A. Bonnet-ben-dhia, L. Chesnel, and X. Claeys, RADIATION CONDITION FOR A NON-SMOOTH INTERFACE BETWEEN A DIELECTRIC AND A METAMATERIAL, Mathematical Models and Methods in Applied Sciences, vol.23, issue.09, pp.1629-1662, 2013.
DOI : 10.1142/S0218202513500188

URL : https://hal.archives-ouvertes.fr/hal-00651008

L. Chesnel, X. Claeys, and S. A. Nazarov, Spectrum of a diffusion operator with coefficient changing sign over a small inclusion. ArXiv e-prints, 2014.

L. Chesnel, X. Claeys, and S. A. Nazarov, A curious instability phenomenon for a rounded corner in presence of a negative material, Asymptot. Anal, vol.88, issue.12, pp.43-74, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00909836

X. Claeys, A single trace integral formulation of the second kind for acoustic scattering, 2011.

X. Claeys, Quasi-local multitrace boundary integral formulations. Numer. Methods Partial Differential Equations, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01070264

X. Claeys, Stability of electromagnetic cavities perturbed by small perfectly conducting inclusions, Comptes Rendus Mathematique, vol.353, issue.2, pp.139-142, 2015.
DOI : 10.1016/j.crma.2014.10.009

X. Claeys and B. Delourme, High order asymptotics for wave propagation across thin periodic interfaces, Asymptot. Anal, vol.83, issue.12, pp.35-82, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00682386

X. Claeys and R. Hiptmair, Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.6, pp.1421-1445, 2012.
DOI : 10.1051/m2an/2012011

X. Claeys and R. Hiptmair, Integral equations on multi-screens. Integral Equations Operator Theory, pp.167-197, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00910327

X. Claeys and R. Hiptmair, Multi-Trace Boundary Integral Formulation for Acoustic Scattering by Composite Structures, Communications on Pure and Applied Mathematics, vol.11, issue.no. 2, pp.1163-1201, 2013.
DOI : 10.1002/cpa.21462

X. Claeys and R. Hiptmair, Integral equations for acoustic scattering by partially impenetrable composite objects. Integral Equations Operator Theory, pp.151-189, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01094440

X. Claeys and R. Hiptmair, Integral equations for electromagnetic scattering at multiscreens . Integral Equations and Operator Theory, pp.1-36, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251236

X. Claeys, R. Hiptmair, and C. Jerez-hanckes, Multitrace boundary integral equations. In Direct and inverse problems in wave propagation and applications, Radon Ser. Comput. Appl. Math, vol.14, pp.51-100, 2013.

X. Claeys, R. Hiptmair, C. Jerez-hanckes, and S. Pintarelli, Novel multi-trace boundary integral equations for transmission boundary value problems, 2014.

X. Claeys, R. Hiptmair, and E. Spindler, Second-kind boundary integral equations for scattering at composite partly impenetrable objects, Seminar for Applied Mathematics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251240

X. Claeys, R. Hiptmair, and E. Spindler, A second-kind Galerkin boundary element method for scattering at composite objects, BIT Numerical Mathematics, vol.8, issue.2, pp.33-57, 2015.
DOI : 10.1007/s10543-014-0496-y

URL : https://hal.archives-ouvertes.fr/hal-00909835

T. Abboud and F. Starling, Scattering of an electromagnetic wave by a screen In Boundary value problems and integral equations in nonsmooth domains (Luminy, Lecture Notes in Pure and Appl. Math, vol.167, pp.1-17, 1993.

F. Alouges, S. Borel, and D. P. Levadoux, A stable well-conditioned integral equation for electromagnetism scattering, Journal of Computational and Applied Mathematics, vol.204, issue.2, pp.440-451, 2007.
DOI : 10.1016/j.cam.2006.02.049

H. Ammari, An Inverse Initial Boundary Value Problem for the Wave Equation in the Presence of Imperfections of Small Volume, SIAM Journal on Control and Optimization, vol.41, issue.4, pp.1194-1211, 2002.
DOI : 10.1137/S0363012901384247

M. S. Ammari, D. Vogelius, and . Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations, Journal de Math??matiques Pures et Appliqu??es, vol.80, issue.8, pp.80769-814, 2001.
DOI : 10.1016/S0021-7824(01)01217-X

H. Ammari and D. Volkov, Asymptotic formulas for perturbations in the eigenfrequencies of the full Maxwell equations due to the presence of imperfections of small diameter, Asymptot. Anal, vol.30, pp.3-4331, 2002.

X. Antoine and M. Darbas, Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.1, pp.147-167, 2007.
DOI : 10.1051/m2an:2007009

URL : https://hal.archives-ouvertes.fr/hal-00141047

K. E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge Monographs on Applied and Computational Mathematics, vol.4, 1997.

D. J. Bekers and S. J. Van-eijndhoven, Spectral analysis of integro-differential operators applied in linear antenna modelling, Proc. Edinb, pp.55333-354, 2012.
DOI : 10.1109/TAP.1975.1141048

J. Bielak and R. C. Maccamy, Symmetric finite element and boundary integral coupling methods for fluid-solid interaction, Quarterly of Applied Mathematics, vol.49, issue.1, pp.107-119, 1991.
DOI : 10.1090/qam/1096235

A. Bonnet-ben-dhia, L. Chesnel, P. Ciarlet, and J. , -coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.6, pp.1363-1387, 2012.
DOI : 10.1051/m2an/2012006

URL : https://hal.archives-ouvertes.fr/hal-00717640

A. Bonnet-ben-dhia, P. Ciarlet, J. , and C. M. Zwölf, A NEW COMPACTNESS RESULT FOR ELECTROMAGNETIC WAVES: APPLICATION TO THE TRANSMISSION PROBLEM BETWEEN DIELECTRICS AND METAMATERIALS, Mathematical Models and Methods in Applied Sciences, vol.18, issue.09, pp.1605-1631, 2008.
DOI : 10.1142/S0218202508003145

URL : https://hal.archives-ouvertes.fr/hal-00873080

A. S. Bonnet-ben-dhia, P. Ciarlet, J. , and C. M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1912-1919, 2010.
DOI : 10.1016/j.cam.2009.08.041

URL : https://hal.archives-ouvertes.fr/hal-00975073

E. Bonnetier, D. Bresch, and V. Mili?i´mili?i´c, A Priori Convergence Estimates for a Rough Poisson-Dirichlet Problem with Natural Vertical Boundary Conditions, Advances in mathematical fluid mechanics, pp.105-134, 2010.
DOI : 10.1007/978-3-642-04068-9_7

URL : https://hal.archives-ouvertes.fr/hal-00321471

D. Bresch and V. Milisic, High order multi-scale wall-laws, Part I: The periodic case, Quarterly of Applied Mathematics, vol.68, issue.2, pp.229-253, 2010.
DOI : 10.1090/S0033-569X-10-01135-0

URL : https://hal.archives-ouvertes.fr/hal-00111058

O. Bruno, T. Elling, R. Paffenroth, and C. Turc, Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations, Journal of Computational Physics, vol.228, issue.17, pp.6169-6183, 2009.
DOI : 10.1016/j.jcp.2009.05.020

O. P. Bruno, V. Domínguez, and F. Sayas, Convergence analysis of a high-order Nystr??m integral-equation method for surface scattering problems, Numerische Mathematik, vol.92, issue.2, pp.603-645, 2013.
DOI : 10.1007/s00211-013-0525-9

O. P. Bruno and S. K. Lintner, A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space, Journal of Computational Physics, vol.252, pp.250-274, 2013.
DOI : 10.1016/j.jcp.2013.06.022

A. Buffa, Remarks on the Discretization of Some Noncoercive Operator with Applications to Heterogeneous Maxwell Equations, SIAM Journal on Numerical Analysis, vol.43, issue.1, pp.1-18, 2005.
DOI : 10.1137/S003614290342385X

A. Buffa, Remarks on the Discretization of Some Noncoercive Operator with Applications to Heterogeneous Maxwell Equations, SIAM Journal on Numerical Analysis, vol.43, issue.1, pp.1-18, 2005.
DOI : 10.1137/S003614290342385X

A. Buffa and S. H. Christiansen, The electric field integral equation on Lipschitz screens: definitions and numerical approximation, Numerische Mathematik, vol.94, issue.2, pp.229-267, 2003.
DOI : 10.1007/s00211-002-0422-0

A. Buffa, M. Costabel, and D. Sheen, On traces for H(curl,??) in Lipschitz domains, Journal of Mathematical Analysis and Applications, vol.276, issue.2, pp.845-867, 2002.
DOI : 10.1016/S0022-247X(02)00455-9

M. Carr, E. Topsakal, and J. L. Volakis, A Procedure for Modeling Material Junctions in 3-D Surface Integral Equation Approaches, IEEE Transactions on Antennas and Propagation, vol.52, issue.5, pp.1374-1378, 2004.
DOI : 10.1109/TAP.2004.827247

S. N. Chandler-wilde and D. P. Hewett, Acoustic scattering by fractal screens: mathematical formulations and wavenumber-explicit continuity and coercivity estimates. ArXiv e-prints, 2014.

S. N. Chandler-wilde and D. Hewett, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens. ArXiv e-prints, 2014.

Y. Chang and R. Harrington, A surface formulation for characteristic modes of material bodies, IEEE Transactions on Antennas and Propagation, vol.25, issue.6, pp.789-795, 1977.
DOI : 10.1109/TAP.1977.1141685

S. H. Christiansen and J. Nédélec, A Preconditioner for the Electric Field Integral Equation Based on Calderon Formulas, SIAM Journal on Numerical Analysis, vol.40, issue.3, pp.1100-1135, 2002.
DOI : 10.1137/S0036142901388731

I. S. Ciuperca, M. Jai, and C. Poignard, Approximate transmission conditions through a rough thin layer: The case of periodic roughness, European Journal of Applied Mathematics, vol.320, issue.01, pp.51-75, 2010.
DOI : 10.1002/mma.1045

URL : https://hal.archives-ouvertes.fr/inria-00356124

F. Collino, S. Ghanemi, and P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation, Vistas in domain decomposition and parallel processing in computational mechanics, pp.171-211, 2000.
DOI : 10.1016/S0045-7825(99)00228-5

URL : https://hal.archives-ouvertes.fr/inria-00073216

K. Cools, Mortar boundary elements for the EFIE applied to the analysis of scattering by PEC junctions, 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, pp.165-168, 2012.
DOI : 10.1109/APEMC.2012.6237847

D. Copeland, U. Langer, and D. Pusch, From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes, Lect. Notes Comput. Sci. Eng, vol.70, pp.315-322, 2009.
DOI : 10.1007/978-3-642-02677-5_35

M. Costabel and E. P. Stephan, An improved boundary element Galerkin method for three-dimensional crack problems. Integral Equations Operator Theory, pp.467-504, 1986.

C. Daveau and A. Khelifi, Asymptotic behaviour of the energy for electromagnetic systems in the presence of small inhomogeneities, Applicable Analysis, vol.44, issue.5, pp.857-877, 2012.
DOI : 10.1137/S0036141094271259

D. Drissi, Simulation des solencieux d'´ echappement par une méthode d'´ eléments finis homogénéisés, 2003.

B. Després, Méthodes de décomposition de domaine pour lesprobì emes de propagation d'ondes en régime harmonique. Le théorème de Borg pour l'´ equation de Hill vectorielle, Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt Thèse, 1991.

V. Domínguez, S. L. Lu, and F. Sayas, A Nystr??m flavored Calder??n Calculus of order three for two dimensional waves, time-harmonic and transient, Computers & Mathematics with Applications, vol.67, issue.1, pp.217-236, 2014.
DOI : 10.1016/j.camwa.2013.11.005

C. L. Epstein and L. Greengard, Debye sources and the numerical solution of the time harmonic Maxwell equations, Comm. Pure Appl. Math, vol.63, issue.4, pp.413-463, 2010.

C. L. Epstein, L. Greengard, and M. O. Neil, Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II, Communications on Pure and Applied Mathematics, vol.63, issue.5, pp.753-789, 2013.
DOI : 10.1002/cpa.21420

L. Escauriaza, E. B. Fabes, and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries, Proc. Amer, pp.1069-1076, 1992.
DOI : 10.1090/S0002-9939-1992-1092919-1

P. Fernandes and M. Raffetto, WELL-POSEDNESS AND FINITE ELEMENT APPROXIMABILITY OF TIME-HARMONIC ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS INVOLVING BIANISOTROPIC MATERIALS AND METAMATERIALS, Mathematical Models and Methods in Applied Sciences, vol.19, issue.12, pp.2299-2335, 2009.
DOI : 10.1142/S0218202509004121

M. J. Gander, F. Magouì, and F. Nataf, Optimized Schwarz Methods without Overlap for the Helmholtz Equation, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.38-60, 2002.
DOI : 10.1137/S1064827501387012

URL : https://hal.archives-ouvertes.fr/hal-00624495

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.1309-1331, 2009.
DOI : 10.1002/nme.2579

L. Greengard and J. Lee, Stable and accurate integral equation methods for scattering problems with multiple material interfaces in two dimensions, Journal of Computational Physics, vol.231, issue.6, pp.2389-2395, 2012.
DOI : 10.1016/j.jcp.2011.11.034

R. Griesmaier, An Asymptotic Factorization Method for Inverse Electromagnetic Scattering in Layered Media, SIAM Journal on Applied Mathematics, vol.68, issue.5, pp.1378-1403, 2008.
DOI : 10.1137/060677021

R. Griesmaier, Detection of small buried objects: asymptotic factorization and MUSIC, 2008.

R. Griesmaier, A general perturbation formula for electromagnetic fields in presence of low volume scatterers, ESAIM: Mathematical Modelling and Numerical Analysis, vol.45, issue.6, pp.1193-1218, 2011.
DOI : 10.1051/m2an/2011015

W. Hackbusch, Integral equations Theory and numerical treatment, International Series of Numerical Mathematics. Birkhäuser Verlag, vol.120, 1995.

R. F. Harrington, Boundary Integral Formulations for Homogeneous Material Bodies, Journal of Electromagnetic Waves and Applications, vol.32, issue.1, pp.1-15, 1989.
DOI : 10.1163/156939389X00016

R. Hiptmair, Operator Preconditioning, Computers & Mathematics with Applications, vol.52, issue.5, pp.699-706, 2006.
DOI : 10.1016/j.camwa.2006.10.008

R. Hiptmair and C. Jerez-hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems, Advances in Computational Mathematics, vol.11, issue.4, pp.39-91, 2012.
DOI : 10.1007/s10444-011-9194-3

R. Hiptmair, C. Jerez-hanckes, J. Lee, and Z. Peng, Domain Decomposition for Boundary Integral Equations via Local Multi-Trace Formulations, Seminar for Applied Mathematics, 2013.
DOI : 10.1007/978-3-319-05789-7_4

R. Hiptmair, C. Jerez-hanckes, and C. Urzúa-torres, Mesh-Independent Operator Preconditioning for Boundary Elements on Open Curves, SIAM Journal on Numerical Analysis, vol.52, issue.5, pp.2295-2314, 2014.
DOI : 10.1137/130947040

R. Hiptmair and L. Kielhorn, BETL -a generic boundary element template library, Seminar for Applied Mathematics, ETH Zürich, 2012.

C. Hofreither, U. Langer, and C. Pechstein, Analysis of a non-standard finite element method based on boundary integral operators, Electron. Trans. Numer. Anal, vol.37, pp.413-436, 2010.

C. Jerez-hanckes and J. Nédélec, Explicit Variational Forms for the Inverses of Integral Logarithmic Operators Over an Interval, SIAM Journal on Mathematical Analysis, vol.44, issue.4, pp.2666-2694, 2012.
DOI : 10.1137/100806771

URL : https://hal.archives-ouvertes.fr/hal-01069436

S. Jiang and V. Rokhlin, Second kind integral equations for the classical potential theory on open surfaces I: analytical apparatus, Journal of Computational Physics, vol.191, issue.1, pp.40-74, 2003.
DOI : 10.1016/S0021-9991(03)00304-8

S. Jiang and V. Rokhlin, Second kind integral equations for the classical potential theory on open surfaces II, Journal of Computational Physics, vol.195, issue.1, pp.1-16, 2004.
DOI : 10.1016/j.jcp.2003.10.001

C. Johnson and J. Nédélec, On the coupling of boundary integral and finite element methods, Mathematics of Computation, vol.35, issue.152, pp.1063-1079, 1980.
DOI : 10.1090/S0025-5718-1980-0583487-9

D. S. Jones, Note on the integral equation for a straight wire antenna, Proc. IEE-H, pp.114-116, 1981.
DOI : 10.1049/ip-h-1.1981.0018

B. M. Kolundzija, Electromagnetic modeling of composite metallic and dielectric structures . Microwave Theory and Techniques, IEEE Transactions on, vol.47, issue.7, pp.1021-1032, 1999.

V. A. Kondrat and ?. Ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Ob??, vol.16, pp.209-292, 1967.

V. A. Kozlov, V. G. Maz, ?. , and J. Rossmann, Elliptic boundary value problems in domains with point singularities, volume 52 of Mathematical Surveys and Monographs, 1997.

R. Kress, Linear integral equations, Applied Mathematical Sciences, vol.82, 2014.

U. Langer, G. Of, O. Steinbach, and W. Zulehner, Inexact Data???Sparse Boundary Element Tearing and Interconnecting Methods, SIAM Journal on Scientific Computing, vol.29, issue.1, pp.290-314, 2007.
DOI : 10.1137/050636243

U. Langer and O. Steinbach, Boundary Element Tearing and Interconnecting Methods, Computing, vol.71, issue.3, pp.205-228, 2003.
DOI : 10.1007/s00607-003-0018-2

U. Langer and O. Steinbach, Coupled Boundary and Finite Element Tearing and Interconnecting Methods, Lect. Notes Comput. Sci. Eng, vol.40, pp.83-97, 2005.
DOI : 10.1007/3-540-26825-1_6

M. Lecouvez, B. Stupfel, P. Joly, and F. Collino, Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation, Comptes Rendus Physique, vol.15, issue.5, pp.403-414, 2014.
DOI : 10.1016/j.crhy.2014.04.005

URL : https://hal.archives-ouvertes.fr/hal-01116028

G. Lombardi and R. D. Graglia, Modeling Junctions in Sharp Edge Conducting Structures With Higher Order Method of Moments, IEEE Transactions on Antennas and Propagation, vol.62, issue.11, pp.5723-5731, 2014.
DOI : 10.1109/TAP.2014.2355855

D. Martinez-solis, J. M. Taboaa, and F. O. Basteiro, Surface Integral Equation-Method of Moments With Multiregion Basis Functions Applied to Plasmonics, IEEE Transactions on Antennas and Propagation, vol.63, issue.5, pp.2141-2152, 2015.
DOI : 10.1109/TAP.2015.2406891

V. Mattesi, Small heterogeneities in the context of time-domain wave propagation equation : asymptotic analysis and numerical calculation. Theses, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01111046

V. Maz, ?. Ya, S. Nazarov, and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains of Operator Theory: Advances and Applications, 2000.

W. Mclean, Strongly elliptic systems and boundary integral equations, 2000.

E. Miller and A. Poggio, Computer Techniques for Electromagnetics Integral equation solutions of three-dimensional scattering problems, 1973.

C. Müller, Foundations of the mathematical theory of electromagnetic waves. Revised and enlarged translation from the German. Die Grundlehren der mathematischen Wissenschaften, 1969.

F. Nataf, F. Rogier, and E. De-sturler, Optimal interface conditions for domain decomposition methods

S. A. Nazarov and B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, 1994.
DOI : 10.1515/9783110848915

J. Nédélec, Acoustic and electromagnetic equations Integral representations for harmonic problems, Applied Mathematical Sciences, vol.144, 2001.

S. Nicaise and J. Venel, A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients, Journal of Computational and Applied Mathematics, vol.235, issue.14, pp.4272-4282, 2011.
DOI : 10.1016/j.cam.2011.03.028

URL : https://hal.archives-ouvertes.fr/hal-00517989

G. Of and O. Steinbach, The all-floating boundary element tearing and interconnecting method, Journal of Numerical Mathematics, vol.17, issue.4, pp.277-298, 2009.
DOI : 10.1515/JNUM.2009.014

G. Oliveri and M. Raffetto, A Warning About Metamaterials for Users of Frequency-Domain Numerical Simulators, IEEE Transactions on Antennas and Propagation, vol.56, issue.3, pp.792-798, 2008.
DOI : 10.1109/TAP.2008.916955

URL : https://hal.archives-ouvertes.fr/hal-01171289

C. Pechstein, Boundary element tearing and interconnecting methods in unbounded domains, Applied Numerical Mathematics, vol.59, issue.11, pp.2824-2842, 2009.
DOI : 10.1016/j.apnum.2008.12.031

Z. Peng, K. Lim, and J. Lee, Computations of Electromagnetic Wave Scattering From Penetrable Composite Targets Using a Surface Integral Equation Method With Multiple Traces, IEEE Transactions on Antennas and Propagation, vol.61, issue.1, pp.256-270, 2013.
DOI : 10.1109/TAP.2012.2220098

Z. Peng, K. Lim, and J. Lee, A boundary integral equation domain decomposition method for electromagnetic scattering from large and deep cavities, Journal of Computational Physics, vol.280, pp.626-642, 2015.
DOI : 10.1016/j.jcp.2014.10.010

R. Picard, On the low frequency asymptotics in electromagnetic theory, J. Reine Angew. Math, vol.354, pp.50-73, 1984.

J. Putnam and L. N. Medgyesi-mitschang, Combined field integral equation formulation for inhomogeneous two- and three-dimensional bodies: the junction problem, IEEE Transactions on Antennas and Propagation, vol.39, issue.5, pp.667-672, 1991.
DOI : 10.1109/8.81498

H. Rademacher, ???ber partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und ???ber die Transformation der Doppelintegrale, Mathematische Annalen, vol.27, issue.3, pp.340-359, 1919.
DOI : 10.1007/BF01498415

M. Raffetto, Ill-posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports, IET Science, Measurement & Technology, vol.1, issue.5, pp.232-239, 2007.
DOI : 10.1049/iet-smt:20060123

S. Rjasanow and S. Weißer, Higher Order BEM-Based FEM on Polygonal Meshes, SIAM Journal on Numerical Analysis, vol.50, issue.5, pp.2357-2378, 2012.
DOI : 10.1137/110849481

V. Rokhlin, Solution of acoustic scattering problems by means of second kind integral equations, Wave Motion, vol.5, issue.3, pp.257-272, 1983.
DOI : 10.1016/0165-2125(83)90016-1

V. H. Rumsey, Reaction Concept in Electromagnetic Theory, Physical Review, vol.94, issue.6, pp.1483-1491, 1954.
DOI : 10.1103/PhysRev.94.1483

B. P. Rynne, The well-posedness of the integral equations for thin wire antennas, IMA Journal of Applied Mathematics, vol.49, issue.1, pp.35-44, 1992.
DOI : 10.1093/imamat/49.1.35

B. P. Rynne, On the Well-Posedness of Pocklington's Equation for a Straight Wire Antenna and Convergence of Numerical Solutions, Journal of Electromagnetic Waves and Applications, vol.12, issue.11, pp.1489-1503, 2000.
DOI : 10.1163/156939300X00257

J. , S. Hubert, and E. Sánchez-palencia, Vibration and coupling of continuous systems Asymptotic methods, 1989.

S. A. Sauter and C. Schwab, Boundary element methods, of Springer Series in Computational Mathematics, 2011.

W. Smigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger, Solving boundary integral problems with BEM++, ACM Transactions on Mathematical Software, issue.2, pp.41-2015

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, Metamaterials and Negative Refractive Index, Science, vol.305, issue.5685, pp.305788-792, 2004.
DOI : 10.1126/science.1096796

E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, issue.30, 1970.

O. Steinbach and W. L. Wendland, The construction of some efficient preconditioners in the boundary element method, Advances in Computational Mathematics, vol.9, issue.1/2, pp.191-216, 1998.
DOI : 10.1023/A:1018937506719

O. Steinbach and M. Windisch, Stable boundary element domain decomposition methods for the Helmholtz equation, Numerische Mathematik, vol.6, issue.1, pp.171-195, 2011.
DOI : 10.1007/s00211-010-0315-6

E. P. Stephan, Boundary integral equations for screen problems in R 3 . Integral Equations Operator Theory, pp.236-257, 1987.

E. P. Stephan and M. Costabel, A boundary element method for three-dimensional crack problems, Innovative numerical methods in engineering, pp.351-360, 1986.

M. Taskinen and S. Vänskä, Current and Charge Integral Equation Formulations and Picard's Extended Maxwell System, IEEE Transactions on Antennas and Propagation, vol.55, issue.12, pp.3495-3503, 2007.
DOI : 10.1109/TAP.2007.910363

M. Taskinen and P. Ylä-oijala, Current and Charge Integral Equation Formulation, IEEE Transactions on Antennas and Propagation, vol.54, issue.1, pp.58-67, 2006.
DOI : 10.1109/TAP.2005.861580

A. Toselli and O. Widlund, Domain decomposition methods?algorithms and theory, of Springer Series in Computational Mathematics, 2005.
DOI : 10.1007/b137868

P. L. Uslenghi, Electromagnetic Scattering by Metallic Cylinders Perpendicularly Truncated by a Metal Plane, IEEE Transactions on Antennas and Propagation, vol.63, issue.5, pp.2228-2236, 2015.
DOI : 10.1109/TAP.2015.2408340

G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, Journal of Functional Analysis, vol.59, issue.3, pp.572-611, 1984.
DOI : 10.1016/0022-1236(84)90066-1

V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ? and µ. Soviet Physics Uspekhi, p.509, 1968.

T. Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems, Mathematical Methods in the Applied Sciences, vol.1, issue.2, pp.185-213, 1989.
DOI : 10.1002/mma.1670110203

M. Wang, C. Engström, K. Schmidt, and C. Hafner, On High-Order FEM Applied to Canonical Scattering Problems in Plasmonics, Journal of Computational and Theoretical Nanoscience, vol.8, issue.8, pp.1564-1572, 2011.
DOI : 10.1166/jctn.2011.1851

S. Weißer, Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM, Computers & Mathematics with Applications, vol.67, issue.7, pp.1390-1406, 2014.
DOI : 10.1016/j.camwa.2014.01.019

P. Ylä-oijala, S. P. Kiminki, and S. Järvenpää, Calderon Preconditioned Surface Integral Equations for Composite Objects With Junctions, IEEE Transactions on Antennas and Propagation, vol.59, issue.2, pp.546-554, 2011.
DOI : 10.1109/TAP.2010.2096192

P. Yla-oijala and M. Taskinen, A novel combined field integral equation formulation for solving electromagnetic scattering by dielectric and composite objects, 2005 IEEE Antennas and Propagation Society International Symposium, pp.297-300, 2005.
DOI : 10.1109/APS.2005.1552805

P. Yla-oijala and M. Taskinen, Electromagnetic modelling of composite structures with surface integral equations of the second kind, 2007 Computational Electromagnetics Workshop, pp.54-58, 2007.
DOI : 10.1109/CEM.2007.4387651

C. Zwölf, Méthodes variationnelles pour la modélisation desprobì emes de transmission d'ondé electromagnétique entre diélectrique et méta-matériau, 2008.