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Préambule

Les travaux présentés dans ce mémoire portent sur l’analyse de quelques problèmes mathématiques
issus du Calcul des Variations. Loin de couvrir l’ensemble de ce vaste sujet, ils se concentrent essentiel-
lement sur les aspects suivants : existence et relaxation, étude de minima ou de points stationnaires,
théorie de la régularité, ou encore convergence variationnelle. A l’image du très célèbre problème de
Plateau, les questions posées ont le plus souvent une nature géométrique, certaines d’entre elles ayant
trait aux surfaces minimales, ou aux applications harmoniques. Toutefois, le cadre mathématique reste
celui de l’analyse. Il fait appel à la théorie elliptique des équations aux dérivées partielles et à la théo-
rie (géométrique) de la mesure. Les différentes études sont pour la plupart motivées par un souci de
compréhension de phénomèmes issus de la physique de la matière condensée, ou de la mécanique des
milieux continus.

Chaque section de ce mémoire constitue un résumé d’un travail spécifique ayant fait l’objet d’une
publication (ou prépublication). Nous avons essayé de présenter chaque sujet d’une façon suffisamment
précise pour mettre en lumière les mathématiques sous-jacentes. En outre, nous proposons un plan que
nous espérons être le plus progressif et logique possible. Il ne correspond pas à la chronologie de nos
travaux, mais plutôt à la vision d’ensemble que nous en avons aujourd’hui. Les résultats présentés ici
sont le fruit de collaborations et de rencontres datant (déjà !) de plusieurs années.

Les différentes sections sont regroupées en deux chapitres. Le premier chapitre est consacré aux pro-
blèmes de nature "vectorielle" qui font intervenir des espaces de fonctions à valeurs dans une variété.
Dans ce cadre, nous y parlerons d’applications harmoniques, d’équations de Ginzburg-Landau, ou en-
core d’homogénéisation. Le deuxième chapitre, quant à lui, s’attache aux questions "scalaires" où les
objets géométriques inhérents sont de dimension ou de codimension 1. Il y sera fait mention d’hyper-
surfaces minimales, d’inégalités isopérimétriques, et de problèmes aux discontinuités libres.

Nous avons fait le choix de la langue anglaise pour la suite de la rédaction. Il n’y a de notre part
aucun rejet de la langue de Molière, mais plutôt une habitude de travail.
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Chapitre 1

Ginzburg-Landau systems and Sobolev

maps into a manifold

1.1 The fractional Ginzburg-Landau equation & 1/2-harmonic maps

into spheres

The article [P17], in collaboration with Y. SIRE, is essentially devoted to the asymptotic analysis in
a singular limit of a fractional version of the Ginzburg-Landau equation where the Laplacian is repla-
ced by the square root Laplacian as defined in Fourier space. The classical complex Ginzburg-Landau
equation has been widely studied because it shares many of the relevant features of more elaborate sys-
tems arising in the physics of superconductivity or superfluidity, see e.g. [2, 38, 173, 183]. In the spirit
of the classical Landau’s theory of phase transtions, fractional Ginzburg-Landau equations have been
recently suggested in the physics literature in order to incorporate a long-range dependence posed by
a nonlocal ordering, as it might appear in certain high temperature superconducting compounds, see
[157, 202, 207]. In arbitrary dimensions, the Ginzburg-Landau equation has also a geometrical interest
as it approximates in the singular limit "ε → 0" the geometric equation of harmonic maps into a sphere
(or into a more general manifold according to the potential well). Harmonic maps can be seen as hi-
gher dimensional generalizations of geodesics and are defined as critical points of the Dirichlet energy
with respect to perturbations on the image. In our fractional setting, the singular limit still provides a
geometric equation that we refer to as the 1/2-harmonic map system. It is the fractional analogue of the
classical harmonic maps and it corresponds to the Euler-Lagrange equation obtained from variations of
a fractional Dirichlet energy associated to the square root Laplacian. In particular, if the domain dimen-
sion is one, 1/2-harmonic lines are fractional versions of geodesics. The notion of 1/2-harmonic maps
from R into a manifold has been recently introduced by F. DA LIO & T. RIVIÈRE in [75, 76] where the
regularity of weak solutions is established. A quite interesting fact about 1/2-harmonic maps is that
they naturally appear in the theory of minimal surfaces with free boundary [74, 199] and in some (related)
problems of spectral geometry [109]. They are also intimately related to harmonic maps with free boun-
dary [124, 127, 164], and to the so-called semi-stiff boundary condition arising in some Ginzburg-Landau
theories, see [33] and the references therein.

The plan of this section is the following. The first part briefly introduces the appropriate functional
framework. In the second part, we define the notion of 1/2-harmonic map into a manifold in arbitrary
dimensions, and provide a general partial regularity theory for such maps. Then we discuss, in the light

11
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of the theory for sphere valued harmonic maps, some specific situations where the target manifold is
either S1 or S2. The last and third part is devoted to the fractional Ginzburg-Landau equation. We shall
described a convergence result in the spirit of the blow-up analysis for stationary harmonic maps by
F.H. LIN [145], or usual Ginzburg-Landau equations by F.H. LIN & C. WANG [68, 148, 149, 150].

1.1.1 The fractional Laplacian and its Dirichlet integral

For s ∈ (0, 1), the factional Laplacian (−∆)s on R
n is defined to be the operator whose symbol

in Fourier space 1 is given by (2π|ξ|)2s (compare to the symbol 4π2|ξ|2 of the Laplacian). Back to the
physical space, (−∆)s is an integro-differential operator whose action on smooth bounded functions
v : Rn → R

d is given by

(−∆)sv(x) := p.v.

(
γn,s

∫

Rn

v(x)− v(y)

|x− y|n+2s
dy

)
, γn,s := s2sπ−n

2
Γ
(
n+2s

2

)

Γ(1− s)
, (1.1.1)

where the notation p.v. means that the integral is taken in the Cauchy principal value sense.
If Ω ⊆ R

n is a smooth bounded open set, the restriction to Ω of the distribution (−∆)sv can be
equivalently written as

〈
(−∆)sv, ϕ

〉
:=

γn,s
2

∫∫

Ω×Ω

(
v(x)− v(y)

)
·
(
ϕ(x)− ϕ(y)

)

|x− y|n+2s
dxdy

+ γn,s

∫∫

Ω×(Rn\Ω)

(
v(x)− v(y)

)
·
(
ϕ(x)− ϕ(y)

)

|x− y|n+2s
dxdy , (1.1.2)

where ϕ ∈ D(Ω;Rd) is a test function (tacitly extended by zero outside Ω). This last formulation enligh-
tens the variational structure of the operator (−∆)s. More precisely, formula (1.1.2) turns out to define a
distribution on Ω whenever the function v ∈ L2

loc(R
n;Rd) satisfies

Es(v,Ω) :=
γn,s
4

∫∫

Ω×Ω

|v(x)− v(y)|2
|x− y|n+2s

dxdy +
γn,s
2

∫∫

Ω×(Rn\Ω)

|v(x)− v(y)|2
|x− y|n+2s

dxdy < ∞ . (1.1.3)

From now on we shall denote by Ĥs(Ω;Rd) this class of functions, i.e.,

Ĥs(Ω;Rd) :=
{
v ∈ L2

loc(R
n;Rd) : Es(v,Ω) < ∞

}
.

In the case v ∈ Ĥs(Ω;Rd), the distribution (−∆)sv belongs to H−s(Ω;Rd), the topological dual space of
Hs

00(Ω;R
d), i.e., the strong closure of D(Ω;Rd) in Hs(Rn;Rd), and

〈
(−∆)sv, ϕ

〉
=

[
d

dt
Es(v + tϕ,Ω)

]

t=0

∀ϕ ∈ Hs
00(Ω;R

d) . (1.1.4)

Hence, the energy Es(·,Ω) can be interpreted as fractional s-Dirichlet energy associated to (−∆)s in the
open set Ω.

Remark. The class Ĥs(Ω) is actually a (strongly) dense subset of L2(Rn,ms) for the finite measure ms :=

(1 + |x|)−(n+2s) dx, and the functional Es(·,Ω) defines a Dirichlet form on L2(Rn,ms) in the sense of
A. BEURLING & J. DENIS [40, 41].

1. We consider the ordinary frequency Fourier transform v 7→ v̂ given by v̂(ξ) :=
∫
Rn v(x)e−2iπx·ξ dξ.
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1.1.2 1/2-harmonic maps into a manifold

Definition and regularity theory. Let Ω ⊆ R
n be a smooth bounded domain, and let N ⊆ R

d be a smooth
compact submanifold without boundary. As usual, the Sobolev space Ĥ1/2(Ω;N ) is defined by

Ĥ1/2(Ω;N ) :=
{
v ∈ Ĥ1/2(Ω;Rd) : v(x) ∈ N for a.e. x ∈ R

n
}
.

A map v ∈ Ĥ1/2(Ω;N ) is said to be a weak 1/2-harmonic map into N in the open set Ω if

[
d

dt
E 1

2

(
πN (v + tϕ),Ω

)]

t=0

= 0 ∀ϕ ∈ H
1/2
00 ∩ L∞(Ω;Rd) , (1.1.5)

where πN denotes the nearest point retraction on N from some tubular neighborhood.
The Euler-Lagrange equation for weak 1/2-harmonic maps reads

(−∆)
1
2 v ⊥ Tv N in H−1/2(Ω;Rd) , (1.1.6)

where TN denotes the tangent bundle to N . More explicitly, equation (1.1.6) means that

〈
(−∆)

1
2 v, ϕ

〉
= 0 ∀ϕ ∈ H

1/2
00 (Ω;Rd) such that ϕ(x) ∈ Tv(x) N for a.e. x ∈ Ω .

In case N = S
d−1, the Lagrange multiplier takes a quite simple form and yields the instructive equation

〈
(−∆)

1
2 v, ϕ

〉
=

(
γn, 12
2

∫

Rn

|v(x)− v(y)|2
|x− y|n+1

dy

)
v(x) in D

′(Ω;Rd) . (1.1.7)

Equations (1.1.6) and (1.1.7) are in clear analogy with the equation −∆u⊥Tu N of harmonic maps
into N , and −∆u = |∇u|2u for harmonic maps into spheres, respectively. In particular, they share the
same critical structure concerning regularity. Indeed, the right hand side of equation (1.1.7) has a priori
no better integrability than L1, and this is precisely the borderline case where linear elliptic regularity
does not apply. In the conformal dimension n = 2, weakly harmonic maps are smooth by the famous
result of F. HÉLEIN [133]. For the square root Laplacian, the conformal dimension is n = 1, and entire
1/2-harmonic maps from R into N are also smooth. This is the result of F. DA LIO & T. RIVIÈRE [75, 76],
that can be localized to any domain of the real line. In higher dimensions n > 3, an arbitrary weak
harmonic map can be highly discontinuous as shown by the counterexample of T. RIVIÈRE [172] (of
a weakly harmonic map from the unit ball of R3 into S

2 which is everywhere discontinuous). For 1/2-
harmonic maps we expect that in dimension n > 2 such a counterexample to regularity do exist (actually,
one may try to follow the argument of [172] using the tools developed in [P08], see Section 1.2). In any
case, one quickly realizes that "full" regularity can not hold in dimension n > 2 due (essentially) to
topological constraints. For instance, if Ω is the unit disc of R2 and N = S

1, the map v(x) = x
|x| is a weak

1/2-harmonic map, and it exhibits an isolated singularity at the origin. To obtain partial regularity (i.e.,
regularity away from some "small" set), one has to require to a 1/2-harmonic map to be either stationary
or minimizing, exactly as for classical harmonic maps, see [36, 92, 188].

A weak 1/2-harmonic map v ∈ Ĥ1/2(Ω;N ) is said to be :
(a) stationary in Ω if [

d

dt
E 1

2

(
v ◦ φt,Ω

)]

t=0

= 0

for any differentiable 1-parameter family of smooth diffeomorphisms φt : Rn → R
n such that

φ0 = idRn and φt − idRn is compactly supported in Ω ;
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(b) minimizing in Ω if
E 1

2
(v,Ω) 6 E 1

2
(w,Ω)

for all w ∈ Ĥ1/2(Ω;N ) such that w − v is compactly supported in Ω.
Any smooth 1/2-harmonic map, as well as any minimizing 1/2-harmonic map, is stationary.

In the standard harmonic map theory, the stationary assumption is used when performing radial
deformations around a point in the domain. This leads to the crucial monotonicity formula for the Dirichlet
energy. In our fractional setting, the situation is slightly more subtle, and no reasonable monotonicity
formula seems to come out directly from the stationary assumption. Before we enter into details on how
to circumvent this problem we state our main regularity result on 1/2-harmonic maps. In the following,
H k denotes the k-dimensional Hausdorff measure, and dimH stands for Hausdorff dimension.

Theorem 1.1.1. Let v ∈ Ĥ1/2(Ω;N ) be a weak 1/2-harmonic map into N in Ω. Then v ∈ C∞
(
Ω \ sing(v)

)

where sing(v) denotes the complement of the largest open set on which v is continuous, and

(i) if n = 1, then sing(v) ∩ Ω = ∅ ;

(ii) if n > 2 and v is stationary, then H n−1
(
sing(v) ∩ Ω

)
= 0 ;

(iii) if v is minimizing, then dimH

(
sing(v)∩Ω

)
6 n− 2 for n > 3, and sing(v)∩Ω is discrete for n = 2.

The proof of this theorem rests on the representation of (−∆)
1
2 as the Dirichlet-to-Neumann operator

associated to the harmonic extension to the open half space Rn+1
+ := R

n×(0,∞) given by the convolution
product with the Poisson kernel. More precisely, denoting by v 7→ ve this harmonic extension, i.e.,

ve(x) := γn, 12

∫

Rn

xn+1v(y)

(|x′ − y|2 + x2
n+1)

n+1
2

dy , x = (x′, xn+1) ∈ R
n+1
+ , (1.1.8)

we have proved that it is well defined on Ĥ1/2(Ω;Rd), and that ∂νve = (−∆)
1
2 v as distributions on the

open set Ω. Here, ∂ν denotes the exterior normal differentiation on ∂Rn+1
+ ≃ R

n. When applying the
extension procedure to a weak 1/2 harmonic map v, we end up with the following system





∆ve = 0 in R
n+1
+ ,

∂ve

∂ν
⊥ TveN on Ω .

(1.1.9)

This system turns out to be (almost) included in the class of harmonic maps with free boundary for which
a rather complete regularity theory do exist [32, 90, 91, 124, 127, 131, 187]. The theory of harmonic maps
with free boundary essentially deals with mappings u : G ⊆ R

n+1 → M ⊆ R
d where G is an open

set such that Ω ⊆ ∂G, and M is a smooth compact manifold without boundary such that N ⊆ M. The
boundary portion Ω is called the free boundary, and N its supporting manifold. Then M-valued (weak)
harmonic maps in G with the partially free boundary condition u(Ω) ⊆ N are defined as critical points
of the (classical) Dirichlet energy under the constraints u(x) ∈ M for L n+1-a.e. x ∈ G and u(x) ∈ N
for H n-a.e. x ∈ Ω. In case G is the upper unit half ball of R3, Ω is the unit disc of R2, M = S

2, and
N = S

1, the typical example of a (minimizing) harmonic map with free boundary is again u(x) = x
|x| .

The theory of harmonic maps with free boundary provides partial regularity results, and for this, it
requires stationarity or minimality up to the free boundary. Here, "up to the free boundary" means that
deformations (of domain or image) are allowed to be compactly supported in G∪Ω. The key point in the
proof of Theorem 1.1.1 is to observe that the stationary assumption, or the minimality assumption, on a
weak 1/2-harmonic map v leads to stationarity, or minimality (respectively), up to Ω of the extension ve.
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This is then enough to apply the partial regularity theory for harmonic maps with free boundary (and
to obtain in addition a suitable monotonicity formula in terms of ve).

At this stage, we would like to mention that many basic questions remain open concerning the partial
regularity of 1/2-harmonic maps. The first one is certainly the regularity at the boundary ∂Ω when
prescribing some smooth N -valued function outside Ω. In terms of the extended problem, it leads to a
nonlinear mixed boundary value problem Dirichlet/Neumann for which no regularity results are known (to
the best of our knowledge). Notice that even for linear mixed boundary value problems, the regularity
issue at the interface between the Dirichlet and the Neumann region of the boundary is a very delicate
task, and Hölder continuity is essentially the higher level of regularity accessible, see e.g. [184] and the
references therein. Another interesting direction would be to give a better description of the singular
set (i.e., to obtain some reduction or stratification results), and to extend to 1/2-harmonic maps some
well established results for standard harmonic maps (see [74] for a recent blow-up analysis in the one
dimensional case). We now take a few steps in this sense, underlying the strong analogies between 1/2-
harmonic maps and classical harmonic maps.

1/2-harmonic circles and minimal surfaces. We shall now discuss some geometric properties of entire 1/2-
harmonic maps on R of finite energy. Note that in the case Ω = R, the space Ĥ1/2(Ω) simply reduces to
the homogeneous Sobolev space Ḣ1/2(R), and it is well known that for every v ∈ Ḣ1/2(R),

E 1
2
(v,R) =

1

2

∫

R2
+

|∇ve|2 dx , (1.1.10)

where ve denotes the harmonic extension of v to R
2
+ given by (1.1.8). We say that a map v ∈ Ḣ1/2(R;N )

is an entire 1/2-harmonic line into N if v is a 1/2-harmonic map in every bounded open subset Ω ⊆ R.

In dimension 2, harmonic maps are known to be closely linked with conformal mappings, and hence
with minimal surfaces. For entire 1/2-harmonic lines, we have the following lemma (which has also
been discovered independently in [33] and [74]).

Lemma 1.1.2. Let v ∈ Ḣ1/2(R;N ) be a nontrivial entire 1/2-harmonic line into N . Its harmonic extension ve to
R

2
+ is either a conformal or an anti-conformal transformation.

If N = S
1 the unit circle of R2, then the harmonic extension of every 1/2-harmonic line maps R2

+ into
the unit disc D1 ⊆ R

2 by the maximum principle. On the other hand, it turns out that every conformal
transformation with finite energy from R

2
+ into D1 and sending R into S

1 = ∂D1 has to be a finite
Blaschke product (see [160]). In other words, Lemma 1.1.2 yields the following classification result. In
its statement, we identify R

2 with the complex plane C.

Theorem 1.1.3. Let v ∈ Ḣ1/2(R; S1) be an entire 1/2-harmonic map into S
1. There exist d ∈ N, θ ∈ R,

{λk}dk=1 ⊆ (0,∞), and {ak}dk=1 ⊆ R such that ve(z) or its complex conjugate equals

eiθ
d∏

k=1

λk(z − ak)− i

λk(z − ak) + i
. (1.1.11)

In particular, E 1
2
(v,R) = πd.

Remark (1/2-harmonic circles). By analogy with (1.1.3), we can consider on H1/2(S1;N ) the 1/2-Dirichlet
energy

E 1
2
(g, S1) :=

γ1
4

∫∫

S1×S1

|g(x)− g(y)|2
|x− y|2 dxdy .
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Exactly as in (1.1.5), we define 1/2-harmonic circles into N as critical points of E(·, S1) with respect to
perturbations on the image. It turns out that 1/2-harmonic circles are in one-to-one correspondence with
1/2-harmonic lines into N by conformal invariance. Indeed, first recall that for every g ∈ H1/2(S1;Rd),

E 1
2
(g, S1) =

1

2

∫

D

|∇wg|2 dx , (1.1.12)

where wg ∈ H1(D1;C) denotes the harmonic extension of g to the whole disc. Using the (conformal)
Cayley transform C : R

2

+ → D1 defined by C(z) := z−i
z+i , one has wg ◦ C = (g ◦ C|R)

e for every g ∈
Ḣ1/2(S1;Rd). Then, by conformal invariance, (1.1.10) and (1.1.12),

E 1
2
(g, S1) = E 1

2
(g ◦ C|R,R) for all g ∈ H1/2(S1;Rd) .

As a consequence, g ∈ H1/2(S1;N ) is a 1/2-harmonic circle if and only if g ◦ C|R is a 1/2-harmonic line
into N .

For N = S
1, Theorem 1.1.3 shows that the energy is quantized by the topological degree, i.e.,

E 1
2
(g, S1) = π|deg(g)| for any 1/2-harmonic circle g into S

1. By a result of P. MIRONESCU & A. PISANTE

[160], it shows in particular that every 1/2-harmonic circle into S
1 is minimizing in its own homotopy

class. This property is in clear analogy with the theory of harmonic maps for which it is well known that
harmonic 2-spheres into S2 are minimizing in their own homotopy class and have an energy quantized by
the degree.

Other interesting geometric consequences of Lemma 1.1.2 together with equation (1.1.9) are the fol-
lowing. Assume that d = 3. First, if N is a smooth closed curve and g is a 1/2-harmonic circle into N ,
then the image of the unit disc by wg is a disc-type minimal surface spanned by N (compare with [124,
Section 5]). Second, if N is a surface, then the image of D1 by wg is a disc-type minimal surface whose
boundary lies in N , and meets N orthogonally (compare with [199]). In this last case, such surfaces are
called minimal surface with free boundary (in N ), see e.g. [89]. Conversely, if w : D1 → N is a disc-type
minimal surface with free boundary in N , then w|S1 is a 1/2-harmonic circle into N .

In the particular case N = S
2 the unit sphere of R3, for every 1/2-harmonic circle g, the image of

D1 by wg is a disc-type minimal surface whose free boundary lies in S
2. For such minimal surfaces,

it is known that the image is a plane disc (through the origin), see e.g. [89, Section 1.7 in Chapter 1].
By Theorem 1.1.3, all harmonic circles into S

2 are thus classified, and we have the following corollary 2

which parallels a rigidity result about harmonic maps from S
2 into S

3, see [189, Lemma 1.1]. In the
statement, we identify S

1 ⊆ R
2 with the "horizontal circle" S1 × {0} ⊆ R

3.

Corollary 1.1.4. Let h : S1 → S
2 be a 1/2-harmonic circle. Then h has an image lying in an equator. In particular,

there exists a 1/2-harmonic circle g : S1 → S
1 and an orthogonal transformation R ∈ SO(3) such that h = R◦g.

As a consequence, E 1
2
(h, S1) is an integral multiple of π.

Remark (Tangent maps). Classically, one defines 1/2-harmonic tangent maps as 0-homogeneous 1/2-
harmonic maps. In dimension 2, any 1/2-harmonic tangent map is given by the 0-homogeneous exten-
sion of some 1/2-harmonic circle. In other words, v : R2 → N is a 0-homogeneous (weak) 1/2-harmonic
map if and only if v(x) = g( x

|x| ) for some 1/2-harmonic circle g : S1 → N .

Remark (Tangent maps into S
1 or S

2). By Theorem 1.1.3 and Corollary 1.1.4, tangent maps from R
2 into

S
1 or S

2 are completely classified. In particular, in the case of S
1, it shows that v(x) = x

|x| is a weak
1/2-harmonic map. It would interesting to determine which tangent maps are minimizing or stationary.

2. This result has also been announced in [74].
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As a matter of fact, we can prove that x
|x| is a minimizing 1/2-harmonic map from R

2 into S
1. It uses the

material in Section 1.2 together arguments taken from H. BREZIS, J.M. CORON, & E.H. LIEB [57]. At this
stage, we expect that x

|x| is actually the unique non trivial minimizing tangent map (up to isometries) by
analogy with [57].

In the case of S
2, the situation is quite different. In fact, we can prove that all minimizing 1/2-

harmonic tangent maps from R
2 into S

2 are constant, similarly to the result of R. SCHOEN & K. UHLEN-
BECK [189, Proposition 1.2] about minimizing tangent harmonic maps from R

3 into S
3. The argument

is based on Corollary 1.1.4 together with the second variation of the Dirichlet energy of the extension
(and using radial deformation orthogonal to the image very much like in [189]). By a standard blow-up
analysis near an isolated singularity, this rigidity result implies in turn that a minimizing 1/2-harmonic
map in a planar domain into S

2 is smooth 3.

1.1.3 Asymptotics for the fractional Ginzburg-Landau equation

Let d > 2 be a given integer, and let Ω ⊆ R
n be a smooth bounded open set. We now describe our

results on the asymptotic behavior, as ε ↓ 0, of weak solutions vε : Rn → R
d to the fractional Ginzburg-

Landau equation

(−∆)
1
2 vε =

1

ε
(1− |vε|2)vε in Ω , (1.1.13)

subject to an exterior Dirichlet condition

vε = g on R
n \ Ω , (1.1.14)

where g : Rn → R
d is a smooth function satisfying g(x) ∈ S

d−1 for every x ∈ R
n \ Ω.

The weak sense for equation (1.1.13) is understood through the variational formulation (1.1.4) of the
fractional Laplacian in the open set Ω, i.e.,

〈
(−∆)

1
2 vε, ϕ

〉
=

1

ε

∫

Ω

(1− |vε|2)v · ϕ dx ∀ϕ ∈ D(Ω;Rd) .

In this way, equation (1.1.13) corresponds to the Euler-Lagrange equation for critical points of the frac-
tional 1/2-Ginzburg-Landau energy Fε(·,Ω) defined for v ∈ Ĥ1/2 ∩ L4(Ω;Rd) by

Fε(v,Ω) :=
1

2

∫

Ω

e 1
2
(v,Ω) +

1

2ε
(1− |v|2)2 dx ,

where we have set e 1
2
(v,Ω) to be the nonlocal energy density in Ω given by

e 1
2

(
v,Ω

)
:=

γn, 12
2

∫

Ω

|v(x)− v(y)|2
|x− y|n+1

dy + γn, 12

∫

Rn\Ω

|v(x)− v(y)|2
|x− y|n+1

dy . (1.1.15)

The most standard way to obtain weak solutions to (1.1.13)-(1.1.14) is certainly to minimize Fε(·,Ω)
under the exterior Dirichlet condition (1.1.14), i.e., setting

H1/2
g (Ω;Rd) := g +H

1/2
00 (Ω;Rd) ⊆ Ĥ1/2(Ω;Rd) ,

one considers the minimization problem

min
{
Fε(v,Ω) : v ∈ H1/2

g ∩ L4(Ω;Rd)
}
, (1.1.16)

3. The results announced here are part of an ongoing project.
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whose resolution follows directly from the Direct Method of Calculus of Variations. However, we em-
phasize that the main object of our analysis is to provide a careful study of arbitrary critical points of the
1/2-Ginzburg-Landau energy Eε as ε → 0. As we have already explained, 1/2-harmonic maps behave
very much like classical harmonic maps. This is also the case for the fractional Ginzburg-Landau equa-
tion. Before stating our result, let us briefly recall what is known for the classical Ginzburg-Landau equa-
tion. In a serie of articles, F.H. LIN & C. WANG [148, 149, 150] have shown that a sequence of arbitrary
solutions to the Ginzburg-Landau equation with equibounded energy (in ε) converges weakly to a weak
harmonic map into S

d−1 as ε → 0. Unfortunately, the convergence only holds a priori in the weak sense
since the limiting system of harmonic maps is itself not strongly compact (due to the conformal inva-
riance in dimension 2). Exactly as in the blow-up analysis for harmonic maps of F.H. LIN [145] (see also
[147]), one can however provide a very good description of the defect measure arising in weak conver-
gence process. For the fractional Ginzburg-Landau equation, we have obtained the following analogous
result which corresponds in some sense to the first step in the full program of [145, 147, 148, 149, 150].

Theorem 1.1.5. Let εk ↓ 0 be an arbitrary sequence, and let {vk}k∈N ⊆ H
1/2
g ∩ L4(Ω;Rd) be such that





(−∆)
1
2 vk =

1

εk
(1− |vk|2)vk in Ω ,

vk = g in R
n \ Ω .

If supk Fεk(vk,Ω) < ∞, then there exist a (not relabeled) subsequence and v∗ ∈ H
1/2
g (Ω; Sd−1) a weak 1/2-

harmonic map in Ω such that vk − v∗ ⇀ 0 weakly in H
1/2
00 (Ω). In addition, there exist a finite nonnegative

Radon measure µsing on Ω, a countably H n−1-rectifiable relatively closed set Σ ⊆ Ω of finite (n−1)-dimensional
Hausdorff measure, and a Borel function Θ : Σ → (0,∞) such that

(i) e 1
2
(vk,Ω)L

n Ω
∗
⇀ e 1

2
(v∗,Ω)L

n Ω+ µsing weakly* as Radon measures on Ω ;

(ii)
(1− |vk|2)2

εk
→ 0 in L1

loc(Ω) ;

(iii)
1− |vk(x)|2

εk
⇀

γn, 12
2

∫

Rn

|v∗(x)− v∗(y)|2
|x− y|n+1

dy + µsing in D ′(Ω) ;

(iv) µsing = ΘH n−1 Σ ;

(v) v∗ ∈ C∞(Ω \ Σ) and vn → v∗ in Cℓ
loc(Ω \ Σ) for every ℓ ∈ N ;

(vi) if n > 2, the limiting 1/2-harmonic map v∗ and the defect measure µsing satisfy the stationary relation

[
d

dt
E 1

2

(
v∗ ◦ φt,Ω

)]

t=0

=
1

2

∫

Σ

divΣX dµsing (1.1.17)

for all vector fields X ∈ C1(Rn;Rn) compactly supported in Ω, where {φt}t∈R denotes the flow on R
n

generated by X ;

(vii) if n = 1, the set Σ is finite and v∗ ∈ C∞(Ω).

Remark. In the case of minimizing solutions, i.e., assuming that vk solves (1.1.16), the defect measure
µsing vanishes, and vk converges strongly towards v∗ which is then minimizing in Ω. In addition, the
smooth convergence in (v) holds locally away from sing(v∗) if n > 2, and locally in Ω for n = 1.

As in Theorem 1.1.1, the proof of Theorem 1.1.5 rests on the harmonic extension to R
n+1
+ given by

(1.1.8), and on the the representation of (−∆)
1
2 as associated Dirichlet-to-Neumann operator. This ex-
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tension procedure leads the following system of Ginzburg-Landau boundary reactions





∆veε = 0 in R
n+1
+ ,

∂veε
∂ν

=
1

ε
(1− |veε|2)veε on Ω .

(1.1.18)

The asymptotic analysis of this system as ε → 0 gives the main conclusions. To perform such an analysis,
we have first established an epsilon-regularity type of estimate for (1.1.18) in the spirit of the regularity
theory for harmonic maps [36, 188] or usual Ginzburg-Landau equations [68]. Together with a funda-
mental monotonicty formula, this estimate is the key to derive the convergence result and the rectifiability
of the defect measure. Note that Theorem 1.1.5 actually says that µsing is a (n− 1)-rectifiable varifold in
the sense of F.J. ALMGREN, see e.g. [193]. We emphasize that identity (1.1.17) is precisely the coupling
equation between the limiting 1/2-harmonic map v∗ and the defect measure µsing. It states that the first
inner variation of the 1/2-Dirichlet energy of v∗ is equal to − 1

2 times the first inner variation of the va-
rifold µsing, see [193, formulas 15.7 and 16.2]. We have achieved (1.1.17) in two independent steps. The
first step consists in proving an analogous identity when passing to the limit ε → 0 in system (1.1.18).
In the spirit of [150], the convenient way to let ε → 0 in the first inner variation of the Dirichlet energy
of veε is to use the notion of generalized varifold of L. AMBROSIO & M.H. SONER [29], once adapted to the
boundary setting. In turn, the second step allows us to return to the original formulation on R

n. It shows
that the first inner variation of the 1/2-Dirichlet energy of an arbitrary map v is equal to the first inner
variation up to Ω of the Dirichlet energy of its harmonic extension ve. This is precisely the observation
who led us to conclude that a stationary 1/2-harmonic map yields a stationary map when applying the
extension.

Before concluding this section, let us briefly comment on some possible extension of the present
results and an open question. In the fractional Ginzburg-Landau energy one could replace the poten-
tial (1 − |u|2)2 by a more general nonnegative potential W (u) having a zero set {W = 0} given by a
smooth compact submanifold N of Rd without boundary, and then consider the corresponding fractio-
nal Ginzbug-Landau equation. In this context, the singular limit ε → 0 leads to the 1/2-harmonic map
system into N . If the codimension of N is equal to 1 (plus some non degeneracy assumptions on W ),
the proof of Theorem 1.1.5 can certainly be reproduced with minor modifications. However, the higher
codimension case seems to require additional analysis since our espilon-regularity estimate strongly uses
the codimension 1 structure. It would be interesting to have a proof handling both cases.

1.2 Geometric analysis of H1/2-maps from R
2 into S

1

Within the theory of harmonic maps, the article of H. BREZIS, J.M. CORON, & E.H. LIEB [57] certai-
nely represents a fundamental contribution to the understanding of singularities in dimensions greater
than 3. Together with the subsequent article [37] by F. BETHUEL, H. BREZIS, & J.M. CORON, it gave ap-
propriate mathematical tools for the construction of highly singular (weak) harmonic maps from three
dimensional domains into S

2 (see [132, 171, 172]). In [57] the main problem consists in minimizing the
Dirichlet energy over a class of S2-valued maps which are smooth away from finitely many prescribed
singular points with prescribed topological degree. It is proved that minimizing sequences concentrate
on a set made by finitely many (oriented) segments connecting the singularities according to the de-
gree, and that the energy density converges to a multiple of the one dimensional Hausdorff measure
restricted to this union of segments. In addition, this connection has to be minimal in a sense of minimal
length. For instance, if the prescribed singular set consists of two isolated points with opposite degree,
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then the previous infimum is simply a multiple of the distance between these two points. For this reason,
the name of minimal connection has been given to the value of the infimum. It has then been noticed by
F. BETHUEL, H. BREZIS, & J.M. CORON [37] that the notion of minimal connection makes sense for an
arbitrary S

2-valued map with finite energy, and provide in some sense the "total weight" of the topolo-
gical singularities present in a given map. By computing the so-called relaxed energy (name taken from
the relaxation theory in the Calculus of Variations, see e.g. [72]), it is shown in [37] that the minimal
connection quantify exactly the lack of strong approximation in the Sobolev space H1 by smooth maps
into S

2 (see also [34]).
The purpose of the article [P08], in collaboration with A. PISANTE, was to investigate the analogues

of these results about H1-maps with values in S
2 in the case of H1/2-maps from the plane into S

1. In this
manuscript we are of course trying to present the problem in the perspective of the 1/2-harmonic maps
discussed in the previous section, but our original motivation comes from the three dimensional (com-
plex) Ginzburg-Landau equation and questions left open by J. BOURGAIN, H. BREZIS, & P. MIRONESCU

in [50]. H1/2-maps into S
1 with singularities turn out to be essentially the appropriate boundary condi-

tions in the 3D Ginzburg-Landau theory for the emergence of vortex lines in the singular limit ε → 0, see
[39, 50, 146, 173]. Historically, the analogy between the H1 and the H1/2 case has been first discovered by
T. RIVIÈRE [174] showing that a map in H1/2(S2; S1) can be strongly approximated by smooth S

1-valued
maps if and only if its distributional Jacobian vanishes, i.e., the exact analogue of a result by F. BETHUEL

[34] for H1-maps into S
2. In both cases, the distributional Jacobian is the right quantity to consider in

order to detect the topological part of the singular set of a given map. In [50], J. BOURGAIN, H. BREZIS,
& P. MIRONESCU have performed a rather complete analysis of the topological and analytical part of
the singular set of a H1/2-function into S

1, and our contribution departs from there. We finally mention
that our study recovers some result proved in [50], and in [117, 118] the setting of Cartesian currents.
In contrast with these articles, our analysis is performed in the entire space and is not restricted to the
Euclidean metric.

1.2.1 The distributional Jacobian and the dipole problem

Let us consider X := Ḣ1/2(R2; S1), and denote by [·]1/2 the standard (Gagliardo) H1/2–seminorm

[v]21/2 =
1

4π

∫∫

R2×R2

|v(x)− v(y)|2
|x− y|3 dxdy

(
= 2E 1

2
(v,R2)

)
(1.2.1)

which makes X modulo constants a complete metric space. In this way, X naturally appears as a closed
subset of the homogeneous Sobolev space Ḣ1/2(R2;R2). By our normalization choice,

[v]1/2 = ‖∇ve‖L2(R3
+) , (1.2.2)

where ve is the harmonic extension of v given by (1.1.8), i.e., the unique finite energy harmonic extension
of v to the half space R

3
+ := R

2 × (0,∞) (whose boundary is identify with R
2).

We now present some properties of maps in X related to the nontrivial topology of the target. These
properties were known in the bounded domain case (see [50, 174], and [118] for a different approach).
In particular, the strong density of the subspace of smooth maps X ∩C∞(R2) was known to fail and the
sequential weak density to hold. However, strong density holds for maps with finitely many singulari-
ties, see [174]. For any v ∈ X , a characterization of the topological singularities can be obtained in terms
of a distribution T (v), as in [50, 129, 174]. In a few words, this distribution measures how much v fails
to preserve closed forms under pull-back.
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Given v ∈ X and ϕ ∈ Lip(R2;R), we consider u ∈ Ḣ1(R3
+;R

2) and Φ ∈ Lip(R3
+;R) with u|R2 = v and

Φ|R2 = ϕ. Setting
H(u) := −2

(
∂2u ∧ ∂3u, ∂3u ∧ ∂1u, ∂1u ∧ ∂2u

)
,

the distribution T (v) is defined through its action on ϕ by

〈T (v), ϕ〉 :=
∫

R3
+

H(u) · ∇Φdx . (1.2.3)

Noticing that divH(u) = 0 in D ′(R3
+), it is routine to check that such a definition makes sense, i.e., it is

independent of the extensions u and Φ, and T (v) ∈
(
Lip(R2)

)′
. As shown in [50, 174], T (v) = 0 if and

only if v can be approximated strongly by smooth functions. For maps which are slightly more regular,
namely if v ∈ X ∩W 1,1

loc (R
2), an integration by parts in (1.2.3) yields

〈T (v), ϕ〉 = −
∫

R2

(v ∧∇v) · ∇⊥ϕ dx ∀ϕ ∈ C1
c (R

2;R) . (1.2.4)

In other words,
T (v) = curl(v ∧∇v) = 2Det(∇v) ,

where Det(∇v) is the distributional Jacobian of v. Formula (1.2.4) actually holds for an arbitrary v ∈ X

whenever ϕ ∈ C2
c (R

2;R), if we interpret (1.2.4) in terms of Ḣ1/2 − Ḣ−1/2 duality. In addition, if v is
smooth except at finitely many points {aj}kj=1 and u is taken to be smooth in the open half space, then

H(u) · ∇Φ dx1 ∧ dx2 ∧ dx3 = −2u#dω ∧ dΦ = −d(u#ω ∧ dΦ) ,

where ω(y1, y2) := y1dy2 − y2dy1 induces the standard volume form on S
1 =

{
y21 + y22 = 1

}
. In this way,

〈T (v), ϕ〉 = −2

∫

R3
+

u#dω ∧ dΦ =

∫

R2

v#ω ∧ dϕ = 2π

k∑

j=1

dj ϕ(aj) ,

where dj := deg(v, aj) ∈ Z is the topological degree of v restricted to any small circle around aj . In
addition,

∑
j dj = 0 because v ∈ Ḣ1/2(R2;R2). The same finite sum representation holds if T (v) is a

finite measure, see [50], this result being the H1/2-counterpart of the same statement for W 1,1-maps
proved in [58, 117, 139].

As a consequence of the strong Ḣ1/2-continuity of T (v), we easily see that, no matter which semi-
norm 〈·〉 equivalent to [·]1/2 is used, given v0 ∈ X such that T0 := T (v0) 6= 0, we have

m〈·〉(T0) := inf
{
〈v〉2 : v ∈ X , T (v) = T0

}
> 0 . (1.2.5)

A slightly different quantity actually plays the decisive role. It can be introduced as follows :

m̃〈·〉(T0) := inf

{
lim inf
n→+∞

〈vn〉2 : {vn}n∈N ⊆ X , T (vn) = T0 ,

vn ⇀ α weakly in Ḣ1/2 for some constant α ∈ S
1

}
. (1.2.6)

It is a nontrivial fact that m̃〈·〉(T0) is well defined, but in any case, we obviously have m̃〈·〉(T0) > m〈·〉(T0)

since sequences weakly converging to a constant are the only competitors allowed in m̃〈·〉(T0).
In the situation where T0 = 2π(δP − δQ) with P,Q ∈ R

2, it is tempting to show that the numbers

ρ(P,Q) := m〈·〉

(
2π(δP − δQ)

)
and ρ̃(P,Q) := m̃〈·〉

(
2π(δP − δQ)

)
, (1.2.7)
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as functions of P and Q are distances on the plane. At least for suitable seminorms, it is the case, these
functions giving heuristically the minimal H1/2-energy necessary to move the singularity P up to the
singularity Q.

We address two natural questions concerning (1.2.7), namely
(Q1) Can we compute (1.2.7) in terms of 〈·〉 ?
(Q2) What is the behavior of a minimizing sequence in (1.2.7) ?

Both questions are very delicate in nature and intimately related to the specific choice of the seminorm.
Since smooth maps are dense in the weak topology and T (v) = 0 for any such map, it is obvious that
the constraint T (v) = T0 is not sequentially weakly closed. Hence, each of the minimization problems
above is highly nontrivial.

We have restricted ourselves to a class of seminorms which come from second order linear elliptic
operators in the half space. We have shown that, no matter which regularity we assume on the coef-
ficients of the operators, concentration occurs near the boundary of the half space. These phenomena
can be regarded as the boundary analogues of the concentration phenomena in the Ginzburg-Landau
theories, and we have explained them in terms of concentration and quantization effects of Jacobians.

The class of seminorms we are interested in is defined as follows. Let S + be the set of all positive
definite symmetric 3× 3 matrices and consider A : R3

+ → S + satisfying an ellipticity assumption

λ|ξ|2 6 A(x)ξ · ξ 6 Λ|ξ|2 , ∀x ∈ R3
+ , ∀ξ ∈ R

3 , (1.2.8)

for some constants λ = λ(A) > 0 and Λ = Λ(A) > 0. We denote by S
+ the set of all continuous matrix

fields satisfying (1.2.8). Thus, S+ ⊆ C0(R3
+;S

+). We shall also consider S
+
× ⊆ A the subset of those

A ∈ S
+ of product-type at the boundary, i.e., such that

A|R2 =

(
B 0

0 b

)
, (1.2.9)

for some 2× 2 matrix field B = B(x1, x2) and scalar function b = b(x1, x2).
Given A ∈ S

+, we introduce the "A-energy functional" on Ḣ1(R3
+;R

2) as follows

EA(u) :=
1

2

∫

R3
+

tr
(
∇uA t∇u

)
dx .

Then we define the "fractional A-energy" EA and a seminorm 〈·〉A on Ḣ1/2(R2;R2) by setting

EA(v) := 〈v〉2A := inf
{
EA(u) : u ∈ Ḣ1

v (R
3
+;R

2)
}
, (1.2.10)

where Ḣ1
v (R

3
+;R

2) :=
{
u ∈ Ḣ1(R3

+;R
2) : u|R2 = v

}
. Due to the uniform ellipticity assumption (1.2.8),

this seminorm is equivalent to [·]1/2. Moreover, the infimum in (1.2.10) is attained by a unique map
vA ∈ Ḣ1

v (R
3
+;R

2) satisfying
div(A∇vA) = 0 in Ḣ−1(R3

+ : R2) .

In the sequel, we will refer to vA as the A-harmonic extension of v.
It is instructive to observe that the A-energy has a natural geometric interpretation when considering

on R3
+ the Riemannian metric g =

(
gij
)

given by g = CofA. Indeed, for maps u = (u1, u2) : (R
3
+, g) →

(R2, id) the squared length of the differential du = ∂1u dx1 + ∂2u dx2 + ∂3u dx3 at a point x is precisely
given by |du|2ĝx = ĝx(du1, du1) + ĝx(du2, du2), where ĝ =

(
gij
)

denotes the dual metric. Hence,

EA(u) =
1

2

∫

R3
+

|du|2ĝ dvolg .
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For curves γ : [0, 1] → R3
+, the squared length of the tangent vector γ̇(t) at the point γ(t) is given

by |γ̇(t)|2gγ(t)
= gγ(t)(γ̇(t), γ̇(t)). In this way, the matrix field A induces a canonical Riemannian length

LA : Lip
(
[0, 1];R3

+

)
→ [0,∞) given by

LA(γ) :=

∫ 1

0

ℓA
(
γ(t), γ̇(t)

)
dt , (1.2.11)

where we have set
ℓA(x, τ) :=

√
CofA(x)τ · τ .

To the functional LA, we associate the geodesic distance dA on R3
+ defined by

dA(P,Q) := inf
{
LA(γ) : γ ∈ Lip

(
[0, 1];R3

+

)
, γ(0) = P , γ(1) = Q

}
.

In the same way, LA induces a distance d̃A on R
2 by taking the previous infimum over curves lying on

the boundary ∂R3
+ ≃ R

2, i.e., for P,Q ∈ R
2,

d̃A(P,Q) := inf
{
LA(γ) : γ ∈ Lip([0, 1]; ∂R3

+) , γ(0) = P , γ(1) = Q
}
.

Both distances are of course equivalent to the Euclidean distance.

Given A ∈ S
+ and assuming the choice 〈·〉 = 〈·〉A in (1.2.5) and (1.2.6), we denote by mA(T0) and

m̃A(T0) the corresponding respective quantities, and ρA(P,Q) and ρ̃A(P,Q) the functions defined in
(1.2.7). Our first result concerns question (Q1). It compares the functions ρA, ρ̃A, dA and d̃A.

Theorem 1.2.1. Let A ∈ S
+. Then,

(i) ρ̃A = πd̃A ;

(ii) we have
ρA(P,Q) > πdA(P,Q) ∀P,Q ∈ R

2 ; (1.2.12)

(iii) if A ∈ S
+
× and A does not depend on x3, then ρA = ρ̃A = πd̃A = πdA ;

(iv) if ρA(P,Q) = πdA(P,Q) for some distinct points P,Q ∈ R
2, then any minimizing sequence {vn}n∈N

for ρA(P,Q) tends weakly (up to subsequences) to some constant α ∈ S
1. As a consequence, πdA(P,Q) =

ρA(P,Q) = ρ̃A(P,Q) = πd̃A(P,Q) and ρA(P,Q) is not attained.

Remark. Inequality (1.2.12) can be strict. In fact, we can construct a matrix field A ∈ S
+ of the form

A(x) = a(x3)Id such that πdA(P,Q) < ρA(P,Q) < πd̃A(P,Q) whenever P 6= Q. The same phenomena
appears when considering H1/2(S2; S1) endowed with its standard Gagliardo seminorm, see [P07].

Remark. In [P08] we actually consider matrix fields with measurable coefficients. In that case, the formula
(1.2.11) for the length of a curve is of course meaningless. We have succeeded however to show that
such a matrix field induces canonical distances on R3

+ and its boundary associated to some generalized
Finsler metric. For a matrix field with measurable coefficients, Theorem 1.2.1 holds in a slightly weaker
form where statement (i) is replaced by : ρ̃A is a distance which is greater than or equal to π times the "A-
geodesic distance" on ∂R3

+. All other items remain unchanged.

In the proof of Theorem 1.2.1, the lower bounds in (i) and (ii) come from a duality argument involving
the vector field H(u) and the characterization of 1-Lipschitz functions with respect to a geodesic distance
as subsolutions of a suitable eikonal equation. In the Euclidean setting, the argument was originally
introduced in [57]. Another basic ingredient providing the upper bound in (i), is the construction of an
explicit optimal dipole {vn}n∈N with respect to a constant matrix. As first noticed by P. MIRONESCU &
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A. PISANTE in [160], the crucial role is played by Möbius transformations, see also Theorem 1.1.3. Under
the structure assumption in (iii), dA and d̃A coincide as distances on the plane and this fact leads to
the full equality. About claim (iv), we show that the energy has to stay in a bounded set, therefore
concentration follows from the strong maximum principle.

1.2.2 Graph currents and bubbling off of circles

Now we would like to answer question (Q2), i.e., to describe the behavior of an optimal sequence
for ρ̃A(P,Q). From the analytical point of view, such an optimal sequence has an energy density concen-
trating on a minimizing geodesic connecting the point P to the point Q, very much like in [57]. On the
other hand, to interpret geometrically the lack of compactness of an optimal sequence {vn}n∈N, it is very
convenient to consider the graphs of the vn’s as two dimensional currents in the product space R

2 × S
1

in the spirit of the theory of Cartesian currents [116]. Our approach to graph currents for maps in X

extends the construction of [160] in the one dimensional case.
Given v ∈ X ∩ C∞(R2), the graph of v is a 2-dimensional smooth submanifold without boundary

Gv ⊆ R
2 × S

1, endowed with the natural orientation induced by the parametrization x 7→
(
x, v(x)

)
.

The graph current Gv associated to v is defined by its action on smooth compactly supported 2-forms
β ∈ D2(R2 × S

1) through the formula

〈Gv, β〉 :=
∫

Gv

β . (1.2.13)

If we denote by ω the standard volume form on S
1, then every 2-form β ∈ D2(R2 × S

1) can be uniquely
and globally written as

β(x, y) = f0(x, y)dx1 ∧ dx2 +
(
f1(x, y)dx1 + f2(x, y)dx2

)
∧ ω(y) , (1.2.14)

for some smooth functions f0, f1, f2 ∈ C∞
c (R2 × S

1;R). Using decomposition (1.2.14), we can rewrite
(1.2.13) as

〈Gv, β〉 =
∫

R2

f0(x, v) dx+

∫

R2

(
f1(x, v) v ∧ ∂2v − f2(x, v) v ∧ ∂1v

)
dx . (1.2.15)

Clearly, if v is smooth, then the right hand side of (1.2.15) defines a current, i.e.,

Gv ∈ D2(R
2 × S

1) :=
(
D

2(R2 × S
1)
)′
,

and by construction, it coincides with the integration over the graph of v.
Since the fj ’s in (1.2.15) are compactly supported smooth functions, formula (1.2.15) can be interpre-

ted as an Ḣ1/2 − Ḣ−1/2 duality for an arbitrary v ∈ X , and it still defines an element of D2(R
2 × S

1). In
other words, we use (1.2.15) as definition of graph current associated to v ∈ X .

Remark. By Stokes Theorem, if v ∈ X ∩ C∞(R2), then
∫
Gv

dβ =
∫
∂Gv

β = 0 for any β ∈ D1(R2 × S
1),

since the graph Gv has no boundary in R
2 × S

1. On the contrary, for an arbitrary map v ∈ X , the graph
current Gv can have a boundary. More precisely, for β ∈ D1(R2 × S

1),

〈∂Gv, β〉 := 〈Gv, dβ〉 = 〈T (v), β0〉 ,

where β0(x) := −
∫
S1
β(x, ·) ∈ C∞

c (R2;R).

Remark. If a sequence {vn}n∈N ⊆ X converges strongly to v in Ḣ1/2(R2), then Gvn
⇀ Gv weakly as

currents.
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In view of the two preceding remarks and the discussion above, if {vn}n∈N is an optimal sequence
ρ̃A(P,Q), then the graphs {Gvn} must undergo a change of topology along a geodesic between P and Q.
Geometrically, what happens is that a vertical circle is formed above each point of this geodesic in order
to compensate the loss of boundary in the limit. The precise statement is given in Theorem 1.2.2 below,
and it requires the matrix field to satisfy the structure assumption (1.2.9).

Theorem 1.2.2. Let A ∈ S
+
×, and let P,Q ∈ R

2 be two distinct points, {vn}n∈N ⊆ X an optimal sequence for
ρ̃A(P,Q), and {vA

n}n∈N ⊆ Ḣ1(R3
+;R

2) the corresponding A-harmonic extensions. Then, up to subsequences,

(i) there exists an injective curve γ ∈ Lip([0, 1]; ∂R3
+) satisfying γ(0) = P , γ(1) = Q, and LA(γ) =

d̃A(P,Q) such that
1

2
tr
(
∇vA

n A
t∇vA

n

)
L

n+1
R

3
+

∗
⇀ πℓA(x, τx)H

1 Γ , (1.2.16)

weakly* as Radon measures, where Γ = γ([0, 1]) and τx denotes a unit tangent vector to Γ at x ;

(ii) the sequence of graph currents {Gn}n∈N associated to {vn}n∈N satisfies

〈Gn, β〉 → 〈Gα, β〉+
〈
~Γ× JS1K, β

〉
∀β ∈ D

2(R2 × S
1) , (1.2.17)

where ~Γ is the 1–rectifiable current relative to the oriented curve γ ;

(iii) the energy is carried by the vorticity sets, i.e.,

1

2

∫

{|vA
n |6δ}

tr
(
∇vA

n A
t∇vA

n

)
dx → πδ2 d̃A(P,Q) ∀δ ∈ (0, 1) . (1.2.18)

In this theorem, (i) describes lack of compactness of optimal sequences and the structure of the li-
miting defect measure. The analysis of this quantization phenomena is based on a study of the pre-
Jacobians j(v) := v ∧ ∇v for v ∈ X , and their weak limits. Claim (ii) is the announced topological
counterpart of energy concentration interpreted in terms of bubbling-off of a vertical current as already
pursued in the H1/2-setting in [117, 118, 160]. In contrast with [117, 118], our approach to graph currents
is direct and does not rely too heavily on Geometric Measure Theory. Instead, it essentially relies on a
representation formula for the pre-Jacobian 1-current j(v) in terms of a suitable lifting of v. Our lifting
construction is based on a deep result of J. BOURGAIN, H. BREZIS, & P. MIRONESCU [50]. Finally, (iii)
asserts that the energy is carried by the vorticity sets of the extensions, much in the spirit of Ginzburg-
Landau theories. This statement is the higher dimensional analogue of [160, Remark 7, formula (3.54)],
and it is proved using the oriented coarea formula of G. ALBERTI, S. BALDO, & G. ORLANDI [7].

Remark. By analogy with [74, 160] and in view of Theorem 1.1.3, we expect that, for almost every point
x ∈ Γ, the sequence {vA

n}n∈N behaves like a rescaled Möbius transformation on the half plane passing
through x and orthogonal to Γ.

1.2.3 The relaxed energy

As we have already mentioned, smooth maps are dense in X only for the Ḣ1/2-weak topology. In
analogy to [37], the last question we address is : for a given v ∈ X , how far from v remains a smooth
approximating sequence ? Given the energy functional EA on X , we can evaluate the "smooth approxi-
mation defect" via the so-called relaxed functional EA : X → [0,∞) defined by

EA(v) := inf

{
lim inf
n→+∞

EA(vn) : {vn}n∈N ⊆ X ∩ C∞(R2) , vn ⇀ v weakly in Ḣ1/2(R2)

}
.
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Obviously EA > EA and the gap between EA(v) and EA(v) is the quantity we want to determine. In
the context of S2-valued maps from three dimensional domains, it has been proved in [37] that the gap
occurring in the approximation process is proportional to the length of a minimal connection between
the topological singularities of positive and negative degree. This notion is genuinely related to the
metric under consideration, and in our setting, Theorem 1.2.1 already suggests that d̃A is the appropriate
distance. The length of a minimal connection relative to the distance d̃A corresponds to the functional
LA : X → [0,∞) defined by

LA(v) :=
1

2π
sup

{
〈T (v), ϕ〉 : ϕ ∈ Lip(R2,R) , |ϕ(P )− ϕ(Q)| 6 d̃A(P,Q) ∀P,Q ∈ R

2
}
.

In other words, LA(v) is (up to a multiplicative factor) the dual norm of T (v) ∈
(
Lip(R2;R)

)′
with R

2

endowed with the metric d̃A. To picture analytically the value of LA(v), it is instructive to consider
the case where v has only finitely many singularities {a1, . . . , ak}. We have seen that

∑
i di = 0 where

di is degree of v around ai. Hence, we can relabel the ai’s taking into account their multiplicity |di|,
as two lists of positive and negative points say (P1, . . . , Pm) and (Q1, . . . , Qm). In that case, we have
T (v) = 2π

∑
j(δPj

− δQj
), and

LA(v) = min
σ∈Sm

m∑

j=1

d̃A(Pj , Qσ(j)) ,

where Sm denotes the set of all permutations of m indices.

We have the following representation result for EA, and eventually for m̃A.

Theorem 1.2.3. Let A ∈ S
+. For every v ∈ X ,

EA(v) = EA(v) + πLA(v) , (1.2.19)

and

m̃A

(
T (v)

)
= πLA(v) .

For the upper bounds, the heart of the matter is a combination of the density of maps with finitely
many singularities with Theorem 1.2.1 through a dipole removing technique in the spirit of [34]. The
lower bounds are obtained again by duality arguments. As already mentioned, when A = Id, formula
(1.2.19) could be proved using the theory of Cartesian currents, adapted to the case of the entire space,
combining the lower semicontinuity of the energy functional and the approximation in energy, see [118,
Proposition 2.11 and Theorem 6.1]. Our proof is elementary and does not make any use of currents.

Remark. As for Theorem 1.2.1, we have also considered in [P08] the case of a matrix field with measu-
rable coefficients. If the matrix field satisfies (1.2.9) and does not depend on x3, then a similar represen-
tation for the relaxed energy holds. In the general case, we only have upper and lower bounds involving
the length of a minimal connection relative to the distance 1

π ρ̃A, and the one relative to d̃A, respectively.

1.3 Equivariant symmetry for the 3D Ginzburg-Landau equation

Symmetry results for nonlinear elliptic PDE’s are difficult and usually rely on a clever use of the
maximum principle as in the celebrate Aleksandrov’s moving planes method, or the use of rearren-
gement techniques as the Schwarz symmetrization (see e.g. [140] for a survey). In case of systems the
situation is much more involved since there are no general tools for proving this kind of results.
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In the article [P12], in collaboration with A. PISANTE, we have investigated symmetry properties of
maps u : R3 → R

3 which are entire (smooth) solutions of the Ginzburg-Landau system

∆u+ (1− |u|2)u = 0 (1.3.1)

possibly subject to the condition at infinity

|u(x)| → 1 as |x| → ∞ . (1.3.2)

This system is naturally associated to the localized energy functional

E(v,Ω) :=
1

2

∫

Ω

|∇v|2 + 1

2
(1− |v|2)2 dx (1.3.3)

defined for v ∈ H1
loc(R

3;R3) and a bounded open set Ω ⊆ R
3. Indeed, if u ∈ H1

loc(R
3;R3) is a critical

point of E(·,Ω) for every Ω then u is a weak solution of (1.3.1) and thus a classical solution according to
the standard regularity theory for elliptic equations. In addition, any weak solution u of (1.3.1) satisfies
the natural bound |u| 6 1 in the entire space by a result of A. FARINA [94, Proposition 1.9].

Here the "boundary condition" (1.3.2) is added to rule out solutions with values in a lower dimensio-
nal Euclidean space like the scalar valued solutions relevant for the De Giorgi conjecture (see e.g. [17]),
or the explicit vortex solutions of [128] arising in the 2D Ginzburg-Landau model (see also [38]). More
precisely, under assumption (1.3.2) the map u has a well defined topological degree at infinity given by

deg∞u := deg

(
u

|u| , ∂BR

)

whenever R is large enough, and we are interested in solutions satisfying deg∞u 6= 0.
A special symmetric solution U to (1.3.1)-(1.3.2) with deg∞U = 1 has been constructed by V. AKO-

PIAN & A. FARINA [4] and S. GUSTAFSON [126] in the form

U(x) = f(|x|) x

|x| , (1.3.4)

for a unique function f vanishing at zero and increasing to one at infinity. Taking into account the
obvious invariance properties of (1.3.1) and (1.3.3), infinitely many solutions can be obtained from (1.3.4)
by translations on the domain and orthogonal transformations on the image. In addition, these solutions
satisfy r−1E(u,Br) → 4π as r → +∞. It is easy to check that U as in (1.3.4) is the unique solution u of
(1.3.1)-(1.3.2) such that u−1({0}) = {0}, deg∞u = 1 and u is O(3)-equivariant, i.e.,

u(Tx) = Tu(x) ∀x ∈ R
3 , ∀T ∈ O(3) .

In addition u = U satisfies |u(x)| = 1 +O(|x|−2) as |x| → ∞.

In [56] H. BREZIS has formulated the following problem :

(Q) Is any solution to (1.3.1) satisfying (1.3.2) (possibly with a "good rate" of convergence) and

deg∞u = ±1, of the form (1.3.4) (up to isometries) ?

We have investigated this problem focusing on local minimizers of the energy in the following sense. We
say that u ∈ H1

loc(R
3;R3) is local minimizer of E(·) if

E(u,Ω) 6 E(v,Ω)

for any bounded open set Ω and v ∈ H1
loc(R

3;R3) such that u− v ∈ H1
0 (Ω;R

3). In other words, we have
considered the following alternative question :



28

(Q′) Is any non-trivial local minimizers of E(·) of the form (1.3.4) (up to isometries) ?

Our main result gives a positive answer to this question under a natural condition on the growth of the
energy on balls of increasing radius, i.e.,

sup
r>0

r−1E(u,Br) < ∞ . (1.3.5)

An entire solution u to (1.3.1) satisfying this condition can be studied near infinity through a "blow-
down" analysis. More precisely, for each r > 0 we introduce the scaled map ur defined by

ur(x) := u(rx) , (1.3.6)

which is a smooth entire solution of

∆ur + r2(1− |ur|2)ur = 0 . (1.3.7)

Whenever E(u,Br) grows at most linearly with r,

Er(ur,Ω) :=
1

2

∫

Ω

|∇ur|2 +
r2

2
(1− |ur|2)2 dx

is equibounded for every bounded open set Ω, and thus {ur}r>0 is bounded in H1
loc(R

3;R3). Any weak
limit u∞ : R3 → R

3 of {ur}r>0 as r → ∞ is called a tangent map to u at infinity. By a result due to F.H. LIN

& C. WANG [149], any tangent map u∞ is a 0-homogeneous entire harmonic map into S
2. Assuming in

addition that u is a local minimizer, we have shown that any tangent map u∞ is a locally minimizing
harmonic map, i.e., ∫

Ω

|∇u∞|2 dx 6

∫

Ω

|∇v|2 dx

for any bounded open set Ω and v ∈ H1
loc(R

3; S2) such that u∞ − v ∈ H1
0 (Ω;R

3). On the other hand, it
was known from F.J. ALMGREN & E.H. LIEB [12] that any locally minimizing harmonic map from R

3

into S
2 is either trivial or of in form x

|x| up to translations and orthogonal transformations. In case the
harmonic map is assumed to be 0-homogeneous, the same result was already contained in H. BREZIS,
J.M. CORON, & E.H. LIEB [57]. Our formulation of question (Q′) was clearly motivated by those rigidity
results for entire harmonic maps from R

3 into S
2.

1.3.1 Existence of local minimizers

Obviously local minimizers are smooth entire solutions of (1.3.1) but it is not clear that non-trivial
local minimizers do exist or if the solutions obtained from (1.3.4) are locally minimizing. In case of maps
from the plane into itself, these questions were essentially solved affirmatively in [158, 159, 180] (see
also [175] for the more difficult gauge-dependent problem, i.e., in presence of a magnetic field). As a
preliminary step of our analysis, we have shown the existence of non-constant local minimizers for the
3D Ginzburg-Landau equation.

Theorem 1.3.1. There exists a smooth non-constant solution u : R3 → R
3 of (1.3.1)-(1.3.2) which is a local

minimizer of E(·). In addition, u(0) = 0, deg∞u = 1 and r−1E(u,Br) → 4π as r → +∞.

Our construction relies on a careful analysis of the vorticity set for solutions uλ to
{
∆u+ λ2u(1− |u|2) = 0 in B1 ,

u = id on ∂B1 ,
λ > 0 , (1.3.8)
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which are absolute minimizers of the Ginzburg-Landau functional Eλ(u,B1) over H1
id(B1;R

3). Up to a
translation, we have obtained a locally minimizing solution to (1.3.1) as a limit of uλn

(x/λn) for some
sequence λn → +∞. The heart of the matter was to prove the following

Proposition 1.3.2. Let λ > 1 and uλ be a global minimizer of Eλ(·, B1) over H1
id(B1;R

3). For any δ ∈ (0, 1),
there exists a constant Cδ > 0 independent of λ such that

diam
(
{|uλ| 6 δ}

)
6 Cδλ

−1 and distH
(
{|uλ| 6 δ}, {0}

)
= o(1) as λ → ∞ ,

where distH denotes the Haussdorff distance.

Part of the proof rests on classical estimates for Ginzburg-Landau equations [66, 67, 68], and the
result of H. BREZIS, J.M. CORON, & E.H. LIEB [57] telling us that the map x

|x| is the unique asymptotic
limit as λ → ∞. In turn, the estimate on the size of the vorticity set {|uλ| 6 δ} relies the asymptotic
analysis of F.H. LIN & C. WANG [149] and on a quantization result for stationary harmonic maps into
S
2 due to F.H. LIN & T. RIVIÈRE [147]. This estimate is proved by contradiction using the easy upper

bound Eλ(uλ, B1) 6 4π (choosing x
|x| as competitor for minimality).

1.3.2 Tangent maps and asymptotic symmetry

In order to prove full symmetry of a non-constant local minimizer, a natural approach is to prove
uniqueness and symmetry of the tangent map at infinity, and then try to propagate the symmetry from
infinity to the entire space. To be able to follow this path, one has to determine first the nature of the
convergence toward tangent maps. The possible lack of compactness of the scaled maps {ur}r>0 in
(1.3.6)-(1.3.7) has been carefully analyzed by F.H. LIN & C. WANG [148, 149]. They have obtained a
complete description of a defect measure, and as a byproduct, proved a quantization effect for the nor-
malized energy in the spirit of [147], namely r−1E(u,Br) → 4πd as r → ∞ for some d ∈ N. Note that
the case d = 1 is already valid both for the solution (1.3.4) and the local minimizer constructed in Theo-
rem 1.3.1. As a matter of fact, we have proved that the same property holds for any non-constant local
minimizer satisfying (1.3.5), and that the induced scaled maps {ur}r>0 are strongly relatively compact
in H1

loc(R
3;R3). In proving this result, the first step is to apply the blow-down analysis from infinity

of [149]. Then concentration is excluded by a comparison argument involving the "dipole removing
technique" of [34]. This yields the strong compactness of the scaled maps. A further comparison argu-
ment based on [57] gives the desired value for the limit of the normalized energy.

Once the compactness of the scaled maps is obtained, one can address a finer convergence analysis
using elliptic theory. In this direction, we have the following result inspired by the asymptotic analysis
for minimizing harmonic maps at isolated singularities of L. SIMON [194].

Theorem 1.3.3. Let u be an entire solution of (1.3.1) satisfying (1.3.5) and such that the scaled maps {ur}r>0

are strongly relatively compact in H1
loc(R

3;R3). Then there exist a constant C > 0 such that

|x|2(1− |u(x)|2) + |x||∇u(x)|+ |x|3|∇(1− |u(x)|2)|+ |x|2|∇2u(x)| 6 C ∀x ∈ R
3 , (1.3.9)

and a unique harmonic map φ : S2 → S
2 such that deg φ = deg∞u and setting u∞(x) = φ(x/|x|),

(i) ‖ur |S2 − φ‖C2(S2;R3) → 0 as r → ∞ ;

(ii) Er(ur,Ω) → 1
2

∫
Ω
|∇u∞|2 dx for every bounded open set Ω .

If in addition deg∞u = ±1, then φ(x) = Tx for some T ∈ O(3).
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This result strongly relies on the a priori bound (1.3.9) which is proved by contradiction. Whene-
ver (1.3.9) holds, we can write for |x| sufficiently large the polar decomposition of the solution u as
u(x) = ρ(x)w(x) for some positive function ρ and some S

2-valued map w which have to solve the sys-
tem {

div(ρ2(x)∇w(x)) + w(x)ρ2(x)|∇w(x)|2 = 0 ,

∆ρ(x) + ρ(x)(1− ρ2(x)) = ρ(x)|∇w(x)|2 ,
(1.3.10)

for |x| large. It is clear from (1.3.9) that ρ smoothly tends to 1 at infinity. Hence the unit map w tends to
be harmonic as |x| → ∞, and system (1.3.10) can be considered as a perturbation of the harmonic map
system. Using a suitable "Pohozaev identity", we were able to derive an elementary (but tricky) estimate
on the radial derivative of w leading to the uniqueness of the asymptotic limit. In particular, we avoid
the use of the Simon-Lojasievicz inequality [194].

1.3.3 Full symmetry

Concerning the original symmetry problem, we finally state our main result answering both ques-
tions (Q) and (Q′).

Theorem 1.3.4. Let u be an entire solution of (1.3.1). The following conditions are equivalent :

(i) u is a non-constant local minimizer of E(·) satisfying (1.3.5) ;

(ii) E(u,Br) = 4πr + o(r) as r → ∞ ;

(iii) u satisfies |u(x)| = 1 +O(|x|−2) as |x| → ∞ and deg∞u = ±1 ;

(iv) up to a translation and an orthogonal transformation on the image, u is O(3)-equivariant, i.e., u = U

as given by (1.3.4).

The first chains of implications come from the results and techniques we have described above. In
turn, (iii) ⇒ (iv) rests on the asymptotic symmetry in Theorem 1.3.3, and it is proved considering the
map u/f (where f is given in (1.3.4)) in the spirit of the division method of [159, 175]. We emphasize
that Theorem 1.3.4 requires the energy bound (1.3.5) in (i). It would be interesting to determine whether
or not any local minimizer satisfies this bound. For the 2D Ginzburg-Landau equation, the analogous
bound is know to be true [180].

1.4 Vortex curves in some 2D Ginzburg-Landau systems

The Ginzburg-Landau theories have had an enormous influence on both physics and mathema-
tics. Physicists employ Ginzburg-Landau models in superconductivity, superfluidity, or Bose-Einstein
condensates (BECs), all systems which present quantized defects commonly known as vortices. Star-
ting with the work by F. BETHUEL, H. BREZIS, & F. HÉLEIN [38], many powerful methods have been
developed to study the physical London limit, i.e., as the characteristic length scale ε tends to 0. This
limit corresponds to the Thomas-Fermi regime in BECs, and to an analogous regime in superfluids. In a
two-dimensional setting, vortices are essentially characterized as isolated zeroes of the order parameter
carrying a winding number, and in the London limit as point defects where energy concentration oc-
curs. The question of whether energy minimizers develop vortices, where they appear in the domain,
and how many there should be (for given boundary conditions, constant applied fields or angular velo-
cities) has been analyzed in many contexts and parameter regimes.

In the article [P13], in collaboration with S. ALAMA & L. BRONSARD, we have considered a certain
type of Ginzburg-Landau energies, arising for instance in the physical context of a rotating superfluid.
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Given a smooth bounded domain D ⊆ R
2, a smooth vector field V : R2 → R

2, an angular speed Ω > 0,
and a parameter ε > 0, the general form of the energy is

u ∈ H1(D;C) 7→ Fε(u) :=
1

2

∫

D

|∇u|2 + 1

2ε2
(1− |u|2)2 dx−Ω

∫

D

V (x) · j(u) dx .

Identifying R
2 with the complex plane C, we denote by

j(u) := u ∧∇u ∈ L1(D;R2) ,

the pre-Jacobian of u. The L1-vector field j(u) is often written as j(u) = (iu,∇u), where (·, ·) is the stan-
dard inner product of two complex numbers, viewed as vectors in R

2. We have chosen this particular
model because it is the simplest setting to analyze concentration of vortices on arbitrary sets. Neverthe-
less, similar results can be extended to other physical models, see [P13].

In the case of uniform rotation, that is V (x) = x⊥ and with D a disc, S. SERFATY [190] studied
minimizers of a very closely related functional to determine the critical value Ω1 = Ω1(ε) of the angular
speed Ω at which vortices first appear (see also [P05, P06] for BECs). She finds that minimizers acquire
vorticity at Ω1 = k(D)| ln ε|+O(ln | ln ε|) for an explicitly determined constant k(D). In a series of papers,
culminating with the research monograph [183], E. SANDIER & S. SERFATY developed powerful tools
to study vortices in Ginzburg-Landau models. Although they primarily work with the full Ginzburg-
Landau model with magnetic field, the methods apply as well to the functional Fε above. In particular,
their results apply to the near-critical regime in simply connected domains. In our setting, their results
show that for any simply connected domain D, the first order expansion of the critical value Ω1 for
vortex existence in minimizing configurations is also of the form k(D)| ln ε| for some constant k(D).
Moreover the locus of concentration of vortices for Ω = Ω1 + o(| ln ε|) is given by the set of maxima of
|ζ|, with ζ the solution of the following boundary-value problem :

{
−∆ζ = curlV in D ,

ζ = 0 on ∂D .
(1.4.1)

The constant k(D) is then determined by

k(D) =
1

2|ζ|max
,

where |ζ|max denotes the maximum value of |ζ|. If, for instance, V is real-analytic and curlV is nonnega-
tive, then so is the solution ζ, and the maximum is generically attained at a finite number of points in the
domain. In this situation, if Ω = Ω1 + o(| ln ε|), minimizers exhibit concentration of vortices at isolated
points, and the number of vortices remains uniformly bounded whenever Ω−Ω1 is of order O(ln | ln ε|),
see [183, 190].

The case of a multiply connected domain provides a slightly different qualitative picture. In a work
on rotating BECs, A. AFTALION, S. ALAMA & L. BRONSARD [3] considered a similar functional in a
domain given by a circular annulus A (centered at the origin) and again with uniform rotation V (x) =

x⊥. Unlike the simply connected case, minimizers in the annulus may have vorticity without vortices, as
the hole acquires positive winding at bounded rotation Ω. Then point vortices are nucleated inside the
interior of A at a critical value Ω1, again of leading order | ln ε|. Solving equation (1.4.1) in the annulus
A, one finds out that the set of maxima of the function ζ is given by a circle inside A. Hence one can
expect that, rather than accumulating at isolated points, vortices concentrate along this circle in the limit
ε → 0. The main feature proved in [3] is that if Ω ∼ Ω1+O(ln | ln ε|), then vortices are indeed essentially
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supported by a circle Σ and that the total degree of these vortices is of order ln | ln ε|. In other words, in
the limit ε → 0, infinitely many vortices accumulate on Σ. However the determination of the limiting
vorticity measure on the circle was left open.

Our primary objective was to answer this question on the nature of the limiting vorticity measure
in the case where infinitely many vortices accumulates on a curve. We underline that this situation was
not covered by the results in [183], and it can be seen as intermediate between the regime Ω ≈ Ω1 with
finitely many vortices, and the "free boundary regime" Ω ≫ Ω1 where the limiting vorticity measure is
supported on a set of positive area (see [183, 190]).

1.4.1 Prescribed concentration set in simply connected domains

To effectively separate the question of the nature of the concentration set from the question of loca-
lizing vortices, we instead start with a simply connected domain D, and we prescribe the function ζ with
ζ ≥ 0 in D and ζ|∂D = 0, in such a way that ζ is maximized on a prescribed closed curve Σ ⊆ D. Then, we
choose as our vector field

V (x) = −∇⊥ζ(x) =

(
∂ζ

∂x2
,− ∂ζ

∂x1

)

(so that (1.4.1) is trivially satisfied). With this choice, we have shown that vortices are forced to accu-
mulate on Σ as ε tends to 0. The curve Σ can be either a smooth Jordan curve or a smooth embedded
simple arc, compactly contained in D. In this setting, we have resolved the problem of distribution of
vortices along Σ, both for minimizers and in the more general setting of Γ-convergence. While this ar-
bitrary choice of concentration set Σ may seem unphysical, in fact Ginzburg-Landau functionals of this
form appear naturally in thin shell limits for superconductors in strong constant magnetic fields, see [5].
In the next subsection we will consider a general vector field V in a multiply connected domain, and we
will see that in this case, the two problems do not differ too much in nature.

To state our first result we need some specific hypotheses on ζ and the angular speed Ω. We assume
that ζ satisfies the following assumptions 4 :

(H1) ζ ∈ Lip0(D), ζ ≥ 0 in D, and ζmax := maxx∈D ζ(x) > 0 ;

(H2) Σ := {x ∈ D : ζ(x) = ζmax} ⊆ D is a Jordan curve or a simple embedded arc of class C2.

We further assume that Ω = Ω(ε) is near to the critical value needed for the presence of vortices. More
precisely,

Ωε :=
| ln ε|
2ζmax

+ ω(ε) , (1.4.2)

for some function ω : (0,+∞) → (0,+∞) satisfiying ω(ε) → +∞ with | ln ε|−1ω(ε) → 0 as ε → 0.

For u ∈ H1(D;C) we consider the normalized functional

Fε(u) :=
1

ω2(ε)

∫

D

{
1

2
|∇u|2 + 1

4ε2
(1− |u|2)2 +Ωε∇⊥ζ · j(u)

}
dx ,

and for a nonnegative Radon measure µ on D, we define

I(µ) :=
1

2

∫∫

D×D

G(x, y) dµ(x)dµ(y) ,

4. We denote by Lip0(D) the space of Lipschitz functions on D vanishing on ∂D.
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where the function G denotes the Dirichlet Green’s function of the domain D, i.e., for every y ∈ D,
x 7→ G(x, y) is the solution of {

−∆G(·, y) = δy in D ′(D) ,

G(·, y) = 0 on ∂D .
(1.4.3)

Our result describes the asymptotic behavior of the family of functionals {Fε}ε>0 as ε → 0, and it
is stated in terms of the vorticity distribution given by (twice) the weak Jacobian, i.e., the distributional
curl of the pre-Jacobian.

Theorem 1.4.1. Assume that (H1), (H2), and (1.4.2) hold. Let εn → 0+ be an arbitrary sequence. Then,

(i) for any {un}n∈N ⊆ H1(D;C) satisfying supn Fεn(un) < ∞, there exist a (not relabeled) subsequence
and a nonnegative Radon measure µ in H−1(D) supported by Σ such that

1

ω(εn)
curl j(un) −→

n→+∞
µ strongly in (Lip0(D))′ ; (1.4.4)

(ii) for any {un}n∈N ⊆ H1(D;C) such that (1.4.4) holds for some nonnegative Radon measure µ in
H−1(D) supported by Σ, we have

lim inf
n→+∞

Fεn(un) > I(µ)− ζmax µ(D) ;

(iii) for any nonnegative Radon measure µ in H−1(D) supported by Σ, there exists a sequence {un}n∈N ⊆
H1(D;C) such that (1.4.4) holds and

lim
n→+∞

Fεn(un) = I(µ)− ζmax µ(D) .

The proof of Theorem 1.4.1 makes an essential use of the general estimates of E. SANDIER & S. SER-
FATY [183], specially for the lower bound and the compactness of normalized weak Jacobians which rest
on the so-called "vortex-ball construction". The upper bound is obtained by constructing trial functions
in two steps. First, we consider measures which are absolutely continuous with respect to H 1 Σ and
have a smooth density. In the second step, we prove that an arbitrary measure in H−1 supported by Σ

can be approximated by measures of the previous kind.

The conclusions of Theorem 1.4.1 are reminiscent of Γ-convergence theory, see [78]. In this context,
it yields the following convergence result for the vorticity of global minimizers, and hence solving the
problem on the limiting distribution of vortices along Σ.

Corollary 1.4.2. Assume that (H1), (H2), and (1.4.2) hold. Let εn → 0+ be an arbitrary sequence. For every
integer n ∈ N, let un ∈ H1(D;C) be a global minimizer of Fεn . Then,

1

ω(εn)
curl j(un) −→

n→+∞

ζmax

2I∗
µ∗ strongly in (Lip0(D))′ ,

where µ∗ is the unique minimizer of I over all probability measures supported on Σ, and I∗ := I(µ∗).

Remark (Renormalized energy). By the results in [138, 181, 183], the vorticity distribution curl j(uε) can
be approximated by a measure of the form 2π

∑
i∈Iε

diδai
for some finite set of points {ai}i∈Iε ⊆ D

and integers {di}i∈Iε ⊆ Z. In other words, each point ai can be viewed as an "approximate vortex"
with winding number di. Then the integer Dε =

∑
i∈Iε

|di| represents the total vorticity of uε. It is
commonly known that those vortices carry a kinetic energy of leading order at least πDε| ln ε|. In view
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of such estimate, we actually have a more refined lower bound for the energy than the one given by
Theorem 1.4.1. More precisely, if {uε} satisfies the uniform energy bound of Theorem 1.4.1, then

lim inf
ε→0

1

ω2(ε)

(∫

D

1

2
|∇uε|2 +

1

4ε2
(1− |uε|2)2 dx− πDε| ln ε|

)
> I(µ) ,

and

lim inf
ε→0

1

ω2(ε)

(
Ωε

∫

D

∇⊥ζ · j(uε) dx+ πDε| ln ε|
)

> −ζmax µ(D) .

In particular, if {uε} is any recovery sequence (in the sense of (iii) in Theorem 1.4.1), the lim inf’s above
become limits, and equality holds in each case. In analogy with [38], we may then say that I(µ) plays
the role of "renormalized energy".

In particular, we deduce from Corollary 1.4.2 that if uε is energy minimizing, then

Dε =
ζmax

4πI∗
ω(ε) + o(ω(ε)) as ε → 0 ,

and from Theorem 1.4.1, the minimal value of the energy expands as

min
H1(D;C)

ω2(ε)Fε = −ζ2max

4I∗
ω2(ε) + o(ω2(ε)) .

Remark (Equilibrium measures). The value I(µ) gives the electrostatic energy of a positive charge distri-
bution µ on the set Σ ⊆ D. The minimizer µ∗ of I over all probability measures on Σ is called the Green
equilibrium measure in D associated to the set Σ, and gives the equilibrium charge distribution of a char-
ged conductor inside of a neutral conducting shell, represented by ∂D. The value 1/I∗ is refered to as to
the capacity of the condenser (Σ, ∂D). The interested reader can find in [178] many results on the existence
and general (regularity) properties of the equilibrium measures as well as some examples. For instance,
if D is a disc and Σ is a concentric circle, then the equilibrium measure µ∗ is the normalized arclength
measure on Σ, see [178, Example II.5.13], and thus vortices are asymptotically equidistributed along Σ

as ε → 0. However for an arbitrary curve Σ, the distribution is of course non-uniform in general. In the
case where Σ is an embedded arc, it is even singular at the endpoints, see [178, Example II.5.14].

Remark (Regularity of Σ). In the present results the structure and regularity assumptions on the set Σ
given in (H2) are mainly motivated by the physical context of [3]. However (H2) can be relaxed into
weaker statments. More precisely, our proof of Theorem 1.4.1 relies on (H2) only for conclusion (iii).
Our construction of the recovery sequence could be applied with minor modifications if the set Σ is for
instance a finite union of piecewise C2 arcs/Jordan curves. Actually Σ could even have a more general
structure such as a non-empty interior.

1.4.2 Asymptotics in domains with a single hole

In this subsection we discuss the case of a general vector field V in a multiply connected domain.
Our method can be applied for an arbitrary genus, but for simplicity we have restricted ourselves to
domains which are topological annuli. D still denotes a simply connected domain in R

2 with smooth
boundary, and we consider B ⊆ D a smooth, simply connected domain compactly contained inside D.
Then we set A := D \ B.

For u ∈ H1(A;C) we define the functional

Fε(u) :=

∫

A

{
1

2
|∇u|2 + 1

4ε2
(1− |u|2)2 −ΩεV (x) · j(u)

}
dx .
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Here the given vector field V : R2 → R
2 is assumed to be locally Lipschitz continuous. We are interested

in the asymptotic behavior of minFε as ε → 0, with an angular speed Ωε as in (1.4.2).

The hole as a "giant vortex". For multiply connected domains, the highest order term in an expansion
of the minimal energy is partially due to the turning of the phase of a minimizer around the holes.
The first step in studying vortices in the interior is to identify the vorticity of the hole, and then split the
energy into contributions from the hole and from the interior. To this purpose we had to study first the
minimization of the functional Fε over S1-valued maps. Observe that for S1-valued maps, the functional
Fε only depends on the angular speed Ω = Ω(ε), and not ε itself, i.e., for every u ∈ H1(A; S1),

Fε(u) = GΩ(u) :=

∫

A

{
1

2
|∇u|2 −ΩV (x) · j(u)

}
dx .

To effectively minimize GΩ, we notice that the connected components of H1(A; S1) are classified by the
topological degree (or winding number) around the hole B. Hence, minimizing first in each homotopy
class and then choosing the lowest energy level, one reaches the minimum of GΩ, i.e.,

min
H1(A;S1)

GΩ = min
d∈Z

g(d,Ω) , (1.4.5)

where
g(d,Ω) := min

{
GΩ(u) : u ∈ H1(A; S1) , deg u = d

}
.

For each integer d, the minimum value can be computed explicitly noticing that GΩ(u) depends only
on the divergence free vector field j(u) (since u is S

1-valued). Using Hodge decompositions as in [38,
Chapter 1], we have found that

g(d,Ω) =
1

2

∫

A

{
|∇Φd|2 −Ω2|V |2

}
dx ,

where Φd is given by

Φd = Ω ζ +

(
γV Ω− 2πd

cap(B)

)
ξ , (1.4.6)

and the functions ζ and ξ are determined by

{
−∆ζ = curlV in A
ζ = 0 on ∂A

and





∆ξ = 0 in A
ξ = 0 on ∂D
ξ = 1 on ∂B

, (1.4.7)

with

γV :=

∫

∂D

{
∂ζ

∂ν
+ V · τ

}
and cap(B) := −

∫

∂B

∂ξ

∂ν
.

In particular,

g(d,Ω) =
|γV Ω− 2πd|2

2cap(B) − Ω2

2

∫

A

{
|V |2 − |∇ζ|2

}
dx .

As a consequence, the optimal dΩ ∈ Z in (1.4.5) is unique, except of course for half-integer values of γV Ω

2π .
In any case,

dΩ ∈
{⌊

γV Ω

2π

⌋
,

⌊
γV Ω

2π

⌋
+ 1

}
,

where ⌊·⌋ denotes the floor function, and

min
H1(A;S1)

GΩ = −Ω2

2

∫

A

{
|V |2 − |∇ζ|2

}
dx+O(1) as Ω → ∞ .
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Asymptotics for the reduced energy. To state our parallel result for the annular domain case we must now
give more specific hypotheses on the potential V and the angular speed Ωε. We assume in the sequel
that V satisfies the following assumptions 5 :

(H1
′) the function ζ in (1.4.7) is such that ζmax := maxx∈A ζ(x) = maxx∈A |ζ(x)| > 0 ;

(H2
′) the set Σ := {x ∈ A : ζ(x) = ζmax} ⊆ A is a Jordan curve or a simple embedded arc of class C2.

As for the simply connected case, we assume that Ωε is near the critical value needed for the presence
of vortices which again reads

Ωε =
| ln ε|
2ζmax

+ ω(ε) , (1.4.8)

for some positive function ω satisfying ω(ε) → +∞ with ω(ε) 6 o(| ln ε|) as ε → 0+, exactly as in (1.4.2).

For u ∈ H1(A;C) we consider the functional

F ε(u) :=
Fε(u)−minGΩε

ω2(ε)
,

and for a nonnegative Radon measure µ on A, we define

Ī(µ) :=
1

2

∫∫

A×A

G(x, y) dµ(x)dµ(y) ,

where G is the Dirichlet Green’s function of the annulus A, i.e.,

{
−∆G(·, y) = δy in D ′(A) ,

G(·, y) = 0 on ∂A .
(1.4.9)

Our second result addresses the Γ-convergence of F ε as ε → 0. It shows that the second order Γ-
development of Fε is completely similar to the limit obtained in the simply connected case.

Theorem 1.4.3. Assume that (H1
′), (H2

′), and (1.4.8) hold. Let εn → 0+ be an arbitrary sequence. Then,

(i) for any {un}n∈N ⊆ H1(A;C) satisfying supn F εn(un) < +∞, there exist a (not relabelled) subse-
quence and a nonnegative Radon measure µ in H−1(A) supported by Σ such that

1

ω(εn)
curl j(un) −→

n→+∞
µ strongly in (Lip0(A))′ ; (1.4.10)

(ii) for any {un}n∈N ⊆ H1(A;C) such that (1.4.10) holds for some nonnegative Radon measure µ in
H−1(A) supported by Σ, we have

lim inf
n→+∞

F εn(un) > Ī(µ)− ζmax µ(A) ;

(iii) for any nonnegative Radon measure µ in H−1(A) supported by Σ, there exists a sequence {un}n∈N ⊆
H1(A;C) such that (1.4.10) holds and

lim
n→+∞

F εn(un) = Ī(µ)− ζmax µ(A) .

5. Note that in (H1
′), the assumption that ζmax is achieved at positive values of ζ is not restrictive. Indeed, considering the

complex conjugate of an admissible function replaces V by −V in the energy and hence ζ by −ζ.
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The proof Theorem 1.4.3 rests on the fact that the energy due the presence of the hole decouples
almost exactly. More precisely, under the assumption in (i), if we denote by u⋆

ε a minimizer of GΩε
in

H1(A; S1), then
Fε(u) = minGΩε

+ ω2(ε)F̃ε

(
u⋆
ε u
)
+ o(1) ,

where

F̃ε(v) :=
1

ω2(ε)

∫

A

{
1

2
|∇v|2 + 1

4ε2
(1− |v|2)2 +∇⊥ΦdΩε

· j(v)
}
dx ,

the function ΦdΩε
being given by (1.4.6) and dΩε

is an optimal integer for (1.4.5). The main conclusion in
Theorem 1.4.3 comes from the Γ-convergence analysis of F̃ε, very much like in the previous subsection.

As in the simply connected case, this Γ-convergence result leads to the asymptotic description of the
internal vorticity in Fε-global minimizers.

Corollary 1.4.4. Assume that (H1
′), (H2

′), and (1.4.8) hold. Let εn → 0+ be an arbitrary sequence. For every
integer n ∈ N, let un ∈ H1(A;C) be a global minimizer of Fεn . Then,

1

ω(εn)
curl j(un) −→

n→+∞

ζmax

2Ī∗
µ̄∗ strongly in (Lip0(A))′ ,

where µ̄∗ is the unique minimizer of Ī(·) over all probability measures supported by Σ, and Ī∗ := Ī(µ̄∗). In
addition,

minFε = −Ω2
ε

2

∫

A

{
|V |2 − |∇ζ|2

}
dx− ζ2max

4Ī∗
ω2(ε) + o(ω2(ε)) . (1.4.11)

We conclude this section with an elementary example motivated by [3].

Example. Assume that D = BR(0), B = Bρ(0) for some 0 < ρ < R and V (x) = x⊥. Then the function ζ

in (1.4.7) is given by

ζ(x) = −|x|2
2

+
R2 − ρ2

2 ln(R/ρ)
ln |x|+ ρ2 lnR−R2 ln ρ

2 ln(R/ρ)
.

In particular, the set Σ is the concentric circle ∂Br∗(0) of radius

r∗ =

√
R2 − ρ2

2 ln(R/ρ)
∈ (ρ,R) .

Here again, the uniform measure µ̄∗ = (2πr∗)
−1dH 1 Σ turns out to be the Green equilibrium measure

for Σ in A, i.e., Ī(µ̄∗) = Ī∗ (see [178, Theorem II.5.12]).

1.5 Homogenization of multiple integrals for manifold valued maps

The homogenization theory aims to find an effective description of materials whose heterogeneities
scale is much smaller than the size of the body. The simplest example is periodic homogenization for
which the microstructure is assumed to be periodically distributed within the material. In the framework
of the Calculus of Variations, periodic homogenization problems rest on the study of equilibrium states,
or minimizers, of integral functionals of the form

∫

Ω

f
(x
ε
,∇u

)
dx , u : Ω → R

d , (1.5.1)

under suitable boundary conditions, where Ω ⊆ R
n is a bounded open set and f : Rn×R

d×n → [0,+∞)

is some oscillating integrand with respect to the first variable. To understand the asymptotic behavior
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as ε ↓ 0 of (almost) minimizers of such energies, it is convenient to perform a Γ-convergence analysis,
see e.g. [78], which is an adequate theory to study such variational problems. It is usual to assume that
the integrand f satisfies uniform p-growth and p-coercivity conditions (with 1 6 p < +∞) so that one
should require to admissible fields to belong to the Sobolev space W 1,p. For energies with superlinear
growth, i.e., p > 1, this problem has a quite long history, and we refer to [154] in the convex case.
Then it has received the most general answer in the independent works of [51] and [167], showing that
such materials asymptotically behave like homogeneous ones. These results have been subsequently
generalized into a lot of different manners. Let us mention [53] where the authors add a surface energy
term allowing for fractured media. In that case, Sobolev spaces are not adapted to take into account
eventual discontinuities of the deformation field across the cracks. For energies growing linearly, the
situation is somehow intermediate, and the pathological nature of W 1,1 leads to relaxation in the space
of functions of Bounded Variation. The problem of finding integral representations of relaxed functionals
(i.e., lower semicontinuous envelopes) in BV took many years and it is has been widely investigated,
see e.g. [18, 23, 25, 46, 77, 101, 102, 104, 115, 122]. The corresponding homogenization problems in BV

have been successively studied in [45, 85], and in [46] with an extra surface energy term.
In many applications admissible fields have to satisfy additional constraints. This is for example the

case in some study of equilibria for liquid crystals, in ferromagnetism or for magnetostrictive materials
where order parameters take their values in a given manifold (e.g. the sphere S

2, the circle S
1, or the real

projective plane RP
2). It then becomes necessary to understand the behaviour of integral functionals of

the type (1.5.1) under this additional constraint. At ε > 0 fixed, the possible lack of lower semicontinuity
of the energy may prevent the existence of minimizers (with eventual boundary conditions). It leads to
compute its relaxation under the pointwise constraint to take values in the manifold. In the framework of
Sobolev spaces, it has been first studied by B. DACOROGNA, I. FONSECA, J. MALÝ, & K. TRIVISA [73] for
p > 1, and the relaxed energy is obtained by replacing the integrand by its tangential quasiconvexification,
i.e., the analogue of the quasiconvex envelope in the non constrained case. The case of an integrand with
linear growth has been addressed in [10] for sphere valued maps, and then in [165] for a more general
manifold but with a strong isotropy assumption on the integrand.

In the articles [P09, P10], in collaboration with J.F. BABADJIAN, we tackle the general homogenization
problem for integral functionals of the form (1.5.1) and defined for manifold valued Sobolev mappings,
in the superlinear and linear growth case. We have shown that the constraint leads to a quantitatively
different limit compare to unconstrained homogenization, even in the simpler quadratic case where the
integrand f comes from a second order linear elliptic operator with periodic coefficients. As a byproduct
of our analysis in the linear growth case, we have also obtained a relaxation result in BV for a general
target manifold under standard assumptions on the integrand.

1.5.1 A brief review of Γ-convergence

For completeness and in order to appreciate our results, we recall in this subsection the basic notions
of Γ-convergence. We refer to the monographs by G. DAL MASO [78] and A. BRAIDES & A. DEFRAN-
CESCHI [54] for a detailed description of the subject and the applications to homogenization.

Consider a metric space X and functions Fε : X → [0,+∞], where ε > 0. The family {Fε}ε>0 is said
to Γ-converge as ε → 0 to F0 : X → [0,+∞] if for every sequence εj → 0 and every u ∈ X the following
conditions are satisfied :

(a) F0(u) 6 lim infj Fεj (uj) for every sequence uj → u ;

(b) there exists a sequence uj → u such that F0(u) = limj Fεj (u).
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In the particular case of a constant family {Fε}, i.e., Fε = F , the function F0 is simply the (sequential)
lower semicontinuous envelope of F or "relaxed function" usually denoted by F :

F (u) := inf

{
lim inf

j
F (uj) : uj → u

}
.

In the general case, it follows from the very definition of Γ-convergence that F0 is sequentially lower
semicontinuous.

The most fundamental result of the theory shows that Γ-convergence is the appropriate notion of va-
riational convergence when dealing with a family of minimization problems. Under a compactness as-
sumption, it implies that sequences of minimizers converge to minimizers of the Γ-limit. More precisely,
if the family {Fε} is equi-mildly coercive (i.e., there exists a compact set K such that infX Fε = infK Fε

for every ε > 0), then
∃min

X
F0 = lim

ε→0
inf
X

Fε .

In addition, if (uj) is a converging sequence such that limj Fεj (uj) = limε infX Fε, then its limit is a mini-
mum point of F0. To conclude, we mention that Γ-convergence is stable under continuous perturbations,
a property which turns out to be very useful in applications. It means that Γ − limε(Fε + G) = F0 + G

whenever G : X → [0,∞] is continuous.

1.5.2 Homogenization in Sobolev spaces

Let Ω be a bounded open subset of R
n. We consider throughout this section a connected smooth

submanifold M of R
d without boundary. The tangent bundle to M is denoted by TM. The class of

admissible maps we are interested in is defined for p ∈ [1,∞) as

W 1,p(Ω;M) :=
{
u ∈ W 1,p(Ω;Rd) : u(x) ∈ M for a.e. x ∈ Ω

}
.

For a smooth M-valued map, it is well known that first order derivatives belong to TM. For u ∈
W 1,p(Ω;M), this property still holds in the sense that ∇u(x) ∈ [Tu(x)M]n for a.e. x ∈ Ω.

The function f : Rn × R
d×n → [0,+∞) is assumed to be a Carathéodory integrand 6 satisfying :

(H1) for every ξ ∈ R
d×n the function f(·, ξ) is 1-periodic, i.e., if {e1, . . . , en} denotes the canonical basis

of Rn, one has f(y + ei, ξ) = f(y, ξ) for every i = 1, . . . , n and y ∈ R
n ;

(H2) there exist 0 < α 6 β < +∞ and 1 6 p < +∞ such that

α|ξ|p 6 f(y, ξ) 6 β(1 + |ξ|p) for a.e. y ∈ R
n and all ξ ∈ R

d×n .

For ε > 0, we define the functional Fε : L
p(Ω;Rd) → [0,+∞] by

Fε(u) :=





∫

Ω

f
(x
ε
,∇u

)
dx if u ∈ W 1,p(Ω;M) ,

+∞ otherwise .
(1.5.2)

For energies with superlinear growth, we have the following result.

Theorem 1.5.1. Let f : Rn × R
d×n → [0,+∞) be a Carathéodory function satisfying assumptions (H1) and

(H2) with 1 < p < +∞. As ε → 0, the family {Fε}ε>0 Γ-converges for the strong Lp(Ω)-topology to the

6. f is a function such that f(x, ·) is continuous for a.e. x ∈ Ω, and f(·, ξ) is measurable for every ξ ∈ Rd×n.
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functional F0 : Lp(Ω;Rd) → [0,+∞] defined by

F0(u) :=





∫

Ω

Tfhom(u,∇u) dx if u ∈ W 1,p(Ω;M) ,

+∞ otherwise ,

where for every s ∈ M and ξ ∈ [TsM]n,

Tfhom(s, ξ) := lim
t→+∞

inf
ϕ

{
−
∫

(0,t)n
f
(
y, ξ +∇ϕ(y)

)
dy : ϕ ∈ W 1,∞

0

(
(0, t)n;TsM

)}
(1.5.3)

is the "tangentially homogenized energy density".

If the integrand f has a linear growth in the ξ-variable, i.e., if f satisfies (H2) with p = 1, we assume
in addition that M is compact, and that

(H3) there exists L > 0 such that

|f(y, ξ)− f(y, ξ′)| 6 L|ξ − ξ′| for a.e. y ∈ R
n and all ξ, ξ′ ∈ R

d×n .

Then the following representation result on W 1,1(Ω;M) holds :

Theorem 1.5.2. Assume that M is compact, and let f : Rn × R
d×n → [0,+∞) be a Carathéodory function

satisfying assumptions (H1) to (H3) with p = 1. As ε → 0, the family {Fε}ε>0 Γ-converges for the strong
L1(Ω)-topology at every u ∈ W 1,1(Ω;M) to F0 : W 1,1(Ω;M) → [0,+∞), where

F0(u) :=

∫

Ω

Tfhom(u,∇u) dx ,

and Tfhom is given by (1.5.3).

Remark. The use of assumption (H3) is not too restrictive. Indeed, the Γ-limit remains unchanged upon
first relaxing the functional Fε (at fixed ε > 0) in W 1,1(Ω;Rd). It would lead to replace the integrand f

by its tangential quasiconvexification which, by virtue of the growth condition (H1), does satisfy such a
Lipschitz continuity assumption, see [73]. However, Theorem 1.5.2 is not really satisfactory in its present
form. In the case of an integrand with linear growth, the domain of the Γ-limit is obviously larger than
the Sobolev space W 1,1(Ω;M) and the analysis has to be performed in the space of functions of bounded
variation. In fact Theorem 1.5.2 is a first step in this direction and the complete result in BV -spaces is
the object of the following subsection.

We underline that a main novelty of our result compare to standard homogenization is the emergence
of a dependence on the u-variable in the expression of the homogenized energy density Tfhom. To show
that it is not an artifact of the abstract formula defining Tfhom, we now present two simple examples
based on a "rank-one laminate" where it can be computed explicitly. In the first example, the key point
is to assume that the manifold is one dimensional so that (1.5.3) reduces to scalar problem which can
be solved explicitly in case of separation of variables, see [78, Example 25.6]. In the second example, we
assume that n = 1 so that (1.5.3) can computed explicitly following e.g. [54, Chapter 13].

Example. Let a1, . . . , ad ∈ L∞(R) be 1-periodic functions bounded from below by a positive constant.
Assume that the manifold M is one dimensional, and that

f(x, ξ) =

d∑

i=1

n∑

j=1

ai(x1)|ξij |2 ,
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where we write ξ = (ξij) ∈ R
d×n. Then, for every s = (si) ∈ M and ξ ∈ [TsM]n,

Tfhom(s, ξ) =
d∑

i=1

n∑

j=1

αj(s)|ξij |2 ,

where

α1(s) :=

(∫ 1

0

1∑
i ai(t)τ

2
i (s)

dt

)−1

and αj(s) :=

∫ 1

0

∑

i

ai(t)τ
2
i (s) dt for j = 2, . . . , n ,

and τ(s) = (τi(s)) denotes a unit tangent vector to M at the point s.

Example. Assume that n = 1. Let A ∈ L∞(R;Rd×d) be a 1-periodic field of symmetric matrices such that
〈A(x)ξ, ξ〉 > α|ξ|2 for every ξ ∈ R

d and a.e. x ∈ R, for some constant α > 0. Consider f : R×R
d → [0,∞)

given by
f(x, ξ) = 〈A(x)ξ, ξ〉 .

For s ∈ M, let P (s) ∈ R
d×d be the orthogonal projection on TsM. Noticing that the matrix t

P (s)A(x)P (s)

induces a self adjoint isomorphism B(x, s) ∈ GL(TsM), we denote by B−1(x, s) its inverse. By the uni-
form ellpticity assumption, we also have

∫ 1

0
B−1(t, s) dt ∈ GL(TsM).

Then, for every s ∈ M and ξ ∈ TsM,

Tfhom(s, ξ) = 〈Ahom(s)ξ, ξ〉 ,

where Ahom(s) ∈ GL(TsM) is given by

Ahom(s) :=

(∫ 1

0

B−1(t, s) dt

)−1

.

Remark. The two examples above can be interpreted as follows. In both cases, we take a measurement for
length of a differential du(x) with respect to a Riemannian metric on R

d which depends on the point x.
In both cases, we implicitly endow M with the induced "x-dependent" Riemannian metric. Therefore,
when letting ε → 0, homogenization not only takes place on Ω, but also on TM.

The proof of Theorems 1.5.1 and 1.5.2 consists in proving sharp upper and lower bounds for the
upper and lower Γ-limits, respectively. The upper bound is obtained by the "localization method". In
the spirit of [73], we introduce a modified "Γ-lim sup" to handle the manifold constraint. When localized
to open subsets of Ω, it is the restriction to open sets of some Radon measure. We then estimate from
above the Radon-Nikodým derivative of this measure with respect to L n by means of the blow-up
method of I. FONSECA & S. MÜLLER [101, 102]. For the lower bound, the estimate is more classical and
the constraint do not induces too much difficulties. The analysis relies again on the blow-up method,
and makes use of the classical "Decomposition Lemma" of [103] in the superlinear case. The linear case
is treated in a way similar to [101].

1.5.3 Homogenization in BV -spaces

In case the integrand in (1.5.2) has linear growth with respect to ∇u, the domain of Γ-limit should
include functions of bounded variations. In view of the results in [119], the domain is precisely given by

BV (Ω;M) :=
{
u ∈ BV (Ω;Rd) : u(x) ∈ M for a.e. x ∈ Ω

}
.
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To describe the structure of maps in this space, we first recall that for u ∈ BV (Ω;Rd), the R
d×n-valued

Radon measure Du can be decomposed into an absolutely continuous part ∇u and a singular part Dsu

with respect to L n, i.e.,
Du = ∇uL

n Ω+Dsu . (1.5.4)

In turn the singular measure Dsu can be decomposed into two mutually singular measures

Dsu = (u+ − u−)⊗ νu H
n−1 Ju +Dcu , (1.5.5)

where Ju is the approximate jump set of u. It is a Borel subset of the approximate discontinuity set Su.
In addition, Ju is countably H n−1-rectifiable and it can be oriented by a (normal) direction of jump
νu : Ju → S

n−1. Then, u± are the one-sided approximate limits of u on Ju according to νu. Finally, Dcu

is the so-called "Cantor part" of Du defined by Dcu := Dsu (Ω \ Su).
For a map u ∈ BV (Ω;M), the following properties hold :
(i) the approximate limit ũ(x) belongs to M at every point x ∈ Ω \ Su ;

(ii) u±(x) ∈ M for every x ∈ Ju ;

(iii) ∇u(x) ∈ [Tu(x)M]n for L n-a.e. x ∈ Ω ;

(iv)
dDcu

d|Dcu| (x) ∈ [Tũ(x)M]n for |Dcu|-a.e. x ∈ Ω .

We are now ready to state our result extending Theorem 1.5.2 to BV -maps. It only requires the follo-
wing additional (standard) assumption,

(H4) there exist C > 0 and 0 < q < 1 such that

|f(y, ξ)− f∞(y, ξ)| 6 C(1 + |ξ|1−q) for a.e. y ∈ R
n and all ξ ∈ R

d×n ,

where f∞ : Rn × R
d×n → [0,+∞) is the recession function of f defined by

f∞(y, ξ) := lim sup
t→+∞

f(y, tξ)

t
.

Theorem 1.5.3. Assume that M is compact, and let f : Rn × R
d×n → [0,+∞) be a Carathéodory function

satisfying assumptions (H1) to (H4). As ε → 0, the family {Fε}ε>0 Γ-converges for the strong L1(Ω)-topology
to the functional F0 : L1(Ω;Rd) → [0,+∞] defined by

F0(u) :=





∫

Ω

Tfhom(u,∇u) dx+

∫

Ω∩Ju

Khom(u
+, u−, νu) dH

n−1 +

+

∫

Ω

Tf∞
hom

(
ũ,

dDcu

d|Dcu|

)
d|Dcu|

if u ∈ BV (Ω;M) ,

+∞ otherwise ,

where Tfhom is given in (1.5.3), Tf∞
hom is the recession function of Tfhom defined for every s ∈ M and every

ξ ∈ [TsM]n by

Tf∞
hom(s, ξ) := lim sup

t→+∞

Tfhom(s, tξ)

t
,

and for all (a, b, ν) ∈ M×M× S
n−1,

Khom(a, b, ν) := lim
t→+∞

inf
ϕ

{
1

tn−1

∫

tQν

f∞
(
y,∇ϕ(y)

)
dy : ϕ ∈ W 1,1(tQν ;M) ,

ϕ = a on ∂(tQν) ∩ {x · ν > 0} and ϕ = b on ∂(tQν) ∩ {x · ν < 0}
}
, (1.5.6)
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Qν being any open unit cube in R
n centered at the origin with two of its faces orthogonal to ν.

As in the previous theorems, we prove this integral representation by matching suitable upper and
lower bounds. The upper bound is again derived through the localization method. Here, we make use
of two essential ingredients : a suitable projection on M taken from [130] to construct admissible maps,
and the density result of [35]. In an intermediate step we obtain an abstract integral representation for
the surface energy as in [15, 53]. Then the upper bound is obtained by blow-up treating the diffuse and
the concentrated part separately. The lower bound also rests on the blow-up method of [102], proving
lower bounds for the absolutely continuous part, the Cantor part, and the jump part, also separately. As
usual, the estimate for the Cantor part is essentially based on Alberti’s rank-one Theorem [6].

1.5.4 A relaxation result in BV

We finally present for completeness a relaxation result in BV for Sobolev maps taking values in the
manifold M. It extends the result of [10] which is restricted to M = S

d−1, and the result of [165] dealing
with a general manifold but assuming a strong isotropy condition on the integrand. As a matter of fact,
we have simply realized that the approach of [10] can be reproduced using the appropriate geometric
tools. In particular, a key point is again the projection on M of [130] when constructing competitors at
various stages of the analysis. Let us now give the precise setting of the result.

Let h : Ω× R
d × R

d×n → [0,+∞) be a continous function satisfying :

(H′
1) h is tangentially quasiconvex, i.e., for all x ∈ Ω, all s ∈ M and all ξ ∈ [TsM]n,

h(x, s, ξ) 6

∫

Q

h
(
x, s, ξ +∇ϕ(y)

)
dy for every ϕ ∈ W 1,∞

0 (Q;TsM) ;

(H′
2) there exist α > 0 and β > 0 such that

α|ξ| 6 h(x, s, ξ) 6 β(1 + |ξ|) for every (x, s, ξ) ∈ Ω× R
d × R

d×n ;

(H′
3) for every compact subset K ⊆ Ω, there exists a continuous function ω : [0,+∞) → [0,+∞)

satisfying ω(0) = 0 and

|h(x, s, ξ)− h(x′, s′, ξ)| 6 ω(|x− x′|+ |s− s′|)(1 + |ξ|)

for every x, x′ ∈ Ω, every s, s′ ∈ R
d, and every ξ ∈ R

d×n ;

(H′
4) there exist C > 0 and q ∈ (0, 1) such that

|h(x, s, ξ)− h∞(x, s, ξ)| 6 C(1 + |ξ|1−q), for every (x, s, ξ) ∈ Ω× R
d × R

d×n ,

where h∞ : Ω× R
d × R

d×n → [0,+∞) is the recession function of h defined by

h∞(x, s, ξ) := lim sup
t→+∞

h(x, s, tξ)

t
.

We consider the functional F : L1(Ω;Rd) → [0,+∞] given by

F (u) :=





∫

Ω

h(x, u,∇u) dx if u ∈ W 1,1(Ω;M),

+∞ otherwise,
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and its relaxation for the strong L1(Ω)-topology F : L1(Ω;Rd) → [0,+∞] defined by

F (u) := inf
{un}

{
lim inf
n→+∞

F (un) : un → u in L1(Ω;Rd)

}
.

The following integral representation of result holds :

Theorem 1.5.4. Assume that M is compact, and let f : Ω × R
d × R

d×n → [0,+∞) be a continuous function
satisfying (H′

1) to (H′
4). Then for every u ∈ L1(Ω;Rd),

F (u) =





∫

Ω

h(x, u,∇u) dx+

∫

Ω∩Su

H(x, u+, u−, νu) dH
n−1 +

+

∫

Ω

h∞

(
x, ũ,

dDcu

d|Dcu|

)
d|Dcu|

if u ∈ BV (Ω;M) ,

+∞ otherwise ,

where for every (x, a, b, ν) ∈ Ω×M×M× S
n−1,

H(x, a, b, ν) := inf
ϕ

{∫

Qν

h∞(x, ϕ(y),∇ϕ(y)) dy : ϕ ∈ W 1,1(Qν ;M), ϕ = a on {x · ν = 1/2},

ϕ = b on {x · ν = −1/2} and ϕ is 1-periodic in the ν2, . . . , νn directions
}
,

{ν, ν2, . . . , νn} forms any orthonormal basis of Rn, and Qν stands for the open unit cube in R
n centered at the

origin associated to this basis.

Remark. In the simple case where h(x, u,∇u) = |∇u|, the surface energy reduces to H(x, u+, u−, νu) =

dM(u+, u−) where dM is the geodesic distance on M.



Chapitre 2

Isoperimetry, phase transitions, and

free discontinuity problems

2.1 Quantitative isoperimetry for fractional perimeters

Isoperimetric inequalities play a crucial role in many areas of mathematics such as geometry, linear
and nonlinear PDE’s, or probability theory. In the Euclidean setting, it states that among all sets of
prescribed measure, balls have the least perimeter. More precisely, for any Borel set E ⊆ R

n of finite
Lebesgue measure,

P (E) >
P (B)

|B|n−1
n

|E|n−1
n , (2.1.1)

where B denotes the unit ball of Rn centered at the origin. Here |E| is the Lebesgue measure of E, and
P (E) denotes the distributional perimeter of E, i.e.,

P (E) := sup

{∫

E

divX dx : X ∈ C1
c (R

n;Rn) , |X| 6 1

}
, (2.1.2)

which coincides with the (n − 1)-dimensional Hausdorff measure of ∂E when E has a (piecewise)
smooth boundary (see e.g. [20]). Note that the right hand side of (2.1.1) is equal to P (BrE ), the per-
imeter of a ball of radius rE := (|E|/|B|)1/n – so that |E| = |BrE |. It is a well known fact that inequality
(2.1.1) is strict unless E is a ball up to a set of vanishing Lebesgue measure.

The quantitative isoperimetric inequality aims to provide a quantitative stability estimate in L1 for the
validity of (2.1.1). In other words, it is a second order lower expansion of the perimeter with respect
to the L1-distance to the collections of all balls with prescribed volume. In this context, the relevant
quantity is the so-called Fraenkel asymmetry defined for a set E of finite and positive measure by

A(E) := inf

{ |E△(x+BrE )|
|E| : x ∈ R

n

}
∈ [0, 2) ,

where △ is the symmetric difference between sets. Then the quantitative isoperimetric inequality reads

P (E) >
P (B)

|B|n−1
n

|E|n−1
n

(
1 +

A(E)2

C(n)

)
, (2.1.3)

for a constant C(n) which only depends on the dimension. We shall not attempt here to sketch the history
of this inequality, but simply refer to the article by N. FUSCO, F. MAGGI, & A. PRATELLI [112] where

45
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this inequality has been first proved in its sharp form, and to A. FIGALLI, F. MAGGI, & A. PRATELLI

[96] where (2.1.3) is extended to anisotropic perimeter functionals by mass transportation (see also [153]
for a survey).

In the article [P18], in collaboration with A. FIGALLI, N. FUSCO, F. MAGGI, & M. MORINI, we have
investigated isoperimetric inequalities for fractional perimeters functionals arising from Sobolev semi-
norm of fractional order. For s ∈ (0, 1) and a Borel set E ⊆ R

n, n > 2, the fractional s-perimeter of E is
defined by

Ps(E) :=

∫∫

E×(Rn\E)

1

|x− y|n+s
dxdy .

If Ps(E) < ∞, we have

Ps(E) =
1

2
[χE ]

p
Wσ,p(Rn) ,

for p > 1 and σp = s, where [·]Wσ,p(Rn) denotes the Gagliardo W σ,p-seminorm and χE the characteristic
function of E. The functional Ps(E) can be thought as a (n− s)-dimensional perimeter in the sense that
Ps(λE) = λn−sPs(E) for any λ > 0 (compare to the (n−1)-homogeneity of the standard perimeter), and
Ps(E) can be finite even if the Hausdorff dimension of ∂E is strictly greater than n− 1 (see e.g. [177]). It
is also immediately checked that Ps(E) < ∞ for any set E ⊆ R

n of finite perimeter and finite measure
since BV (Rn) →֒ W s,1(Rn).

The fractional s-perimeter has been first considered by L. CAFFARELLI, J.M. ROQUEJOFFRE, & O. SA-
VIN [60] who have initiated the study of Plateau type problems in this context (see Section 2.2.1). Such
perimeter functional arises naturally in some phase transitions models with fractional diffusion as we
shall see in Section 2.2. Besides this fact, a further motivation for studying s-perimeters appears when
we look at the asymptotic s ↑ 1. It turns out that s-perimeters give an approximation of the standard
perimeter. More precisely, it follows from [83] and [19] that for any (bounded) set E of finite perimeter,

lim
s↑1

(1− s)Ps(E) = ωn−1P (E) , (2.1.4)

both in the pointwise and Γ-convergence sense. Here ωn−1 denotes the volume of an (n−1)-dimensional
ball of radius 1. Note that (2.1.4) is reminiscent of the results of J. BOURGAIN, H. BREZIS, & P. MIRO-
NESCU [49] on the behavior of the W σ,p-seminorm as σ ↑ 1. Concerning the behavior of Ps(E) as s ↓ 0,
we finally mention that

lim
s↓0

sPs(E) = nωn|E| , (2.1.5)

for any set E of finite measure and finite s0-perimeter for some s0 ∈ (0, 1), as shown in [156].
An isoperimetric inequality for s-perimeters has been recently obtained by R.L. FRANK & R. SEI-

RINGER [108] as a consequence of more general functional inequalities. It states that for any Borel set
E ⊆ R

n of finite measure,

Ps(E) >
Ps(B)

|B|n−s
n

|E|n−s
n , (2.1.6)

with equality holding if and only if E is a ball (up to a null set). Actually, inequality (2.1.6) can be dedu-
ced from a symmetrization result due to F.J. ALMGREN & E.H. LIEB [13], and the cases of equality have
been determined in [108]. Note that, in view of (2.1.4) and (2.1.5), one recovers the classical isoperimetric
inequality letting s ↑ 1, and (2.1.6) degenerates as s ↓ 0.

We have obtained in [P18] a sharp quantitative version of (2.1.6), uniform with respect to s bounded
away from 0. It allowed us to address the minimization of a free energy consisting of a fractional s-
perimeter plus a nonlocal repulsive interaction term. Such a free energy comes from a generalization of
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the Gamow model for the nucleus. In the following subsections, we are going to present first the quan-
titative fractional isoperimetric inequality, and then its application to the aforementioned minimization
problem. We shall conclude with first and second variations formulae for general nonlocal perimeters.
Those formula come into play in our analysis but are also of independent interest.

2.1.1 Stability of the fractional isoperimetric inequality

We start with the sharp quantitative version of (2.1.6). Here, sharpness means that the exponent on
the Fraenkel asymmetry can not be lowered. Indeed, for the classical perimeter, the use of ellipsoids
asymptotically close to the unit ball shows that the decay rate is sharp.

Theorem 2.1.1. For every n > 2 and s0 ∈ (0, 1), there exists a positive constant C(n, s0) such that

Ps(E) >
Ps(B)

|B|n−s
n

|E|n−s
n

(
1 +

A(E)2

C(n, s0)

)
, (2.1.7)

whenever 0 < |E| < ∞ and s ∈ [s0, 1).

Remark. The constant C(n, s0) appearing in (2.1.7) is not explicit. We conjecture that C(n, s0) ≃ 1/s0 as
s0 ↓ 0, see (2.1.8) below. Letting s ↑ 1 we recover the quantitative isoperimetric inequality. The constant
C(n) appearing in (2.1.3) is known to grow polynomially in the dimension [96].

Remark. In a previous article [P12], in collatoration with N. FUSCO & M. MORINI, we have obtained
a weaker version of (2.1.7) with exponent 4/s instead of 2 on the asymmetry. The proof is based on
symmetrization arguments in the spirit of [112] which can nevertheless be useful in other contexts.

Theorem 1.1 is obtained by means of a Taylor expansion of the s-perimeter near balls together with
a uniform version of the regularity theory developed by L. CAFFARELLI, J.M. ROQUEJOFFRE, & O.
SAVIN [60] and M.C. CAPUTO & N. GUILLEN [62] for sets minimizing or almost minimizing the s-
perimeter. These two tools are combined through a suitable version of Ekeland’s variational principle.
This approach has been introduced in the case s = 1 by M. CICALESE & G.P. LEONARDI [69] to provide
an alternative proof the quantitative isoperimetric inequality. In our case, we have implemented this
method through a penalization argument closer to the one adopted in [1]. Due to the nonlocality of the
s-perimeter, the implementation itself is far from being straightforward, and it requires to develop some
specific arguments of independent interest.

We now describe in more details the two main steps leading to Theorem 2.1.1.

Stability for nearly spherical sets – The Fuglede estimate. The first result needed to establish (2.1.1) is a stabi-
lity estimate for nearly spherical sets. For the standard perimeter, such estimate is due B. FUGLEDE [111].
According to [111], we say that a bounded open set E is nearly spherical if |E| = |B|,

∫
E
x dx = 0, and

∂E =
{
(1 + uE(x))x : x ∈ ∂B

}
, where uE ∈ C1(∂B) ,

for some function uE with ‖uE‖C1(∂B) small. Our estimate provides a control of the fractional Sobbolev
seminorm

[uE ]
2
1+s
2

:=

∫∫

∂B×∂B

|uE(x)− uE(y)|2
|x− y|n+s

dxdy

in terms of the difference Ps(E)− Ps(B).

Theorem 2.1.2. There exist constants ε⋆ ∈ (0, 1/2) and c⋆ > 0, depending only on n, with the following
property : if E is a nearly spherical set with ‖uE‖C1(∂B) < ε⋆, then

Ps(E)− Ps(B) > c⋆

(
[uE ]

2
1+s
2

+ sPs(B)‖uE‖2L2(∂B)

)
∀s ∈ (0, 1) . (2.1.8)
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Remark. If we multiply the inequality above by (1 − s), and then take the limit s ↑ 1, we recover the
original Fuglede’s inequality P (E)− P (B) > c(n)‖uE‖2H1(∂B).

To obtain Theorem 2.1.2, we have performed an asymptotic expansion of Ps(E) with respect to
‖uE‖C1(∂B) → 0, along nearly spherical sets. The zero order term is of course Ps(B), and the first order
term vanishes since the ball is minimizing. In turn the second order term is given by

∫∫

∂B×∂B

|uE(x)− uE(y)|2
|x− y|n+s

dxdy − s(n− s)
Ps(B)

P (B)

∫

∂B

|uE |2 dx , (2.1.9)

which reveals that the nonlocal "Jacobi operator" Ls of the sphere is

Lsu = Isu− s(n− s)
Ps(B)

P (B)
u ,

where Is is (up to a multiplicative constant) the hypersingular spherical Riesz operator of order (1 + s) 1,
i.e.,

Isu(x) := 2 p.v.

(∫

∂B

u(x)− u(y)

|x− y|n+s
dy

)
. (2.1.10)

By means of the classical Funk-Hecke formula (see e.g. [166]), one can show that Is is diagonalized on the
basis of spherical harmonics. Moreover, the eigenvalues {λs

k} can be explicitly computed using integral
identities for ultra spherical polynomials. In particular, the sequence of eigenvalues is strictly increasing
and λs

2 is quantitatively larger that λs
1. Evaluating Is at coordinate functions, we have discovered that

λs
1 = s(n− s)

Ps(B)

P (B)
.

It is now clear that expanding (2.1.9) in sherical harmonics led us to the result.

The penalization method. We shall now briefly explain how to prove (2.1.7), at least for a constant C(n, s)

in the right hand side which may depend on s ∈ (0, 1). Since the asymmetry is always smaller than 2, it
is enough to show the existence of δs > 0 such that for M > 0 sufficiently large,

A(E)2 6 MDs(E) whenever Ds(E) :=
Ps(E)− Ps(B)

Ps(B)
6 δs . (2.1.11)

To prove (2.1.11), one argues by contradiction assuming the existence of a sequence of Borel sets {Ek}
satisfying |Ek| = |B|, Ds(Ek) → 0, and A(Ek)

2 > MDs(Ek) for each k ∈ N. By a preliminary continuity
lemma (see [P12, Lemma 3.1] for its original version), we deduce that A(Ek) → 0 as k → 0.

At this stage it is not clear how to proceed without any further properties on the sequence {Ek}. The
purpose of the penalization method is to select from {Ek} a "better" sequence having at least the same
properties. The selection we made is based on the minimization of the free energy

EΛ,k(F ) := Ps(F ) + Λ
∣∣|F | − |B|

∣∣+ |α(F )− αk| ,

where Λ > 0 is a large constant, α(F ) := infx |F△(x+B)|, and αk := α(Ek) → 0 as k → ∞. By a suitable
truncation argument, we have proved that for Λ large enough and αk small enough (i.e., k sufficiently
large), the energy EΛ,k admits a minimizer Fk contained in a ball of radius uniformly bounded in k.
Comparing the energy of Fk and Ek shows that (up to a translation) |Fk△B| → 0 as k → ∞. On the

1. The symbol p.v. means that the integral is taken in the Cauchy principal value sense
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other hand, the nature of EΛ,k implies that each Fk enjoys an almost minimality property with respect to
the fractional perimeter, i.e.,

Ps(Fk) 6 Ps(G) + (Λ + 1)|Fk△G| ∀G ⊆ R
n .

This is then enough to apply the regularity theory of [62], and deduce that

∂Fk =
{
(1 + vk(x))x : x ∈ ∂B

}
with ‖vk‖C1(∂B) → 0 .

Dilating and translating the Fk’s, one obtains a further sequence of nearly spherical sets which still
satisfies the contradiction hypothesis. Applying Theorem 2.1.2 to this new sequence leads immediatetly
to a contradiction for M sufficiently large.

2.1.2 Application to a nonlocal liquid drop model

We now present an application of our previous results and methods to a nonlocal isoperimetric pro-
blem in presence of a repulsive interaction term. The starting point is provided by the Gamow model for
the nucleus, which consists in the volume constraint minimization of the energy P (E) + Vα(E), where,
given α ∈ (0, n), Vα(E) is the Riesz potential of E

Vα(E) :=

∫∫

E×E

1

|x− y|n−α
dxdy .

By minimizing P (E)+Vα(E) with |E| = m fixed, we observe a competition between the surface energy,
which tries to round-up competitors into ball, and the Riesz potential which, on the contrary, prefers to
smear them around. This last effect is in fact due to the Riesz rearrangement inequality implying that
balls are actually volume constrained maximizers of Vα.

Recently, H. KNÜPFER & C.B. MURATOV [142, 143] have shown the existence of a mass m⋆ =

m⋆(n, α) > 0 such that :
(a) if n = 2 and α ∈ (0, 2), then balls of volume m 6 m⋆ are the unique minimizers of P + Vα under

the volume constraint |E| = m ;
(b) if n = 2 and α is sufficiently close to 2, then there are no minimizers for m > m⋆ ;
(c) if 3 6 n 6 7 and α ∈ (1, n), then (a) holds.

In [43], M. BONACINI & R. CRISTOFERI have extend (b) and (c) to any dimension n > 3, and have
also shown that balls of volume m are volume constrained L1-local minimizers if m < m0(n, α), while
they are unstable if m > m0(n, α). The critical mass m0(n, α) is characterized in terms of a spectral
minimization problem that is explicitly solved for n = 3. In particular, in the physically relevant case
α = 2 one obtains m0(3, 2) = 5, a result that was already known in the physics literature since the 30’s
[42, 95, 110]. Let us also mention that, in addition to (b), further nonexistence results are contained in
[143, 152].

We stress that, apart from the special case n = 2, all the results above are limited to the case α ∈ (1, n).
We have extended (a) and (c) in two directions : first, by covering the full range α ∈ (0, n) for all n > 2,
and second, by including the possibility for the surface energy to be a nonlocal s-perimeter. The global
minimality threshold m⋆(n, α, s) is shown to be uniformly positive with respect to s and α provided
they both stay away from zero. To state our result in a unified way including the classical perimeter, it
is convenient to define

Pers(E) :=





1− s

ωn−1
Ps(E) for s ∈ (0, 1) ,

P (E) for s = 1 .
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Theorem 2.1.3. For every n > 2, s0 ∈ (0, 1), and α0 ∈ (0, n), there exists m⋆ = m⋆(n, α0, s0) > 0 such that,
if m ∈ (0,m⋆), s ∈ (s0, 1], and α ∈ (α0, n), then the variationl problem

inf
{
Pers(E) + Vα(E) : |E| = m

}

admits balls of volume m as unique minimizers.

We have also recovered the L1-local minimality threshold m0 = m0(n, α, s) through a suitable spec-
tral minimization problem. Compare to [43], a different approach allowed us to compute its explicit
value, which is given by

m0(n, α, s) =





ωn

(
n+ s

n− α

s(1− s)Ps(B)

ωn−1αVα(B)

) n
α+s

if s ∈ (0, 1) ,

ωn

(
n+ 1

n− α

P (B)

αVα(B)

) n
α+1

if s = 1 .

Theorem 2.1.4. For every n > 2, s ∈ (0, 1], α ∈ (0, n), and m ∈ (0,m0), there exists κ0 = κ0(n, α, s,m) > 0

such that, if B[m] denotes a ball of volume m, then

Pers
(
B[m]

)
+ Vα

(
B[m]

)
6 Pers(E) + Vα(E) , (2.1.12)

whenever |E| = m and
∣∣E△B[m]

∣∣ 6 κ0 . Moreover, if m > m0, then B[m] is unstable, i.e., there exists a
sequence of sets {Ek}k∈N with |Ek| = m and

∣∣Ek△B[m]
∣∣→ 0 as k → ∞ such that (2.1.12) fails with E = Ek

for every k ∈ N.

Remark. Note that the ball B[m] is always a volume constrained critical point of Pers+Vα. From the proof
of Theorem 2.1.4, we may expect that there exists an increasing sequence of critical masses {mk}k∈N

(depending on n, α, and s) such that mk → ∞, and that if m ∈ (mk,mk+1), then B[m] has a finite Morse
index d(k) with d(k) < d(k + 1).

In proving both Theorem 2.1.3 and Theorem 2.1.4, it is convenient to rescale the problem in such a
way that admissible sets E satisfies the volume constraint |E| = |B|. The corresponding rescaled (and
normalized) energy reduces to

Fβ
s,α(E) := Pers(E) + βVα(E) with β =

(
m

|B|

)α+s
n

.

In this way, Fβ
s,α clearly appears as a lower order perturbation of the fractional perimeter, and it is not

surprising, in view of the quantitative isoperimetric inequality, that B is the unique (up to translation)
minimizer of Fs,αβ for β small enough.

The proof of Theorem 2.1.4 is divided in two steps. The first step consists in finding the stability
threshold β0 of the ball B. Here stability means non-negativety of the second variation of the energy Fβ

s,α

at B along volume preserving deformations. The computation of the second variation, that we present
in the following subsection, leads to the nonlocal operator (for s ∈ (0, 1))

J β
s,αu :=

(1− s)

ωn−1

(
Isu− λs

1u
)
− β

(
Rαu− µα

1 u
)

acting on (smooth) functions u : ∂B → R with zero average (which come from the linearization of the
volume constraint). In the expression above, Is is given by (2.1.10), Rα is the spherical operator

Rαu(x) := 2

∫

∂B

u(x)− u(y)

|x− y|n−α
dy ,
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and λs
1, µα

1 are the principal eigenvalues of Is and Rα, respectively. Here again, spherical harmonics
diagonalize Rα and the eigenvalues {µα

k} can be computed explicitly. Once J β
s,α is diagonalized, one

easily discovers that J β
s,α > 0 if and only if β 6 β0 where

β0 :=
(1− s)

ωn−1
inf
k>2

λs
k − λs

1

µα
k − µα

1

.

Taking advantage of the explicit expressions for the eigenvalues, we have proved that the infimum
above is achieved at k = 2, and, as a byproduct, we have found the explicit value of β0.

The second part of the proof aims to show that the stability of the ball for β < β0 implies its L1-local
minimality. It is achieved by a contradiction very much like in Section 2.1.1. By a similar penalization
method, it reduces to prove a stability estimate for nearly spherical sets.

Theorem 2.1.5. There exist constants ε0 ∈ (0, 1/2) and c0 > 0, depending only on n, with the following
property : if β ∈ (0, β0) and E is a nearly spherical set with ‖uE‖C1(∂B) < (1− β/β0)ε0, then

Fβ
s,α(E)−Fβ

s,α(B) > c0

(
1− β

β0

)(
(1− s)[uE ]

2
1+s
2

+ ‖uE‖2L2(∂B)

)
∀s ∈ (0, 1) , ∀α ∈ (0, n) .

Remark. Taking the limit s ↑ 1 in the inequality above, we obtain

(
P (E) + βVα(E)

)
−
(
P (B) + βVα(B)

)
> c(n)

(
1− β

β0

)
‖uE‖2H1(∂B) .

2.1.3 First and second variations formulae for nonlocal perimeters

In this section we present the first and second variation formulae for the functionals Ps and Vα, and
actually for more general nonlocal functionals behaving like Ps and Vα. We mention that the second
variation of Ps has also been found very recently (and independently) by J. DÁVILA, M. DEL PINO,
& J. WEI [84], where it is used to discuss the stability of certain nonlocal minimal surfaces such as
Lawson cones (see Section 2.2.1 for a discussion on nonlocal minimal surfaces). In the case of the perimeter
functional, the well known first and second variation formulae can be found for instance in the classical
monograph by L. SIMON [193, Section 9].

Given s ∈ (0, 1) and α ∈ (0, n), we consider two convolution kernels K,G ∈ C1(Rn \ {0}; [0,∞))

which are symmetric by the origin (i.e., K(−z) = K(z) and G(−z) = G(z) for every z ∈ R
n \ {0}) and

satisfying the pointwise bounds

sup
z 6=0

|z|n+sK(z) < ∞ and sup
z 6=0

|z|n−αG(z) < ∞ . (2.1.13)

Correspondingly, given an open set Ω ⊆ R
n and E ⊆ R

n, we consider the nonlocal functionals localized
to the open set Ω,

PK(E,Ω) :=

∫

E∩Ω

∫

Ec∩Ω

K(x− y) dxdy +

∫

E∩Ω

∫

Ec\Ω

K(x− y) dxdy

+

∫

E\Ω

∫

Ec∩Ω

K(x− y) dxdy , (2.1.14)

and
VG(E,Ω) :=

∫

E∩Ω

∫

E∩Ω

G(x− y) dxdy + 2

∫

E∩Ω

∫

E\Ω

G(x− y) dxdy .
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We have computed the first and second variations of these functionals along flows. Given a vector
field X ∈ C∞(Rn;Rn) compactly supported in Ω, the flow {φt}t∈R induced by X is the smooth map
(t, x) ∈ R× R

n 7→ φt(x) ∈ R
n defined by solving the system of ODE’s parametrized by x,

{
∂tφt(x) = X

(
φt(x)

)
, t ∈ R ,

φ0(x) = x .

It is well know {φt}t∈R is a 1-parameter group of smooth diffeomorphisms on R
n, and φt − idRn is

compactly supported in Ω. If |E| < ∞, we say that X induces a volume preserving flow on E whenever
|φt(E)| = |E| for t sufficiently small.

If PK(E,Ω) < ∞ and Et := φt(E), one can deduce from the area formula that t 7→ PK(Et,Ω) is
smooth (at least for t small). Accordingly, the first and second variations of PK(·,Ω) at E along X can be
defined as

δPK(E,Ω)[X] :=

[
d

dt
PK(Et; Ω)

]

t=0

, δ2PK(E; Ω)[X] :=

[
d2

dt2
PK(Et; Ω)

]

t=0

. (2.1.15)

Identical definitions are adopted when VG is considered in place of PK and E is such that VG(E; Ω) < ∞.
Having set our terminology, we now turn to the question of expressing first and second variations

along X in terms of boundary integrals involving X and its derivatives. These formulas involve some
"nonlocal" variants of the mean curvature and the length squared of the second fundamental form. Given a
point x ∈ R

n, we define (as elements of [−∞,∞])

HK,∂E(x) := p.v.

(∫

Rn

(
χEc(y)− χE(y)

)
K(x− y) dy

)
, H∗

G,∂E(x) := 2

∫

E

G(x− y) dy .

Assuming that E is smooth enough and denoting by νE the outer unit normal to ∂E, we also define for
x ∈ ∂E and J ∈ {K,G},

c2J,M (x) :=

∫

∂E

J(x− y)|νE(x)− νE(y)|2 dH
n−1
y .

In the following statement, Xτ := X−(X ·νE)νE is the projection of X on T∂E and divτ is the tangential
divergence operator on ∂E.

Theorem 2.1.6. Let K,G ∈ C1(Rn \ {0}; [0,∞)) be even functions satisfying (2.1.13) for some s ∈ (0, 1) and
α ∈ (0, n). Let Ω be an open set in R

n, and let E ⊆ R
n be an open set with C1,1-boundary such that ∂E ∩ Ω is a

C2-hypersurface. Given X ∈ C∞(Rn;Rn) compactly supported in Ω, set ζ = X · νE .

(a) If PK(E,Ω) < ∞ and
∫
∂E

(1 + |z|)−n−s dH n−1 < ∞, then

δPK(E,Ω)[X] =

∫

∂E

HK,∂E ζ dH
n−1 ,

and

δ2PK(E,Ω)[X] =

∫∫

∂E×∂E

K(x− y)|ζ(x)− ζ(y)|2 dH
n−1
x dH

n−1
y −

∫

∂E

c2K,∂E ζ2 dH
n−1

+

∫

∂E

HK,∂E

(
(divX) ζ − divτ

(
ζ Xτ

))
dH

n−1 .

(b) If VG(E,Ω) < ∞,
∫
E
|z|−n+α dz < ∞, and

∫
∂E

(1 + |z|)−n+α dH n−1 < ∞, then

δVG(E,Ω)[X] =

∫

∂E

H∗
G,∂E ζ dH

n−1 ,
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and

δ2VG(E,Ω)[X] = −
∫∫

∂E×∂E

G(x− y)|ζ(x)− ζ(y)|2 dH
n−1
x dH

n−1
y +

∫

∂E

c2G,∂E ζ2 dH
n−1

+

∫

∂E

H∗
G,∂E

(
(divX) ζ − divτ

(
ζ Xτ

))
dH

n−1 .

Remark. Under the assumptions above, HK,∂E and H∗
G,∂E are real-valued and continuous on ∂E.

Remark. The assumptions of Theorem 2.1.6 are satisfied if E is bounded and ∂E is a C2-hypersurface.

Remark. Under the assumptions of Theorem 2.1.6, if E is a volume constrained stationary set of PK in Ω,
i.e., δPK(E,Ω)[X] = 0 for every vector field X inducing a volume preserving flow on E, then HK,∂E is
constant on ∂E ∩ Ω and

δ2PK(E,Ω)[X] =

∫∫

∂E×∂E

K(x− y)|ζ(x)− ζ(y)|2 dH
n−1
x dH

n−1
y −

∫

∂E

c2K,∂E ζ2 dH
n−1 .

Similarly, if E is a volume constrained stationary set of VG in Ω, then H∗
G,∂E is constant on ∂E ∩ Ω and

the third integral in the expression of δ2VG(E,Ω)[X] vanishes.

2.2 Asymptotics for a fractional Allen-Cahn equation

In the classical van der Waals-Cahn-Hilliard theory of phase transitions (see e.g. M.E. GURTIN [125]),
two-phase systems are driven by energy functionals of the form

Fε(u) =

∫

Ω

ε|∇u|2 + 1

ε
W (u) dx , ε ∈ (0, 1) ,

where u : Ω ⊆ R
n → R is a normalized density distribution of the two phases, and W : R → [0,∞)

is a potential with exactly two global minimal at ±1, and W (±1) = 0. Critical points of Fε satisfies the
so-called (elliptic) Allen-Cahn equation

−∆uε + ε−2W ′(uε) = 0 in Ω .

When ε is small, a control on the potential term in Fε implies that uε ≃ ±1 away from a region whose
area is of order ε. Formally, the transition layer from the phase −1 to the phase +1 has a characteristic
width of order ε. It should take place along an hypersurface which is expected to be a critical point of
the area functional, i.e., a minimal surface. More precisely, the region delimited by this hypersurface and
the container Ω should be a stationary set in Ω of the (distributional) perimeter.

For minimizing solutions of the Allen-Cahn equation (under their own boundary condition), this pic-
ture has been rigorously proved by L. MODICA & S. MORTOLA [162] through one of the first examples
of Γ-convergence. Their result shows that if the energy is equibounded, then uε → u∗ in L1(Ω) as ε → 0

for some function u∗ ∈ BV (Ω; {±1}), and the set {u∗ = +1} is (locally) perimeter minimizing in Ω (see
also L. MODICA [161] and P. STERNBERG [198] for the volume constrained problem).

The more difficult case of general critical points (which may not be energy minimizing) has been
addressed by J.E. HUTCHINSON & Y. TONEGAWA [135], and it presents an additional qualitative feature.
Namely, if the energy is equibounded, then the energy density converges as ε → 0 to a stationary
integral (n − 1)-varifold, i.e., a generalized minimal surface with integer multiplicity. The multiplicity
of the limiting hypersurface comes from an eventual "folding" of the interface as ε → 0. In particular,
the limiting interface between the two regions {u∗ = +1} and {u∗ = −1} can be strictly smaller than
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the support of the varifold, and it may not be stationary. In fact, the boundary of the region {u∗ = +1}
corresponds to the set of points where the limiting hypersurface has odd multiplicity.

This effect of energy loss is in complete analogy with the lack of strong compactness for solutions
of the (vectorial) Ginzburg-Landau equation, or fractional Ginzburg-Landau equation. In Section 1.1.3,
we have seen that a weak limit of solutions of the fractional Ginzburg-Landau equation may not be a
stationary fractional harmonic map. However, stationarity is restored when adding the defect measure
in the first variation of energy, see (vi) in Theorem 1.1.5.

In the ongoing article [P20], in collaboration with Y. SIRE & K. WANG, we perform the asymptotic
analysis as ε → 0 of a fractional version of the Allen-Cahn equation where the diffusion operator is
replaced by a (small) power of the Laplacian. In the spirit of [135], our study focuses on general critical
points and reveals some unexpected effects compare to the classical case. Our work is motivated by the
recent theory of nonlocal minimal surfaces of L. CAFFARELLI, J.M. ROQUEJOFFRE, & O. SAVIN [60] and
some nonlocal phase transitions problems arising in Peirls-Nabarro models for dislocations in crystals,
or in stochastic Ising models from statistical mechanics, see e.g. C. IMBERT [136] and C. IMBERT & P.E.
SOUGANIDIS [137]. To tackle efficiently the problem, we took advantage of the techniques and methods
developed for the fractional Ginzburg-Landau equation presented in Section 1.1.

2.2.1 The fractional Allen-Cahn equation and nonlocal minimal surfaces

Let n > 2, s ∈ (0, 1), and let Ω ⊆ R
n be a smooth bounded open set. We are now addressing the

asymptotic behavior, as ε ↓ 0, of weak solutions vε : Rn → R to the fractional Allen-Cahn equation

(−∆)svε + ε−2sW ′(vε) = 0 in Ω , (2.2.1)

subject to an exterior Dirichlet condition

vε = gε on R
n \ Ω , (2.2.2)

where gε : Rn → R is a smooth bounded function. The potential W : R → [0,∞) is assumed to be of
double-well type. More precisely, we assume that

(H1) W ∈ C2(R) ;

(H2) {W = 0} = {±1} and W ′′(±1) > 0 ;

(H3) tW ′(t) > 0 for |t| > 1 ;

(H4) there exit an exponent p ∈ [1,∞) and a constant c > 0 such that

1

c

(
|t|p−1 − 1

)
6 |W ′(t)| 6 c

(
|t|p−1 + 1

)
∀t ∈ R .

Those assumption are of course satisfied by the prototypical potential W (t) = (1− t2)2.

The fractional Laplace operator (−∆)s is given in (1.1.1), and the weak sense for equation (2.2.1) is
understood through the variational formulation (1.1.4) in the open set Ω, i.e.,

〈
(−∆)svε, ϕ

〉
+

1

ε2s

∫

Ω

W ′(vε)ϕ dx = 0 ∀ϕ ∈ D(Ω) .

In this way, equation (2.2.1) corresponds to the Euler-Lagrange equation for critical points of the fractio-
nal s-Allen-Cahn energy Fε(·,Ω) defined for v ∈ Ĥs ∩ Lp(Ω) by

Fε(v,Ω) := Es(v,Ω) +
1

ε2s

∫

Ω

W (v) dx ,
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where Es(·,Ω) is the fractional s-Dirichlet energy given by (1.1.3).
To construct weak solutions to (2.2.1)-(2.2.2), the simplest way is to minimize Fε(·,Ω) under the

exterior Dirichlet condition (2.2.2), i.e., setting

Hs
gε(Ω) := gε +Hs

00(Ω) ⊆ Ĥs(Ω) ,

one considers the minimization problem

min
{
Fε(v,Ω) : v ∈ Hs

gε ∩ Lp(Ω)
}
, (2.2.3)

whose resolution follows from the Direct Method of Calculus of Variations.

For what concerns minimizers, i.e., solutions of (2.2.3), the asymptotic behavior as ε ↓ 0 has been
investigated recently by O. SAVIN & E. VALDINOCI [185] through a Γ-convergence analysis of the func-
tionals Fε(·,Ω). Their result reveals a dichotomy between the two cases s > 1/2 and s < 1/2. In the case
s > 1/2, the normalized energies

F̃ε(·,Ω) :=
{
ε2s−1Fε(·,Ω) if s ∈ (1/2, 1) ,

| ln ε|−1Fε(·,Ω) if s = 1/2 ,

Γ-converge as ε → 0 to the functional F̃0(·,Ω) defined on BV (Ω; {±1}) by

F̃0(v,Ω) := σn,s(W )P
(
{v = +1},Ω

)
,

where σn,s(W ) is a constant, and P (E,Ω) denotes the distributional perimeter of a set E in Ω 2. In other
words, for s > 1/2, Allen-Cahn energies (and thus minimizers) behave exactly as in the classical case,
and area-minimizing hypersurfaces arise in the limit ε → 0.

Remark. The fractional Allen-Cahn energy has been originally introduced for s = 1/2 by G. ALBERTI,
G. BOUCHITTÉ, & P. SEPPECHER in [8, 9], where (essentially) the same Γ-convergence result is proved.

On the contrary, the variational convergence of Fε(·,Ω) in the case s ∈ (0, 1/2) appears to be almost
trivial. Indeed, the Hs-regularity does not exclude characteristic functions and the class

Ĥs(Ω; {±1}) := {v ∈ Ĥs(Ω) : |v| = 1 a.e. in R
n}

is not reduced to constants. In particular, there is no need to normalize Fε(·,Ω), and Fε(·,Ω) converges
as ε → 0 both in the variational and pointwise sense to

F0(v,Ω) :=

{
Es(v,Ω) if v ∈ Ĥs(Ω; {±1}) ,
+∞ otherwise .

Now it is worth noting that

Es(v,Ω) = 2γn,sP2s

(
{v = +1},Ω

)
∀v ∈ Ĥs(Ω; {±1}) ,

where the constant γn,s is given in (1.1.1), and P2s(E,Ω) is the fractional 2s-perimeter in Ω of a set
E ⊆ R

n as defined in (2.1.14) (with K(x− y) = |x− y|−(n+2s)).

2. The perimeter P (E,Ω) is defined as in (2.1.2) with the additional restriction that the supremum is taken over vector fields
with compact support in Ω.
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As a consequence, under suitable assumptions on the exterior Dirichlet condition (see Theorem 2.2.1),
solutions {vε} of (2.2.3) converge (up to subsequences) in L1

loc(R
n) to some function v∗ ∈ Ĥs(Ω) of the

form v∗ = χE − χRn\E , and the set E ⊆ R
n is minimizing the 2s-perimeter in Ω, i.e.,

P2s(E,Ω) 6 P2s(F,Ω) ∀F ⊆ R
n , F \ Ω = E \ Ω . (2.2.4)

Sets E satisfying the minimality condition (2.2.4) have been introduced and studied by L. CAFFA-
RELLI, J.M. ROQUEJOFFRE, & O. SAVIN [60]. Their boundary ∂E are referred to as (minimizing) nonlocal
minimal surfaces. The minimality condition implies that the first variation of the 2s-perimeter (as defined
in (2.1.15)) vanishes at E, i.e.,

δP2s(E,Ω)[X] = 0 ∀X ∈ C∞(Rn;Rn) compactly supported in Ω . (2.2.5)

If ∂E is smooth enough (see e.g. Theorem 2.1.6), (2.2.5) is equivalent to

H2s,∂E(x) := p.v.

(∫

Rn

χRn\E(y)− χE(y)

|x− y|n+2s
dy

)
= 0 ∀x ∈ ∂E ∩ Ω ,

where H2s,∂E is the so-called fractional mean curvature. The boundary of a set E ⊆ R
n satisfying (2.2.5)

shall be refered to as stationary nonlocal minimal surface in Ω.

The main purpose in [60] was to determine the regularity of a minimizing nonlocal minimal surface
∂E. It is proved that ∂E ∩ Ω is a C1,α-hypersurface away from a (relative) closed set Σ ⊆ ∂E ∩ Ω of
Hausdorff dimension less than or equal to (n−2). This clearly parallels the classical theory of minimizing
hypersurfaces, except that, in the classical theory, the dimension of the singular set is less than or equal to
(n−8) (see e.g. [120]). More recently, O. SAVIN & E. VALDONICI [186] improved the dimension estimate
to (n− 3), and B. BARRIOS BARRERA, A. FIGALLI, & E. VALDINOCI [31] have shown the C∞-regularity
of the regular part of the boundary.

We finally recall that all these results are valid for minimizers and only minimizers. In particular, nothing
was known about the asymptotic ε → 0 of general critical points for the fractional Allen-Cahn energy.
We shall answer this question in the case s ∈ (0, 1/2), i.e., in the regime of nonlocal minimal surfaces.

2.2.2 Strong convergence of the fractional Allen-Cahn equation

We now come to our main result on general (weak) solutions to equation (2.2.1). We recall our as-
sumptions (H1)–(H4) on the double-well potential W .

Theorem 2.2.1. Assume that s ∈ (0, 1/2). Let εk ↓ 0 be an arbitrary sequence, and let {gk}k∈N ⊆ C1(Rn)

be such that |gk| 6 1 and gk → g in L1
loc(R

n \ Ω) for a function g satisfying |g| = 1 a.e. in R
n \ Ω. Let

{vk}k∈N ⊆ Hs
gk

∩ Lp(Ω) be such that




(−∆)svk +

1

ε2sk
W ′(vk) = 0 in Ω ,

vk = gk in R
n \ Ω .

If supk Fεk(vk,Ω) < ∞, then there exist a (not relabeled) subsequence and a Borel set E ⊆ R
n of finite 2s-

perimeter in Ω such that vk → χE − χRn\E strongly in Hs
loc(Ω) and L2

loc(R
n). Moreover, E ∩ Ω is an open set,

∂E is a stationary nonlocal 2s-minimal surface in Ω (i.e., (2.2.5) holds), and

(i) Es(vk,Ω′) → 2γn,sP2s(E,Ω′) for every smooth open set Ω′ ⊆ Ω such that Ω′ ⊆ Ω ;

(ii) ε−2s
k W (vk) → 0 in L1

loc(Ω) ;
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(iii) vk → 1 locally uniformly in E ∩ Ω, and vk → −1 locally uniformly in Ω \ E ;

(iv) for each δ ∈ (−1, 1), the level set {vk = δ} converges locally uniformly in Ω to ∂E ∩ Ω, i.e., for every
compact set K ⊆ Ω and every r > 0,

{vk = δ} ∩K ⊆
{
x : dist(x, ∂E ∩ Ω) < r

}
and ∂E ∩K ⊆

{
x : dist(x, {vk = δ} ∩ Ω) < r

}

whenever k is large enough.

Remark. In the particular case where {vk} is assumed to be minimizing, Theorem 2.2.1 recovers at least
the results in [185] for s ∈ (0, 1/2). Note that for minimizers, the uniform energy bound assumption is
always satisfied since the function χΩ+(1−χΩ)gk is an admissible competitor with uniformly bounded
energy (depending on P2s(Ω)).

Remark. Theorem 2.2.1 parallels J.E. HUTCHINSON & Y. TONEGAWA convergence result [135]. In contrast
with [135], there is no loss of energy, and solutions of the fractional Allen-Cahn equation are strongly
compact. In particular, "even folding" of interfaces is excluded. However "odd folding" might occur but
the Hs-regularity is not fine enough to capture multiplicity as ε → 0.

The proof of Theorem 2.2.1 is based on the strategy we have developed for the fractional Ginzburg-
Landau equation, see Section 1.1.3. It rests on the result of L. CAFFARELLI & L. SILVESTRE [61] for the
representation of (−∆)s as the generalized Dirichlet-to-Neumann operator associated to an extension to
the open half space R

n+1
+ := R

n × (0,∞) given by the convolution product with a "fractional" Poisson
kernel. More precisely, the 2s-Poisson kernel is the function K2s : R

n+1
+ → [0,∞) defined by

K2s(x) := σn,s
z2s

|x|n+2s
, σn,s := π−n

2
Γ(n+2s

2 )

Γ(s)
,

where we write x = (x, z) ∈ R
n × (0,∞). Setting a := 1− 2s, the kernel K2s solves the equation

{
div
(
za∇K2s

)
= 0 in R

n+1
+ ,

K2s = δ0 on ∂Rn+1
+ ≃ R

n ,

where δ0 is the Dirac distribution at the origin.
Denoting by v 7→ ve the convolution in x of v with K2s, i.e.,

ve(x) := σn,s

∫

Rn

z2sv(y)

(|x− y|2 + z2)
n+1
2

dy , (2.2.6)

we have proved that it is well defined on Ĥs(Ω), and that (−∆)sv = Λ2sv as distributions on the open
set Ω, where Λ2s is the Dirichlet-to-Neumann operator

Λ2sv(x) := −ds lim
z↓0

za∂zv
e(x, z) , ds := 22s−1 Γ(s)

Γ(1− s)
.

When applying the extension procedure to a solution v of the fractional Allen-Cahn equation, we end
up with the following degenerate equation





div
(
za∇ve

)
= 0 in R

n+1
+ ,

lim
z↓0

za∂zv
e =

1

dsε2s
W ′(ve) on Ω .

(2.2.7)
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The asymptotic analysis of this system as ε → 0 led us to the main conclusions. To perform such an ana-
lysis, we had first to establish a suitable (boundary) regularity theory for (2.2.7) relying on the classical
results of E.B. FABES, C.E. KENIG, & R.P. SERAPIONI [93] and a recent work of X. CABRÉ & Y. SIRE [59].
Then, the key ingredient was to prove an appropriate monotonicity formula for solutions of (2.2.7). This
monotonicity formula is completely analogous to the one we found for the fractional Ginzburg-Landau
equation, and, in sharp contrast with the classical Allen-Cahn equation, no "discrepancy term" appears.
In the spirit of Ginzburg-Landau theories, the monotonicity formula implies a "clearing-out lemma" : if
the energy in a half ball (centered at a point of Ω) is small enough compare to the radius raised to the po-
wer (n−2s), then the solution is uniformly close to the wells of W in the ball of half radius. By convexity
of the potential near the wells, it implies that the solution is actually minimizing in this smaller ball. This
is then enough to derive strong convergence in Hs and in L∞ to one of the wells whenever the energy
is sufficiently small. At this stage, the asymptotic analysis as ε → 0 follows closely [P17], and energy
concentration is excluded by Marstrand’s theorem, see e.g. [155]. In turn, the strong local convergence
in Hs implies the stationarity of the limiting function.

Remark. At the present time, there is no regularity theory for stationary nonlocal minimal surfaces. In
an ongoing project, we are addressing this question. Many of the arguments we have developed for the
fractional Allen-Cahn equation turn out to be useful for this problem. In fact, the general philosophy
is that nonlocal minimal surfaces are better understood when interpreted as fractional harmonic maps
with values in S

0 ≃ {±1}.

2.3 Unilateral gradient flow of an approximate Mumford-Shah func-

tional

Many free discontinuity problems are variational in nature and involve two unknowns, a function u

and a discontinuity set Γ across which u may jump. The most famous example is certainly the minimi-
zation of the MUMFORD-SHAH (MS) functional introduced in [168] to approach image segmentation. It
is defined by

E∗(u,Γ) :=
1

2

∫

Ω\Γ

|∇u|2 dx+ H
n−1(Γ) +

β

2

∫

Ω

(u− g)2 dx ,

where Ω ⊆ R
n is a bounded Lipschitz open set, H n−1 is the (n − 1)-dimensional Hausdorff measure,

β > 0 is a fidelity (constant) factor, and g ∈ L∞(Ω) stands for the grey level of the original image. In the
resulting minimization process, we end up with a segmented image u : Ω \ Γ → R and a set of contours
Γ ⊆ Ω. To efficiently tackle this problem, a weak formulation in the space of Special functions of Bounded
Variation has been suggested and solved in [87], where the set Γ is replaced by the jump set Ju of u. The
new energy is defined for u ∈ SBV 2(Ω) by

1

2

∫

Ω

|∇u|2 dx+ H
n−1(Ju) +

β

2

∫

Ω

(u− g)2 dx , (2.3.1)

where ∇u is now intended to be the measure theoretic gradient of u.
A related model based on the Mumford-Shah functional has been introduced by G. FRANCFORT &

J.J. MARIGO in [48, 107] to describe quasi-static crack propagation inside elastic bodies. It is a variational
model relying on three fundamental principles : (i) the fractured body must stay in elastic equilibrium
at each time (quasi-static hypothesis) ; (ii) the crack can only grow (irreversibility constraint) ; (iii) an energy
balance holds. In the anti-plane setting, the equilibrium and irreversibility principles lead to a constrai-
ned local minimization of MS at each time, where u stands now for the scalar displacement while Γ is
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the crack. Unfortunately, there is no canonical notion of local minimality and most of the study consider
global minimizers instead, see [81, 79, 105]. In the discrete setting, one looks at each time step for a pair
(ui,Γi) minimizing

(u,Γ) 7→ 1

2

∫

Ω\Γ

|∇u|2 dx+ H
n−1(Γ) ,

among all cracks Γ ⊇ Γi−1 and all displacements u : Ω \ Γ → R satisfying an updated boundary
condition, where Γi−1 is the crack found at the previous time step.

While such static free discontinuity problems start to be well understood, many questions remain
open concerning their evolutionary version. Apart from the quasi-static case, the closest evolution pro-
blem to statics consists in finding a steepest gradient descent of the energy, and thus in solving a gradient
flow type equation. A major difficulty in this setting is to define a suitable notion of gradient since the
functional is neither regular nor convex, and standard theories such as maximal monotone operators
[55] do not apply. However, using a time discretization, an implicit Euler scheme can always be defined.
Letting the time step tend to zero, the possible limits are refered to as DE GIORGI’s minimizing move-
ments [14, 86, 88]. Minimizing movements for the Mumford-Shah functional have been first considered
by L. AMBROSIO & A. BRAIDES [16], and further developed by A. CHAMBOLLE & F. DOVERI [63]. Mo-
tivated by the crack growth model, the authors apply an implicit iterative scheme with respect to the
variable u while minimizing the energy with respect to Γ under the constraint of irreversibility. More
precisely, denoting by ui−1 the displacement at the previous time step, one looks for minimizers of

(u,Γ) 7→ 1

2

∫

Ω\Γ

|∇u|2 dx+ H
n−1(Γ) +

β

2

∫

Ω

(u− g)2 dx+
1

2δ
‖u− ui−1‖2L2(Ω) ,

again among all Γ ⊇ Γi−1 and u : Ω \ Γ → R, where δ > 0 is the time step. In any space dimension, the
limiting displacement t 7→ u(t) satisfies some degenerate heat equation, and an energy inequality with
respect to the initial time holds.

On another hand, the Mumford-Shah functional enjoys good variational approximation properties
by means of regular energies. Constructing L2(Ω)-gradient flows for those regularized energies and
taking the limit in the approximation parameter could be an alternative way to derive a generalized
gradient flow for MS. It was actually the path followed in [121] where a gradient flow equation for
the one-dimensional Mumford-Shah functional is obtained as a limit of ordinary differential equations
derived from a non-local approximation. Many other approximations are available, and the most famous
one is certainly the AMBROSIO-TORTORELLI functional defined for (u, ρ) ∈ [H1(Ω)]2 by

ATε(u, ρ) :=
1

2

∫

Ω

(ηε + ρ2)|∇u|2 dx+
β

2

∫

Ω

(u− g)2 dx+
1

2

∫

Ω

(
ε|∇ρ|2 + 1

ε
(1− ρ)2

)
dx ,

where ηε > 0 is a parameter satisfying ηε = o(ε) as ε → 0. The idea is to replace the discontinuity
set Γ by a (diffuse) phase field variable, denoted by ρ : Ω → [0, 1], which is "smooth" and essentially
0 in some ε-neighborhood of Γ. Such energies are of great importance for numerical simulations in
imaging or brittle fracture, see [47, 48]. From the mechanical point of view, it is interpreted as a non-local
damage approximation of fracture models, where ρ represents a damage density. The approximation
result of L. AMBROSIO & V.M. TORTORELLI [27, 28] states that ATε Γ-converges as ε → 0 to MS (in the
form (2.3.1)) with respect to a suitable topology. For the static problem, it implies the convergence of
ATε-minimizers towards MS-minimizers, see Section 1.5.1. However, the convergence of general critical
points is a priori not guaranteed. The only positive results in this direction have been obtained in [106,
144] but are restricted to the one-dimensional case. The Ambrosio-Tortorelli approximation of quasi-
static crack evolution has been considered in [114], where the irreversibility constraint translates into
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the decrease of the phase field t 7→ ρ(t). The main result of [114] concerns the convergence of this
regularized model towards the original one in [105], and it relies strongly on global minimality. About
parabolic evolutions, not much is known, specially for what concerns the singular limit ε → 0.

The object of the article [P16], in collaboration with J.F. BABADJIAN, was to study a unilateral gradient
flow for the Ambrosio-Tortorelli functional taking into account the irreversibility constraint on the phase
field variable. The idea was to construct minimizing movements starting from a discrete Euler scheme
which is precisely an Ambrosio-Tortorelli regularization of the one studied in [15, 63]. As in the quasi-
static case [114], the irreversibility of the process has to be encoded into the decrease of the phase field
variable, and leads at each time step to a constrained minimization problem. More precisely, given an
initial data (u0, ρ0), one may recursively define pairs (ui, ρi) by minimizing at each time ti ∼ iδ,

(u, ρ) 7→ ATε(u, ρ) +
1

2δ
‖u− ui−1‖2L2(Ω) ,

among all u and ρ 6 ρi−1, where (ui−1, ρi−1) is a pair found at the previous time step. The objective is
then to pass to the limit as the time step δ tends to 0. In this formulation, an important issue is to deal
with the asymptotics of the obstacle problems induced by the irreversibility constraint. It is known that
such problems are not stable with respect to weak H1-convergence, and that undesirable "strange terms"
of capacitary type may appear [70, 80]. However, ensuring uniform convergence of obstacles would
be enough to rule out this situation. For that reason, instead of ATε, we have considered a modified
Ambrosio-Tortorelli functional with p-growth in ∇ρ , p > n. By the Sobolev imbedding theorem, with
such a functional in hand, uniform convergence on the ρ variable is now ensured. The choice we made
is certainly the closest analogue of ATε, and it is defined for (u, ρ) ∈ H1(Ω)×W 1,p(Ω) by

Eε(u, ρ) :=
1

2

∫

Ω

(ηε + ρ2)|∇u|2 dx+
β

2

∫

Ω

(u− g)2 dx+

∫

Ω

(
εp−1

p
|∇ρ|p + αp

ε
|1− ρ|p

)
dx , p > n ,

where αp := p−1
p (p2 )

p
p−1 is a normalizing factor. Here, an immediate adaptation of [97] shows that Eε is

still an approximation of the Mumford-Shah functional in the sense of Γ-convergence.

2.3.1 Unilateral minimizing movements

Given a time step δ > 0 and an initial condition u0 ∈ H1(Ω), we consider the implicit scheme 3 4 :

• set u0
δ = u0 and ρ0δ = argmin

{
Eε(u0, ρ) : ρ ∈ W 1,p(Ω)

}
;

• select recursively for i > 1,

(ui
δ, ρ

i
δ) ∈ argmin

{
Eε(u, ρ) +

1

2δ

∥∥u− ui−1
δ

∥∥2
L2(Ω)

: (u, ρ) ∈ H1(Ω)×W 1,p(Ω) , ρ 6 ρi−1

}
.

From iterates {(ui
δ, ρ

i
δ)}i∈N we define the discrete trajectory (uδ, ρδ) : [0,+∞) → L2(Ω) × Lp(Ω) to be the

piecewise constant interpolation given by
(
uδ(t), ρδ(t)

)
= (ui

δ, ρ
i
δ) for t ∈ (ti−1, ti].

In analogy with [14, 21], we say that (uε, ρε) : [0,+∞) → L2(Ω) × Lp(Ω) is a (generalized) unilateral
minimizing movement starting from u0 if

(
uδk(t), ρδk(t)

)
→
(
uε(t), ρε(t)

)
strongly in L2(Ω)× Lp(Ω) for every t > 0 ,

for some sequence of discrete trajectories {(uδk , ρδk)}k∈N such that δk → 0. Setting GUMM(ε, u0) to be
the collection of all unilateral minimizing movements starting from u0, our first main result provides
their existence and main qualitative properties.

3. To simplify the presentation we only consider here uniform time discretizations, see [P16] for the general case.
4. The resolution of this scheme follows from the Direct Method, noticing that Eε is separately strictly convex in (u, ρ).
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Theorem 2.3.1. Assume that Ω ⊆ R
n is a bounded open set with C1,1 boundary. Given u0 ∈ H1(Ω) ∩ L∞(Ω),

the collection GUMM(ε, u0) is not empty, and any (uε, ρε) ∈ GUMM(ε, u0) satisfies

uε ∈ H1
loc([0,+∞);L2(Ω)) ∩ L∞(0,+∞;H1(Ω)) ∩ L2

loc(0,+∞;H2(Ω)) ,

ρε ∈ L∞(0,+∞;W 1,p(Ω)) , 0 6 ρε(t) 6 ρε(s) 6 1 for every t > s > 0 .

In addition, 



∂tuε − div
(
(ηε + ρ2ε)∇uε

)
+ β(uε − g) = 0 in L2(0,+∞;L2(Ω)) ,

∂uε

∂ν
= 0 in L2(0,+∞;H1/2(∂Ω)) ,

uε(0) = u0 ,

(2.3.2)

and



Eε(uε(t), ρε(t)) 6 Eε(uε(t), ρ) for every t > 0 and ρ ∈ W 1,p(Ω) such that ρ 6 ρε(t) in Ω ,

ρε(0) = argmin
{
Eε(u0, ρ) : ρ ∈ W 1,p(Ω)

}
.

(2.3.3)

Moreover, t 7→ Eε(uε(t), ρε(t)) has finite pointwise variation in [0,+∞), and there exists an (at most) countable
set Nε ⊆ (0,+∞) such that

(i) (uε, ρε) : [0,+∞) \ Nε → H1(Ω)×W 1,p(Ω) is strongly continuous ;

(ii) for every s ∈ [0,+∞) \ Nε, and every t > s,

Eε(uε(t), ρε(t)) +

∫ t

s

‖∂tuε(r)‖2L2(Ω) dr 6 Eε(uε(s), ρε(s)) . (2.3.4)

In this theorem, the fact that GUMM(ε, u0) 6= ∅ follows from the strong compactness implied by a
priori estimates on discrete trajectories. In particular, we have proved a global H2-estimate for the elliptic
operator in divergence form appearing in (2.3.2) (see Section 2.3.3). The same a priori estimates yield the
announced regularity on the limiting trajectory (uε, ρε). In a quite classical way, the heat type equation
on uε is established by passing to the limit in the Euler-Lagrange equations satisfied by the iterates ui

δ .
Taking advantage of a semi-group property in equation (2.3.2), we have shown that the "bulk energy"

t 7→ 1

2

∫

Ω

(ηε + ρε(t)
2)|∇uε(t)|2 dx+

β

2

∫

Ω

(uε(t)− g)2 dx (2.3.5)

is non-increasing, and thus continuous away from a countable set of times. In turn, the minimality
property in (2.3.3) holds at the discrete level and passes to the limit by comparison arguments. It implies
that the "diffuse surface energy"

t 7→
∫

Ω

(
εp−1

p
|∇ρε(t)|p +

αp

ε
|1− ρε(t)|p

)
dx (2.3.6)

is non-decreasing, hence continuous away from a countable set of times. From the monotonicity in (2.3.5)
and (2.3.6) we derive the strong continuity of (uε, ρε) stated in (i). Once strong continuity is obtained, we
can prove that the discrete trajectories converge strongly pointwise in time away from the exceptional
set Nε. The energy inequality (2.3.4) is then deduced from this convergence and from the analogous
inequalities for discrete trajectories.

We point out that the Lyapunov inequality (2.3.4) is reminiscent of gradient flow type equations, and
that it usually reduces to equality whenever the flow is regular enough. In any case, an energy equality
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would be equivalent to the absolute continuity in time of the total energy, see Section 2.3.3. The reverse
inequality might be obtained through an abstract infinite-dimensional chain-rule formula in the spirit
of [176]. In our case, if we formally differentiate in time the total energy, we obtain

dd

dt
Eε(uε, ρε) =

〈
∂uEε(uε, ρε), ∂tuε

〉
+
〈
∂ρEε(uε, ρε), ∂tρε

〉
. (2.3.7)

From (2.3.3) we may expect that
〈∂ρEε(uε, ρε), ∂tρε〉 = 0 , (2.3.8)

which would lead, together with (2.3.2), to energy equality. Now observe that (2.3.8) is precisely the
regularized version of Griffith’s criterion stating that a crack evolves if and only if the release of bulk
energy is compensated by the increase of surface energy (see e.g. [48, Section 2.1]). Unfortunately, such
a chain-rule is not available since we do not have enough control on the time regularity of ρε. In the
quasi-static case, one observes discontinuous time evolutions for the surface energy. Since the evolution
law for ρε is quite similar to the quasi-static case (see [114]), it is reasonable to expect time discontinuities
for the diffuse surface energy.

2.3.2 Asymptotics in the Mumford-Shah limit

As we already mentioned, the main motivation for considering the gradient flow of the Ambrosio-
Tortorelli functional is to understand the asymptotic ε → 0 and to derive a limiting evolution rule for
what could be a "generalized gradient flow" of the Mumford-Shah functional. We stress that in this
context the general theory on Γ-convergence of gradient flows of E. SANDIER & S. SERFATY [182, 191]
does not apply since it requires a well defined gradient structure for the Γ-limit. In this direction, we
believe that our results, although not completely satisfactory, will shed a new light on the problem. For
completeness, let us recall that a function u belongs to SBV 2(Ω) if u ∈ BV (Ω) and, in the decompo-
sition (1.5.4)-(1.5.5) of the measure Du, the absolutely continuous part ∇u ∈ L2(Ω), the Cantor part
Dcu vanishes, and the "jump set" Ju has a finite H n−1-measure, see [20]. Our second main result is the
following 5

Theorem 2.3.2. Assume that Ω ⊆ R
n is a bounded open set with C1,1 boundary. Let εk ↓ 0 be an arbitrary

sequence, u0 ∈ H1(Ω) ∩ L∞(Ω) and for each k ∈ N, (uεk , ρεk) ∈ GUMM(εk, u0). There exist a (not relabeled)
subsequence and u ∈ H1

loc([0,+∞);L2(Ω)) such that




ρεk(t) → 1 strongly in Lp(Ω) for every t > 0 ,

uεk(t) → u(t) strongly in L2(Ω) for every t > 0 ,

∂tuεk ⇀ ∂tu weakly in L2(0,+∞;L2(Ω)) .

For every t > 0 the function u(t) belongs to SBV 2(Ω) ∩ L∞(Ω),

‖u(t)‖L∞(Ω) 6 max{‖u0‖L∞(Ω), ‖g‖L∞(Ω)} ,

and ∇u ∈ L∞(0,+∞;L2(Ω;Rn)). Moreover, u solves




∂tu− div(∇u) + β(u− g) = 0 in L2(0,+∞;L2(Ω)) ,

∇u · ν = 0 in L2(0,+∞;H−1/2(∂Ω)) ,

u(0) = u0 ,

(2.3.9)

5. The symbol ⊆̃ is used for inclusion up to H n−1-null sets.
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and there exists a family of H n−1-rectifiable subsets {Γ(t)}t>0 of Ω such that

(i) Γ(s) ⊆ Γ(t) for every 0 6 s 6 t ;

(ii) Ju(t) ⊆̃ Γ(t) for every t > 0 ;

(iii) for every t > 0,

1

2

∫

Ω

|∇u(t)|2 dx+ H
n−1(Γ(t)) +

β

2

∫

Ω

(u(t)− g)2 dx+

∫ t

0

‖∂tu(s)‖2L2(Ω) ds

6
1

2

∫

Ω

|∇u0|2 dx+
β

2

∫

Ω

(u0 − g)2 dx .

The first part of this theorem is obtained by means of the Arzelà-Ascoli Theorem together with a
general compactness result of A. BRAIDES, A. CHAMBOLLE, & M. SOLCI [52]. Then the limiting equation
(2.3.9) follows from (2.3.2). The family {Γ(t)}t>0 is essentially constructed according to the following
idea. Passing to the weak* limit in the family of time-dependent measures

µε(t) :=

(
εp−1

p
|∇ρε(t)|p +

αp

ε
|1− ρε(t)|p

)
L

n Ω ,

yields a non-decreasing (in time) family of measures µ(t), thanks to the monotonicity of the diffuse
surface energy (2.3.6). Each crack Γ(t) is then obtained by taking the H n−1-rectifiable part of the set of
points x where the (n−1)-upper density Θ∗

n−1(µ(t), x) is at least 1. The key point was then to prove that
H n−1 Ju(t) ≪ µ(t) in order to deduce (ii). We have obtained this estimate and the energy inequality
using some asymptotic lower bounds from [52] for both surface and bulk energies.

Comparing our result with the one of A. CHAMBOLLE & F. DOVERI [63], we find that u solves the
same generalized heat equation with an improvement in the energy inequality where an increasing
family of cracks appears. The optimality of this inequality and the convergence of energies remain open
questions. The (pointwise in time) convergence of the bulk energy usually follows by taking the solution
itself as a test function in the equation. In our case it asks the question wether or not SBV 2(Ω) functions
whose jump set is contained in Γ(t) can be used in the variational formulation of (2.3.9). It would yield
a weak form of the relation (

(u+(t)− u−(t)
)∂u(t)

∂ν
= 0 on Γ(t) ,

where u±(t) are the one-sided traces of u(t) on Γ(t). This is indeed the missing equation to comple-
ment (2.3.9), and it is intimately related to the finiteness of the unilateral slope of the Mumford-Shah
functional (evaluated at (u(t),Γ(t))) defined by G. DAL MASO & R. TOADER [82], see the following
subsection.

2.3.3 Curves of maximal unilateral slope

An alternative approach to minimizing movements (but actually related), is to make use of the gene-
ral theory of gradient flows in metric spaces introduced by E. DE GIORGI, A. MARINO, & M. TOSQUES

[88]. In this setting the notion of gradient is replaced by the concept of slope, and the standard gradient
flow equation is recast in terms of curves of maximal slope, see the recent monograph of L. AMBROSIO, N.
GIGLI, & G. SAVARÉ [21] for a detailed description of this subject. This point of view has been investiga-
ted by G. DAL MASO & R. TOADER in [82], introducing the unilateral slope |∂E∗| of the Mumford-Shah
functional

|∂E∗|(u,Γ) := lim sup
v→u in L2(Ω)

(E∗(u,Γ)− E∗(v,Γ ∪ Jv))
+

‖v − u‖L2(Ω)
,
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where u ∈ SBV 2(Ω) and Γ is a subset of Ω such that H n−1(Γ) < ∞ and Ju ⊆̃ Γ. The main results of [82]
concern explicit representations of |∂E∗| and its relaxation, but a complete description is still missing.

In analogy with [82], we have introduced the unilateral slope of the Ambrosio-Tortorelli functional

|∂Eε|(u, ρ) := lim sup
v→u in L2(Ω)

sup
ρ̂6ρ

(
Eε(u, ρ)− Eε(v, ρ̂)

)+

‖v − u‖L2(Ω)
,

where (u, ρ) ∈ H1(Ω)×W 1,p(Ω). We have proved that |∂Eε| is lower semicontinuous with respect to the
strong L2 × Lp-topology, but our main result provide an explicit representation formula. It rests on an
aforementioned regularity estimate for elliptic operators in divergence form with W 1,p-coefficients.

Proposition 2.3.3. Assume that Ω is a bounded open set with C1,1 boundary. Let D(|∂Eε|) be the proper domain
of |∂Eε|. Then,

D(|∂Eε|) =
{
(u, ρ) ∈ H2(Ω)×W 1,p(Ω) :

∂u

∂ν
= 0 in H1/2(∂Ω) , and

Eε(u, ρ) 6 Eε(u, ρ̂) for all ρ̂ ∈ W 1,p(Ω) such that ρ̂ 6 ρ in Ω
}
. (2.3.10)

In addition, if (u, ρ) ∈ D(|∂Eε|), then

|∂Eε|(u, ρ) =
∥∥div((ηε + ρ2)∇u)− β(u− g)

∥∥
L2(Ω)

.

Together with the notion unilateral slope comes the definition of curves of maximal unilateral slope : a
pair (u, ρ) : [0,+∞) → L2(Ω) × Lp(Ω) is a curve of maximal unilateral slope if u ∈ H1([0,+∞);L2(Ω)),
t 7→ ρ(t) ∈ Lp(Ω) is non-increasing, and if there exists a non-increasing function λ : [0,+∞) → [0,+∞)

satisfying

λ(t) = Eε(u(t), ρ(t)) and λ′(t) 6 −1

2
‖∂tu(t)‖2L2(Ω) −

1

2
|∂Eε|(u(t), ρ(t)) for a.e. t ∈ (0,+∞) . (2.3.11)

This definition is motivated by the fact that any curve of maximal unilateral slope satisfies

(u(t), ρ(t)) ∈ D(|∂Eε|) and ‖∂tu(t)‖2L2(Ω) = |∂Eε|(u(t), ρ(t)) for a.e. t ∈ (0,+∞) ,

and equality holds in (2.3.11) whenever t 7→ Eε(u(t), ρ(t)) is absolutely continuous.

As a consequence of the definition, curves of maximal unilateral slope are curves of steepest L2(Ω)-
descent of Eε with respect to u in the direction of non-increasing ρ’s. We have established that any
unilateral minimizing movement is actually a curve of maximal unilateral slope. As a matter of fact, any
curve satisfying (2.3.2)-(2.3.3)-(2.3.4) has maximal unilateral slope. If one drops the energy inequality
(2.3.4), system (2.3.2)-(2.3.3) admits infinitely many solutions which are not in general curves of maximal
unilateral slope. The other way around, the question wether or not curves of maximal unilateral slope
provide solutions of (2.3.2) is actually connected to the validity of the generalized chain-rule formula
(2.3.7). To conclude this section, we finally mention that we have obtained some partial results in the
spirit of [82] for the limit of |∂Eε| as ε → 0. However, a complete asymptotic analysis of |∂Eε| remains an
open problem.

2.4 On a free boundary problem for material voids

Understanding surface roughening of materials plays a central role in many fields of physics, che-
mistry, and metallurgy. Since the pioneer work of R.J. ASARO & W.A. TILLER [30] (see also [192, 209]
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and the references therein), it has been recognized that in continuous models of crystals surface insta-
bility is driven by the competition between elastic energy and surface energy. The stress, acting parallel
to a flat surface of an elastic solid, causes atoms to diffuse on the surface and the surface to undulate.
In turn such a migration of atoms has an energetic prize in terms of surface tension. This phenomenon
may lead to the formation of isolated islands on the substrate surface, see e.g. [195, 196, 197], or of cracks
running into the bulk of the solid. Island formation in systems such as In-GaAs/GaAs or SiGe/Si turns
out to be useful in the fabrication of modern semiconductor electronic and optoelectronic devices such
as quantum dots laser.

Similarly, a void in a grain can collapse into a crack by surface diffusion when the applied stress
exceeds a critical value [71, 113, 200, 201, 206]. Note that, since the lattice diffusion is much slower as
compared to the surface diffusion, the evolving void in a grain can be assumed to conserve its volume,
only changes its shape. In [201], Z. SUO & W. WANG have conducted numerical experiments on the
shape change of a pore in an infinite solid. Assuming that the surface tension is isotropic and that the
solid is under a uniaxial stress σ1, they observed that the pore changes shape as the atoms diffuse on the
surface driven by surface and elastic energy variation, expressed in term of the dimensionless number
Λ = σ2

1R0/(Y γ), where Y is the Young’s modulus, R0 the initial circular pre radius, and γ the surface
tension. Their experiments showed that under no stress, the pore has a rounded shape maintained by
surface tension. On the other hand, if the applied stress is small (Λ small), the pore reaches an equi-
librium shape close to an ellipse (thus compromising the stress and the surface tension), while if the
applied stress Λ is large, the pore does not reach equilibrium and noses emerge, which sharpen into
crack tips. Similar results were also obtained for anisotropic surface tension.

The purpose of the article [P14], in collaboration with I. FONSECA, N. FUSCO, & G. LEONI, was to
formulate a simple variational model describing the competition between elastic energy and highly ani-
sotropic surface energy for problems involving a material void in a linearly elastic solid. Following the
fundamental work of C. HERRING [134], we take the surface free energy of a body to be an integral of
the form

∫
ϕ (ν) dS extended over the surface of the body, where the surface energy density ϕ is, for ani-

sotropic bodies, a function of the orientation of the outer unit normal ν at each surface point. The unique
shape that minimizes surface energy for fixed volume is known as the Wulff shape [208]. The existence
and uniqueness proof is originally due to J. TAYLOR [203, 204, 205] (see also [98, 100]). Under no stress,
C. HERRING [134] argued that if a given macroscopic surface of a crystal does not coincide in orientation
with some portion of the boundary of the Wulff shape, then there exists a hill-and-valley structure that
has a lower free energy than a flat surface. On the other hand, the minimum energy configuration of the
bulk material occurs at the stress-free state for each solid. Thus, at the interface between the void and
the elastic solid these two opposing mechanisms compete to determine the resulting structure.

2.4.1 Variational formulation and relaxation

We now describe the model considered in [P14]. Our formulation follows M. SIEGEL, M.J. MIKSIS,
& P.W. VOORHEES [192]. We consider starshaped cavities, which occupy closed regions F ⊆ R

2 (with
Lipschitz boundary), embedded in an elastic solid. The solid region is assumed to obey the usual laws
of linear elasticity, and we consider a bulk energy of the form

1

2

∫

B0\F

W
(
E(u)

)
dz , W(E) := T(E) ·E ,
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where B0 is a fixed large ball centered at the origin, T is a constant positive definite fourth order tensor,
and E(u) is the symmetrized gradient

E(u) =
1

2

(
∇u+

t
(∇u)

)
.

We assume that far from the cavity a Dirichlet condition is prescribed, i.e., u = u0 a.e. in R
2 \B0 for some

given Lipschitz map u0 : R2 → R
2. The surface energy is taken of the form

∫

∂F

ϕ(νiF ) dH
1

where the anisotropy function ϕ : R2 → [0,∞) is assumed to be convex 6, positively 1-homogeneous,
and positive on {|z| = 1}. Here, νiF denotes the inner normal on the surface of the cavity, that is the outer
normal to the elastic body. Thus, the total energy is

E(F, u) := 1

2

∫

B0\F

W
(
E(u)

)
dz +

∫

∂F

ϕ(νiF ) dH
1 .

Given a volume d ∈ (0, |B0|), we have addressed the minimization problem

inf
{
E(F, u) : (F, u) ∈ XLip , |F | = d

}
, (2.4.1)

where the class of competitors XLip is defined by

XLip :=
{
(F, u) : F ∈ VLip , u ∈ H1

loc(R
2 \ F ;R2) , u = u0 a.e. in R

2 \ F
}
,

and
VLip :=

{
F ⊆ B0 closed, starshaped with respect to the origin, and ∂F Lipschitz

}
.

In general problem (2.4.1) is ill-posed since the limit of an arbitrary sequence of closed sets in VLip might
not belong to VLip. To efficiently tackle this minimization problem, one has to determine precisely the
closure of VLip, and then relax the energy to the enlarged class of competitors.

The natural topology on VLip is provided by the Hausdorff distance distH . In this way, VLip appears
to be a subset of the metric space made of all closed subsets of B0. This space is compact by Blasch-
ke’s theorem, and by our assumption on the surface energy, we are interested in all possible limits of
sequences in VLip with equibounded perimeter, i.e.,

V :=
{
F ⊆ B0 such that distH (F, Fk) → 0 for some {Fk}k∈N ⊆ VLip with supk H 1(∂Fk) < ∞

}
.

Clearly, the starshapedness property is closed under Hausdorff convergence, but the Lipschitz regularity
of the boundary is in general lost in the limit. However a certain regularity is preserved, and one can
prove that

V =
{
F ⊆ B0 closed, starshaped with respect to the origin, and H

1(∂F ) < ∞
}
.

The inclusion ⊆ is actually a consequence of the Golab lower semicontinuity theorem, while the re-
verse inclusion follows from explicit constructions. In fact, for any F ∈ V , we can construct a sequence

6. In [P14] we actually do not assume that ϕ is convex. It leads to an intricate relaxation analysis that we prefer to avoid for
clarity reasons. We only mention that the relaxed surface energy density is affected by the starshpeness condition, and it does not
reduces to the convex envelope of ϕ.
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{Fk}k∈N ⊆ VLip with equibounded perimeter such that F ⊆ Fk for every k ∈ N, and distH (F, Fk) → 0.
In particular, it suggests that the class of admissible competing pairs relaxes to

X :=
{
(F, u) : F ∈ V , u ∈ H1

loc(R
2 \ F ;R2) , u = u0 a.e. in R

2 \ F
}
.

Accordingly, we have introduced the relaxed energy E : X → [0,∞) defined by

E(F, u) := inf
{
lim inf
k→∞

E(Fk, uk) : {(Fk, uk)}n∈N ⊆ XLip , (Fk, uk)
X−→(F, u)

}
,

where our notation (Fk, uk)
X−→(F, u) means that

(a) supk H 1(∂Fk) < ∞ ;

(b) distH (F, Fk) → 0 ;

(c) uk ⇀ u weakly in H1(Ω;R2) for any bounded open set Ω such that Ω ⊆ R
2 \ F .

(2.4.2)

Our first main result deals with an integral representation of the relaxed energy E . In order to state it
properly, we first need to describe the geometry of sets in V . We have shown that a closed set F ⊆ B0,
starshaped with respect to the origin, belongs to V if and only if its radial function ρF : S

1 → [0,∞)

defined by
ρF (σ) := sup{r > 0 : rσ ∈ F} ,

has finite pointwise variation on S
1. Obviously, F = {rσ : σ ∈ S

1 , 0 6 r 6 ρF (σ)} and ρF is an upper
semicontinuous function.

To identify the boundary of a given set F ∈ V , it is useful to introduce the functions

ρ+F (σ) = max
{
ρF (σ+), ρF (σ−)

}
and ρ−F (σ) = min

{
ρF (σ+), ρF (σ−)

}
,

where ρF (σ±) denote the right and left limits of ρF at σ ∈ S
1. Then,

∂F =
{
rσ : σ ∈ S

1 , ρ−F (σ) 6 r 6 ρF (σ)
}
,

and the set
ΓF :=

{
rσ : σ ∈ S

1 , ρ+F (σ) < r 6 ρF (σ)
}
⊆ ∂F ,

is made of countably many segments.
On the other hand, it is well known that the subgraph of a BV -function has (locally) finite perimeter,

see e.g. [77]. For radial functions we have proved that the same property holds, i.e., χF ∈ BV (R2) for
every F ∈ V , where χF denotes the characteristic function of F . For such a set F , the reduced boundary
∂∗F is defined as the set of points z ∈ spt |DχF | such that the limit

νiF (z) := lim
r↓0

DχF (Br(z))

|DχF |(Br(z))

exists and satisfies |νiF (z)| = 1. Then ∂∗F is a countably 1-rectifiable set, and |DχF | = H 1 ∂∗F . In
addition, we have proved that for any F ∈ V ,

∂F ≃ ∂∗F ∪ ΓF ,

where ≃ means that equality holds up to a set of vanishing H 1-measure.
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Theorem 2.4.1. For every (F, u) ∈ X,

E(F, u) = 1

2

∫

B0\F

W
(
E(u)

)
dz +

∫

∂∗F

ϕ(νiF ) dH
1 +

∫

ΓF

(
ϕ(νF ) +ϕ(−νF )

)
dH

1 , (2.4.3)

where νF denotes a unit normal vector on ΓF .

Remark. The emergence of the integral over ΓF is due to the "folding effect" necessary to create ΓF from
a sequence in VLip. If the elastic energy were not present, this term could be neglected since erasing ΓF

would yield a better competitor. However, in the present case it can be advantageous to keep it since
H1

loc(R
2 \ F ) is clearly larger than H1

loc(R
2 \ F̃ ) with F̃ = F \ ΓF .

Remark. In the isotropic case (i.e., ϕ = 1), a similar relaxation result has been first obtained in 2D for
subgraphs by E. BONNETIER & A. CHAMBOLLE [44] (see also [99]). Closely related results in arbitrary
dimension have also been obtained by A. CHAMBOLLE & M. SOLCI [65] for subgraphs in the isotro-
pic case, and by A. BRAIDES, A. CHAMBOLLE, & M. SOLCI [52] for more general sets with a convex
anisotropy function.

The proof Theorem 2.4.1 is obtained in two independent steps, the upper and the lower inequalities.
The upper bound is obtained by means of a suitable Moreau-Yosida regularization of the radial func-
tion as in [44], and Reshetnyak continuity theorem 7. In turn, the lower bound relies on the "blow-up
method". More precisely, given a recovery sequence {(Fn, un)}n∈N ⊆ XLip, we consider the weak* limit
µ of the measures µn := ϕ(νiFn

)H 1 ∂Fn. From Reshetnyak lower semicontinuity theorem it follows
that µ > ϕ(νiF )H

1 ∂∗F 8. Then we identify the remaining part of the surface energy computing the
Radon-Nikodým derivative of µ with respect to H 1 ΓF .

As a corollary to Theorem 2.4.1, we have obtained the following existence result.

Theorem 2.4.2. The relaxed energy E : X → [0,∞) is sequentially lower semicontinuous with respect to the
convergence in (2.4.2), and, given d ∈ (0, |B0|), the constrained minimization problem

min
{
E(F, u) : (F, u) ∈ X , |F | = d

}
(2.4.4)

admits at least one solution.

The lower semicontinuity of E is essentially a straightforward consequence of the representation
(2.4.3). In turn, the required compactness of minimizing sequences is a classical application of Blaschke’s
theorem for the sets and Korn’s inequality for the functions.

2.4.2 Regularity for crystalline and strictly convex surface energies

In a second part of [P14] we have studied the regularity of the free boundary ∂F for minimizers (F, u)
of the relaxed energy E under the volume constraint. We have adopted a strategy first implemented by
I. FONSECA, N. FUSCO, G. LEONI, & M. MORINI in [99], where the sets F are assumed to be subgraphs
of the plane and the surface energy is isotropic. In the spirit of that paper we were able to show that
volume constrained minimizers of E are also unconstrained minimizers if we add to E a suitable volume
penalization. This allows to consider a larger class of variations and to prove an "exterior Wulff shape
condition". This condition, originally introduced by A. CHAMBOLLE & C.J. LARSEN [64] in the isotropic

7. If ϕ is not convex, one needs to perform a preliminary relaxation on the class of Lipschitz radial functions.
8. If ϕ is not convex, the analysis is much more involved and relies on the measure theoretic description of graphs of BV -

functions in the spirit of [77, 116].
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case, provides a weak estimate on the (anisotropic) curvature of the boundary. At this point that our
analysis focuses on two distinct cases : the crystalline case and the strictly convex case.

We recall that the Wulff shape W of the anisotropy function ϕ is the open and convex bounded set
determined by

W :=

{
z ∈ R

2 : max
ϕ(y)61

y · z < 1

}
.

The other way around, ϕ is the support function of its (closed) Wulff shape, i.e.,

ϕ(z) = sup
{
y · z : y ∈ W

}
.

The anisotropy ϕ is said to be crystalline if its Wulff shape is a polygon. The typical examples of crys-
talline anisotropy are given by the ℓ1-norm or the ℓ∞-norm, while the ℓp-norm with 1 < p < ∞ has a
strictly convex unit ball.

The exterior Wulff condition. As we have just mentioned, the way to tackle the regularity of optimal
configurations in (2.4.4) is to show that they coincide with the free minima of a suitable energy with
volume penalization. For d ∈ (0, |B0|) and ℓ > 0, we have considered the modified energy

Eℓ(F, u) := E(F, u) + ℓ
∣∣d− |F |

∣∣ ,

and proved the following

Proposition 2.4.3. There exists ℓ0 > 0 such that for all ℓ > ℓ0, (F♯, u♯) ∈ X is a minimizer of the constrained
problem (2.4.4) if and only if (F♯, u♯) is a minimizer in X of Eℓ.

The proof of this proposition is essentially based on comparison arguments. It resembles [99, Propo-
sition 3.1] but its proof is much more involved due to the different geometric context.

Once Proposition 2.4.3 is obtained, the regularity problem for constrained minimizers reduces to the
regularity of a free minimizer (F♯, u♯) of Eℓ0 . The first construction of competitors consists in choosing
sets F containing F♯ and leaving u♯ unchanged. This obviously reduces the elastic energy and we are
left with the balance between the amount of surface energy we won and the amount of volume energy
we lost. It is then clear that the isoperimetric inequality comes into play in the determination of optimal
shapes. In the anisotropic setting, this inequality states that the minimum

min

{∫

∂∗E

ϕ(−νiE) dH
1 : E ⊆ R

2 of finite perimeter, |E| = |W|
}

=: cW|W|1/2

is uniquely achieved by W (up to translations and sets of vanishing measure).

In view of this isoperimetric inequality, the natural competing sets are the ones obtained by replacing
a piece ∂F♯ by a piece of boundary of (a translated and dilated) W, provided that the resulting set is
larger than F♯. To efficiently compare surface energies, we make use of the following key estimate based
on the isoperimetric inequality. In the statement we denote by A(σ1, σ2) the open angular sector of the
plane (centered at the origine) delimited by σ1 ∈ S

1 and σ2 ∈ S
1 according to the counterclockwise

orientation.

Proposition 2.4.4. There exists a constant c0 > 0 such that the following holds. For F ∈ V , let C := z0 + ̺0W

with z0 ∈ R
2 and ̺0 > 0, be such that 0 6∈ ∂C, C ⊆ R

2 \F , and ∂C ∩∂F contains at least two distinct points p1
and p2 with σ1 := p1

|p1|
6= p2

|p2|
=: σ2. Let G be the bounded component of A(σ1, σ2)∩(R2\C) and let D := G\F .

Then, ∫

∂∗D\∂C

ϕ (νD) dH
1 −

∫

∂C∩∂∗D

ϕ (νC) dH
1
>

c0
̺0

|D| ,

where νD and νC denote the exterior normals to D and C, respectively.
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By the comparison argument explained above, this proposition allowed us to show that the "contact
set" between ∂F♯ and the boundary of an exterior Wulff shape is a connected arc. More precisely, if
̺0 ∈ (0, c0/ℓ0), then for any C = z0+̺0W ⊆ R

2 \F♯, the set ∂C ∩∂F♯ is either empty or it is a connected
arc. From this fact, we have deduced by elementary (but intricate) geometric arguments the following
"pre-regularity" theorem.

Theorem 2.4.5 (Uniform exterior Wulff condition). Let ̺0 ∈ (0, c0/ℓ0), and let (F♯, u♯) ∈ X be a minimizer
of the penalized energy Eℓ0 . Then for all z ∈ ∂F♯ there exists w ∈ R

2 such that w + ̺0W ⊆ R
2 \ F♯ and

z ∈ ∂ (w + ̺0W).

Regularity in the crystalline case. By Theorem 2.4.5, at each point z0 ∈ ∂F♯ there is an exterior Wulff
shape of size ̺0 "touching" F♯ at z0. If W is assumed to be polygonal, then we can find a (maximal)
solid cone of finite height with vertex at z0 which is included in the touching Wulff shape. The opening
angle α of such cone can obviously take only finitely many values α0 < α1 < . . . < αK = π according
to the "corners" of W. Taking advantage of this uniform exterior cones condition and assuming that
α0 > π/2, we have obtained the following resulting using arguments reminiscent of the well-known
"bow tie" lemma for rectifiability.

Theorem 2.4.6. Assume that W is a polygon with internal angles greater than π/2. If (F♯, u♯) ∈ X is a mini-
mizer of the penalized functional Eℓ0 , then ∂F♯ is the union of finitely many Lipschitz graphs. More precisely, ΓF♯

contains at most finitely many segments, and there exists a finite set Σsing ⊆ ∂F♯ \ ΓF♯
such that :

(i) if z ∈ ∂F♯ \ (Σsing ∪ ΓF♯
), then there exists a neighborhood N (z) of z such that ∂F ∩ N (z) is the graph

of a Lipschitz function ;

(ii) if z ∈ Σsing \ {0}, then there exists a neighborhood N (z) of z such that
(
∂F♯ ∩ N (z)

)
\ ΓF♯

is the union
of two graphs of Lipschitz functions intersecting only at z ;

(iii) if 0 ∈ Σsing, then there exists a neighborhood N0 of 0 such that ∂F♯ ∩N0 is the union of at most six graphs
of Lipschitz functions intersecting only at 0.

Remark. The proof of this theorem only relies on elementary geometric considerations and do not make
use of the elastic part of the energy. It is not clear whether of not the elastic energy could help in impro-
ving the qualitative properties of ∂F♯. In any case, Lipschitz regularity seems to be the higher level of
regularity accessible. To illustrate this, recall that, for a crystalline norm ϕ, there exist infinitely many
geodesic curves connecting two given points, and those geodesics are in general not better than Lip-
schitz regular, see e.g. [163, Section 2].

Remark. Related results and questions appear in studies by L. AMBROSIO, M. NOVAGA, & E. PAOLINI

[24] and M. NOVAGA & E. PAOLINI [169] on "almost minimizers" of the anisotropic perimeter functional
induced by ϕ. Here again, Lipschitz regularity of almost minimal boundaries is proved, and it is in
general optimal.

Regularity in the strictly convex case. We now consider the case where the set {ϕ 6 1} is strictly convex.
Under this assumption, the boundary of the Wulff shape W is known to be of class C1. This situation
includes the particular case where the anisotropy ϕ is elliptic, i.e., z 7→ ϕ(z) − ε|z| is convex for some
ε > 0. If ϕ is elliptic, then the regularity of W improves up to C1,1, see [163]. In view of Theorem 2.4.5,
we may expect that a higher order regularity for ∂F♯ holds compare to the crystalline case. For this, we
needed to prove that ∂F♯ is (away from singular points) almost minimizing the surface energy (in the
additive sense). It requires good decay estimates of the elastic energy near ∂F♯ in balls of small radius.
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Such decay estimates have been proved by I. FONSECA, N. FUSCO, G. LEONI, & M. MORINI [99] for
linearly isotropic materials, i.e.,

W (E) =
1

2
λ [tr (E)]

2
+ µ tr

(
E2
)
, (2.4.5)

where λ and µ are the (constant) Lamé moduli with µ > 0, µ+ λ > 0.

In a first step, we have obtained a result similar to Theorem 2.4.6 by means of the exterior Wulff
condition. In this preliminary result, the additional C1-regularity of W implies the existence of right and
left tangents at every point of ∂F♯ \ ΓF♯

. It also allows to define a set Σcusp ⊆ ∂F♯ \ ΓF♯
of "cusp points" :

a point z ∈ ∂F♯ \ ΓF♯
is a cusp point if there exist w1, w2 ∈ R

2 such that (w1 + ̺0W) ∩ (w2 + ̺0W) = ∅
and z ∈ ∂(w1 + ̺0W) ∩ ∂(w2 + ̺0W). Note that Σcusp must contain the countable set ΓF♯

\ ΓF♯
.

Using the aforementioned decay estimates on the elastic part of the energy, we have then proved by
comparison arguments that it always favorable to "cut corners". It shows that away from cusp points,
left and right tangents to ∂F♯ have to agree. The C1-regularity of W then yields the continuity of these
tangents.

Theorem 2.4.7. Assume that {ϕ 6 1} is strictly convex and that (2.4.5) holds. Let (F♯, u♯) ∈ X be a minimizer
of the penalized functional Eℓ0 . There exists a finite set Σcusp ⊆ ∂F♯ \ (ΓF♯

∪ {0}) such that

(i) if z 6∈ ΓF♯
∪ Σcusp and z ∈ B0 \ {0}, then there exists a neighborhood N (z) of z such that ∂F♯ ∩ N (z)

coincides with the graph of a C1-function ;

(ii) if 0 ∈ ∂F♯, then there exists a neighborhood N0 of 0 such that ∂F♯ ∩N0 is the union of at most two graphs
of Lipschitz functions intersecting only at 0, and ∂F♯ admits at most two tangents at 0 forming an angle
of at least π ;

(iii) if z ∈ Σcusp, then there exist δ > 0 and two Lipschitz functions h, g : (|z| − δ, |z| ] → R, left-differentiable
at |z|, satisfying g 6 0 6 h, h (|z|) = g (|z|) = 0, h (t) > g (t) for t ∈ (|z| − δ, |z|) and h′

− (|z|) =

g′− (|z|) = 0, and such that

{
t
z

|z| + g(t)
z⊥

|z| : t ∈ (|z| − δ, |z| ]
}
∪
{
t
z

|z| + h(t)
z⊥

|z| : t ∈ (|z| − δ, |z| ]
}

coincides with ∂F♯ \ ΓF♯
in an open neighborhood of z.

Near a point z ∈ ∂F♯ where ∂F♯ is C1, the decay estimates on the elastic energy of [99] improves.
If the anisotropy ϕ is assumed to be elliptic, those estimates imply that the amount of length of ∂F♯ in
small balls Br(z) is order 2r + O(rβ) for every β > 1. This classically yields the C1,α-regularity of ∂F♯

for every α ∈ (0, 1/2) in a neighborhood of z.

Theorem 2.4.8. Assume that ϕ is elliptic and that (2.4.5) holds. Let (F♯, u♯) ∈ X be a minimizer for the penalized
functional Eℓ0 . If z ∈ ∂F♯ ∩ B0 \

(
Σcusp ∪ ΓF♯

)
and z 6= 0, then ∂F♯ coincides in a neighborhood of z with the

graph of a function of class C1,α for every 0 < α < 1/2.

Remark. In Theorem 2.4.8, the ellipticity assumption on ϕ can be strongly weakened. In fact, the compa-
rison arguments used to prove this theorem shows that near regular points, ∂F♯ is an almost-minimal set
of the (1-dimensional) surface energy with a gauge of almost-minimality of power type. From this pro-
perty, we can obtained a quantitative C1-regularity of ∂F♯ in terms of the modulus of convexity of the set
{ϕ 6 1}, provided that this modulus of convexity satisfies a suitable Dini condition (see Section 2.5.3).
This kind of issue is actually the object of the next and last section.
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2.5 Almost minimal 1-sets in anisotropic spaces

The article [P19], in collaboration with T. DE PAUW & A. LEMENANT, contributes to the study of one
dimensional geometric variational problems in an ambient Banach space X . We have addressed both
existence and partial regularity issues. The paradigmatic weighted Steiner problem is

(P)

{
minimize

∫
Γ
w dH 1

among compact connected sets Γ ⊆ X containing F .

Here H 1 denotes the one dimensional Hausdorff measure (relative to the metric of X), w : X → (0,+∞]

is a weight, and F is a finite set implementing the boundary condition.

Assuming that problem (P) admits finite energy competing sets, we have proved existence of a
minimizer in case X is the dual of a separable Banach space, and w is weakly* lower semicontinuous
and bounded away from zero. Ideas on how to circumvent the lack of compactness that ensues from
X being possibly infinite dimensional go back to M. GROMOV [123], and have been implemented by L.
AMBROSIO & B. KIRCHHEIM [22] in the context of metric currents, as well as by L. AMBROSIO & P. TILLI

[26] in the context of the Steiner problem (with w ≡ 1). The novelty here is to allow for a varying weight
w through a relevant lower semicontinuity result for the weighted length.

In studying the regularity of a minimizer Γ of problem (P), we have regarded Γ as a member of
the larger class of almost minimizing sets. Our definition is less restrictive than that of F.J. ALMGREN

[11] who first introduced the concept. A gauge is a nondecreasing function ξ : R+ \ {0} → R
+ such

that ξ(0+) = 0. We say a compact connected set Γ ⊆ X of finite length is (ξ, r0)-almost minimizing in
an open set Ω ⊆ X whenever the following holds : for every x ∈ Γ ∩ Ω, every 0 < r 6 r0 such that
B(x, r) ⊆ Ω, and every compact connected Γ′ ⊆ X with

Γ \B(x, r) = Γ′ \B(x, r)

one has

H
1
(
Γ ∩B(x, r)

)
6
(
1 + ξ(r)

)
H

1
(
Γ′ ∩B(x, r)

)
.

One easily checks that if Γ is a solution of (P) then it is (ξ,∞)-almost minimizing in Ω = X \ F , where
ξ is (related to) the oscillation of the weight w. For instance if w is Hölder continuous of exponent α then
ξ(r) behaves asymptotically like rα near r = 0.

In order to appreciate the hypotheses of our regularity results, we now make elementary observa-
tions. In case cardF = 2 and w is bounded from above and from below by positive constants, each mini-
mizer Γ of (P) is actually a minimizing geodesic curve with respect to the conformal metric induced by
w, with endpoints those of F . Since H 1(Γ) < ∞ we infer that Γ is a Lipschitz curve. In general not much
more regularity seems to ensue from the minimizing property of Γ. Indeed in the plane X = ℓ2∞ with
w ≡ 1, every 1-Lipschitz graph over one of the coordinate axes is length minimizing, as the reader will
happily check. However if X is a rotund 9 Banach space, then Γ must be a straight line segment. Finally,
in case w is merely Hölder continuous the Euler-Lagrange equation for geodesics cannot be written in
the classical or even weak sense, and our regularity results, providing quantitative C1-regularity (see
Section 2.5.3), do not seem to entail from ODE or PDE arguments, even when the ambient space X = ℓ22
is the Euclidean plane.

9. or strictly convex
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2.5.1 Existence for the weighted Steiner problem in Banach spaces

One of our aim was to solve the minimization problem (P) following the Direct Method of Calculus
of Variations. To do so, we had to investigate the compactness properties of minimizing sequences,
and accordingly, to determine the lower semicontinuity of the length energy. A main assumption for
existence is that X is the dual of a separable Banach space, with norm ‖ · ‖. Its closed unit ball BX

equipped with the restriction of the weak* topology of X is a compact separated topological space. It is
metrizable as well, owing to the separability of a predual of X , and we let d∗ denote any metric on BX

compatible with its weak* topology 10.
It is clear that a first compactness property for problem (P) comes from the Blaschke selection prin-

ciple applied to the compact metric space (BX , d∗). In particular, if we denote by dist∗H the corres-
ponding Hausdorff distance, every sequence {Γk}k∈N of compact subsets BX admits a subsequence
{Γk(j)}j∈N such that dist∗H (Γk(j),Γ) → 0 for some closed set Γ ⊆ BX .

Theorem 2.5.1. Assume that

(a) {Γk}k∈N is a sequence of nonempty compact connected subsets of BX ;

(b) dist∗H (Γk,Γ) → 0 for some nonempty closed subset Γ of BX ;

(c) w : BX → (0,+∞] is weakly* lower semicontinuous and supk
∫
Γk

w dH 1 < ∞.

It follows that

(i) Γ is compact and connected ;

(ii)
∫
Γ
w dH 1 6 lim infk

∫
Γk

w dH 1 ;

(iii) F ⊆ Γ whenever F ⊆ Γk for every k = 1, 2, . . ..

Remark. If the function w fails to be weakly* lower semicontinuous, conclusion (ii) does not need to hold,
as the following counterexample shows. Denote by {ek}∞k=1 the canonical orthonormal basis of X = ℓ2,
and define w : X → [1, 2] by w(x) := max{1, 2 − 8 dist(x, span{e1})}. Then consider the sequence
{Γk} ⊆ BX of compact connected sets Γk := γk([0, 1]) where

γk(t) :=





tek for 0 6 t 6 1/8 ,

1
8ek + (t− 1

8 )e1 for 1/8 < t 6 7/8 ,

(1− t)ek + 3
4e1 for 7/8 < t 6 1 .

One easily checks that (b) holds with Γ = [0, 3
4e1]. On the other hand we have

∫
Γk

w dH 1 = 9/8 for
every k = 1, 2, . . ., while

∫
Γ
w dH 1 = 3/2 > 9/8.

Part of the proof of Theorem 2.5.1 follows the argument of L. AMBROSIO & P. TILLI [26] in the case
w = 1. Noticing the uniform bound on the weighted length implies that the family {Γk} is equicompact,
we can apply the Gromov compactness theorem. Up to a subsequence, it provides a compact metric
space (Z, dZ) and isometric embeddings ik : (Γk, ‖ · ‖) → (Z, dZ) such that the compact and connected
sets Gk := ik(Γk) converge for the Hausdorff metric in Z to some compact and connected set G ⊆ Z.
Passing to the Hausdorff limit in the graphs of the (1-Lipschitz) mappings jk := i−1

k Gk, one can show
that Γ = j(G) for some 1-Lipschitz map j : G → BX , and both compactness and connectedness of Γ
follow.

10. We consider two metrizable topologies on BX : that induced by the norm of X , and that induced by the weak* topology
of X . When we refer to closed (respectively compact) subsets Γ ⊆ BX we always mean strongly closed (respectively compact), i.e.,
with respect to the norm topology of X .



74

To establish the lower semicontinuity of the weighted length, we have applied the blow-up method
to the sequence of Borel measures on Z,

µk(B) :=

∫

B∩Gk

w
(
jk(z)

)
dH

1
Z (z) .

More precisely, assuming in addition that w is Lipschitz continuous, we have (essentially) proved that
the one dimensional density of any weak* limit is greater than w

(
j(z)

)
at every loint z ∈ G. Since j is a

1-Lipschitz map, this yields the announced inequality. Finally, the case of a general weakly* continuous
weight reduces to the Lipschitz case by means of a Moreau-Yosida regularization.

From Theorem 2.5.1 we have classically deduced

Corollary 2.5.2. Assume that w : X → (0,+∞] is weakly* lower semicontinuous, and that infX w > 0. Let
F ⊆ X be a nonempty finite set, and let CF denote the collection of all compact connected sets Γ ⊆ X such that
F ⊆ Γ. If infCF

∫
Γ
w dH 1 < ∞, then the variational problem (P) admits at least one solution.

Remark. If w : X → [a, b] for some 0 < a, b < ∞, then the finiteness assumption above holds. Indeed if
F = {x0, x1, . . . , xJ} we let Γ0 = ∪J

j=1[x0, xj ], so that Γ0 ∈ CF and
∫
Γ0

w dH 1 6 b
∑J

j=1 ‖xj − x0‖. In
addition, any solution Γ of problem (P) is (ξ,∞)-almost minimizing in X \ F , relative to the gauge

ξ(r) = osc(w, r)

(
a+ b

a2

)
,

where osc(w, r) is the oscillation of w at scale r > 0 defined by

osc(w, r) := sup
{
|w(x1)− w(x2)| : x1, x2 ∈ X and ‖x1 − x2‖ 6 r

}
.

Note that limr→0+ osc(w, r) = 0 if and only if w is uniformly continuous.

2.5.2 Almost minimal 1-sets in arbitrary Banach spaces

We now report on some properties of sets Γ which are (ξ, r0)-almost minimizing in some open set Ω
of a general Banach space X . It is convenient – but not always necessary – to assume that the gauge ξ

verifies a Dini growth condition, specifically that

ζ(r) :=

∫ r

0

ξ(t)

t
dt < ∞ , (2.5.1)

for each r > 0. We have shown that for each x ∈ Γ ∩ Ω the weighted density ratio

exp[ζ(r)]
H 1

(
Γ ∩B(x, r)

)

2r

is a nondecreasing function of 0 < r 6 min{r0, dist(x,X \ Ω)}. Its limit as r ↓ 0, denoted Θ1(H 1 Γ, x),
verifies the following dichotomy :

either Θ1(H 1 Γ, x) = 1 or Θ1(H 1 Γ, x) > 3/2 . (2.5.2)

We have established that the set of points x ∈ Γ where this density equals 1 characterizes the "regular
part" of Γ, i.e., where Γ is locally a Lipschitz curve. To be more precise, we say that :



75

(a) x is a regular point of Γ if for each δ > 0, there exists 0 < r < δ such that Γ ∩ B(x, r) is a Lipschitz
curve γ and Γ ∩ ∂B(x, r) consists of the two endpoints of γ 11 ;

(b) x is a singular point of Γ if it is not a regular point of Γ.

The set of regular points of Γ is denoted reg(Γ), and the set of singular points is sing(Γ) := Γ \ reg(Γ).

Theorem 2.5.3. Assume that :

(a) Γ ⊆ X is compact and connected, Ω ⊆ X is open, r0 > 0 ;

(b) ξ is a Dini gauge, i.e., (2.5.1) holds ;

(c) Γ is (ξ, r0) almost minimizing in Ω.

It follows that reg(Γ) ∩ Ω = Ω ∩ {x : Θ1(H 1 Γ, x) = 1}, that sing(Γ) ∩ Ω is relatively closed in Γ ∩ Ω, and
that H 1(sing(Γ) ∩ Ω) = 0.

In this theorem, the closedness of sing(Γ) ∩ Ω comes from the upper semicontinuity of the density
function x 7→ Θ1(H 1 Γ, x) together with (2.5.2). In turn the fact that sing(Γ) ∩ Ω has a vanishing H 1-
measure is a consequence of a result of B. KIRCHHEIM [141] noticing that Γ is rectifiable as a compact
and connected set of finite length, see [26, Theorem 4.4.8].

2.5.3 Partial regularity in uniformly rotund spaces

We now present an improvement on the regularity of reg(Γ) in case the ambient Banach space X is
uniformly rotund 12. We recall that the modulus of rotundity of X is the gauge function ε ∈ (0, 2] → δX(ε)

defined by

δX(ε) := inf

{
1−

∥∥∥∥
x+ y

2

∥∥∥∥ : x, y ∈ X,max{‖x‖, ‖y‖} 6 1 and ‖x− y‖ > ε

}
,

and X is called uniformly rotund if δX(ε) > 0 for every 0 < ε 6 2.
We define for t > 0,

δ−1
X (t) := sup

{
ε > 0 : δX(ε) 6 t

}
.

The gauge δ−1
X , particularly its growth, is the relevant quantity for our regularity theory.

Theorem 2.5.4. Assume that :

(a) Γ ⊆ X is compact and connected, Ω ⊆ X is open, r0 > 0, x0 ∈ Γ, and B(x0, r0) ⊆ Ω ;

(b) ξ is a gauge and the gauge δ−1
X ◦ ξ is Dini ;

(c) Γ is (ξ, r0) almost minimizing in Ω ;

(d) Θ1(H 1 Γ, x0) = 1.

It follows that there exists r > 0 such that Γ ∩ B(x0, r) is a C1 curve γ . Furthermore if g is an arclength
parametrization of γ then

osc(g′, t) 6 C

∫ Ct

0

δ−1
X ◦ ξ(t)

t
dt ,

for some constant C > 0.

11. A curve is a topological line segment, i.e., a set γ ⊆ X of the type γ = g([a, b]) where a < b and g : [a, b] → X is an injective
continuous map. We call g(a) and g(b) the endpoints of γ.

12. or uniformly convex
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Remark. Since δX(ε) 6 O(ε2) (see e.g. [151, Chapter E]), we have t 6
√
t 6 Cδ−1

X (t) for every t 6 1.
Therefore, if ξ(t) 6 1, then ξ(t) 6 δ−1

X ◦ ξ(t). In particular, assumption (b) implies that ξ is a Dini gauge,
and Theorem 2.5.3 applies.

Remark. If ξ(r) ≃ rα for some α > 0, then assumption (b) reduces to δ−1
X being Dini.

Remark. If X is a Hilbert space, then δX(ε) = ε2/8 + o(ε2) as ε → 0. Hence Theorem 2.5.4 requires
√
ξ

to be Dini. If ξ(r) ≃ rα for some α > 0, it implies that γ is a C1,α/2 curve. More generally, if X is an
Lp space, 1 < p < ∞, relative to any measure space, then δX(ε) = Cpε

max{2,p} + o(εmax{2,p}), see [151,
Chapter E], in which case γ is a C1,α/max{2,p} curve.

The proof of Theorem 2.5.4 is technically quite involved, but the geometric idea behind it is rather
simple. From Theorem 2.5.3 we can find sequences rj ↓ 0 such that Γ ∩ B(x0, rj) is a Lipschitz curve
γj with endpoints x−

j and x+
j on ∂B(x0, rj). Considering the affine line Lj containing x−

j and x+
j , one

has to show that γj does not wander too far away from Lj . Suppose maxz∈Γj
dist(z, Lj) = hjrj and the

maximum is achieved at z ∈ γj . The triangle inequality implies H 1(γj) > ‖z− x−
j ‖+ ‖x+

j − z‖. As X is
uniformly rotund, the latter is quantitatively larger than the length of the straight line segment joining
x−
j and x+

j . Specifically, we have proved that

‖z − x−
j ‖+ ‖x+

j − z‖ > ‖x+
j − x−

j ‖ (1 + δX(Chj)) .

On the other hand, the almost minimizing property of Γ says that H 1(γj) 6 (1 + ξ(rj))‖x+
j − x−

j ‖. It
now becomes clear that hj cannot be too large, in fact hj 6 C(δ−1

X ◦ ξ)(rj), which in turns yields the
Hausdorff distance estimate

distH
(
γj , Lj ∩B(x0, rj)

)
6 C(δ−1

X ◦ ξ)(rj) .

Upon noticing that the radii rj can be chosen in near geometric progression, we infer that the sequence of
affine secant lines {Lj} is Cauchy provided

∑
j(δ

−1
X ◦ξ)(2−j) < ∞. The fact that the relevant inequalities

are also locally uniform in x then yields C1 regularity under the assumption that δX and ξ verify the
Dini growth condition.

2.5.4 Differentiability in 2-dimensional rotund spaces

To enlighten again the reader on the regularity result in Theorem 2.5.4, it is perhaps worth noting
that even in the finite dimensional setting X = ℓnp , 2 < p < ∞, the problem is not "elliptic", or rather the
metric is not Finslerian, as the smooth unit sphere Sℓnp has vanishing curvature at ±e1, . . . ,±en. In fact,
in case X is finite dimensional and the unit sphere SX is C∞ smooth, the Dini condition on δ−1

X may be
understood as a condition on the order of vanishing of

fv : TvSX → R : h 7→ ‖v + h‖ − 1 , v ∈ SX .

With this in mind, we have shown how to completely dispense with the Dini condition on δ−1
X in case

dimX = 2, and the norm of X is rotund and smooth. The relevant regularity states that reg(Γ) is made
of differentiable curves. The question wether or not this regularity is optimal is a very intriguing (and
difficult) question.

Theorem 2.5.5. Let X be a 2 dimensional Banach space whose norm is rotund and of class C2 on X \ {0}.
Assume that

(a) Γ ⊆ X is compact and connected, Ω ⊆ X is open, x0 ∈ Γ, r0 > 0, and B(x0, r0) ⊆ Ω ;
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(b) ξ is a gauge and
√
ξ is Dini ;

(c) Γ is (ξ, r0) almost minimizing in Ω ;

(d) Θ1(H 1 Γ, x0) = 1.

It follows that there exists r > 0 such that Γ ∩B(x0, r) is a differentiable curve.

In order to prove this theorem, we have localized the modulus of continuity δX(v; ε) relative to each
direction v ∈ SX . The key point is to observe that the subset G = SX ∩ {v : ∂2

h,hfv(0) > 0} is re-
latively open in SX , and that its complement SX \ G is nowhere dense because the norm is rotund,
i.e., SX contains no line segment. Furthermore, if v ∈ G then δX(v; ε) > c(v)ε2, the best case scena-
rio for regularity. To prove the differentiability at x0 ∈ reg(Γ) we need only to establish that the set of
tangent lines Tan(Γ, x0) is a singleton. This set is connected, according to D. PREISS [170]. Thus either
L ∈ Tan(Γ, x0) ∩ G 6= ∅ and we can run the regularity proof of Theorem 2.5.4 "in a cone about L", or
Tan(Γ, x0) ⊆ SX \G and therefore Tan(Γ, x0) is a singleton.
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