57-61]. Many of these functions require 

phage excision, transcription, and packaging, justifying why large fractions of prophages 

are under purifying selection. The organization of gene expression in phages around few 

large operons may also lead to counter-selection of gene inactivation to avoid polar 

mutations.  

Elements under purifying selection are expected to remain in genomes for long periods 

of time. Yet, most phage integration events in E. coli are strain-specific, i.e., they occurred 

very recently[53,62]. How can prophages be under purifying selection when they are 

also frequently strain-specific? Many prophages may bring no adaptive value upon 
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degradation and be rapidly lost, leaving only a small fraction of the 

prophagesaccumulating mutations. For the latter, the functional redundancy provided 

by multiple prophages may explain why they may undergo purifying selection and still 

be frequently lost. The constant afflux of prophages leads to a multiplicity of elements in 

genomes. This inevitably results in relaxed selection on elements that perform similar 

MGE-related functions; leading to frequent loss of prophage remnants that were 

previously under purifying selection. Most processes of mobile elements domestication 

are thus likely to be short-lived. 

Nevertheless, examples of longstanding domestication of MGE machineries have been 

described (Figure 2). Many involve only one or a few genes, such as the acquisition of 

polymerases, lysins, resolvases or recombinases[63], leading to either analogous gene 

replacement, or to new variants of pre-existing functions. For example, prophage-

encoded Redrecombinases in E. colicompensate the loss of the host recombination 

machinery while showinghigher processivityand tolerance to sequence divergence [64]. 

Domestication may also produce new sophisticated molecular machines[65].Conjugative 

systems have been many times domesticated as type IV protein secretion systems used 

both by pathogens and mutualists in their interactions with eukaryotes[66,67]. Plasmids 

have been domesticated as secondary chromosomes in several bacterial clades[68]. 

Phage-derived tail proteins are part of type VI secretion systems (T6SS) involved 

inantagonistic interactions with other bacteria and with eukaryotes[69]. Phages have 

also given rise to full-fledged tailocins(also called pyocins) involved in bacterial 

competitionor pathogenicity [70,71]. Gene transfer agents (GTA) encapsidate randomly 

the DNA of the bacterial genome (but not their own genome)and are thought to have 

derived from prophage domestication [72]. Many other observations show important, 

albeit mechanistically unclear, roles for MGE-derived structures. For example, phage 

tail-like structures produced by Pseudoalteromonasluteoviolaceatrigger the 

metamorphosis of a tubeworm [60].  

Conclusion 

Most recent very large-scale whole-genome studies have focused on the conserved parts 

of genomes. These are very helpful to understand epidemiological and mutational 

patterns but not how adaptation proceeds by horizontal gene transfer. New sequencing 

technologies producing longer reads should bring back the complete assembled genome 
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as the standard in bacterial genomics. Larger datasets will facilitate the study of mobile 

elements accommodation in genomesincluding their subsequent domestication.They 

might also guide experimental testing of the many hypotheses that have been put 

forward regarding these subjects. Which functions often result from the domestication 

of mobile elements? Available data suggests that functions implicated in social evolution 

may predominatebecause mobile elements encode many secreted proteins[73], and 

complex symbiotic traits [74]. Machineries encoded by MGEs, or derived from them, are 

also used in bacterial warfare [75] and in symbiosis [47,76]. Understanding the fate of 

MGE in genomes is therefore likely to illuminate the constraints imposed by the 

structureof the chromosome on the dynamics of gene repertoires and also on the 

evolution of the social lives of bacteria.  
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Outstanding questions 

What is the impact of MGE integration on the chromosome structure?  

What are the structural and evolutionary traits creating integration hotspots?  

What are the main functions provided by domesticated MGE?  

What are the rates of MGE domestication?  
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Figure legends.  

Figure 1 - Chromosomal organization (top). (1) The E. coli circular chromosome is 

organized into 4 structured macrodomains (MD) and 2 unstructured flexible 

chromosomal regions (NS)[17]. (2) The macrodomainTer (MD-Ter, black) is 

preferentially located at the periphery of the nucleoid [25]. (3) MatPdefines the MD-

Terby binding to matSsequence motifs [34]. SlmA binds to DNA motifs frequent in MD-

Ori and the flanking NS-regions to prevent chromosome fragmentation during septum 

formation[35]. (4) Chromosomal replication proceedsbi-directionally (black arrow) 

from a single origin (oriC, yellow) to the opposite termination site (dif, grey). The leading 

(resp. lagging) strands are represented in green (resp. red)and are different in terms of 

composition (GC skew), number of genes, and Chi and KOPS motifs [12]. (5) Presence of 
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multiple replication forks in fast-growing bacteria produces a transient replication-

associated gene dosage effect that leads to selection of highly expressed genes (violet) 

near the origin of replication[23]. (6) KOPS (FtsK-orienting polar sequence, brown) are 

polarized motifs very frequent in the Ter-proximal regions. They orient the last stages of 

chromosome segregation[36].MGE accommodation(bottom).(1)Transposable 

prophageMu (green) integrates randomly in the genome, whereas most other prophages 

(red) integratemore frequently in the MD-Ter and the flanking MD-Left and Right. 

Pathogenicity islands (PAI, blue) are more frequent in the other half of chromosome (i.e. 

MD-Ori and NS-regions)[15]. (2) Mu forms a stable chromosomal domain. (3) Mobile 

elements using site-specific recombinases are concentrated in a few integrative hotspots. 

PAI integrated attRNA genes, whereas prophages also use other targets. (4) The 

occupancy rate and the number of integrative hotpots increase with the distance from 

the origin, in inverse relation with replication-associated gene dosage effects. 

(5)Prophages show avoidance of MatP and over-representation of KOPS that are 

relevant only at the prophage state in the context of the biology of the host. 
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Figure 2. Schematic representation of phage and conjugation-related 

domesticated elements.Top row:elements involved in bacteria-bacteria interactions 

or gene transfer: transducing phages, gene transfer agents (GTA), killer particles 

(defective phage particles), tailocins, type VI secretion systems (T6SS), type IV secretion 

systems (T4SS) involved in protein and DNA secretion and in DNA uptake 

(competence)[65,67]. Lower row: elements involved in interactions with Eukaryotes: 

Photorhabdus virulence cassettes (PVC) andantifeedingprophages (Afp) are toxic to 

certain eukaryotes[58,59]. Multi-MAC arrays containphage tail-like contractile 

structures and induce marine tubeworm metamorphosis[60]. Prophage-encoded 

platelet-binding factors which promote bacterial binding to human platelets and induce 

endovascular infection[47,48].T4SS from conjugative systems and T6SS derived from 

phages are used by pathogens and mutualists to secrete effectors to eukaryotic 

cells[43,77]. 

 


