D. H. Ackley, E. Geoffrey, . Hinton, J. Terrence, and . Sejnowski, A Learning Algorithm for Boltzmann Machines*, Cognitive science 9.1, pp.147-169, 1985.
DOI : 10.1207/s15516709cog0901_7

. Akgun, N. Baris, T. Dag, and . Bilal, Unsupervised learning of affordance relations on a humanoid robot, 2009 24th International Symposium on Computer and Information Sciences, pp.254-259, 2009.
DOI : 10.1109/ISCIS.2009.5291822

L. G. Allan, The perception of time, Perception & Psychophysics, vol.265, pp.340-354, 1979.

B. Arons, A review of the cocktail party effect, Journal of the American Voice I/O Society, vol.127, pp.35-50, 1992.

M. Avillac, S. Deneve, E. Olivier, A. Pouget, and J. Duhamel, Reference frames for representing visual and tactile locations in parietal cortex, Nature Neuroscience, vol.140, issue.7, pp.941-949, 2005.
DOI : 10.1038/nn1480

URL : https://hal.archives-ouvertes.fr/hal-00314588

S. Babinec and J. Pospíchal, Two approaches to optimize echo state neural networks, Proc. of the 11th Int. Conf. on Soft Computing, pp.39-44, 2005.

F. Bação, V. Lobo, and M. Painho, Self-organizing maps as substitutes for k-means clustering, Computational Science?ICCS 2005, pp.476-483, 2005.

P. Baldi, Autoencoders, Unsupervised Learning, and Deep Architectures, Proceedings of ICML Workshop on Unsupervised and Transfer Learning (cf, p.129, 2012.

P. Baldi, S. Forouzan, and Z. Lu, Complex-valued autoencoders, Neural Networks, vol.33, pp.136-147, 2012.
DOI : 10.1016/j.neunet.2012.04.011

P. Baldi and P. Sadowski, The dropout learning algorithm, Artificial Intelligence, vol.210, pp.78-122, 2014.
DOI : 10.1016/j.artint.2014.02.004

A. Baranes and P. Oudeyer, The interaction of maturational constraints and intrinsic motivations in active motor development, 2011 IEEE International Conference on Development and Learning (ICDL), pp.1-8, 2011.
DOI : 10.1109/DEVLRN.2011.6037315

URL : https://hal.archives-ouvertes.fr/hal-00646585

A. Baranes and P. Oudeyer, Active learning of inverse models with intrinsically motivated goal exploration in robots, Robotics and Autonomous Systems, vol.61, issue.1, pp.49-73, 2013.
DOI : 10.1016/j.robot.2012.05.008

URL : https://hal.archives-ouvertes.fr/hal-00788440

L. W. Barsalou, Perceptual symbol systems, Behavioral and Brain Sciences, vol.22, issue.04, pp.577-660, 1999.
DOI : 10.1017/S0140525X99002149

R. Bellman, Dynamic Programming. 1 ré ed, p.47, 1957.

Y. Bengio, P. Simard, and . Frasconi, Learning long-term dependencies with gradient descent is difficult, Neural Networks 5.2, pp.157-166, 1994.
DOI : 10.1109/72.279181

Y. Bengio and E. Thibodeau-laufer, Deep generative stochastic networks trainable by backprop . Dans : arXiv preprint arXiv :1306.1091 (cf, p.83, 2013.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, Curriculum learning, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.41-48, 2009.
DOI : 10.1145/1553374.1553380

Y. Bengio, A. Courville, and P. Vincent, Representation learning : A review and new perspectives . Dans : Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.358, issue.87, pp.1798-1828, 2013.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu et al., Theano : a CPU and GPU Math Expression Compiler, Proceedings of the Python for Scientific Computing Conference (SciPy), p.129, 2010.

D. E. Berlyne, Conflict, arousal, and curiosity. Macgraw-Hill (cf, p.24, 1960.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When is " nearest neighbor, Database Theory?ICDT'99, 1999.

M. Botvinick and . Cohen, Rubber hands 'feel' touch that eyes see. Dans : Nature 391, pp.756-784, 1998.

V. Braitenberg, Vehicles : Experiments in synthetic psychology, p.15, 1984.

R. A. Brooks, A robust layered control system for a mobile robot, IEEE Journal on Robotics and Automation, vol.2, issue.1, pp.14-23, 1986.
DOI : 10.1109/JRA.1986.1087032

G. Buckingham, A. Et-melvyn, and . Goodale, Lifting without Seeing: The Role of Vision in Perceiving and Acting upon the Size Weight Illusion, PLoS ONE, vol.5, issue.3, pp.9709-9750, 2010.
DOI : 10.1371/journal.pone.0009709.g002

J. Bullier and . Sept, Feedback connections and conscious vision, Trends in Cognitive Sciences, vol.5, issue.9, pp.369-370, 2001.
DOI : 10.1016/S1364-6613(00)01730-7

A. N. Burkitt, A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input, Biological cybernetics 95.1, pp.1-19, 2006.
DOI : 10.1007/s00422-006-0068-6

R. Calandra and T. Raiko, Learning Deep Belief Networks from Non-stationary Streams, 2012.
DOI : 10.1007/978-3-642-33266-1_47

A. Cangelosi and S. Harnad, The adaptive advantage of symbolic theft over sensorimotor toil : Grounding language in perceptual categories, pp.117-142, 2001.

A. Cangelosi and T. Riga, An embodied model for sensorimotor grounding and grounding transfer : Experiments with epigenetic robots . Dans : Cognitive science 30, pp.673-689, 2006.

L. Cayton, Algorithms for manifold learning. Rap. tech. University of California, p.51, 2005.

D. Ciresan, U. Claudiu, L. M. Meier, J. Gambardella, and . Schmidhuber, Deep, Big, Simple Neural Nets for Handwritten Digit Recognition, Neural computation 22.12, pp.3207-3220, 2010.
DOI : 10.1109/ICDAR.2003.1227801

A. Clark, Whatever next ? Predictive brains, situated agents, and the future of cognitive science, Behavioral and Brain Sciences 36.03, pp.181-204, 2013.

A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro et al., Deep learning with cots hpc systems, Proceedings of The 30th International Conference on Machine Learning, pp.1337-1345, 2013.

G. Contardo, L. Denoyer, T. Artieres, and P. Gallinari, Learning States Representations in POMDP, Internation Conference on Learning Representations (poster) ICLR 2014, p.120, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01222594

. Cos-aguilera, . Ignasi, L. Hayes, and . Cañamero, Using a SOFM to learn object affordances, Procs 5th Workshop of Physical Agents, p.22, 2004.

M. Csikszentmihalyi, Flow., p.24, 1991.
DOI : 10.1037/10518-188

URL : https://hal.archives-ouvertes.fr/hal-01470857

J. E. Cutting, T. Lynn, and . Kozlowski, Recognizing friends by their walk: Gait perception without familiarity cues, Bulletin of the Psychonomic Society, vol.18, issue.6, pp.353-356, 1977.
DOI : 10.3758/BF03337021

A. R. Damasio, The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones, Neural Computation 1.1, pp.123-132, 1989.
DOI : 10.1016/0166-2236(83)90167-4

C. Daniel, G. Neumann, and J. Peters, Hierarchical relative entropy policy search, Int. Conf. on Artificial Intelligence and Statistics, p.139, 2012.

C. Daniel, G. Neumann, O. Kroemer, and J. Peters, Learning sequential motor tasks, 2013 IEEE International Conference on Robotics and Automation, 2012.
DOI : 10.1109/ICRA.2013.6630937

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli et al., Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, pp.64-75, 2014.

C. M. Davis and W. Roberts, Lifting movements in the size-weight illusion, Perception & Psychophysics, vol.45, issue.2, pp.33-36, 1976.
DOI : 10.3758/BF03198701

N. D. Daw and P. Dayan, The algorithmic anatomy of model-based evaluation, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.8, issue.3, pp.20130478-152, 1655.
DOI : 10.1371/journal.pcbi.1002410

P. Dayan and Y. Niv, Reinforcement Learning, pp.185-196, 2008.
DOI : 10.1002/0471214426.pas0303

P. Dayan, G. E. Hinton, M. Radford, . Neal, S. Richard et al., The Helmholtz Machine, Neural computation 7.5, pp.889-904, 1995.
DOI : 10.1162/neco.1995.7.3.549

D. Sa, R. Virginia, H. Dana, and . Ballard, Perceptual learning from cross-modal feedback . Dans : Psychology of learning and motivation 36, pp.309-351, 1997.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin et al., Large scale distributed deep networks, Advances in Neural Information Processing Systems, pp.1223-1231, 2012.

L. Denoyer, P. Et, and . Gallinari, Deep Sequential Neural Network . Dans : ArXiv e-prints (cf, p.110
URL : https://hal.archives-ouvertes.fr/hal-01222608

R. Desimone, T. D. Albright, G. Charles, C. Gross, and . Bruce, Stimulus-selective properties of inferior temporal neurons in the macaque, The Journal of Neuroscience, vol.48, pp.2051-2062, 1984.

W. H. Dittrich, Action Categories and the Perception of Biological Motion, Perception, vol.19, issue.1, pp.15-15, 1993.
DOI : 10.1068/p220015

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan et al., Long-term Recurrent Convolutional Networks for Visual Recognition and Description, p.170, 2014.

A. Droniou and O. Sigaud, Gated Autoencoders with Tied Input Weights, Proceedings of International Conference on Machine Learning, pp.154-162, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817035

A. Droniou and S. Ivaldi, Vincent Padois et Olivier Sigaud (oct. 2012a) Autonomous Online Learning of Velocity Kinematics on the iCub : a Comparative Study

A. Droniou, S. Ivaldi, and O. Sigaud, Comparaison expérimentale d'algorithmes de régression pour l'apprentissage de modèles cinématiques du robot humanö ide iCub, Conférence Francophone sur l'Apprentissage Automatique (Cap), pp.95-110, 2012.

A. Droniou, S. Ivaldi, P. Stalph, M. Butz, and O. Sigaud, Learning Velocity Kinematics : Experimental Comparison of On-line Regression Algorithms, Proceedings Robotica, pp.15-20, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00719975

A. Droniou, S. Ivaldi, and O. Sigaud, Learning a repertoire of actions with deep neural networks, 4th International Conference on Development and Learning and on Epigenetic Robotics, p.27, 2014.
DOI : 10.1109/DEVLRN.2014.6982986

URL : https://hal.archives-ouvertes.fr/hal-01065741

. Dulac-arnold, L. Gabriel, N. Denoyer, M. Thome, P. Cord et al., Sequentially Generated Instance-Dependent Image Representations for Classification, Internation Conference on Learning Representations -ICLR 2014 (cf, p.171, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01215181

A. Dutech, Self-organizing developmental reinforcement learning . Dans : From Animals to Animats 12, pp.310-319, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00705350

J. Eggert and . Leo-van-hemmen, Modeling Neuronal Assemblies: Theory and Implementation, Neural Computation, vol.277, issue.9, pp.1923-1974, 2001.
DOI : 10.1007/BF00288786

J. L. Elman, Finding Structure in Time, Cognitive science 14.2, pp.179-211, 1990.
DOI : 10.1207/s15516709cog1402_1

D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent et al., Why does unsupervised pre-training help deep learning, The Journal of Machine Learning Research, vol.11, pp.625-660, 2010.

A. Falchier, S. Clavagnier, P. Barone, and H. Kennedy, Anatomical evidence of multimodal integration in primate striate cortex, 2002.

C. Farabet, Y. Lecun, K. Kavukcuoglu, E. Culurciello, and B. Martini, Large-Scale FPGA-Based Convolutional Networks, Machine Learning on Very Large Data Sets (cf, p.169, 2011.
DOI : 10.1017/CBO9781139042918.020

T. E. Feinberg, R. J. Schindler, N. Gilson-flanagan, D. Laurence, and . Haber, Two alien hand syndromes, Neurology, vol.42, issue.1, pp.19-19, 1992.
DOI : 10.1212/WNL.42.1.19

J. Flanagan, . Randall, A. Michael, and . Beltzner, Independence of perceptual and sensorimotor predictions in the size?weight illusion, Nature neuroscience, vol.37, pp.737-741, 2000.

J. Flanagan, J. P. Randall, . Bittner, S. Roland, and . Johansson, Experience Can Change Distinct Size-Weight Priors Engaged in Lifting Objects and Judging their Weights, Current Biology, vol.18, issue.22, pp.1742-1747, 2008.
DOI : 10.1016/j.cub.2008.09.042

P. Ford, N. J. Hodges, and M. Williams, Online Attentional-Focus Manipulations in a Soccer-Dribbling Task: Implications for the Proceduralization of Motor Skills, Journal of Motor Behavior, vol.37, issue.5, pp.386-394, 2005.
DOI : 10.3200/JMBR.37.5.386-394

A. Fort, C. Delpuech, J. Pernier, . Mariehéì, and . Giard, Early auditory-visual interactions in human cortex during nonredundant tar, 2002.

P. Fraisse, Visual perceptive simultaneity and masking of letters successively presented, Perception & Psychophysics, vol.19, pp.285-287, 1966.

A. Freire, L. Terri, D. Lewis, R. Maurer, and . Blake, The development of sensitivity to biological motion in noise . Dans : Perception 35, pp.647-118, 2006.

K. Friston, The free-energy principle : a unified brain theory ? Dans : Nature Reviews Neuroscience 11, pp.127-138, 2010.

K. Friston, J. Mattout, N. Trujillo-barreto, J. Ashburner, and W. Penny, Variational free energy and the Laplace approximation, NeuroImage, vol.34, issue.1, pp.220-234, 2007.
DOI : 10.1016/j.neuroimage.2006.08.035

P. Gardenfors, Conceptual spaces as a framework for knowledge representation, Mind and Matter 2.2, pp.9-27, 2004.

L. Ghadakpour, Le système conceptuel, ` a l'interface entre le langage, le raisonnement et l'espace qualitatif : vers un modèle de représentationsreprésentationséphémères, Thèse de doct. Ecole Polytechnique (cf, p.85, 2002.

M. H. Giard, F. Et, and . Peronnet, Auditory-Visual Integration during Multimodal Object Recognition in Humans: A Behavioral and Electrophysiological Study, Journal of Cognitive Neuroscience, vol.76, issue.5, pp.473-490
DOI : 10.1016/0013-4694(75)90073-5

J. J. Gibson, The Theory of Affordances, p.15, 1977.
URL : https://hal.archives-ouvertes.fr/hal-00692033

L. Gisslén, M. Luciw, V. Graziano, and J. Schmidhuber, Sequential constant size compressors for reinforcement learning . Dans : Artificial General Intelligence, pp.31-40, 2011.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, International Conference on Artificial Intelligence and Statistics (AISTATS'10). T. 9, pp.249-256, 2010.

X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier networks, Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR W&CP Volume. T. 15, pp.315-323, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00752497

. Gogate, J. Lakshmi, S. Arlene, E. Walker-andrews-et-loraine, and . Bahrick, The intersensory origins of word-comprehension: an ecological-dynamic systems view, Developmental Science, vol.4, issue.1, pp.1-18, 2001.
DOI : 10.1111/1467-7687.00143

. Gokhale, J. Vinayak, A. Jin, B. Dundar, E. Martini et al., A 240 g-ops/s mobile coprocessor for deep neural networks . Dans : Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference, pp.696-701, 2014.

M. E. Goldberg, W. James, . Bisley, D. Keith, J. Powell et al., Chapter 10 Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior, Progress in brain research 155, pp.157-175, 2006.
DOI : 10.1016/S0079-6123(06)55010-1

R. L. Goldstone, T. Andrew, and . Hendrickson, Categorical perception, Wiley Interdisciplinary Reviews: Cognitive Science, vol.137, issue.1, pp.69-78, 2010.
DOI : 10.1002/wcs.26

I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio, Maxout Networks, Proceedings of The 30th International Conference on Machine Learning, pp.1319-1327, 2013.

S. Grafton, Apraxia : a disorder of motor control . Dans : neurological foundations of cognitive neuroscience, pp.239-258, 2003.

A. Graves and N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks, Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp.1764-1772, 2014.

A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural Networks, vol.18, issue.5-6, pp.602-610, 2005.
DOI : 10.1016/j.neunet.2005.06.042

A. Graves, D. Eck, N. Beringer, and J. Schmidhuber, Biologically plausible speech recognition with LSTM neural nets . Dans : Biologically Inspired Approaches to Advanced Information Technology, pp.127-136, 2004.

S. Griffith, J. Sinapov, V. Sukhoy, and A. Stoytchev, A behavior-grounded approach to forming object categories : Separating containers from noncontainers . Dans : Autonomous Mental Development, IEEE Transactions on, vol.41, pp.54-69, 2012.

C. Gross, D. Bender, and C. Rocha-miranda, Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey, Science, vol.166, issue.3910, pp.1303-1306, 1969.
DOI : 10.1126/science.166.3910.1303

C. G. Gross, Genealogy of the ???Grandmother Cell???, The Neuroscientist, vol.73, issue.5, pp.512-518, 2002.
DOI : 10.1177/107385802237175

S. Grossberg, A. Nestor, and . Schmajuk, Neural dynamics of adaptive timing and temporal discrimination during associative learning, Neural Networks 2.2, pp.79-102, 1989.
DOI : 10.1016/0893-6080(89)90026-9

S. Harnad, The symbol grounding problem, Physica D : Nonlinear Phenomena, vol.421, issue.18, pp.335-346, 1990.

J. Hastad, Almost optimal lower bounds for small depth circuits, Proceedings of the eighteenth annual ACM symposium on Theory of computing , STOC '86, pp.6-20, 1986.
DOI : 10.1145/12130.12132

D. Hebb and . Olding, The organization of behavior : A neuropsychological approach, p.56, 1949.

R. Held and A. Hein, Movement-produced stimulation in the development of visually guided behavior., Journal of Comparative and Physiological Psychology, vol.56, issue.5, pp.872-910, 1963.
DOI : 10.1037/h0040546

L. Henriksson, J. Karvonen, N. Salminen-vaparanta, H. Railo, and S. Vanni, Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs, PloS one 7, pp.36859-36892, 2012.
DOI : 10.1371/journal.pone.0036859.s012

G. E. Hinton and R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, vol.313, issue.5786, pp.504-507, 2006.
DOI : 10.1126/science.1127647

G. Hinton, S. Osindero, and Y. Teh, A Fast Learning Algorithm for Deep Belief Nets, Neural computation 18.7, pp.1527-1554, 2006.
DOI : 10.1162/jmlr.2003.4.7-8.1235

G. E. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, vol.22, issue.8, pp.1771-1800, 2002.
DOI : 10.1162/089976600300015385

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever-et-ruslan, and R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, pp.77-78, 2012.

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural computation 9.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

A. L. Hodgkin, F. Andrew, and . Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of physiology, vol.1174, pp.500-59, 1952.

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national academy of sciences 79, pp.2554-2558, 1982.

K. Hornik, H. Stinchcombe, and . White, Multilayer feedforward networks are universal approximators, Neural networks 2.5, pp.359-366, 1989.
DOI : 10.1016/0893-6080(89)90020-8

H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of educational psychology, vol.246, issue.87, p.417, 1933.

. Huang, Q. Guang-bin, C. Zhu, and . Siew, Extreme learning machine: Theory and applications, Neurocomputing, vol.70, issue.1-3, pp.489-501, 2006.
DOI : 10.1016/j.neucom.2005.12.126

D. H. Hubel, N. Torsten, and . Wiesel, Receptive fields of single neurones in the cat's striate cortex . Dans : The Journal of physiology 148, pp.574-605, 1959.

L. Hubert and P. Arabie, Comparing partitions, Journal of classification 2.1, pp.193-218, 1985.
DOI : 10.1007/BF01908075

Q. J. Huys, N. Eshel, E. O. Nions, L. Sheridan, P. Dayan et al., Bonsai Trees in Your Head: How the Pavlovian System Sculpts Goal-Directed Choices by Pruning Decision Trees, PLoS Computational Biology, vol.90, issue.3, pp.1002410-152, 2012.
DOI : 10.1371/journal.pcbi.1002410.g007

A. Ijspeert and . Jan, Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors, Neural computation 25.2, pp.328-373, 2013.
DOI : 10.1109/AT-EQUAL.2009.32

F. Ingrand and M. Ghallab, Deliberation for autonomous robots: A survey, Artificial Intelligence, p.18, 2014.
DOI : 10.1016/j.artint.2014.11.003

URL : https://hal.archives-ouvertes.fr/hal-01137921

S. Ivaldi, M. Fumagalli, M. Randazzo, F. Nori, G. Metta et al., Computing robot internal/external wrenches by means of inertial, tactile and F/T sensors: Theory and implementation on the iCub, 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp.521-528, 2011.
DOI : 10.1109/Humanoids.2011.6100813

S. Ivaldi, N. Lyubova, D. Gerardeaux-viret, A. Droniou, S. Anzalone et al., David Filliat et Olivier Sigaud (sept. 2012a). A cognitive architecture for developmental learning of objects and affordances : perception and human interaction aspects . Dans : IEEE Ro-man Workshop on Developmental and bio-inspired approaches for social cognitive robotics, p.27

S. Ivaldi, S. Mai-nguyen, N. Lyubova, A. Droniou, V. Padois et al., Object Learning Through Active Exploration, IEEE Transactions on Autonomous Mental Development, vol.6, issue.1, pp.56-72, 2014.
DOI : 10.1109/TAMD.2013.2280614

URL : https://hal.archives-ouvertes.fr/hal-00919694

H. Jaeger, The " echo state " approach to analysing and training recurrent neural networks-with an erratum note, pp.34-70, 2001.

A. Jain, . Murty, and . Flynn, Data clustering: a review, ACM computing surveys (CSUR) 31.3, pp.264-323, 1999.
DOI : 10.1145/331499.331504

G. Johansson, Visual perception of biological motion and a model for its analysis . Dans : Perception & psychophysics 14, pp.201-211, 1973.

M. Johnsson, C. Balkenius, and G. Hesslow, Associative Self-Organizing Map, pp.363-370, 2009.
DOI : 10.5772/13168

M. Jung, J. Hwang, and . Tani, Multiple Spatio-Temporal Scales Neural Network for Contextual Visual Recognition of Human Actions, Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, pp.227-233, 2014.

H. Kamyshanska and R. Memisevic, On autoencoder scoring, Proceedings of the 30th International Conference on Machine Learning (ICML- 13), pp.720-728, 2013.

M. Kaschube, M. Schnabel, and F. Wolf, Self-organization and the selection of pinwheel density in visual cortical development, New Journal of Physics, vol.10, issue.1, pp.15009-15041, 2008.
DOI : 10.1088/1367-2630/10/1/015009

C. Keysers and V. Gazzola, Social Neuroscience: Mirror Neurons Recorded in Humans, Current Biology, vol.20, issue.8, pp.353-354, 2010.
DOI : 10.1016/j.cub.2010.03.013

J. M. Kilner, A. Neal, N. Weiskopf, K. J. Friston, D. Chris et al., Evidence of Mirror Neurons in Human Inferior Frontal Gyrus, Journal of Neuroscience, vol.29, issue.32, pp.10153-10159, 2009.
DOI : 10.1523/JNEUROSCI.2668-09.2009

R. Kiros, R. Salakhutdinov, S. Richard, and . Zemel, Unifying visualsemantic embeddings with multimodal neural language models, p.170, 2014.

M. Klapper-rybicka, N. Nicol, J. Schraudolph, and . Schmidhuber, Unsupervised Learning in LSTM Recurrent Neural Networks, Dans : Artificial Neural Networks?ICANN, pp.684-691, 2001.
DOI : 10.1007/3-540-44668-0_95

W. Kohler, Gestalt Psychology, p.34, 1929.

T. Kohonen, The self-organizing map, Proceedings of the IEEE 78, pp.1464-1480, 1990.

V. Kompella, L. Raj, J. Pape, M. Masci, J. Frank et al., AutoIncSFA and vision-based developmental learning for humanoid robots, 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp.622-629, 2011.
DOI : 10.1109/Humanoids.2011.6100865

V. Kompella, . Raj, D. Matthew, J. Luciw, and . Schmidhuber, Incremental Slow Feature Analysis, IJCAI. T, vol.11, pp.1354-1359, 2011.

O. Kouropteva, O. Okun, and M. Pietikäinen, Incremental locally linear embedding . Dans : Pattern recognition 38, pp.1764-1767, 2005.
DOI : 10.1016/j.patcog.2005.04.006

G. Kreiman, C. Koch, and I. Fried, Category-specific visual responses of single neurons in the human medial temporal lobe, Nature neuroscience, vol.39, pp.946-953, 2000.

A. Krizhevsky, E. Geoffrey, and . Hinton, Factored 3-way restricted boltzmann machines for modeling natural images, International Conference on Artificial Intelligence and Statistics, pp.621-628, 2010.

A. Krizhevsky, I. Sutskever, E. Geoffrey, and . Hinton, Imagenet classification with deep convolutional neural networks . Dans : Advances in neural information processing systems, pp.1097-1105, 2012.

J. Lachaux, Cerveau attentif (Le) : Contrôle, ma??trisema??trise, lâcher-prise, 2011.

S. Lallee, P. F. Et, and . Dominey, Multi-modal convergence maps: from body schema and self-representation to mental imagery, Adaptive Behavior, vol.21, issue.4, pp.274-285, 2013.
DOI : 10.1177/1059712313488423

S. Lange and M. Riedmiller, Deep auto-encoder neural networks in reinforcement learning, The 2010 International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2010.
DOI : 10.1109/IJCNN.2010.5596468

S. Lange, M. Riedmiller, and . Voigtlander, Autonomous reinforcement learning on raw visual input data in a real world application, The 2012 International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2012.
DOI : 10.1109/IJCNN.2012.6252823

H. Larochelle, E. Geoffrey, and . Hinton, Learning to combine foveal glimpses with a third-order Boltzmann machine Advances in neural information processing systems, pp.1243-1251, 2010.

. Law, H. Martin, K. Et-anil, and . Jain, Incremental nonlinear dimensionality reduction by manifold learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.3, pp.377-91, 2006.
DOI : 10.1109/TPAMI.2006.56

. Le, V. Quoc, R. Monga, M. Devin, K. Chen et al., Building high-level features using large scale unsupervised learning, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, p.74, 2012.
DOI : 10.1109/ICASSP.2013.6639343

L. Cun and Y. , Learning process in an asymmetric threshold network . Dans : Disordered systems and biological organization, pp.233-240, 1986.

D. Lee and S. Seung, Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems. T. 13, pp.556-562, 2001.

H. Lee, A. Battle, R. Raina, and A. Y. Ng, Efficient sparse coding algorithms, Advances in Neural Information Processing Systems, p.78, 2006.

H. Lee, R. Grosse, R. Ranganath, Y. Andrew, and . Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.609-616, 2009.
DOI : 10.1145/1553374.1553453

S. Lee and R. Blake, Visual Form Created Solely from Temporal Structure, Science, vol.284, issue.5417, pp.1165-1168, 1999.
DOI : 10.1126/science.284.5417.1165

. Lefort, Y. Mathieu, B. Boniface, and . Girau, Self-organization of neural maps using a modulated BCM rule within a multimodal architecture, p.89, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00480028

. Lefort, T. Mathieu, A. Kopinski, and . Gepperth, Multimodal space representation driven by self-evaluation of predictability, 4th International Conference on Development and Learning and on Epigenetic Robotics, p.89, 2014.
DOI : 10.1109/DEVLRN.2014.6983000

URL : https://hal.archives-ouvertes.fr/hal-01061668

S. Lemaignan, R. Ros, L. Mösenlechner, R. Alami, and M. Beetz, ORO, a knowledge management module for cognitive architectures in robotics, Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.18, 2010.

F. Lesaint, O. Sigaud, B. Shelly, . Flagel, E. Terry et al., Modelling Individual Differences in the Form of Pavlovian Conditioned Approach Responses: A Dual Learning Systems Approach with Factored Representations, PLoS computational biology 10, pp.1003466-152, 2014.
DOI : 10.1371/journal.pcbi.1003466.s010

M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber, A novel approach to on-line handwriting recognition based on bidirectional long shortterm memory networks, Proc. 9th Int. Conf. on Document Analysis and Recognition. T. 1, pp.367-371, 2007.

M. Lopes and P. Oudeyer, The strategic student approach for life-long exploration and learning, 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), p.24
DOI : 10.1109/DevLrn.2012.6400807

URL : https://hal.archives-ouvertes.fr/hal-00755216

M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, Developmental robotics: a survey, Connection Science, vol.1, issue.4, pp.151-190, 2003.
DOI : 10.2307/1131322

W. Maass, T. Natschläger, and H. Markram, Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Computation, vol.7, issue.11, pp.2531-2560, 2002.
DOI : 10.1038/35009102

J. B. Macqueen, Some methods for classification and analysis, Berkeley Symposium on Mathematical Statistics and Probability. T. 233, pp.281-297, 1967.

C. Madden, M. Hoen, F. Peter, and . Dominey, A cognitive neuroscience perspective on embodied language for human???robot cooperation, Brain and Language, vol.112, issue.3, pp.180-188, 2010.
DOI : 10.1016/j.bandl.2009.07.001

O. Mangin and P. Oudeyer, Learning semantic components from subsymbolic multimodal perception, 2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp.1-7, 2013.
DOI : 10.1109/DevLrn.2013.6652563

URL : https://hal.archives-ouvertes.fr/hal-00842453

J. Martens, Deep learning via Hessian-free optimization, Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.735-742, 2010.
DOI : 10.1007/978-3-642-35289-8_27

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. D. Mauk, V. Dean, and . Buonomano, THE NEURAL BASIS OF TEMPORAL PROCESSING, Annual Review of Neuroscience, vol.27, issue.1, pp.307-340, 2004.
DOI : 10.1146/annurev.neuro.27.070203.144247

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity . Dans : The bulletin of mathematical biophysics 5, pp.115-133, 1943.

H. Mcgurck and J. Macdonald, Hearing lips and seeing voices, Nature, vol.65, issue.5588, pp.246-248, 1976.
DOI : 10.1038/264746a0

R. Memisevic, Gradient-based learning of higher-order image features, 2011 International Conference on Computer Vision, p.66, 2011.
DOI : 10.1109/ICCV.2011.6126419

R. Memisevic and G. Hinton, Unsupervised Learning of Image Transformations, 2007 IEEE Conference on Computer Vision and Pattern Recognition, p.126, 2007.
DOI : 10.1109/CVPR.2007.383036

R. Memisevic, E. Geoffrey, and . Hinton, Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines, Neural Computation, vol.17, issue.6, pp.1473-1492, 2010.
DOI : 10.1007/3-540-47969-4_30

G. Softmax-classification-de, J. Lafferty, C. Williams, J. Shawe-taylor, R. Zemel et al., Advances in Neural Information Processing Systems Sous la dir, pp.1603-1611

K. Meyer and A. Damasio, Convergence and divergence in a neural architecture for recognition and memory, Trends in neurosciences 32.7, pp.376-382, 2009.
DOI : 10.1016/j.tins.2009.04.002

V. Michalski, R. Memisevic, and K. Konda, Modeling Deep Temporal Dependencies with Recurrent " Grammar Cells, Advances in Neural Information Processing Systems 27 (cf, p.125, 2014.

M. Minsky and . Papert, Perceptrons (cf, p.14, 1969.

. Mnih, K. Volodymyr, D. Kavukcuoglu, A. Silver, I. Graves et al., Playing Atari with deep reinforcement learning, p.150, 2013.

. Mnih, N. Volodymyr, A. Heess, K. Graves, and . Kavukcuoglu, Recurrent Models of Visual Attention, p.171, 2014.

A. Mohamed, E. George, G. Dahl, and . Hinton, Acoustic Modeling Using Deep Belief Networks, Audio, Speech, and Language Processing, pp.14-22, 2012.
DOI : 10.1109/TASL.2011.2109382

B. Moldovan, P. Moreno, M. Van-otterlo, and J. Santos-victor-et-luc-de-raedt, Learning relational affordance models for robots in multiobject manipulation tasks, Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp.4373-4378, 2012.

L. Montesano and M. Lopes, Learning grasping affordances from local visual descriptors, 2009 IEEE 8th International Conference on Development and Learning, pp.1-6, 2009.
DOI : 10.1109/DEVLRN.2009.5175529

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Montesano, M. Lopes, A. Bernardino, J. Santos, and . Victor, Learning Object Affordances: From Sensory--Motor Coordination to Imitation, IEEE Transactions on Robotics, vol.24, issue.1, pp.15-26, 2008.
DOI : 10.1109/TRO.2007.914848

J. L. Morgan, R. Jenny, and . Saffran, Emerging Integration of Sequential and Suprasegmental Information in Preverbal Speech Segmentation, Child Development, vol.66, issue.4, pp.911-936, 1995.
DOI : 10.2307/1131789

A. F. Morse, J. D. Greeff, T. Belpeame, and A. Cangelosi, Epigenetic robotics architecture (ERA) Dans : Autonomous Mental Development, IEEE Transactions, issue.4, pp.325-339, 2010.

A. F. Morse, T. Belpaeme, A. Cangelosi, B. Linda, and . Smith, Thinking with your body : Modelling spatial biases in categorization using a real humanoid robot, Proc. of 2010 annual meeting of the Cognitive Science Society, pp.1362-1368, 2010.

. Moser, I. Edvard, E. Kropff, and M. Moser, Place Cells, Grid Cells, and the Brain's Spatial Representation System, Neuroscience 31.1, pp.69-102, 2008.
DOI : 10.1146/annurev.neuro.31.061307.090723

K. Muelling and J. Kober, Learning table tennis with a Mixture of Motor Primitives, 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp.411-416, 2010.
DOI : 10.1109/ICHR.2010.5686298

A. Murata, V. Gallese, and G. Luppino, Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP, Masakazu Kaseda et Hideo Sakata Journal of neurophysiology, vol.835, pp.2580-2601, 2000.

P. Nachev, C. Kennard, and M. Husain, Functional role of the supplementary and pre-supplementary motor areas, Nature Reviews Neuroscience, vol.305, issue.11, pp.856-869, 2008.
DOI : 10.1038/nrn2478

V. Nair, E. Geoffrey, and . Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.807-814, 2010.

T. Nakamura, T. Nagai, and N. Iwahashi, Grounding of word meanings in multimodal concepts using LDA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3943-3948, 2009.
DOI : 10.1109/IROS.2009.5354736

H. Narayanan and S. Mitter, Sample complexity of testing the manifold hypothesis, Advances in Neural Information Processing (cf, p.51, 2010.

L. Natale, F. Nori, G. Metta, M. Fumagalli, S. Ivaldi et al., The iCub platform : a tool for studying intrinsically motivated learning . Dans : Intrinsically motivated learning in natural and artificial systems, pp.433-458, 2013.

G. Neumann, W. Maass, and J. Peters, Learning complex motions by sequencing simpler motion templates, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.753-760, 2009.
DOI : 10.1145/1553374.1553471

A. Newell, Physical Symbol Systems*, Cognitive science 4.2, pp.135-183, 1980.
DOI : 10.1207/s15516709cog0402_2

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee et al., Multimodal Deep Learning, International Conference on Machine Learning, pp.689-696, 2011.

A. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
DOI : 10.1109/CVPR.2015.7298640

S. Nguyen, S. Mai, N. Ivaldi, A. Lyubova, D. Droniou et al., Learning to recognize objects through curiosity-driven manipulation with the iCub humanoid robot, 2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp.1-8, 2013.
DOI : 10.1109/DevLrn.2013.6652525

URL : https://hal.archives-ouvertes.fr/hal-00919674

J. Nocedal, J. Stephen, and . Wright, Numerical Optimization, pp.101-134, 2006.
DOI : 10.1007/b98874

O. Hara, S. , and B. A. Draper, Introduction to the bag of features paradigm for image classification and retrieval, p.89, 2011.

M. Olazaran, A Sociological Study of the Official History of the Perceptrons Controversy, Social Studies of Science, vol.26, issue.3, pp.611-659, 1996.
DOI : 10.1177/030631296026003005

B. A. Olshausen, J. David, and . Field, Sparse coding with an overcomplete basis set : A strategy employed by V1 ? Dans : Vision research 37, pp.3311-3325, 1997.

O. 'regan, A. Kevin, and . Noë, A sensorimotor account of vision and visual consciousness, Behavioral and brain sciences 24.05, pp.939-973, 2001.

P. Oudeyer, F. Kaplan, and V. V. Hafner, Intrinsic Motivation Systems for Autonomous Mental Development, IEEE Transactions on Evolutionary Computation, vol.11, issue.2, pp.265-286, 2007.
DOI : 10.1109/TEVC.2006.890271

L. Pape, F. Gomez, M. Ring, and J. Schmidhuber, Modular deep belief networks that do not forget, The 2011 International Joint Conference on Neural Networks, pp.1191-1198, 2011.
DOI : 10.1109/IJCNN.2011.6033359

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Papli?ski and L. Gustafsson, Multimodal feedforward selforganizing maps, Computational Intelligence and Security, pp.81-88, 2005.

D. B. Parker, Learning logic, pp.14-61, 1985.

R. Pascanu, G. Montufar, and Y. Bengio, On the number of inference regions of deep feed forward networks with piece-wise linear activations, p.73, 2013.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, Learning and generalization of motor skills by learning from demonstration, 2009 IEEE International Conference on Robotics and Automation, p.139, 2009.
DOI : 10.1109/ROBOT.2009.5152385

P. Pastor, M. Kalakrishnan, F. Meier, F. Stulp, J. Buchli et al., From dynamic movement primitives to associative skill memories, Robotics and Autonomous Systems, vol.61, issue.4, pp.351-361
DOI : 10.1016/j.robot.2012.09.017

J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure, Journal of Physiology-Paris, vol.97, issue.2-3, pp.265-309, 2003.
DOI : 10.1016/j.jphysparis.2003.10.010

R. Pfeifer and J. Bongard, How the body shapes the way we think : a new view of intelligence, p.16, 2007.

R. Pfeifer and C. Scheier, Understanding intelligence, p.16, 1999.

J. Piaget, La naissance de l'intelligence chez l'enfant, p.20, 1936.

H. Poon and P. Domingos, Sum-product networks: A new deep architecture, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.337-346, 2011.
DOI : 10.1109/ICCVW.2011.6130310

R. Quiroga, L. Quian, G. Reddy, C. Kreiman, I. Koch et al., Invariant visual representation by single neurons in the human brain, Nature, vol.435, issue.7045, pp.1102-1107, 2005.
DOI : 10.1038/nature03687

R. Quiroga, G. Quian, C. Kreiman, I. Koch, and . Fried, Sparse but not 'grandmother-cell'coding in the medial temporal lobe . Dans : Trends in cognitive sciences 12, pp.87-91, 2008.

R. Quiroga and . Quian, Concept cells: the building blocks of declarative memory functions, Nature Reviews Neuroscience, vol.148, pp.587-597, 2012.
DOI : 10.1038/nrn3251

R. Rafal, Balint's syndrome : A disorder of visual cognition, Neurological foundations of cognitive neuroscience, pp.27-36, 2003.

T. Raiko, L. Yao, K. Cho, and Y. Bengio, Iterative Neural Autoregressive Distribution Estimator (NADE-k) Dans : arXiv preprint, p.168, 2014.

R. Raina, A. Madhavan, Y. Andrew, and . Ng, Large-scale deep unsupervised learning using graphics processors, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.873-880, 2009.
DOI : 10.1145/1553374.1553486

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Ranzato and . Aurelio, On Learning Where To Look, p.171, 2014.

R. Rao, . Pn, H. Dana, and . Ballard, Predictive coding in the visual cortex : a functional interpretation of some extra-classical receptive-field effects, Nature Neuroscience, vol.2, issue.1, pp.79-87, 1999.
DOI : 10.1038/4580

S. Rebecchi, M. Héì-ene-paugam-moisy, and . Sebag, Learning sparse features with an auto-associator . Dans : Growing Adaptive Machines, pp.139-158, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01109773

S. Reed and H. Lee, Learning Deep Representations via Multiplicative Interactions between Factors of Variation, p.88, 2013.

E. Renaudo, B. Girard, R. Chatila, and M. Khamassi, Design of a Control Architecture for Habit Learning in Robots, Biomimetic and Biohybrid Systems, pp.249-260, 2014.
DOI : 10.1007/978-3-319-09435-9_22

URL : https://hal.archives-ouvertes.fr/hal-01312443

R. A. Rensink, O. Kevin, . Regan, J. James, and . Clark, To See or not to See: The Need for Attention to Perceive Changes in Scenes, Psychological science 8.5, pp.368-373, 1997.
DOI : 10.1037//0096-1523.15.3.419

R. A. Rensink, O. Kevin, . Regan, J. James, and . Clark, On the Failure to Detect Changes in Scenes Across Brief Interruptions, Visual Cognition, vol.74, issue.1-3, pp.127-145, 2000.
DOI : 10.1111/1467-8721.ep10768973

B. Ridge, . Skocaj, and . Leonardis, Self-supervised cross-modal online learning of basic object affordances for developmental robotic systems, 2010 IEEE International Conference on Robotics and Automation, pp.5047-5054, 2010.
DOI : 10.1109/ROBOT.2010.5509544

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, Contractive Auto-Encoders : Explicit Invariance During Feature Extraction, Proceedings of the 28th International Conference on Machine Learning, pp.833-840, 2011.

S. Rifai, N. Yann, P. Dauphin, Y. Vincent, X. Bengio et al., The Manifold Tangent Classifier Advances in Neural Information Processing Systems. Sous la dir, pp.2294-2302, 2011.

G. Rizzolatti and L. Craighero, THE MIRROR-NEURON SYSTEM, Annual Review of Neuroscience, vol.27, issue.1, pp.169-192, 2004.
DOI : 10.1146/annurev.neuro.27.070203.144230

F. Rosenblatt, The perceptron : a probabilistic model for information storage and organization in the brain. Dans : Psychological review 65, pp.386-400, 1958.

L. D. Rosenblum, J. A. Johnson, M. Helena, and . Saldana, Pointlight facial displays enhance comprehension of speech in noise, Journal of Speech, Language, and Hearing Research, vol.396, pp.1159-1170, 1996.

C. Rovee, . Kent, T. David, and . Rovee, Conjugate reinforcement of infant exploratory behavior, Journal of Experimental Child Psychology, vol.8, issue.1, pp.33-39, 1969.
DOI : 10.1016/0022-0965(69)90025-3

D. E. Rumelhart, G. E. Hintont, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol.85, issue.6088, pp.533-536, 1986.
DOI : 10.1038/323533a0

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1, p.20, 2014.
DOI : 10.1007/s11263-015-0816-y

K. Saberi, R. David, and . Perrott, Cognitive restoration of reversed speech . Dans : Nature 398, pp.760-760, 1999.

S. ¸ahin, M. C. Erol, R. Mehmet, . Do?-gar, U. Emre et al., To afford or not to afford : A new formalization of affordances toward affordance-based robot control, Adaptive Behavior, vol.154, pp.447-472, 2007.

K. Sakai, O. Hikosaka, S. Miyauchi, Y. Sasaki, N. Fujimaki et al., Presupplementary motor area activation during sequence learning reflects visuo-motor association, Journal of Neuroscience, vol.19, pp.1-1, 1999.

K. Sakai, K. Kitaguchi, and O. Hikosaka, Chunking during human visuomotor sequence learning, Experimental brain research 152, pp.229-242, 2003.
DOI : 10.1007/s00221-003-1548-8

R. Salakhutdinov, E. Geoffrey, and . Hinton, Using deep belief nets to learn covariance kernels for gaussian processes Advances in neural information processing systems, pp.1249-1256, 2008.

. Salakhutdinov, R. Ruslan, J. Tenenbaum, A. Torralba-de, J. Shawe-taylor et al., Learning to Learn with Compound HD Models Advances in Neural Information Processing Systems. Sous la dir, pp.2061-2069, 2011.

B. Sallans and G. E. Hinton, Using Free Energies to Represent Qvalues in a Multiagent Reinforcement Learning Task, pp.1075-1081, 2000.

B. Sallans, E. Geoffrey, and . Hinton, Reinforcement learning with factored states and actions, The Journal of Machine Learning Research, vol.5, pp.1063-1088, 2004.

A. Salman and K. Chen, Exploring speaker-specific characteristics with deep learning, The 2011 International Joint Conference on Neural Networks, pp.103-110, 2011.
DOI : 10.1109/IJCNN.2011.6033207

L. K. Samuelson, Statistical regularities in vocabulary guide language acquisition in connectionist models and 15-20-month-olds. Dans : Developmental psychology 38, pp.1016-1039, 2002.

J. Schmidhuber, Learning Complex, Extended Sequences Using the Principle of History Compression, Neural Computation 4.2, pp.234-242, 1992.
DOI : 10.1080/09540098908915631

J. Schmidhuber, Learning Factorial Codes by Predictability Minimization, Neural Computation, vol.2, issue.6, pp.863-879, 1992.
DOI : 10.1002/j.1538-7305.1948.tb00917.x

. Dans, Autonomous Mental Development, IEEE Transactions, vol.156, pp.230-247

J. Schott, The grasp and other primitive reflexes, Journal of Neurology, Neurosurgery & Psychiatry, vol.74, issue.5, pp.558-560, 2003.
DOI : 10.1136/jnnp.74.5.558

C. E. Schreiner, Functional organization of the auditory cortex : maps and mechanisms, Current opinion in neurobiology 2.4, pp.516-521, 1992.

J. R. Searle, Minds, brains, and programs. T. 3. 03, pp.417-424, 1980.
DOI : 10.1016/b978-1-4832-1446-7.50007-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Seashore, Some psychological statistics. 2. The material-weight illusion, Iowa Studies in Psychology, vol.2, pp.36-46, 1899.

J. Sharma, A. Angelucci, and M. Sur, Induction of visual orientation modules in auditory cortex, Nature, vol.404, issue.6780, pp.841-847, 2000.
DOI : 10.1038/35009043

K. Shima, M. Isoda, H. Mushiake, and J. Tanji, Categorization of behavioural sequences in the prefrontal cortex, Nature, vol.357, issue.7125, pp.315-318, 2006.
DOI : 10.1038/nature05470

M. A. Silver and S. Kastner, Topographic maps in human frontal and parietal cortex . Dans : Trends in cognitive sciences 13, pp.488-495, 2009.

D. A. Simon, D. Nathaniel, and . Daw, Dual-system learning models and drugs of abuse . Dans : Computational Neuroscience of Drug Addiction, pp.145-161, 2012.

D. J. Simons, Attentional capture and inattentional blindness, Trends in cognitive sciences 4.4, pp.147-155, 2000.
DOI : 10.1016/S1364-6613(00)01455-8

L. Smith and M. Gasser, The Development of Embodied Cognition: Six Lessons from Babies, Artificial life 11.1-2, pp.13-29, 2005.
DOI : 10.1126/science.134.3491.1692

L. B. Smith, S. Susan, B. Jones, L. Landau, L. Gershkoff-stowe et al., Object name Learning Provides On-the-Job Training for Attention, Psychological Science, vol.36, issue.1, pp.13-19, 2002.
DOI : 10.1016/0885-2014(88)90014-7

P. Smolensky, Information processing in dynamical systems : Foundations of harmony theory, p.26, 1986.

D. Strigl, K. Kofler, and S. Podlipnig, Performance and scalability of GPU-based convolutional neural networks . Dans : Parallel, Distributed and Network-Based Processing (PDP), 18th Euromicro International Conference on, pp.317-324, 2010.

A. Stuhlsatz, J. Lippel, and T. Zielke, Discriminative feature extraction with Deep Neural Networks, The 2010 International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2010.
DOI : 10.1109/IJCNN.2010.5596329

F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, Learning Compact Parameterized Skills with Expanded Function Approximators, Proc. of the IEEE Int. Conf. on Humanoids Robotics, pp.1-7, 2013.

P. Sumner, P. Nachev, P. Morris, M. Andrew, . Peters et al., Human Medial Frontal Cortex Mediates Unconscious Inhibition of Voluntary Action, Neuron, vol.54, issue.5, pp.697-711, 2007.
DOI : 10.1016/j.neuron.2007.05.016

R. Sutton, G. Andrew, and . Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, p.150, 1998.
DOI : 10.1109/TNN.1998.712192

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan et al., Intriguing properties of neural networks . Dans : arXiv preprint arXiv :1312, pp.6199-6220, 2013.

Y. Tang, N. Srivastava-et-ruslan, and R. Salakhutdinov, Learning Generative Models with Visual Attention Advances in Neural Information Processing Systems 27. Sous la dir, pp.1808-1816, 2014.

G. W. Taylor, E. Geoffrey, . Hinton, T. Sam, and . Roweis, Modeling human motion using binary latent variables Advances in neural information processing systems, pp.1345-1352, 2006.

G. W. Taylor and R. Fergus, Yann LeCun et Christoph Bregler (sept. 2010) Convolutional learning of spatio-temporal features, pp.140-153

M. Tenorth and M. Beetz, KnowRob: A knowledge processing infrastructure for cognition-enabled robots, The International Journal of Robotics Research, vol.56, issue.2, pp.566-590, 2013.
DOI : 10.1142/S0218213012500121

M. Tenorth, U. Klank, D. Pangercic, and M. Beetz, Webenabled robots, Robotics & Automation Magazine, IEEE 18.2, pp.58-68, 2011.

A. M. Turing, Computing machinery and intelligence, pp.433-460, 1950.
DOI : 10.1007/978-1-4020-6710-5_3

E. Ugur, E. Oztop, and E. Sahin, Goal emulation and planning in perceptual space using learned affordances, Robotics and Autonomous Systems, vol.59, issue.7-8, pp.580-595, 2011.
DOI : 10.1016/j.robot.2011.04.005

J. Van-biervliet, La mesure des illusions de poids, L'ann??e psychologique, vol.2, issue.1, pp.79-86, 1895.
DOI : 10.3406/psy.1895.1530

F. J. Varela, E. Thompson, and E. Rosch, L'inscription corporelle de l'esprit : sciences cognitives et expérience humaine, 1993.

M. Vavre?ka and . Farka?, A Multimodal Connectionist Architecture for Unsupervised Grounding of Spatial Language, Cognitive Computation, vol.8, issue.8???9, pp.1-12, 2013.
DOI : 10.1007/s12559-013-9212-5

P. Vincent, A Connection Between Score Matching and Denoising Autoencoders, Neural computation 23.7, pp.1661-1674, 2011.
DOI : 10.1007/3-540-46084-5_57

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, ICML '08, 2008.
DOI : 10.1145/1390156.1390294

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Vinyals and A. Toshev, Show and tell: A neural image caption generator, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.170, 2014.
DOI : 10.1109/CVPR.2015.7298935

N. Volpi, J. C. Catenacci, Q. , and G. Pezzulo, How active perception and attractor dynamics shape perceptual categorization: A computational model, Neural Networks, vol.60, issue.172, pp.1-16, 2014.
DOI : 10.1016/j.neunet.2014.06.008

V. Melchner, . Laurie, L. Sarah, M. Pallas, and . Sur, Visual behaviour mediated by retinal projections directed to the auditory pathway, Nature, vol.404, issue.6780, pp.871-876, 2000.
DOI : 10.1038/35009102

N. Wahlström, B. Thomas, M. P. Schön, and . Deisenroth, Learning deep dynamical models from image pixels, IFAC-PapersOnLine, vol.48, issue.28, p.125, 2014.
DOI : 10.1016/j.ifacol.2015.12.271

M. Waibel, M. Beetz, J. Civeraandrea, J. Elfring, D. Galvez-lopez et al., A World Wide Web for Robots, IEEE Robotics & Automation Magazine, p.18, 2011.

J. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-244, 1963.
DOI : 10.1007/BF02289263

R. M. Warren, Perceptual Restoration of Missing Speech Sounds, Science, vol.167, issue.3917, pp.392-393, 1970.
DOI : 10.1126/science.167.3917.392

J. Weng, DEVELOPMENTAL ROBOTICS: THEORY AND EXPERIMENTS, International Journal of Humanoid Robotics, vol.01, issue.02, pp.199-236, 2004.
DOI : 10.1142/S0219843604000149

P. Werbos, Beyond regression : New tools for prediction and analysis in the behavioral sciences, Thèse de doct. (cf, pp.14-61, 1974.

P. J. Werbos, Backpropagation through time: what it does and how to do it, Proceedings of the IEEE 78, pp.1550-1560, 1990.
DOI : 10.1109/5.58337

S. Wermter, C. Weber, M. Elshaw, C. Panchev, H. Erwin et al., Towards multimodal neural robot learning, Robotics and Autonomous Systems, vol.47, issue.2-3, pp.171-175, 2004.
DOI : 10.1016/j.robot.2004.03.011

R. J. Williams and D. Zipser, Experimental Analysis of the Real-time Recurrent Learning Algorithm, Connection Science, vol.1, issue.1, pp.87-111, 1989.
DOI : 10.1162/neco.1989.1.2.270

L. Wiskott and T. Sejnowski, Slow Feature Analysis: Unsupervised Learning of Invariances, Neural computation 14.4, pp.715-770, 2002.
DOI : 10.1016/S0301-0082(96)00054-8

E. P. Xing, I. Michael, S. Jordan, . Russell, Y. Andrew et al., Distance metric learning with application to clustering with side-information . Dans : Advances in neural information processing systems, pp.505-512, 2002.