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Résumé : Analyse de sensibilité pour la simulation numérique
des écoulements compressibles en aérodynamique externe.

L’analyse de sensibilité pour la simulation numérique des écoulements compres-
sibles en aérodynamique externe par rapport à la discretization de maillage et
aux incertitudes liées à des paramètres d’entrées du modéle a été traitée 1- par
le moyen des méthodes adjointes pour le calcul de gradient et 2- par approxima-
tions stochastiques non-intrusives basées sur des grilles creuses. 1- Une méthode
d’adaptation de maillages goal-oriented basée sur les dérivées totales des fonctions
aérodynamiques d’interêt par rapport aux nœuds du maillage a été introduite
sous une forme améliorée. La méthode s’applique au cadre de volumes finis pour
des écoulements RANS pour des maillages mono-bloc et multi-bloc structurés.
Des applications 2D pour des écoulements transsoniques ainsi que subsonique
détaché atour d’un profil pour l’estimation du coefficient de trâınée sont présentées.
L’apport de la méthode proposée est vérifié. Les maillages anisotropes obtenus
arrivent à bien capturer l’écoulement et à estimer les fonctions aérodynamiques
globales. Les contraintes imposées par les maillages structurés sont assouplies par
l’usage de raccords non-cöıncidents qui limite la propagation d’un raffinement lo-
cal sur tout le domaine. 2- Les méthodes du polynôme de chaos généralisé sous
forme pseudospectrale creuse et de la collocation stochastique construite sur des
grilles creuses isotropes et anisotropes sont examinées. Les maillages anisotropes
sont obtenus par le biais d’une méthode adaptive basée sur l’analyse de sensi-
bilité globale. L’efficacité des ces approximations est testée avec des fonctions
test et des écoulements aérodynami-ques visqueux autour d’un profil en présence
d’incertitudes géométriques et opéra-tionnelles. Pour des grilles creuses isotropes,
les deux méthodes montrent des niveaux de performance similaires. Les atouts
de la méthode proposée de collocation stochastique avec adaptivité basée sur
les indices de Sobol’ sont vérifiés mais restent dépendent du problème étudié.
L’integration des méthodes et aboutissements 1- et 2- dans une approche couplée
permettrait de contrôler de façon équilibrée l’erreur déterministe/stochastique
goal-oriented.

Mots-clés:

analyse de sensibilité, maillage structuré, adaptation, adjoint, RANS, non-matching,
multi-bloc, profil, quantification d’incertitude, grilles creuses, approximations stochas-
tiques pseudospectral, collocation stocastique, adaptivité, aérodynamique, écoulement
compressible.





Abstract: Sensitivity analysis for numerical simulation of
compressible flows in external aerodynamics.

Sensitivity analysis for the numerical simulation of external aerodynamics com-
pressible flows with respect to the mesh discretization and to the model input
parametric uncertainty has been addressed respectively 1- through adjoint-based
gradient computation techniques and 2- through non-intrusive stochastic approxi-
mation methods based on sparse grids. 1- An enhanced goal-oriented mesh adap-
tation method based on aerodynamic functional total derivatives with respect to
mesh coordinates in a RANS finite-volume mono-block and non-matching multi-
block structured grid framework is introduced. Applications to 2D RANS flow
about an airfoil in transonic and detached subsonic conditions for the drag co-
efficient estimation are presented. The asset of the proposed method is patent.
The obtained anisotropic meshes well capture flow features as well as global aero-
dynamic functionals. The constraints imposed by structured grid are relaxed by
the use of non-matching multi-block approach which limits the convection of local
mesh refinement through all the computational domain. 2- The generalized Poly-
nomial Chaos in its sparse pseudospectral form and stochastic collocation methods
based on both isotropic and dimension-adapted sparse grids obtained through an
improved dimension-adaptivity method driven by global sensitivity analysis are
considered. The stochastic approximations efficiency is assessed on multi-variate
test functions and airfoil viscous aerodynamics simulation in the presence of ge-
ometrical and operational uncertainties. Sparse pseudospectral and collocation
approximations exhibit similar level of performance for isotropic sparse simulation
ensembles. Computational savings and accuracy gain of the proposed adaptive
stochastic collocation driven by Sobol’ indices are patent but remain problem-
dependent. Integration of achievements 1- and 2- into a coupled approach in future
work will pave the way for a well-balanced goal-oriented deterministic/stochastic
error control.

Keywords:

sensitivity analysis, structured mesh, adaptation, adjoint, RANS, non-matching,
multi-block, airfoil, uncertainty quantification, sparse grids, pseudospectral stochas-
tic approximations, stochastic collocation, adaptivity, aerodynamics, compressible
flow.
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Overview

The fast development and availability of computational models and resources in
various fields of science and engineering, such as Computational Fluid Dynamics
(CFD), has led to a growing awareness of the researchers towards the reliabil-
ity and limitations of their simulations. Several factors influence the quality of
the CFD solution especially the numerical and space discretization, the choice
of physical model and the model parametric data handling. This PhD thesis
has been performed in the CFD department at ONERA - The French aerospace
laboratory. Consistently with the ONERA missions, namely to bridge the gap
between academia and aeronautical industries, it has been chosen to focus on the
numerical side of an industrial finite volume compressible CFD solver (elsA) in an
external aerodynamics framework. The sensitivity of the flow with respect to the
mesh and to the model input values uncertainty has been addressed respectively
through adjoint-based gradient computation techniques and through non-intrusive
stochastic approximation methods based on sparse solution sampling.

Chapter 1 introduces some key CFD elements for external aerodynamics ap-
plications with a focus on airfoils. The exploited flow governing equations are
introduced as well as the global aerodynamic functionals. A brief overview of
Validation and Verification (V&V) is given through definitions of V&V processes
as well as a short historical review of global aerodynamic functionals accuracy in
experiments and numerical simulations is given. The interactions between V&V,
Uncertainty Quantification (UQ) and sensitivity analysis have been equally intro-
duced.

Gradient computations methods for local search methods in aeronautical de-
sign are introduced in Chapter 2. The current implementation in the elsA code is
given including the new code development linked with this PhD thesis. Namely,
the full linearization of the mean-flow viscous flow fluxes and the Spalart-Allmaras
turbulence model. Examples given verify the implemented code modifications as
well as their assets with respect to the gradient computation precision.

Chapter 3 presents the enhanced goal-oriented mesh adaptation method based
on aerodynamic functional total derivatives with respect to mesh nodes in a RANS
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finite-volume mono-block and non-matching multi-block structured grid frame-
work. This method falls under the category of methods involving the adjoint
vector of the function of interest. The contribution of Spalart-Allmaras turbu-
lence model is taken into account through its linearisation. Meshes are adapted
accordingly to the proposed indicator. Applications to 2D RANS flow about a
RAE2822 airfoil in transonic and detached subsonic conditions for the drag coef-
ficient estimation are presented.

Uncertainty Quantification methods are introduced in Chapter 4. Especially,
the generalized Polynomial Chaos in its sparse pseudospectral form and stochastic
collocation methods based on both isotropic and dimension-adapted sparse grids
are considered. An improved version of a stochastic collocation with dimension-
adaptivity driven by global sensitivity analysis is proposed. The UQ study com-
pares sample-based polynomial surrogates, well-suited for moderately high- dimen-
sional stochastic problems. The stochastic approximations efficiency is assessed on
multi-variate test functions and airfoil aerodynamics simulations. The latter study
addresses the probabilistic characterization of global aerodynamic coefficients de-
rived from viscous subsonic steady flow about a NACA0015 airfoil in the presence
of geometrical and operational uncertainties with both simplified aerodynamics
model and RANS simulation.

Finally, conclusions and perspectives are given. The work done in this PhD
study allows a better understanding and handling of the numerical issues linked
to space discretization and input values uncertainty for external aerodynamic ap-
plications in an engineering framework. The main perspective for future work is
a well-balanced goal-oriented deterministic/stochastic error control for CFD sim-
ulations.



Chapter 1

Introduction: elements of CFD
and V&V

Computational engineering has successfully entered in both scientific research and
engineering R&D. In particularly, for the prediction of the behaviour of fluids,
Computational Fluid Dynamics (CFD) has undergone a significant expansion and
improvement since the early 1970’s. From that moment, several physical approx-
imation and numerical methods have been developed giving birth to numerous
CFD solvers. The evolution of computer capacity has eased both the daily use of
CFD in the research community as well as the reduction of the overall costs and
computational time. Often, in the aeronautical domain, experiments are costly
and demanding. The possibility to obtain similar results through a fast and cheap
CFD simulation is clearly attractive but it may lead to some reflections. Indeed,
the reliability of these simulations need to be addressed and assessed. Verification
and Validation (V&V) process consecrates to this objective.

The present chapter introduces some key CFD elements for external aerody-
namics applications with a focus on airfoils. In Section 1.1, the exploited flow
governing equations are introduced as well as the global aerodynamic function-
als. A brief overview of Validation and Verification (V&V) is given in Section 1.2
through definitions of V&V processes as well as a short historical review of global
aerodynamic functionals accuracy in experiments and numerical simulations is
given. The interactions between V&V and Uncertainty Quantification (UQ) are
highlighted in Section 1.3. In Section 1.4, the two main topics of this PhD thesis
are also introduced: the flow sensitivity with respect to the mesh and to the input
values.

Nomenclature
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Chapter 1 A. Resmini

Abbreviations

AoA Angle of attack
DES Detached Eddy Simulation
DNS Direct Numerical Simulation
CFD Computational Fluid Dynamics
FV Finite Volume
LES Large Eddy Simulation
KW k − ω turbulence model
QoI Quantity of Interest
RANS Reynolds-Averaged Navier-Stokes
SA Spalart-Allmaras turbulence model
UQ Uncertainty Quantification
V&V Verification and Validation
WT Wind Tunnel

Greek letters

δ Error
∆ Difference / scatter
µ Dynamic viscosity
µ̃ Mean value
ν̃ Turbulent kinematic viscosity
ρ Density
σ Standard deviation (std)
τ Viscous stress tensor

Latin letters

C Global aerodynamic coefficient
CD Drag coefficient

CL Lift coefficient
Cm Momentum coefficient
E Total energy
EC Coefficient C error
F FV flux
k Turbulent kinetic energy
M Mach number
n Unit normal vector
p Static pressure
q Heat flux
Re Reynolds number
S Contour of V
S Turbulent source term
u Uncertainty
U Velocity vector
V Mesh cell volume
W Conservative variables vector

Superscripts

T Transpose

Subscripts

c Convective
r Reynolds component
T Turbulent component
v Viscous / diffusive
∞ Farfield condition

1.1 RANS equations and aerodynamic functions estima-
tion

The Reynolds-Averaged Navier-Stokes (RANS) model is generally not suited for
the simulation of complex flow, nevertheless it can predicts the general flow features
as well as forces and moments for particular configuration such as isolated airfoils.
The corresponding solution is particularly sensible to the space discretization of the
flow domain and to the choice of the turbulence model. The RANS equations where
the turbulence closure is ensured by the Spalart-Allmaras (SA) turbulence model
[1] are extensively used both for code development and numerical applications in
this PhD thesis. For this reason, the RANS equations system is given hereafter
already coupled with the SA model.

14



A. Resmini Chapter 1

1.1.1 RANS + SA equations

In this thesis framework, this equations system is discretized with the Finite-
Volume (FV) scheme. Given a bounded domain Ω ⊂ R3 and a mesh cell V ⊂ Ω
with contour S, the equations read as follow

∂

∂t

∫
V

WdV +

∮
∂V

(Fc + Fv) · ndS −
∫
V

SdV = 0 (1.1)

where W = (ρ, ρU , ρE, ρk, ρν̃)T is the conservative variables vector1 with ρ the
density, U = (u, v, w)T the velocity vector, E = p/(γ−1)ρ+U 2/2 the total energy,
p the static pressure and ν̃ the kinematic turbulent viscosity which is defined by
the turbulence model, in this case SA. The unit normal vector to ∂V is denoted
n. The convection Fc and viscous Fv fluxes are hereafter defined:

Fc =


ρUT

ρUUT + pI
(ρE + p)UT

ρν̃UT

 , Fv =


0

−τ − τr
−(τ + τr)U + qT + qT

T

− 1
σ
(µ+ ρν̃)∇ν̃T

 . (1.2)

The state equation is given by the perfect gas law p = ρRT where T is the
temperature and R is the gas constant. The viscous stress tensor and the heat
flux read as follow

τ = −2

3
µ(∇ ·U)I + µ(∇U +∇UT ),

q = −Cpµ
Pr
∇T,

where µ is the dynamic viscosity defined by the Sutherland law and Pr = 0.72
is the Prandtl number. The specific heat constant under constant pressure is
Cp = γR/(γ− 1) with γ as the specific heat ratio. The Reynolds stress tensor and
the turbulent heat flux are obtained through the Boussinesq hypothesis:

τr = −2

3
µT (∇ ·U)I + µT (∇U +∇UT ),

qT = −CpµT
PrT

∇T,

with PrT = 0.72. The turbulent dynamic viscosity µT is given by the following
relation of the SA model:

µT = µχf v1. (1.3)

For details concerning the last relation and on the definition of the source term
S of equation (1.1), the reader is suggested to refer to Section 2.5 where the SA

1The superscript T defined the transpose operator while the subscript T the turbulent component.
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model is detailed.

As mentioned earlier, the equations are discretized through FV cell-centred
second order schemes on multi-block structured mesh in the ONERA elsA code
[2]. The main scheme used in this work is the Roe’s one [3]. For the convection
term in particular, a second-order MUSCL scheme [4] with van Albada limiter [5]
is used. Nevertheless, it is beyond the objectives of this thesis to review and recall
all the schemes deployed in the elsA code. The reader may refer to [2] for more
details.

1.1.2 Aerodynamic functions

CFD in an external aerodynamics framework needs not only to compute the flow
but also to predict the so-called global aerodynamic functions. These function-
als are important in applied context in order to estimate the performance of the
studied solid object configuration, i.e. the effectiveness of the designed product.
Typically, for aeronautical applications, information on the lift and drag forces is
essential for this kind of assessment. It is then common to attach to airfoils (and
even to entire aircraft configurations) coefficients which describes their aerody-
namic efficiency, e.g. mainly the lift CL and drag CD coefficients but many other
kind of coefficients exist.

These coefficients may be computed using a near-field or far-field approach
[6, 7] where the first one reflects the body’s perspective while the second one the
flowfield perspective. The near-field approach needs the integration of forces over
the solid shape of the aerodynamic object (O with surface S) into consideration.
The lift and drag coefficients may be defined as follow:

CL =

∮
∂O(p− p∞)nζdS
1
2
ρ∞||U∞||2Sref︸ ︷︷ ︸

pressure component (CLp )

−
∮
∂O(τ ζ · n)dS

1
2
ρ∞||U∞||2Sref︸ ︷︷ ︸

friction component (CLf )

, (1.4)

CD =

∮
∂O(p− p∞)nχdS
1
2
ρ∞||U∞||2Sref︸ ︷︷ ︸

pressure component (CDp )

−
∮
∂O(τ χ · n)dS

1
2
ρ∞||U∞||2Sref︸ ︷︷ ︸

friction component (CDf )

, (1.5)

where, χ and ζ are respectively the directions tangent and perpendicular to the
farfield flow and Sref is a reference surface .

The far-field approach allows the breakdown of the drag coefficient into many
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A. Resmini Chapter 1

other components:

CD = CDp + CDf︸ ︷︷ ︸
near-field

= CDw + CDi +

CDv︷ ︸︸ ︷
CDvp + CDf +CDsp︸ ︷︷ ︸
far-field

, (1.6)

where CDw is the wave drag component (from shock waves), CDi is the induced
drag component2 (from trailing vortex wake), CDv is the viscous drag component
which is composed by the viscous pressure CDvp and friction CDf parts and finally
CDsp is the spurious drag component due to numerical dissipation. For details on
the computation of these coefficients, the reader is suggested to refer to Destarac
[6].

The near-field coefficients are available directly from an elsA computation while
the far-field ones need to be obtained from the ONERA FFD72 code by using a
converged elsA flow solution. For some applications of this thesis (e.g. in Section
4.4.3), the aerodynamic coefficients have been obtained through potential flow
computations with the XFOIL code [8] where only a near-field analysis is available.

1.2 Verification & Validation

Definitions of Verification and Validation (V&V) are given in quality process doc-
uments which differ from one domain to another. Generally speaking, the ver-
ification consists in controlling the compliance of a product with respect to the
specifications given before its development, while the validation consists in verify-
ing the product capability to deliver services for which it has been designed for.
Sections 1.2.1 and 1.2.2 will detail definitions and common practices in a CFD
framework [9].

1.2.1 Verification of a CFD solver

Verification of a CFD solver consists in checking that the code correctly discretizes
and solves the equations of the chosen mathematical model. In particularly, for
a given configuration, it is controlled that the numerical solution obtained on a
mesh hierarchy converges with the expected order to the solution given by the
continuous differential problem while the discretization step tends to zero. Roache
[10] has distinguished the 1- code verification and 2- solution verification in the
verification process. This approach has been largely accepted and it may be found
in the Roy’s methods review [11].

2The induced drag component is assimilated to a spurious drag CDsp for 2D analysis.
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Code verification

The code verification process gathers all elementary checks of the CFD solver at
a fixed discretization. Namely :

1. Unit tests.

2. Comparison of the physical properties of the discretized solutions, i.e. in
CFD for a compressible perfect flow with uniform far-field condition, checks
of the stagnation quantities and of the entropy in the flow field.

3. Comparison of the numerical solution with the continuous one if the latter
is known. In this framework, the more the exact solution is complex, the
more this verification technique is reliable3. The order precision of the nu-
merical scheme may also be verified by comparing the exact solution with
the numerical one obtained from different mesh refinement levels following
Richardson’s theory [12, 13].

4. If the continuous analytical solution is unknown, it is necessary to generate
a manufactured solution. Namely, the numerical solution is interpolated and
injected in the equations of the mathematical model for computing a source
term. This manufactured solution is the solution of the mathematical prob-
lem defined by the original model where on the right-hand-side the source
term appears. It is then possible to compare the numerical solution with the
theoretical solution of the manufactured problem4.

Solution verification

The solution verification process analyses the discretization error through order
and mesh convergences. Roy [11] considered also the rounding and convergence
errors. This checks may be performed based on:

1. Indicators and estimators available for finite element schemes.

2. Mesh hierarchy (minimum three meshes, four in most cases) in order to con-
trol the state variables convergence. The oldest method has been introduced
by Richardson [12, 13]. If the convergence is not monotonic, Richardson
theory fails. Nevertheless, it is possible to define the error bounds through
heuristic formulae, e.g. CGI [10]. A complete verification study must include
also the order convergence analysis based on regular and irregular meshes.

3In incompressible laminar flow simulation, check on the Poiseuille flow does ensure a reliable ver-
ification neither on time discretization nor on space disretization of the momentum equation along the
ax perpendicular to the wall. The Lamb-Oseen flow ensures a more straightforward verification.

4For incompressible flow simulation, the reader can refer to Eça et al. [14]. Examples are given
also in Roy [11].
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3. Schemes with different orders. In this situation, it is necessary to check the
behaviour of the solutions sequence for growing order, e.g. the rise of high-
order methods (for instance Discontinuous Galerkin) in CFD makes this check
quite common.

It is necessary to underline the need of both of these kind of verifications.
Indeed, the solution verification is not able to detect errors given by wrong opera-
tion on physical constant (e.g. division by 2). On the other hand, it is possible to
have errors detectable only on very well refined mesh used only during a solution
verification as mentioned here above.

1.2.2 Validation with a CFD solver

The validation with a CFD solver consists in quantify to which extent the cho-
sen model is a good representation of the real physical problem. The most used
definition for validation reads as follows:

The process of determining the degree to which the model (and its as-
sociated data) is in accurate representation of the real world from the
perspective of the intended uses of the model.

Roache’s contribution in [14] details this definition. Namely, the analysis is deepen
for the following expressions:

1. degree: the requested solution quality is really domain-dependent;

2. real world : this turns to coincide with the experiments for most of V&V
experts;

3. intended use: this expression rises some doubts. In particularly, may a code,
which predicts accurately integral values for a specific application but not
the overall variables field, considered as validated?

In order to deepen the discussion concerning the validation processes, it is nec-
essary to define and distinguish between error and uncertainty. In this context,
several meetings and documents have been done in order to enlighten these issues
(e.g. AIAA Guide G-077-1998, ASME PTC 60 - V&V10, ASME PTC PTC 61 -
V&V20). By referring to Coleman review in [14] and Roache [15]:

1. the error δi is a positive (or negative) real quantity equals to the difference
between a computed (or measured) quantity and its value obtained from the
corresponding physical problem.

2. the uncertainty ui is a majoration of |δi|, i.e. δi ∈ [−ui,+ui].

Other definitions of these two quantities are available. For instance, AIAA (AIAA-
G-077-1998 [16]) terminology later completed by Oberkampf et al. (2002)[17] and
Trucano et al. (2006)[18] defines:
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1. the error as a recognizable deficiency in any phase or activity of the modeling
process that is not due to the lack of knowledge.

2. the uncertainty as a potential deficiency in any phase or activity of the mod-
eling process that is due to the lack of knowledge. It is also possible to
distinguish between aleatory and reducible or epistemic uncertainty. The
first one is a physical variability present in the system or its environment not
strictly due to a lack of knowledge and cannot be reduced. The second one
is a potential deficiency that is due to a lack of knowledge.

A validation approach

The following approach follows the guidelines in [14, 15]. The methodology is ap-
plicable for all mechanical problems where an experimental and a numerical results
of the same problem are available. The approach is shown for the estimation of
aerodynamic global effort through wind-tunnel and CFD simulations.

It is considered the ideal flight of an aircraft in a air-flow domain at a fixed
Mach number, Reynolds number, incidence and sideslip angles. The objective of
this study is the estimation of global aerodynamic coefficients, C, such as the lift
or drag coefficients. This coefficient C may be obtained through wind-tunnel ex-
periments (from hereafter noted as exp) and CFD simulations (noted as sim). The
scatter between these two evaluations is EC = Cexp − Csim.

Introducing the unknown solution of the mechanical problem Cideal, the error
is given by

EC = Csim − Cexp = (Csim − Cideal)− (Cexp − Cideal) = δsim − δexp. (1.7)

Analyzing the term coming from the experimental side, it is possible to express
δexp in the following fashion:

δexp = Cexp − Cideal, (1.8)

δexp = δmes + δcond, (1.9)

|δexp| ≤ |δmes|+ |δcond| ≤ umes + ucond = uexp. (1.10)

The term δexp represents then the limited capability of the measurement devices
(δmes) and the disparity between ideal and experimental flow conditions (δcond, e.g.
inability to produce desired flow conditions, devices altering the flow w.r.t. free
flight). Concerning the numerical side, δsim may be rewritten as follows:

δsim = Csim − Cideal, (1.11)

δsim = δnum + δfp + δinput + δmodel, (1.12)

|δsim| ≤ unum + ufp + uinput + umodel = usim. (1.13)

The error δsim gathers the following terms.
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1. The numerical approximation error δnum. It may be evaluated through mesh
refinement and it should vanish for very small space step size while, for fixed
space step size, δnum should decreases for increasing scheme order (if such
numerical schemes are available).

2. The finite precision algebra error δfp. It may estimated by specific dedicated
tool (e.g. CADNA[19]) and it should cancel at the limit of long mantissa
algebra.

3. The physical modeling error δmodel. It is strictly linked with the chosen
fluid dynamics model. This error decreases for increasing model complexity:
RANS (good for attached flows, access only to averaged flow variables), DES
(accurate except for phenomena at boundary layer scale), LES (accurate but
highly mesh-dependent) and DNS (the most accurate, no modeling error).

4. The input value error δinput. It may disappear if more information is obtained
(e.g. accurate value for wall roughness). This kind of error is estimated
through uncertainty quantification (UQ) methods if the distribution law of
the input parameters is known.

All these errors, δ∗, may be estimated except for δmodel. In this context, the
validation approach leads to the following relations:

δmodel = δsim − δnum − δfp − δinput, (1.14)

= EC + δexp − δnum − δfp − δinput, (1.15)

δmodel − EC = δexp − δnum − δfp − δinput, (1.16)

thus

EC −uexp−unum−ufp−uinput ≤ δmodel ≤ EC +uexp +unum +ufp +uinput. (1.17)

It is clear that some of these terms may vanish, namely for initial non-simplified
model umodel = 0, or for perfectly defined problem, uinput = 0.

It is important to underline that although it is possible to speak about the
verification of a code, it is more correct to speak about the use of a code in a
validation process. The code, together with the experimental evidence, may take
part in uexp, uinput and umodel evaluations but ultimately, it is in the estimation of
unum and ufp where the code is the only operator in the validation approach.

The study of the influence of δinput and uinput on CFD simulations has lately
caught significant attention in the CFD community. Uncertainty quantification
methods are able to assess this problem. Section 1.3 explores same similarities and
differences between V&V and UQ while Chapter 4 is dedicated to UQ methods
with applications to aerodynamic simulations.
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1.2.3 Aerodynamic global coefficients validation

In Section 1.2.2 some details concerning the validation process have been ad-
dressed. In particularly, it has been pointed out the need to bound the range of
applicability of a certain code (i.e. the intended use). It is interesting to overview
the precision sought for global aerodynamic functions [9].

The reference precisions requested by aircraft manufacturers (clients) for WT
tests are unchanged since the 80ies [20]. Table 1.1 shows the precision sought for
the lift, drag and momentum coefficients reported in AGARD 1982 [21] and 1988
[22]. The standard deviation is denoted as σ and if µ̃ is the mean, the interval
[µ̃−2σ, µ̃+2σ] includes 95% of results5. The increments values stand for the scatter
between two different configurations, e.g. two candidate flaps for a project.

Table 1.1: Typical objectives incertitudes for global aerodynamic coefficients in a WT
framework.

Absolute values Increments
Confidence interval std Confidence interval std

(±2σ) (σ) (±2σ) (σ)

CL ±1 · 10−2 (lift-count) 0.5 · 10−2 ±0.5 · 10−2 0.25 · 10−2

CD ±1 · 10−4 (drag-count) 0.5 · 10−4 ±0.5 · 10−4 0.25 · 10−4

Cm ±1 · 10−3 0.5 · 10−3 ±0.5 · 10−3 0.25 · 10−3

Once the desired precision has been defined, it is interesting to see whether the
precision is attained in both WT and CFD applications. First of all, the standard
deviation is analyzed. During the first drag prediction workshop in 2001 [20], 35
WT tests have been compared obtained from three different WTs. Table 1.2 re-
ports the obtained results. It is clear that even experimental results do not attain
the desired precision. Since the long-term objective is to replace WT experiments
with CFD simulations, CFD simulations should aim to obtain the same reference
precision [23] given previously in Table 1.1. The GARTEUR documents allow
us to compare the numerical drag estimation incertitudes from 1988, AG05 [24],
to 2007, AG39 [25]. The values are reported in Table 1.3. In GARTEUR AG05
the simulations are for fully potential and Euler flows while in GARTEUR AG39,
RANS flows have been assed. From this table it is possible to highlight that in
20 years the standard deviation has been just halved and it is still far above the
sought precision.

The analysis may be now focused on the mean of the aerodynamic functions.
For wing/fuselage 3D configurations, the documents DPW-1 2001 [20], DPW-2
2003 [26] and GARTEUR AG39 2007 [25] allow the comparison given in Table 1.4

5For normal distributions.
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for the gap between the mean of the computed values and the experimental ones.
The objective precision is not reached even fixing laminar/turbulent transition.

Table 1.2: Uncertainty level for WT experimental global aerodynamic coefficients.

std (σ)
Test F4 w.r.t. Ref ?

CL 0.24 · 10−2 X [< 0.5 · 10−2]
CD 4 · 10−4 × [> 0.5 · 10−4]
Cm 5 · 10−3 × [> 0.5 · 10−3]

Table 1.3: Uncertainty level for the numerical drag coefficient.

std (σ)
GARTEUR AG05 GARTEUR AG39 w.r.t. Ref ?

(1988) (2007)

CD 10 · 10−4 5 · 10−4 × [> 0.5 · 10−4]

Table 1.4: Comparison of the mean values for experimental and numerical global aero-
dynamic coefficients.

∆[µ̃CFD − µ̃WT ]
DPW-1 DPW-2 GARTEUR AG39 w.r.t. Ref ?
(2001) (2003) (2007)

CL - - −0.7 · 10�2 X [< 1 · 10�2]
CD +7 · 10�4 −3 · 10�4 −7 · 10�4 × [> 1 · 10�4]
Cm −29 · 10�3 −17 · 10�3 +9 · 10�3 × [> 1 · 10�3]

These kind of analysis bring us to some conclusions. Within those, the sought
precision of 1 · 10−4 for CD is really ambitious and quite far from the capability
of commercial CFD code with a large spectrum of applications [23]. It has been
shown that even the WT tests do not reach the required precision given by the
WT clients. The precision of the numerical simulations seem to get closer to the
precision obtained in WT applications. In this context, two provocative conclusions
may be reported from Destarac [6] and Tinoco [27] which may show how it can
still be considered tricky the validation process in an engineering framework:

If your computation predicts drag with an error of 2 to 5 drag counts,
it is a good computation; if the prediction is perfect, something must be
wrong with the computation; if the error is of 20 drag counts, something
may be wrong with the experiment. Destarac
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It is difficult, if not impossible, to put a precise numerical definition on
what is CFD validation and when CFD is ”good enough”; but I know it
when I see it. Tinoco

1.2.4 Example: 2D turbulent flow about airfoil NACA0015

An example of the δsim error of Section 1.2.2 is performed here. In this exercise,
it has been chosen to keep a standard6 approach on the validation process by ex-
cluding δinput and uinput in the analysis. It is then supposed that the problem is
perfectly defined.

The present study addresses the prediction of 2D subsonic turbulent flow about
a NACA0015 airfoil. The computations are carried out by means of RANS simu-
lations. The turbulence closure is assured by a Spalart-Allmaras turbulence model
[1] or the Kok κ − ω model [28]. The ONERA finite-volume compressible CFD
elsA [2] code has been used. The analysis of lift CL and drag CD coefficients has
been carried out. The flow is at M∞ = 0.291, Re = 1.9 · 106 and AoA = 5◦. The
experimental values are CL = 0.53, CD = 0.0086 [29]. The coloured digits repre-
sents the desired precision for lift (red) and drag (blue) coefficients given in Table
1.1 for the confidence interval for absolute values. While the underlined digits is
the desidered precision for the standard deviation σ.

Table 1.5 shows the obtained results for three different meshes: M1, M3 and
M5 with O(0.1M), O(0.4M) and O(1.7M) points respectively. From this three
results, it is possible to have an insight on the δnum. Two turbulence models have
used as mentioned before, this leads to different coefficients estimations, i.e. it
gives an idea δmodel in the context of RANS simulations. The elsA code has been
compiled in single (sp) and double (dp) precision, i.e. δfp. All these results are at
converged solution. On the other hand, Table 1.6 shows the δconv for the M3 mesh
at different convergence level for the SA model compiled in double precision.

1.3 V&V and UQ

The importance of the assessment of CFD simulations reliability has been ap-
proached in several works, e.g. [16, 30, 31, 32], but it is only more recently that
the CFD community started to question about how to quantify the trustworthiness
of CFD simulations. Early works such as [33, 34] meet this issue but it is only
with the establishment of UQ that this problem have been properly addressed.
UQ is considered nowadays as a valuable complement to V&V and always more
frequently it is common to talk about Verification & Validation and Uncertainty

6deterministic, i.e. the introduction of the input values uncertainty would have forced us to use a
probabilistic approach by using the distribution laws of input values as well as stochastic approxima-
tion methods introduced in Chapter 4
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Table 1.5: Drag and lift coefficients comparisons for the NACA0015 turbulent RANS
+ SA flow. Results obtained at converged solution for different meshes, turbulence
models and code precisions.

CL CD

SA sp SA dp KW dp SA sp SA dp KW dp

M1 0.5282 0.5282 0.5196 0.013195 0.013195 0.012142 ↑
M3 0.5270 0.5270 0.5161 0.012639 0.012639 0.012372 δnum

M5 0.5263 0.5262 0.5148 0.012549 0.012537 0.012691 ↓
← δfp → ← δfp →

← δmodel → ← δmodel →

Table 1.6: Drag and lift coefficients comparisons for the NACA0015 turbulent RANS
+ Sa flow at different densitu ρ explicit convergence levels. Computations with SA in
double precision.

M3 Rρ = 10−2 Rρ = 10−3 Rρ = 10−4 ... Rρ = 10−9

CL 0.522872 0.527097 0.527060 ... 0.527055
CD 0.012850 0.012646 0.012639 ... 0.012639

← δconv →

Quantification (V&V&UQ, VV&UQ or VVUQ), e.g. [35, 36]. In which extent UQ
is complementary to V&V, differs from the latter and, more specifically, from the
validation process?

Uncertainty Quantification considers the fluid flow problem as stochastic and
not anymore as deterministic. Reality, including experiments, exhibits fluctuation
around nominal values and typically a confidence level or a probabilistic nature
is attached to experimental values. The latter were then compared to traditional
CFD simulations performed at nominal values. UQ allows to obtain numerical
results in a probabilistic framework which make the comparison between observa-
tions and simulations more sound. Unfortunately, experimental statistics are often
poor and only error bars are available. It is common then to check whether the
experimental values are captured by the numerical probability density function
envelope of the QoI. An UQ process includes 1- the definition and modelisation of
all sources of uncertainty, 2- their propagation through the computational model
and 3- finally the quantification of the uncertainty on the QoI. Figure 1.1 shows a
conceptual diagram of VV&UQ and the interactions between V&V and UQ. UQ
plays manly two important roles.

a) The first one consists in transferring valuable information from observations
to the mathematical model which represents the studied physical phenomenon.
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Figure 1.1: Conceptual diagram for Verification and Validation and Uncertainty Quan-
tification [37] (derived from [38]).

These is often done through a Bayesian approach in a data assimilation frame-
work. For instance, in a fluid dynamics contest, the turbulence model constants
may be modified in order to better fit experimental results and simulations
thanks to experimental evaluations [39].

b) The second use of UQ is as a tool for assessing the reliability of simulations
through the quantification of the uncertainty on the QoI due to the considered
sources of uncertainty. The probability that a certain value of the QoI occurs
may 1- help the decision-maker in the judgement of the trustworthiness of the
CFD simulations, 2- verify whether certain threshold of the QoI may be attained
or not, 3- highlight how the QoI is sensible to the considered uncertainties.

The second use of UQ (i.e. b) is the one exploited in this PhD thesis. In the
following section this choice is equally presented.

UQ may be considered then as a valuable tool in the validation process. Never-
theless, in Figure 1.1, UQ influences also the verification side of V&V. UQ methods
may significantly modify the mathematical model equations and in turn the nu-
merical schemes thus, they influence the verification process. In this case, the
deployed stochastic approximation method is called to be intrusive since the fluid
flow equations have now a stochastic nature. This may be avoided by using non-
intrusive methods which consider the CFD model as a black-box. The system of
equations however must be well-posed over all the parametric uncertainty range
thus, with the non-intrusive approach, the CFD model is exploited in an oper-
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ating regime close to the one for which the code has been designed. Chapter 4
is dedicated to UQ methods and describes some of the available stochastic ap-
proximations. Notwithstanding, new approaches have been developed in order to
couple goal-oriented discretization error control and stochastic problems. A solu-
tion verification approach for the adaptation of both the mesh and the way random
variables are approximated have been presented by Almeida et al. [40] for linear
stochastic advection-diffusion models. Palacios et al. [41] have introduced a new
robust grid adaptation technique which minimize the discretization error over the
variations range of the uncertain parameters. The deployment of these coupled
methods is generally expensive and at the moment they seem not affordable for
aeronautical engineering applications involving RANS flows with an high number
of uncertain parameters. In this PhD thesis, the control of the discretization error
and of the input values uncertainty on the QoI has been kept separated.

1.4 From the VV&UQ to the sensitivity analysis in a fixed-
model approach

In Section 1.2.2, the four main errors that compose the δsim have been intro-
duced. From an engineering point of view, it is reasonable to consider δfp <<
δnum,model,input. It is common practice to compile and run CFD code in double
precision. The example in Section 1.2.4 has shown for instance that the impact of
the simple versus double precision compilation may negligible. The fluid dynamics
model is undoubtedly the elephant in the room of all CFD applications and studies
(also in the example given in Section 1.2.4). The results obtained from one model
to another may differ significantly as the complexity of the model itself (RANS,
DES, LES, DNS). Within the four before mentioned errors, δmodel is the closest to
physical consideration and evaluations.

The main physical approximations exploited in this manuscript are linked with
the derivation of the RANS equations coupled with an eddy viscosity turbulence
model: the Reynolds decomposition and the Boussinesq hypothesis. These as-
sumptions, as long as with other turbulence hypothesis, simplify the physical com-
plexity and allows an easier and cheaper approach to CFD while decreasing the
physical prediction accuracy. A typical example in external aerodynamics is the
flow detachment prediction. Considering an upward stroke in a pitching airfoil, it
is well known that all turbulence models fail in correctly predict the flow behav-
ior at high angles of attack [42]. These models indeed overestimate the Reynolds
stresses, overestimate the lift, fail in correctly compute the drag and show a delay
in the pitching moment inversion thus an overestimation of the stall angle [43].
These models do not take into account the laminar and transitional character of
the flow, i.e. the boundary layer is considered fully turbulent. Many turbulence
model modifications exist which sometimes improve the flow prediction. In this
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context, it is also useful to recall the importance of the δnum influence on the as-
sessment of δmodel. It is known indeed that the space resolution (mesh size) has a
great impact on the detachment phenomenon prediction. A low space resolution
induces an underestimation of the lift which erroneously leads to a better agree-
ment with the experimental evidence [43]. It is then essential to carefully scrutinize
the published numerical studies concerning turbulence modeling in order to rule
out misleading conclusions.

The objective of this PhD thesis is to keep the discussion closer to the numeri-
cal side of CFD codes. In this context, if the objective is to assess the sensitivity of
a code where the latter is considered as a black-box including the physical model,
it is then necessary to evaluate δnum and δinput by ignoring δmodel in the analysis.
The obtained discussions are valuable to get some insight on the sensitivity of a
given particular model with respect to the selected uncertainties and sources of
errors. The sensitivity with respect to the mesh and to the input values is assessed.

The extensive use of Computational Fluid Dynamics (CFD) models and re-
sources in the aeronautical community has required the need of accurate predic-
tions. Often, only some quantities of interest (QoI), e.g. forces and moments,
rather than the overall flow-field, are considered in aerodynamic simulations. In
this framework, δnum is addressed through the development of goal-oriented mesh
adaptation techniques which has seen a rapid growth since the mid 90’s. Most of
the time, these methods involve the adjoint vector of the QoI. Chapters 2 intro-
duces gradient computations methods for local search approaches in aeronautical
design. These gradient methods are exploited in the mesh adaptation techniques
presented in Chapter 3.

On the other hand, δinput is associated with input parameters discretized with
random variables from a probability space, the system becomes stochastic and
response sampling for infinite values of the parameters becomes intractable. The
numerical challenge is then to represent the parameter-dependent solution or re-
lated QoI of the system with a continuous approximation (i.e. surrogate) over the
entire range by relying only on discrete system evaluations (or realizations) for
(possibly few) different values of the parameters. These non-intrusive approaches,
despite relying on samples, may therefore be seen as functional approximations of
the QoI. Several uncertainty quantification methods exist. Chapters 4 addresses
this analysis.
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Local search methods for design
in aeronautics and gradient
computation methods

Numerical optimization aims at locating the minima of a regular function (called
objective function) on a finite-dimensional design space, while satisfying a certain
number of constraints (expressed as inequality verified by the so-called constraint
functions). More precisely, local optimization aims at finding a local optimum in
the neighbourhood of an initial guess, whereas global optimization aims at finding
the global optimum on the whole design space. These problems are, of course,
the mathematical counterparts of mechanical optimization problems - like drag
minimization of an aircraft. Section 2.1 introduces the optimization problem as
well as some of the most exploited methods in aeronautics. These methods are
often based on gradients of forces and moments with respect to design design pa-
rameters and their computation is the topic of Section 2.2. The implementation
of the discrete adjoint in the elsA code is introduced in Section 2.3 and the new
code developments of this PhD thesis framework are explained in Sections 2.4 and
2.5. The gradient precision improvement is shown through examples.

Nomenclature

Abbreviations

5p-cor 5 points corrected
Adj Discrete adjoint method
AoA Angle of Attack
CFD Computational Fluid Dynamics
FD Finite Differences
FV Finite Volume
LE Leading Edge

Lin Discrete direct differentiation
method

KKT The Karush-Kuhn-Tucker condition
KW Wilcox k − ω turbulence model
QoI Quantity of Interest
RANS Reynolds-Averaged Navier-Stokes
SA Spalart-Allmaras turbulence model
TE Trailing Edge
THL THin Layer approximation
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V&V Verification and Validation

Greek letters

α, αl Shape parameter
δ Increment
λi Adjoint vector of Gi
Λ, Λm Adjoint vector of J , Jm
µ Dynamic viscosity
µ̄T Frozen turbulent dynamic viscosity
ν̃ Turbulent kinematic viscosity
ρ Density
τ Viscous stress tensor
ω Vorticity vector

Latin letters

C Turbulent cross-diffusion term
CL Lift coefficient
d Descent direction
Dα Design space
D Turbulent destruction term
E Total energy
F FV flux
G, Gi Constraint function
H Hessian matrix of J
J , Jm Aerodynamic function as a

function of αl
J, Jm Aerodynamic function as a

function of W and X
J , Jm Aerodynamic function as a

function of X only
L Lagrangian functional
M Mach number

n Unit normal vector
NG Number of constraint functions
NJ Number of objective functions
Nl Number of shape parameters
NW Size of vectors W and R
P Turbulent production term
R Discrete residual vector
Re Reynolds number
S Surface vector
S Turbulent source term
S Surface mesh
T Temperature
u, U Velocity vector
V Mesh cell volume
W Conservative variables vector /

flow solution
X Mesh coordinates

Superscripts

T Transpose
lin Linearized

Subscripts

c Cell centre
c Convective
L Lower bound
i Cell interface
T Turbulent component
U Upper bound
v Viscous / diffusive

2.1 Local optimization through gradients

Numerical optimization for airplane design was used almost as soon as simulation
codes appeared. The aerodynamic optimizations carried out by G.N. van der
Plaats at NASA in the mid 70’s illustrate this early interest in optimization [44].
At that time, non gradient-based (e.g. simplex method) as well as gradient-based
(e.g. descent methods) approaches were used for 2D and simple 3D configurations.
The estimation of the gradients for descent methods was computed through finite-
differences. Since then, the framework of aerospace optimization has known at
least three drastic extensions.

1. Several global optimization methods have been defined and intensively used,
e.g. evolutionary algorithm, particle swarm, ant colony, simulated annealing
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et cet.

2. Surrogate functions have been used for a part of the evaluation of the global
optimization methods leading to significant cost reductions, e.g. neural net-
work, Kriging, polynomial regression, support vector machine et cet.

3. Adjoint and direct differentiation method have been defined and studied in
order to compute the needed gradients for descent algorithms.

Given an aerodynamic object where the geometry is subject to Nl shape param-
eters αl, l ∈ [1, Nl], it is denoted J (αl) the objective function while it is denoted
Gi, i ∈ [1, NG], the NG constraint functions. The vector of shape parameters αl is
supposed to vary in the design space Dα, a parallelepiped of RNl . It is supposed
that the constraint functions are negative at admissible design points.

The local optimization problem reads as follows: seek for α∗ in Dα such that
J (α∗) = minJ (α) on Dα where Gi(α∗) ≤ 0, ∀i ∈ [1, NG].

2.1.1 The Karush-Kuhn-Tucker condition

For the unconstrained optimization of a C2 function of RNl , classical conditions of
existence for minima read as follow.

1. Local optimum located in α∗,∇J (α∗) = 0 is a necessary condition. ∇J (α∗) =
0 and H(α∗) positive definite is a sufficient condition, where H is the Hessian
matrix of J .

2. Global optimum located in α∗,∇J (α∗) = 0 is a necessary condition. ∇J (α∗) =
0 and H(α) positive definite on RNl is a sufficient condition.

In order to define the necessary condition for optimality in a constrained prob-
lem, it is necessary to define the design space Dα. The latter is supposed to be a
parallelepiped for the sake of simplicity:

Dα = [α1,L, α1,U ]× [α2,L, α2,U ]× [α3,L, α3,U ]× ...× [αNl,L, αNl,U ], (2.1)

where L and U define the lower and upper bounds. The domain bounds are
rewritten as 2Nl additional constraints:

GNG+1(α) = α1,L − α1

GNG+2(α) = α1 − α1,U

GNG+3(α) = α2,L − α2

...
GNG+2Nl(α) = αNl − αNl,U

(2.2)
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The Karush-Kuhn-Tucker (KKT) necessary conditions for an optimization prob-
lem under inequality constraints are defined as follow:

α∗is an admissible state
∇J (α∗) + Σλ∗i∇Gi(α∗) = 0
λ∗iGi(α∗) = 0 λ∗i ≥ 0.

(2.3)

Where the third line states that only constraints attaining the limit value zero
may have their gradient included in the linear combination in the second line. By
introducing a Lagrangian L(α, λ1, · · · , λNG) = J (α) + ΣλiGi(α), the KKT condi-
tions can be rewritten:

α∗is an admissible state
∇αL(α∗, λ∗1, · · · , λ∗NG) = 0
λ∗iGi(α∗) = 0 λ∗i ≥ 0.

(2.4)

The KKT condition is a necessary condition for optimality. This condition is
the counterpart for constrained problems of the necessary condition ∇J = 0 for
unconstrained ones. It is a sufficient condition only when objective and constraint
functions are convex.

2.1.2 Descent methods

The aim of this section is not to review all the available descent methods but rather
to introduce two of the most still exploited ones: the conjugate gradient and fea-
sible direction methods. In many algorithms of multi-dimensionnal optimization,
after a descent direction dk has been defined, a one dimensional minimization
along dk is performed. This means that a step t is sought to diminish significantly
q(t) = J (αk + tdk). A good line-search is obviously desirable, but the number of
exact evaluations of J must remain as low as possible : the goal is not to find
the optimal t > 0 at an intermediate step but to reduce the objective function
J efficiently at each iteration. Conversely a bad line-search can slow down the
global algorithm and a compromise must be found between the performance of
the line-search and the number of evaluations of J . This minimization along a
descent direction during multi-dimensionnal optimization is one of the reasons for
the interest in 1D-minimization.

These methods are used in current aerodynamic design optimizations at ON-
ERA. Méheut et al. describe some gradient-based single and multi-point applica-
tions using the elsA code for airfoil and wing optimization for inviscid flow [45] as
well as wing planform optimization for RANS flow [46]. An efficient application of
these approaches is given by Minelli et al. [47] for the reduction of both sonic boom
and drag for supersonic jet. Aeroelastic applications are also worth considering
for the optimization of a flexible transport aircraft wing [48].
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Conjugate gradient method

The idea behind the conjugate gradient methods comes from the analysis of the
behaviour of the steepest descent for the specific case of positive definite quadratic
forms (J (α) = 1

2
αTHα + bTα). In this case, the conditioning of positive definite

matrix H strongly affects the robustness and convergence speed of the steepest de-
scent. To improve robustness, conjugate gradient methods use a descent direction

dk orthogonal to dk−1 in the sense of H, i.e.
(
dk−1

)T
Hdk = 0. Thus

dk = −∇J (αk) + βkdk−1 βk =

(
∇J (αk)

)T
Hdk−1(

dk−1
)T
Hdk−1

. (2.5)

In this simple case (positive definite and constant matrix H), the search of
the unique minimum of J is equivalent to the resolution of the linear system
Hα + b = 0 (search for the unique point where gradient of J is zero) and it can
be proven that the algorithm converges to the unique solution in Nl or less steps.

For non quadratic cases, βk can be computed through the Fletcher-Reeves or
Polak-Ribiere formulae. The first one is based on an other formula of βk in the

quadratic positive definite case βk = ‖∇J (αk)‖2
‖∇J (αk−1)‖2 which can be directly applied to

a non-quadratic function as it does not refer anymore to the matrix H:

βk =
‖∇J (αk)‖2

‖∇J (αk−1)‖2
(2.6)

The second extension, proposed by Polak and Ribiere in 1969, reduces also to the
same algorithm in the quadratic positive definite case. It is known to lead to a
more efficient algorithm for specific applications. The formula is:

βk =
‖∇J (αk)‖2

‖∇J (αk−1)‖2
−
(
∇J (αk)

)T ∇J (αk−1)

‖∇J (αk−1)‖2
. (2.7)

Once the βk may be computed, the conjugate gradient method follows the
Algorithm 1.

Feasible direction method

The feasible direction method works directly on the non-linear equations of the
problem. Its goal is to build a sequence of points α(p) such that α(p) = α(p−1) +
ld(p) where the displacement along direction d leads to lower values of both the
objective and active constraint 1 functions. Once d has been defined, the factor l

1all constraints satisfying Gi(α(p−1)) = 0
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Data: We set k = 0 and d−1 = 0; an initial iterate α0 and a stopping tolerance ε
is given

Result: -
while ‖∇J (αk)‖ ≥ ε do

Compute dk = −∇J (αk) + βkdk−1

Find t∗ by line-search on q(t) = J(αk + tdk)
Update current iterate: αk+1 = αk + t∗dk

Set k = k + 1
end

Algorithm 1: Conjugate gradient algorithm

is determined by a monodimensional optimization. The vector d must satisfy

∇J (α0) · d ≤ 0, (2.8)

∇Gi(α
0) · d ≤ 0 where ∀i Gi(α

0) = 0. (2.9)

Figure 2.1 shows the vector d and how these requirements are satisfied in the case
where Nl = 2.

��������������������������������������������������������������������������������
� �������� �

��

� �����������������
�

� ��������������������������������������� �
���� �� ����������������������������������������������

�� � ��
�� � � �� � �� � �

� � � � � � � � �
�

� � � � � �

� � �� � � � � � � � � � � �
� �

� � � � � � � � �

� � � � � � � � � � �
� �

� � � � � �

�������������������������

����������������������� ����������� ��������� ����� ������������������
���� ������������ �������������� ���� ���������� ����������� ���� ����� �����
���������� ���������� ������� ���� ����������� ���������� �������������
���� ���������������� �������������������� ������������������ ����� ����
���������������������������������������������������������������������
����������������������������������������

��������������������������

����������������������������������������������������������������������
� ����������� �� � ��� ������������������������������������

����� �� � ������ ��� ���������������������� ������������������ �����������
������������ ����� ������������ ����������� � � ��

�� ��� ������ �� � ����
������������������������� � ������������������������������������������
���������������������������������������������� �� �������������������������
�������������������������������k������������������������������� �� ������
�������� � �� �� �� � ����� � � � � � �� ��� � �

� �� � � �

������������������������������������������� �� �����������������������
�������������������������������������������� ��� ��������������
����������������������� �� �� ��� ���������������������������������������

� � �� �� ���� � � � ����� � �� � � � � �� � �

� �� � � � ��
���������������������� � ����������������������������������������������
������������������������������������������������ � ���������������������
��������� � �� � � � � � �� � �

� � � �� � � � �

�������������������������������������������������

������������������������������� � ����������������� � ���� � �������������
�������������������������������������������������������������������������

��������� ������ �� ��������
� �� �� �� � ����

� �� � � � � � �� � �

� � � �� � � �

����������� ��� �� � ����� ������������������ ����� ��
� �����������������

���������������������������������������������� � �������������������
��������������������������������

�������������������������

����� �������������������
�
�����������������������

�������������������������������������
� ����� �� �������������������������� �����������
� � �� �� �� � �����
� � � � � � �� ��� � �

� � �� � � �

� ����������������������� � � � �� �� � � ��

� ����������������������� � �� � �� � ��������� �� �

����������

��������������������������������������

������������������������������������������������������������ � ����������
������������������������������������������� � �� � �������������������
����������������

�����������������������
�

� � � � � ��
�

� � �� � � � � � � �

������������������������� � �� � � ��� � �

� � �� � �

������ � � ��� �� ��������� ���������������� ������ ��� ���� ���������������� ��
����������������������������������������������������������������������
���������������������� � ���������������������������������������������������
����������� � � ���

�� ������������������������������������������������
������ � � �������������������� � ��� ������ ���������� ������ ���������
�����������������������������������������������������������������
����������������������� � ��

��������������������������������

����� �������������������� � � ����������������������� ����������������
������������������������� ��

�������������������������������������
� ����� �� ����������������
� � � � � � �� ���� � �� � � � � � � �

� ����������� � �� � � ��� � �

� � �� � �
� ����������������������� �� � �� ��������� �� �

� ������ ��� �������������������������������
����������

��������������������������������������������

�����������������������������������������������������������������������
������������ �������� ������� �������������� ��������� ��� ��������� ���������
��� ���� ������� ���� ����������������� �� ��������� ������������� ��� ���� ���
�������������������������������������������������������������������

�

���������������
������

������
������

��������
������

�

� ��

�� ��

� �� �����

� � � ��

�� � �� �

�

�

Figure 2.1: Principle of feasible direction search.

The tricky point is the determination of the vector d ensuring the best descent.
For a simple two dimensional problem (Nl = 2) with one active convex constraint
G1, it is easy to check that the minimisation ∇J(α0) · d with ∇G1(α

0) · d ≤ 0 will
result in a vector d with a non-admissible state α1. To solve this issue, scalar
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factors θi are included in the problem:

∇Gi(α0) · d+ θi ≤ 0 where θi > 0 and ∀i Gi(α0) = 0. (2.10)

The value of θi is eventually linked with the one of ∇J (α0) ·d. Algorithm 2 shows
the research of the best descent direction. Obviously, if Gi is a linear constraint
then θi = 0. For non-linear constraints, the simplest choice is θi = 1. More complex
choices exist [49].

Data: Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.
Result: -
while KKT-conditions not satisfied do

Find dk which maximizes β;
subject to ∇J (αk) · dk + β ≤ 0;
∇Gi(αk) · dk + θiβ ≤ 0 where ∀i Gi(αk) = 0 and dk bounded;
Compute optimal step t minimizing q(t) = J (αk + tdk) ;
Update αk+1 = αk + tdk;
Set k = k + 1.

end
Algorithm 2: Feasible direction method

2.2 Gradient computation methods

The previous section has shown how the gradients of the objective function with
respect to the shape parameters are needed for classical local search methods for
design in aeronautics. In this Section, the main discrete gradient computation
methods are presented.

The notation follows the one introduced in Section 2.1. As concerning the
numerical scheme, the discretization of the Navier-Stokes equations leads to a
nonlinear equations system defined by

R(W ,X) = 0, (2.11)

where R represents the discrete residual vector on each cell, W is the steady flow
solution (size NW ) and X defines the mesh coordinates. In order to compute first
order derivatives, it is assumed that:

1. X is C1 regular, function of αl;

2. R is C1 regular w.r.t. its two vector arguments;

3. det[∂R/∂W ](W ,X) 6= 0 where R(W ,X) = 0 .
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In this framework, the implicit function theorem ensures thatW (αl) is a C1 regular
function of αl. The objective function read as follow

J (αl) = J(W (αl),X(αl)). (2.12)

Given a descent algorithm, only one objective function is considered under several
constraints. Thus for Jm with m ∈ [1, NJ ], it is necessary to run NJ -times the
chosen descent algorithm.

There exists mainly three methods for the discrete gradient computations:

1. Finite differences (FD): it implies at least Nl non-linear computations of size
NW ;

2. The discrete direct differentiation method (Lin): it needs the resolution of
Nl linear systems of size NW ;

3. The discrete adjoint method (Adj): it requires the resolution of NJ linear
systems of size NW .

In the aeronautical community, it is common to have few objectives and/or con-
straints (NJ) while having several dozens (or even hundreds) of design parameters
(Nl). It is reasonable then to consider the discrete adjoint method more attractive.

2.2.1 Finite differences - FD

The finite differences method is the oldest one and does not require any specific
coding in the CFD solver. A finite difference step size is chosen (δαl) and the
shifted meshes (X(αl ± δαl)) need to be constructed. The corresponding flows
W (X(αl ± δαl)) are computed. The derivative of the objective functions is then
given by

dJm
dαl

=
Jm(W (αl + δαl),X(αl + δαl))− Jm(W (αl − δαl),X(αl − δαl))

2δαl
. (2.13)

Special care needs to be taken while choosing δαl in order to obtain valuable
derivatives of the objective functions. Moreover, the computation of X(αl ± δαl)
is often replaced by X(αl)± δαl dXdαl for storage saving purposes.

2.2.2 The discrete direct differentiation method - Lin

The discrete direct differentiation method consists in resolving directly the follow-
ing linear system obtained from the derivation of equation (2.11) w.r.t. αl:

∂R

∂W

dW

dαl
= − ∂R

∂X

dX

dαl
, (2.14)
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where the derivative dW /dαl is the flow sensitivity w.r.t. the shape parameter
αl. The right-hand side of (2.14) requires first the solution of the flow equations
and it is computed through finite differences while the Jacobian matrix ∂R/∂W
is evaluated at steady W (αl). The derivative of the objective functions is then
given by

dJm
dαl

=
∂Jm
∂X

dX

dαl
+
∂Jm
∂W

W

dαl
, (2.15)

where dX/dαl is known and ∂Jm/∂X and ∂Jm/∂W are obtained from the ON-
ERA FFD72 code [6]. The flow sensitivity dW /dαl is implemented in the lineari-
sation optimisation module of elsA.

2.2.3 The discrete adjoint method - Adj

In the discrete adjoint method scheme, in order to compute the derivative of the
function Jm(αl) with respect to αl, a Lagrangian functional is introduced:

Lm(W ,X,Λm) = Jm(W ,X) + ΛT
mR(W ,X), (2.16)

where Λm is the Lagrange multiplier (or adjoint vector) for the objective func-
tion Jm. Given the before mentioned hypothesis, it is possible to define the
aerodynamic function Jm as a function of the mesh only, i.e. Jm(X(αl)) =
Jm(W (X(αl)),X(αl)).

The Lagrange multiplier is then the solution of dLm/dW = 0:

ΛT
m

∂R

∂W
= −∂Jm

∂W
. (2.17)

The right hand side of (2.17) requires first the solution of the flow equations and
it is computed through analytical differentiation while the Jacobian matrix in the
left hand side is built at steady solution. The derivative of objective functions is
then given by

dJm
dαl

=
dLm
dαl

=
∂Jm
∂X

dX

dαl
+ ΛT

m

∂R

∂X

dX

dαl
=

(
∂Jm
∂X

+ ΛT
m

∂R

∂X

)
dX

dαl
. (2.18)

In brackets it is possible to identify:

dJm
dX

=
∂Jm
∂X

+ ΛT
m

∂R

∂X
, (2.19)

where the first term (∂Jm/∂X) represents the direct dependency of Jm to the
mesh nodes location and the second term (ΛT

m(∂R/∂X)) corresponds to the flow
field modification on the support of Jm due to a change of mesh nodes location at
converged solution (R = 0).
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In order to avoid the storage of the mesh sensitivity w.r.t. design variables,
Nielsen and Park [50] used the implicit, D(X,S) = 0, or explicit, X = X(S),
dependence between X and S, where the latter is the surface mesh. In the first
case the equations read as follow

ΛT
m

∂R

∂W
= −∂Jm

∂W
, (2.20)

ΓT ∂D

∂X
=

(
∂Jm
∂X

+ ΛT
m

∂R

∂X

)
=
dJm
dX

, (2.21)

dJm
dαl

=

[
ΓT ∂D

∂S

]
dS

dαl
, (2.22)

while for an explicit dependence, the following equations replace equation (2.18):

ΛT
m

∂R

∂W
= −∂Jm

∂W
, (2.23)

dJm
dαl

=

[
dJm
dX

dX

dS

]
dS

dαl
. (2.24)

Therefore, the dJm/dX terms are the standard outputs of a modular memory
efficient adjoint solver where the complex parametrization (i.e. dX/dαl) is not
addressed anymore. The proposed goal-oriented method is based on this quantity.
The mesh refinement indicator is described in Chapter 3. In Sections 2.4 and 2.5,
the linearization of critical terms that where missing in the linearisation and in
the adjoint optimisation module of elsA are reported.

Code verification

Finite differences is a good tool to verify the output of equation 2.18 while test
based on shifted meshes for independent nodes displacements is an appropriate
approach for verifying equation 2.19. A deeper verification of an adjoint code
may be more tricky. If in the same gradient computation solver, there exists both
the discrete direct differentiation method (Lin) and the discrete adjoint method
(Adj), it is then possible to verify the adjoint one by duality test. Assuming that
the direct differentiation method is verified2, the term ΛT

m
∂R
∂W

may be checked as
follows

∀(U, V ) ∈ RNW

(
UT ∂R

∂W

)
Adj

· V = UT ·
(
∂R

∂W
V

)
Lin

. (2.25)

This technique allows the verification even of single operators at a time (convective
mean flow flux, diffusive mean flow flux et cet.). The adjoint implementations
introduced in the following sections have been verified in this way.

2The verification is straightforward since the flow sensitivity dW /dαl may be directly compared
w.r.t. FD computations.
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2.3 Differentiated systems of equations

2.3.1 Solution of the direct and adjoint linear systems

The Jacobian matrix ( ∂R
∂W

) (as defined in the previous section) and its transpose
are large, sparse, multi-banded matrices. Thus, their inverse can not be computed
by a direct method, at least for large 2D and 3D problems. Some kind of itera-
tive strategy (conjugate gradient method, relaxation) has to be implemented. A
classical strategy consists in solving the linear system using a Newton-type or re-
laxation algorithm. An approximate Jacobian, noted ( ∂R

∂W
)(APP ) appears on the

left hand-side of the algorithm equation. This matrix can be equal or very similar
to the approximate Jacobian used as implicit matrix for steady state computations
with backward-Euler schemes. On the right-hand side of the algorithm equation
is the term that has to be driven to zero. The true Jacobian ( ∂R

∂W
) appears in

that right-part of the equation. When considering a complicated set of equations
(RANS equations for exemple), it can by replaced by an accurate approximation
noted ( ∂R

∂W
)(ACC). The equation for the adjoint method reads as follows

∂R

∂W

T (APP ) (
Λ(l+1)
m −Λ(l)

m

)
= −

(
∂R

∂W

T (ACC)

Λ(l)
m +

(
∂Jm
∂W

)T)
(2.26)

while for the direct differentiation method reads

∂R

∂W

(APP )
((

dW

dαl

)(l+1)

−
(
dW

dαl

)(l)
)

= −

(
∂R

∂W

(ACC)dW

dαl

(l)

+

(
∂R

∂X

dX

dαl

)
FD

)
(2.27)

where (l) is the iteration index of the Newton-relaxation method.

2.3.2 State of the differentation in the elsA code

Equations systems

The Euler equations are fully linearised while concerning the RANS equations, it
is possible either to choose the differentiation of only the five mean flow equations
without differentiating the turbulent dynamic viscosity µT , i.e. equation (2.32)
(frozen µT assumption, µ̄T ) or the fully differentiation of the equations system
including the turbulence model (µlin

T ). The available linearized turbulence models
are Spalart-Allmaras [1] and Wilcox k − ω (KW) [51]. An example of how the
linearization of the turbulence model affects the gradient computation precision is
shown in Section 2.3.3.
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Fluxes and source terms

For the mean-flow components, the differentiation w.r.t. the conservative variables
(flowfield) and the geometry is available for the Roe flux [3] (first and second or-
der with MUSCL approach [4] with van Albada limiter [5]), centred flux (either
skew-symmetric or divergence form) and viscous flux with a gradient at cell-centres
corrected at interfaces (5p-cor)3. Concerning the turbulent quantities, the differ-
entiation w.r.t. the conservative variables (flowfield) and the geometry is available
for the first order Roe flux, viscous flux with 5p-cor formula and the chosen tur-
bulence model (SA4 or KW5) source terms.

2.3.3 Verification on a RAE2822 airfoil

x

z
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Figure 2.2: Structured C-mesh for the RAE2822 airfoil.

The fully turbulent flow over a RAE2822 airfoil is considered. The turbulence
closure is ensured by the Spalart-Allmaras model [1]. The flow is at Re = 7.52 ·106

based on the chord, M∞ = 0.73 and AoA = 2.3◦. The mesh is depicted in Figure
2.2. The considered shape parameter α is an angle of rigid rotation around the
leading edge (LE). The influenced of the linearization of the turbulence model is

visible in Table 2.1 where the
dCLp
dα

and
dCDp
dα

are reported. Namely, the precision

highly increases with the µlin
T approach. Please note also that the results obtained

from the discrete direct differentiation and the adjoint methods coincide.

2.4 Linearization of the viscous mean-flow 5p-cor fluxes
w.r.t. conservative variables

The discussion will be perfomed only on the second to fourth components of the
mean-flow viscous fluxes. The same applies for the fifth and sixth components,

3The derivation w.r.t. the flowfield is the new code development explained in Section 2.4.
4The derivation w.r.t. the geometry is the new code development explained in Section 2.5.
5The derivation w.r.t. the geometry is not available at the moment.
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Table 2.1: RAE2822.
dCL,p
dα and

dCD,p
dα obtained from Lin and Adj computation with

both µ̄T and µlin
T .

Method
dCL,p
dα [·10−1] Rel. Err. %

dCD,p
dα [·10−3] Rel. Err. %

FD - 1.703 - 5.688 -

Lin µ̄T 1.124 34 4.749 17
Adj µ̄T 1.120 34 4.780 16

Lin µlin
T 1.694 0.53 5.714 0.46

Adj µlin
T 1.691 0.70 5.724 0.63

i.e. T and ν̃. The viscous mean-flow 5p-cor fluxes F vi is given by the following
relations:

∇ui =
1

1
2
(Vcp + Vcm)

1

2

(
(||Si||+ ||Sip||) · niucp − (||Si||+ ||Sim||) · niucm

)
(2.28)

∇u5p-cor
i =∇ui+

+
1

1
2
(Vcp + Vcm)

1

4

(
(ucpp + ucp)||Sipp|| · nipp − (ucpm + ucp)||Sipm|| · nipm+

+ (ucmp + ucm)||Simp|| · nimp − (ucmm + ucm)||Simm|| · nimm
)
, (2.29)

τ = −2

3
µc

(
∇u5p-cor

i

)
I + µc

(
∇u5p-cor

i + (∇u5p-cor
i )T

)
, (2.30)

F u
vi

= τ · Si. (2.31)

The derivation w.r.t. the conservative variables of F u
vi

needs special care. While
being on a interface i of Figure (2.3), it is necessary to have access to all conser-
vative values stored in cells cm, cp, cmm, cpm, cmp and cpp. In the current elsA
code implementation, given an interface i, it is not possible to know the nature
(i.e. boundary, internal interface joins) of interfaces imm, ipm, imp and ipp. For
this reason, the derivation is done in two consecutive steps:

1. the derivation of all the green flux formulae involved in the ∇u5p-cor
i compu-

tation, e.g. (ucpp + ucp)||Sipp|| · nipp of equation (2.29), is performed for all
interfaces of the mesh;

2. then the derivation of ∇u5p-cor
i and F u

vi
is addressed.

In the previous implementation of elsA, the viscous mean-flow 5p-cor fluxes were
not fully linearized. The so-called thin-layer approximation (THL) was hold.
Namely, the correction defined in equation (2.29) was not taken into consider-
ation during the linearization thus only (2.28) was differentiated. This allowed a
more straightforward derivation although introducing errors.
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Figure 2.3: 2D structured mesh stencil for viscous 5p-cor flux at an interface i.

2.4.1 Verification on a NACA0015 airfoil
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Figure 2.4: Structured C-mesh for the NACA0015 airfoil.

The proper linearization of the viscous mean-flow 5p-cor fluxes may be veri-
fied through the comparison of the flow sensitivity w.r.t. the shape parameter,
denoted dW /dα, obtained from the linearized Navier-Stokes equations (Lin) and
from finite differences (FD). The fully turbulent flow over a NACA0015 airfoil is
considered. The turbulence closure is ensured by the Spalart-Allmaras model. The
flow is at Re = 1.955 · 106 based on the chord, M∞ = 0.291 and AoA = 10◦. The
mesh is depicted in Figure 2.4. The considered shape parameter is an angle of
rigid rotation around the trailing edge (TE). The FD results have been obtained
through a 5-point formula.

Figures 2.5 and 2.6 show the relative percentage error between the computed
flow sensitivity and the FD one w.r.t. the domain-averaged conservative variable
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into consideration, i.e. |dρ/dαLin− dρ/dαFD|/|ρ̄|. In order to show the asset given
by the full linearization of the viscous mean-flow 5p-cor fluxes, the error given by
the previous implementation based on the thin-layer approximation (THL) is also
given. It is possible to notice the sharp decrease of the relative error while using
the full linearization for the ρ, ρu6 and ρE sensitivities. Concerning dρν̃/dα, the
overall error is reduced as well but some issues have arisen at the interface join in
the wake. The author believes that this behaviour is not linked to the linearization
of fluxes itself, but on the numerical treatment of this interface.

The corresponding adjoint counterpart for this implementation has been equally
coded and verified through duality tests.

6The same applies for ρw
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(a) ρ sensitivity. THL approximation.
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(b) ρ sensitivity. Full linearization.
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(c) ρu sensitivity. THL approximation.
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(d) ρu sensitivity. Full linearization.

Figure 2.5: NACA0015. Relative percentage error of the computed flow sensitivity
w.r.t. a TE rigid rotation. Comparison of THL approximation and full linearization.
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(a) ρE sensitivity. THL approximation.
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(b) ρE sensitivity. Full linearization.
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(c) ρν̃ sensitivity. THL approximation.
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(d) ρν̃ sensitivity. Full linearization.

Figure 2.6: NACA0015. Relative percentage error of the computed flow sensitivity
w.r.t. a TE rigid rotation. Comparison of THL approximation and full linearization.
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2.5 Linearization of the SA turbulence model w.r.t. the
mesh coordinates

In this thesis, the Spalart-Allmaras (SA) turbulence model [1] is considered. Re-
calling equations (1.1) and (1.2) of Chapter 1, the sixth steady RANS equations
reads as follows:

∮
∂V

(
ρν̃UT − 1

σ
(µ+ ρν̃)∇ν̃T

)
· ndS −

∫
V

SdV = 0 (2.32)

where ρ is the density, U = (u, v, w)T the velocity vector and ν̃ the kinematic tur-
bulent viscosity which is defined by the turbulence model, in this case SA. V is the
cell volume and the unit normal vector to ∂V is denoted n. S is the source term
composed by a production P , destruction D and cross-diffusion C terms. As men-
tioned earlier, the analytical differentiation of R w.r.t. flowfield W (in equation
2.17) and metric X (in equation 2.19) terms needs to be undergone. It is possible
either to differentiate only the five mean flow equations without differentiating the
turbulent dynamic viscosity µT , i.e. equation (2.32) (frozen µT assumption, µ̄T )
or to fully differentiate the equations system including the turbulence model (µlin

T ).

The convection term is discretized using first-order Roe’s flux. The discrete
diffusion term is based on cell-centred gradient of ν̃. The gradients at two adjacent
cells are averaged at the common interface and corrected in the direction linking
the two cells’ centres, from ν̃ cell values in order to have a short stencil in the
considered direction. Discrete P , D and C terms are calculated from cell-centred
values and gradients. It is then needed to derive these schemes w.r.t. mesh nodes
coordinates.

2.5.1 Turbulent convection terms

The centred turbulent convection flux reads as follows

F ci =
1

2

(
ρν̃ucp + ρν̃ucm

)
||Si|| · n−

1

2
hi
(
ρν̃cp − ρν̃cm

)
(2.33)
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where, in the elsA code, the second term is the so-called Roe correction with hi as
the Harten correction coefficient at the interface i. Given the following relations

ui =
ρucm + ρucp
ρcm + ρcp

, (2.34)

qi = ||ui||, (2.35)

Ei =
ρEcm + ρEcp
ρcm + ρcp

, (2.36)

ai =

√
γ(γ − 1)

(
Ei −

1

2
q2
i

)
, (2.37)

λi = |ui · ||Si|| · n|, (2.38)

σi = tharten · hartgeom · ai · ||Si||, (2.39)

where tharten is user-defined and hartgeom = 1, the Harten correction coefficient
hi is computed in the following fashion

hi =

[
1

2
+ sign

(
1

2
, λi − σi

)]
λi +

[
1
2
− sign

(
1
2
, λi − σi

)]
1
2

(
λ2
i + σ2

i

)[
1
2

+ sign
(

1
2
,−σi

)]
ε+

[
1
2
− sign

(
1
2
,−σi

)]
σi
.

(2.40)

In the convection term, the derivatives with respect to the geometric terms are

given by
∂F ci

∂||Si|| and
∂F ci

∂n
.

2.5.2 Turbulent diffusion terms

The turbulent diffusion term in a 5p-cor scheme is given by the following relations:

∇ν̃i =
1

1
2
(Vcp + Vcm)

1

2

(
(||Si||+ ||Sip||) · niν̃cp − (||Si||+ ||Sim||) · niν̃cm

)
(2.41)

∇ν̃5p-cor
i =∇ν̃i+

+
1

1
2
(Vcp + Vcm)

1

4

(
(ν̃cpp + ν̃cp)||Sipp|| · nipp − (ν̃cpm + ν̃cp)||Sipm|| · nipm+

+ (ν̃cmp + ν̃cm)||Simp|| · nimp − (ν̃cmm + ν̃cm)||Simm|| · nimm
)
, (2.42)

F vi =
1

2
(Ccp + Ccm)

(
∇ν̃5p-cor

i · ||Si|| · ni
)
, (2.43)

where C = 1
σν̃

(µ + ρν̃). Whilst the F vi is written in a 5p-cor formulation as for

equation (2.31), the derivation w.r.t. the geometry is more straightforward since it
is not needed to know the nature of the stencil’ cells. The derivation is performed
in one single step.
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2.5.3 Turbulent source terms

As mentioned earlier, the turbulent source term consists in the three terms here-
after detailed.

Figure 2.7: 2D structured mesh stencil for SA source term at a cell c.

Production term

Pc = Cb1ρν̃cS̃ (2.44)

S̃ = ||ωc||+ ν̃cf
v2
c

1

κ2η2
c

(2.45)

f v2
c = 1− χc

1 + χcf v1
c

(2.46)

f v1
c =

χ3
c

χ3
c + Cv1

(2.47)

χc =
|ρν̃c|
µc

, (2.48)

where ηc is the distance from the c cell centre to the wall and ωc is the vorticity. In
the production term Pc, the geometrical dependence comes from these two terms.
The first component of ωc is indeed:

∂u

∂y
=

1

Vc

(
1

2
(uc + ucp)||Sip|| · ny −

1

2
(ucm + uc)||Sim|| · ny

+
1

2
(uc + uclp)||Silp|| · ny −

1

2
(uclm + uc)||Silm|| · ny

)
. (2.49)
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Similarly for the remaining 3 components (5 in 3D7). The contribution of the
geometrical dependence given by ηc has been omitted in this elsA implementation.
The reason for this choice resides in a current constraint given by the code. Indeed,
given a volume cell c, it is not generally possible to know the coordinates of the
centre of the wall interface from which the distance ηc has been computed. The
derivation of ηc needs then to be skipped by treating this value as a geometry-free
variable8.

Cross-diffusion term

Cc =
Cb2
σ
ρc∇ν̃c ·∇ν̃c, (2.50)

Cc = min
(
Cc, 20ρν̃c max(0, Cb1S̃)

)
. (2.51)

In the cross-diffusion term Cc, the geometrical dependence comes from the terms
∇ν̃c and S̃ as in Pc. While deriving, it is important to distinguish the three cases
of equation (2.51).

Destruction term

Dc = Cw1f
w
c

(ρν̃c)
2

ρcη2
c

, (2.52)

fwc = gc

(
1 + C6

w3

g6
c + C6

w3

) 1
6

, (2.53)

gc = r̃c + Cw2

(
r̃6
c − r̃c

)
, (2.54)

r̃c = max

0,min

10,
1

max
(
S̃, cutoff

) 1

κ2η2
c

ν̃c


 . (2.55)

Also in the destruction term Dc, the geometrical dependence comes from the terms
S̃ and ηc.

The model coefficients are listed in Table 2.2.

7It is recalled that the discussion is given in 2D while the implementation has been done in 3D
thus the z component of equation (2.49) has been omitted

8For some simple cases, it has been possible to include the derivation of the distance ηc. Prelimi-
nary tests have shown that the influence of omitting this term negligible.
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Table 2.2: The Spalart-Allmaras model coefficients.

Coefficient Value Coefficient Value

Cb1 0.1355 Cw1
Cb1
κ2

+ 1+Cb2
σ

Cb2 0.622 Cw2 0.3
σ 2

3 Cw3 2
κ 0.41 Cv1 7.1

2.5.4 Verification on a AS28G wing

Recalling equation (2.18), in the elsA implementation, the dJm/dαl may be com-
puted in two fashions:(

dJm
dαl

)
AdjParam

=
∂Jm
∂X

dX

dαl
+ ΛT

m

(
∂R

∂X

dX

dαl

)
FD

, (2.56)(
dJm
dαl

)
AdjMesh

=
dJm
dX

dX

dαl
. (2.57)

In the previous implementation of the code, the frozen turbulence assumption was
still the only option in the AdjMesh method. The derivation introduced in Sec-
tion 2.5 has allowed the use of µlin

T also in AdjMesh. In order to check the proper
implementation in the code, it is important to verify whether the AdjParam and
AdjMesh (with the 5p-cor scheme) give the same results with the µlin

T .

X
Y

Z

Figure 2.8: Footprint of the structured mesh on the AS28G wing surface and on the
symmetry plane of the computational domain.

The AS28G wing is considered. The fully turbulent flow is at Re = 1.49 · 106

based on the chord, M∞ = 0.8 and AoA = 2.2◦. The turbulence closure is ensured
by the Spalart-Allmaras model. The mesh has 414050 nodes and it is depicted in
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Figure 2.8. The shape parameter α is an increasing angular twisting from the root
to the wing tip. The considered objective aerodynamic functional is the pressure
lift coefficient, CL,p. Table 2.3 shows the results for the dCL,p/dα obtained from the
elsA adjoint module and FD. As it is possible to see, the previous implementation
of AdjMesh (denoted with a † in the Table) was producing a different value from
the one given by AdjParam with the THL approximation. The reason was indeed
in the different treatment of the turbulent closure where the term Λ6 ∂R6

∂X
in equation

(2.19) was missing. The result obtained from the new implementation of AdjMesh
taking into account the linearization of the turbulence model w.r.t. the geometry
(denoted with a ∗ in the Table) matches the one of AdjParam (full 5p-cor)9.

Table 2.3: AS28G. Results of the dCL,p/dα obtained from AdjParam and AdjMesh
methods with THL and 5p-cor approaches for the mean-flux viscous terms and with
frozen or linearized µT . The previous elsA implementation is denoted with a † while
the new one with a ∗.

Method Mean-flow Tubulence
dCL,p
dα [·10−2] Rel. Err. %

viscous term lin. closure lin.

FD - - -3.06 -

AdjParam THL (µlin
T ) -2.30 25

AdjParam full 5p-cor (µlin
T ) -2.34 24

AdjMesh† THL (µ̄T ) -1.97 36
AdjMesh* full 5p-cor (µlin

T ) -2.34 24

9Please note that after the development explained in Section 2.4, the THL approximation option
has been suppressed in the elsA code. For this reason, in Table 2.3, the result AdjMesh THL with
µlin
T is missing. It is finally possible to notice the influence of the sole full linearization of the 5p-cor

viscous fluxes detailed in Section 2.4 by comparing the results given by the two AdjParam. Namely, a
reduction of 1% of the relative error.
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Chapter 3

Adjoint-based mesh adaptation
techniques. Application to 2D
RANS flow.

Successful theory of a posteriori error and goal-oriented mesh adaptation has been
developed in the finite-element framework since the second half of the 90s. Impor-
tant contributions have been given by Johnson, Rannacher, Becker and co-workers
[52, 53, 54], Giles, Pierce and co-workers [55], Prudhomme et al. [56], Larson and
Barth [57], Machiels et al. [58], Hartman and co-workers [59, 60, 61] and Alauzet,
Dervieux and co-workers [62]. Concerning finite-volume, the major reference is the
Venditti and Darmofal method [63, 64, 65]. A list of main applications involving
the latter method can be found in [66].

This chapter is focused on the discretization error and more precisely on the
accuracy of the output functionals. Often, only some quantities of interest (QoI),
e.g. forces and moments, rather than the overall flow-field, are scrutinized in aero-
dynamic simulations. In this framework, the development of goal-oriented mesh
adaptation techniques has seen a rapid growth since the mid 90’s. Most of the time,
these methods involve the adjoint vector of the QoI. The present Chapter presents
an enhanced goal-oriented mesh adaptation method based on aerodynamic func-
tional total derivatives with respect to mesh nodes in a finite-volume structured
grid framework for RANS flow. The method principles have been already intro-
duced by Peter et al. [66] and Nguyen-Dinh et al. [67] with applications to Euler
flows. In contrast to the Venditti and Darmofal method which requires two levels
of meshes, the proposed method is based on a scalar indicator for one mesh level
only. The use of only one mesh level is quite rare in literature, nevertheless it is
possible to notice the contribution of Dwight [68, 69] where only on mesh level
is needed but limited to the classical Jameson et al. numerical scheme [70]. Fea-
sibility studies on goal-oriented error estimation for incompressible flows for grid
adaptation purposes have been also addressed [71].
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Using the proposed method, chapter’s objectives are to properly adapt the mesh
taking into account the precious information coming from the complete linearisa-
tion of the complete Navier-Stokes equations and to show the flexibility of the
approach in engineering applications where non-traditional mesh configurations
may be used. In this context, adaptations are carried out on standard mono-block
structured grid as well as to non-matching1 multi-block structured mesh for 2D
RANS flows. The latter kind of adaptations are uncommon in literature while their
use is quite usual for complex geometry configuration in the presence of structured
mesh. Structured grid may be disadvantageous with respect to unstructured one
in term of number of nodes (a local refinement spreads through the entire compu-
tational domain) and in term of mesh construction flexibility (a structured with
well defined quad elements mesh is hardly achievable on complex configurations).
Nevertheless, from a numerical point view, they turn out to be algorithmically ef-
ficient due to their simple addressing approach based on regular connectivity, i.e.
through only 2 (or 3) indices for 2D case (or 3D case). The use of non-matching
multi-block meshes alleviates the constraints given by structured mesh. An exam-
ple of this is shown.

Section 3.1 reviews the main adjoint-based goal-oriented mesh adaptation meth-
ods available in literature while Section 3.2 presents the proposed mesh adaptation
indicator based on aerodynamic functional total derivatives with respect to mesh
nodes. The application to a 2D RANS flow about a RAE2822 airfoil is given in
Section 3.3.

Nomenclature

Abbreviations

AoA Angle of Attack
BL Boundary Layer
QoI Quantity of Interest
RANS Reynolds-Averaged Navier-Stokes
SA Spalart-Allmaras turbulence model

Greek letters

ε Cell width
Λ, Λm Adjoint vector of J , Jm
φ Interpolation operator
θ Mesh refinement indicator

Latin letters

B Interpolation operator
C Airfoil chord
ci Mesh refinement criterion

for mesh lines i
c̄i+ 1

2
Mesh refinement criterion

for rows of cells i
CD Drag coefficient
CL Lift coefficient
h,h0, hj Cell mesh hight
J Aerodynamic function as a

function of X only
M Mach number
n Unit normal vector
Ni,Nj Number of mesh lines

1In literature, the term non-conforming is also used to group non-conventional mesh types. In
this chapter, the term non-matching is preferred in order to strengthen the point on the type of non-
conforming mesh used.
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NTOT Total number of mesh nodes
P Projection operator
ri,j Admissible mesh displacement
R Discrete residual vector
Re Reynolds number
X Mesh coordinates
y+ Dimensionless wall distance

Subscripts

i Direction along the airfoil surface
j Direction normal to the airfoil surface

3.1 Literature review of adjoint-based mesh adaptation
strategies for the reduction of the discretization error
in a FV framework

In the following, three main mesh adaptation strategies are recalled, namely the
one of Pierce & Giles, Venditti & Darmofall and Dwight. The review of Fidkowski
and Darmofal [72] details the state of the art about output-based error estimation
and mesh adaptation.

3.1.1 The method of Pierce and Giles

The following method has been introduced by Pierce and Giles [73, 74] and it con-
sists in an adjoint-based error estimation for linear functions where the extension
to non-linear functions is very complex and not tempted. Considering that an
adjoint problem exists, in a Hilbert space H, whose inner product is denoted (., .),
it is supposed that:

1. it is possible to solve exactly (or approximately) the well-posed direct linear
differential equation Lw = f before the scalar product of the solution with
another vector g of H;

2. it is possible to solve exactly (or approximately) the well-defined correspond-
ing adjoint problem L∗λ = g before the dot product the solution with f .

The common goal is (g, w) which reads as follows

(g, w) = (L∗λ,w) = (λ, Lw) = (λ, f). (3.1)

By denoting the approximate solution wh where h represents the average mesh
size, the error in the estimation of (g, w) is

(g, w)−(g, wh) = (g, (w−wh)) = (L∗λ, (w−wh)) = (λ, L(w−wh)) = (λ, f−Lwh).
(3.2)

The latter error expression may be rewritten in the case where the adjoint problem
has been equally approximately solved:

(g, w)− (g, wh) = (λh, f − Lwh) + (λ− λh, f − Lwh). (3.3)

The adjoint times the discrete residual (λh, f − Lwh) is the main error term and
it is the computable correction of the output value.
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3.1.2 The method of Venditti and Darmofal

For finite differences and finite-volume schemes, Venditti and Darmofal [63, 64, 65]
have proposed a method for non-linear functions with applications to compress-
ible flows. By denoting W the flow field, X the volume mesh and R the scheme’s
residual, the equation R(W,X) = 0 is satisfied at steady state. Two levels of
meshes are needed, the coarse one has a characteristic mesh size H while the fine
one has a characteristic mesh size h. It is considered that the computation on
the h level mesh is prohibitively expensive. The coarse-grid flow-field and adjoint
vector reconstructed on the fine grid via some consistent interpolation operator
are denoted WH

h and ΛH
h respectively.

Given the functional output of interest Jh, the Taylor’s expansion of Jh about
the interpolated coarse-grid solution reads as follows

Jh (Wh, Xh) = Jh

(
WH
h , Xh

)
+

∂J

∂W

∣∣∣
WH
h

(
Wh −WH

h

)
+O

(
||Wh −WH

h ||2
)
. (3.4)

The following adjoint-like equation is defined(
Λh

∣∣
WH
h

)T ∂Rh

∂Wh

∣∣∣
WH
h

= − ∂Jh
∂Wh

∣∣∣
WH
h

. (3.5)

Using equation (3.5), relation (3.4) may be rewritten in the following fashion

Jh (Wh, Xh) = Jh

(
WH
h , Xh

)
−
(

Λh

∣∣
WH
h

)T ∂Rh

∂Wh

∣∣∣
WH
h

(
Wh −WH

h

)
+O

(
||Wh −WH

h ||2
)

= Jh

(
WH
h , Xh

)
+
(

Λh

∣∣
WH
h

)T
Rh

(
WH
h , Xh

)
+O

(
||Wh −WH

h ||2
)
.

(3.6)

It is possible to compare equations (3.2) and (3.6) in order to establish comparisons
between Pierce & Giles and Venditti & Darmofal methods, namely the product
between the adjoint and the discrete residual. Relation (3.6) needs to be rewritten
in the case where the adjoint solution on the fine grid is not available or not
affordable. In this case indeed neither the solution of equation (3.5) is available.
It is possible then to use the interpolated coarse-grid adjoint:

Jh (Wh, Xh) ' Jh

(
WH
h , Xh

)
+
(

ΛH
h

)T
Rh

(
WH
h , Xh

)
︸ ︷︷ ︸

computable correction

(3.7)

+

((
Λh

∣∣
WH
h

)T
−
(

ΛH
h

)T)
Rh

(
WH
h , Xh

)
︸ ︷︷ ︸

error in computable correction

(3.8)
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The value of Jh(W
H
h , Xh) + ΛH

h Rh(W
H
h ) is the functional estimator check by Ven-

ditti & Darmofal. In order to adapt the mesh, it is suggested to reduce uniformly
the error in computable correction.

These formulae have been largely used in the CFD community. The reader is
suggested to refer to Peter et al. [66] for a comprehensive review of articles with
applications to unstructured, structured, embedded-boundary Cartesian meshes
in Euler and RANS flows.

Concerning RANS flows, it is important to underline the poor conditioning
of the Jacobian in the case where the turbulence model is linearized in complex
configuration. This is one of the reason for which the frozen turbulent viscosity
approximation is still largely adopted alongside with the complexity of the lin-
earization of the models themselves.

3.1.3 The method of Dwight

The adjoint-based method proposed by Dwight [68, 69] is closely dependent on
the discretization scheme. Namely, to the Jameson et al. scheme [70] for Euler
flows. Considering the artificial dissipation coefficients (k(2), k(4)), the functions
of interest’s error appeared to be mainly due to artificial dissipation. Dwight
proposed the following estimator:

η = k(2) dJ

dk(2)
+ k(4) dJ

dk(4)
(3.9)

The adjoint method allows to compute the derivatives of the latter relation, dJ
dk(2),(4)

=

ΛT dR
dk(2),(4)

. By defining independently the dissipation coefficients in each control
volume i, the local estimator reads as follows

ηi = Λ

(
k

(2)
i

dR

dk
(2)
i

+ k
(4)
i

dR

dk
(4)
i

)
. (3.10)

The local indicator ηi is used to drive the mesh refinement. The value J −
k(2)dJ/dk(2) − k(4)dJ/dk(4) is considered as the corrected output value.

3.2 Use of dJ/dX for mesh adaptations

The proposed method is based on the dJm/dX introduced in equation (2.19) of
Chapter 2. The scalar refinement indicator based on a single mesh level is presented
in the following section. Section 3.3 reports its use on 2D airfoil applications.
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3.2.1 The refinement indicator

The dJ/dX2 field provides valuable information about the sensitivity of J with
respect to the mesh coordinates X. Considering the following first order Taylor
expansion

J(X + dX i,j) ≈ J(X) +
dJ

dX i,j

dX i,j, (3.11)

the effect on J due to an isolated move of a node X i,j in the polygon defined by
the neighboring nodes is linked to the sensitivity dJ/dX i,j. The latter is true for
a displacement dX i,j for which the Taylor expansion is valid. This criterion sug-
gests that the objective function J is highly sensible to the X i,j node if dJ/dX i,j

is large3. A refinement in that node location is then needed.

Some cautions need however to be taken into account on the obtained dJ/dX
field. In particularly, it will be projected according to the mesh node location.
Namely, P(dJ/dX) = dJ/dX if the node is outside the support4 of J ; P(dJ/dX) =
dJ/dX−(dJ/dX ·n)·n if the node is on the walls, farfield (or mesh block) borders;
while P(dJ/dX) = 0 if the node is on a corner of the support of J or on a corner
of farfield (or mesh block) domain. Figure 3.1 shows three typical situations for
the projected dJ/dX. In particularly Figure 3.1(a) reppresents the case in which
the objective functional J is highly depended on the mesh since a displacement
of the nodes with an high ||dJ/dX|| would equally modify the J value. On the
other hand, in Figure 3.1(b), the mesh may be considered already good since the
displacement of nodes with high ||dJ/dX|| is not feasible. This situation occurs
often in the first cells of the Boundary Layer (BL). In some cases, the situation is
less clear as in Figure 3.1(c) in which one node displacement’s effect on J value
may be cancelled out by another node displacement.

In this thesis, the θ-criterion introduced by Peter et al. [66] and Nguyen-Dinh
et al. [67] will be exploited. This indicator reads as follows:

θ(i, j) =

∥∥∥∥∥P
(
dJ

dX

)∥∥∥∥∥ ri,j (3.12)

where ri,j stands for the admissible mesh displacement, i.e. half of the distance
to the nearest node. Please recall that, for structured grid, (i, j) indices uniquely
identify a mesh node.

2The pedices m and l drop for sake of brevity.
3In this framework, there is no quantitative link between θ(i, j) and its effect on J . The term large

is always w.r.t the ensemble of all θ(i, j) for a given W and X. This justifies the use of the term indi-
cator instead of estimator.

4In the current chapter applications, the support of J , where J is a global aerodynamic function, is
typically the airfoil surface.
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Fig. 1. Projection of dJ/dX at the solid walls.

mesh lines with high ∥dJ/dX∥ values would cause a significant
increase of J value. Fig. 2(b) is a case of high sensibility of J
value to the position of some nodes but, as these nodes cannot
be significantly moved, the evaluation of J does not appear to be
sensitive to a simple actual mesh deformation. Fig. 2(c) is a case
of high sensitivity of J to the position of some nodes that can be
significantly moved but the contribution of the different nodes in
(5) tend to cancel out if they are moved coherently. Hence, it is
not easy to decide whether this zone should be refined for a stable
evaluation of the output of interest.

These considerations are the basis of J-oriented mesh adapta-
tion methods described in the next section.

1.4. Outline

Section 2 provides an analysis of the asymptotic behavior of
the dJ/dX field. The criteria of mesh quality are presented in
Section 3 and a local mesh adaptation method using these criteria
is presented in Section 4. The three following sections are devoted
to numerical applications. More precisely, Section 5 presents a
numerical study of the asymptotic behavior of dJ/dX field and
Section 6 is devoted to the study of themesh quality criteria. Finally
applications of local mesh adaptations based on these criteria are
presented in Section 7.

2. Asymptotic study of dJ/dX

This section presents a theoretical study of the asymptotic
behavior of the total derivative dJ/dX . This vector field is at the
basis of the goal oriented criteria proposed in the next section.

2.1. Framework for the analysis of the dJ/dX field

The terms in Eq. (4) are analyzed for a 2D problem in the
common place case where the output of interest, J , is a force
estimated by summation over solid walls, and R is the classical
finite-volume flux balance:

Ri,j = Fi+1/2,j − Fi−1/2,j + Fi,j+1/2 − Fi,j−1/2,

where F is the numerical flux. In this case, it can easily be checked
that the dimensions of adjoint fields do not involve any length and
it is actually observed that adjoint vectors converge toward regular
fields as the mesh is refined.

It is also easily checked that ∂J/∂X is then a first-order term in
the distance between two successive points on the wall [22].

Conversely the analysis of the second term ΛT (∂R/∂X), is not
straightforward. It is carried out for a 2D calculation and for a
numerical flux depending (a) concerning the geometry, only on the
local surface vector (b) concerning the flow field, on two or four
states on the same mesh line (denoted WL,WR in the first case or
W2L,WL,WR,W2R in the second case). The usual (x, z) coordinates,
most often used for airfoils, are retained. All terms of ΛT (∂R/∂xi,j)
where (i, j) is a generic point inside the domain will be estimated.
Using the notations of Fig. 3, the surface vector coordinates are

Si−1/2,j ≡


SXi−1/2,j
SZi−1/2,j


=


zi−1,j − zi,j
xi,j − xi−1,j


Si,j−1/2 ≡


SXi,j−1/2
SZi,j−1/2


=


zi,j − zi,j−1
xi,j−1 − xi,j


.

2.2. Asymptotic behavior of dJ/dX outside the support of J

Wemake the following statement:

Statement: A 2D finite-volume cell-centered scheme for Euler
flows and for structured grids is considered. The numerical flux
is supposed (a) to depend on the local surface vector and on two
or four states of the corresponding mesh line on either sides of
the interface; (b) to be C2 except at marginal locations where the
absolute value has a zero argument, or min or max functions have
equal arguments. The fixed node of interest Xi,j, is assumed to be
located (a) outside of the support of J; (b) in a zone of the fluid
domain where the discrete flow-field W and the adjoint vector Λ
tend toward C1 limiting functions w and λ; (c) in a location such
that the fluxes of the four surfaces attached to Xi,j are C2 functions
of their aerodynamic and geometric arguments at the limit of small
step sizes.

Under these assumptions, the total derivative of J w.r.t. Xi,j has
the following asymptotic behavior as the mesh is refined:

dJ
dxi,j
dJ
dzi,j

 = dsij
4

k=1


∂λk

∂z
∂F k

Z

∂w

∂w

∂x
−

∂λk

∂x
∂F k

Z

∂w

∂w

∂z

−
∂λk

∂z
∂F k

X

∂w

∂w

∂x
+

∂λk

∂x
∂F k

X

∂w

∂w

∂z

 + o(ds)

where FX (resp. FZ ) is the continuous Euler flux density in
direction x (resp. z) and dsij the surface attached to node Xij (one
quarter of the surface of the four neighboring cells).

Remark. The assumption that the numerical flux should be
C1 is already required in the mathematical framework of the
discrete gradient computation. The C2 regularity is an additional
assumption required for this property. More details are given in
Section 2.4.

Thanks to this property, any goal oriented mesh refinement
indicator or estimator based on dJ/dX can be approximated on a
new grid from the calculation, with the same scheme, on another
grid with a different mesh density.

(a) (b) (c)

Fig. 2. (a) Large regular P (dJ/dX) with large possible displacement of nodes; (b) large regular P (dJ/dX) without large possible displacement of nodes and (c) large non-
regular P (dJ/dX) with large possible displacement of nodes.Figure 3.1: Typical situations for the projected dJ/dX from [67]. (a) Large regu-

lar P(dJ/dX) with large possible displacement of nodes; (b) large regular P(dJ/dX)
without large possible displacement of nodes and (c) large non-regular P(dJ/dX) with
large possible displacement of nodes.

Similarities can be found between the θ-criterion, in particularly dJm/dX, and
the error expression given by Venditti et al. in equation (12) of their article
[64]. In both expressions, zones considered crucial for the computation of the QoI
(through the adjoint vector Λm in equation (2.19) and RΨ

h in [64]) and zones where
the sensitivity of the explicit residual is high (through the ∂R

∂X
operator in equation

(2.19) and Rh in [64] ) are considered as influential in the QoI estimation.

3.2.2 The elsA code

The ONERA Navier-Stokes finite-volume compressible elsA [2] solver has been
used. The numerical scheme is based on Roe flux [3] using a second-order MUSCL
scheme [4] (van Albada limiter [5]) for the convective term, while first-order Roe
flux for the turbulent flow. The viscous fluxes of the averaged and turbulent flows
are discretized through a centred scheme with cell-centred gradients corrected at
the cell faces. The turbulence closure is assured by the Spalart-Allmaras turbulence
model [1].

Non-matching mesh joins

The elsA code deals mainly with structured meshes. This kind of grids may pose
issues both for complex geometry and for the generally high number of nodes
needed with respect to an unstructured mesh. In order to alleviate the latter
drawback, elsA can handle non-matching join between different structured mesh
blocks which limit the spread through the entire computational domain following
a local mesh refinement. This interface may be straight or also curved. In the first
case the conservation property is ensured while in the second case, this approach
is quasi-conservative [75]. In the examples given in Section 3.3, the non-matching
multi-block strategy allows to limit the local refinement in i direction over all the
domain by splitting the mesh in 3 concentric O-meshes.
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3.3 Application to a RAE2822 airfoil

The proposed mesh adaptation technique is applied to a 2D RANS flow about
a RAE2822 airfoil at two different operational conditions: a transonic condition
that corresponds to Case 6 of Cook et al. [76] equally used by Venditti et al. [65]
and a detached subsonic condition derived from the latter by keeping the same
Reynolds to Mach number ratio as in helicopter rotor operational condition. The
efficiency of the proposed method is tested over a mono-block mesh as well as
on a non-matching multi-block configuration. Refinement based on the functional
CD is considered which estimation is in general harder than the CL one. For the
CD-based adapted mesh, the CL value is also given for sake of completeness. The
considered tolerance is equal to 0.0005, i.e. 5 drag counts. This value is in line
with Li et al. [77]. Higher [78, 79] and lower [65] tolerances are also considered in
literature.

3.3.1 Mesh characteristics

For all applications in this section, structured O-meshes has been used where the
index i runs clockwise along the airfoil from the trailing edge while j goes from
the airfoil wall to the farfield boundary. The circular farfield boundary is placed
at 150 chords from the airfoil leading edge. The hierarchy of NACA0012 meshes
from Vassberg et al. [80] has been modified for a RAE2822 airfoil. Moreover, they
have been adapted for RANS flows by adding a boundary layer (BL) growth in
j direction. The number of mesh nodes in the BL can be imposed where the BL
height is computed by using the estimation of the turbulent BL over a flat plate
through the one-seventh-power law. The first cell height h0 is fixed but differs in
the two operational conditions in order to have y+ lower than 1 in both cases. The
cell height h in j direction is given by hj+1 = (hj)p where p varies as 1 < p < 1.1
based on the number of nodes in j, Nj.

Concerning the non-matching multi-block configuration, the original mono-
block mesh has been split in three concentric O-meshes. In many engineering
applications, the surface mesh refinement is constrained or needs special care. In
this context, it has been decided to test the proposed method in the case where the
first block mesh (which contains the airfoil) is frozen through all the adaptation
procedure. This block is uniformly refined in i with 401 nodes with 40 nodes in
the BL, see Figure 3.2 (a). For the two operational conditions, the first block
dimension (in j direction) varies. In the subsonic case, it has been enlarged in
order to ensure that the recirculation bubble is fully included in the first block.
The second and third blocks are adapted following the θ-criterion. The cell height
growth is conserved through the fixed block interfaces.
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Figure 3.2: Starting non-matching multi-block mesh. In the special case of the start-
ing mesh, the interface between blocks 2 and 3 is match. During the adaptation steps,
mesh nodes are free to move in a non-matching framework, see for instance Figure
3.10 (b) and (c).

Refinement procedure

The refinement is carried out by adding lines in both directions i and j. The new
mesh is interpolated in the reference fine grid with a number of nodes Ni = Nj =
2049. The nodes position is defined through the following interpolation operators
φ and B

{1, Ni}{1, Nj}
φ→ [1, 2049][1, 2049]

B→ R2. (3.13)

In order to add lines in the current mesh, a criterion is introduced based on the
θ-criterion (3.12). For the sake of brevity, only the i direction is considered. In-
troducing c̄ as

c̄i+ 1
2

=
ci + ci+1

2
where ci =

1

Nj

√√√√ Nj∑
j=1

θ2
i,j, (3.14)

the method consists in adding a number of lines at i+ 1
2

which is proportional to

c̄i+ 1
2

value. A maximum number equals to 4 is retained for each i+ 1
2

location. In

the particular case of i direction, the mesh lines (cell widths) are regularized in
order to ensure a smooth nodes location5. An explicit third-order dissipation flux
is used. The cell widths ε are obtain through n+ 1 iterations through the relation
εn+1
i+ 1

2

= εn
i+ 1

2

+ D4
i+1 − D4

i where D4
i = −k4(εi+ 3

2
− 3εi+ 1

2
+ 3εi− 1

2
− εi− 3

2
). These

5For j direction there is no need for a smoothing operator since the cell height h follows the before
mentioned rule from the wall to the farfield boundary.
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fluxes are set to zero at i equals 1 and Ni while ε 1
2

= ε 3
2

and εNi+ 1
2

= εNi− 1
2
.

3.3.2 Transonic flow

As mentioned earlier, a transonic condition is retained as in Section 6.2.1 of Ven-
ditti et al. [65] paper. The flow is at Reynolds number equals to 6.5·106 based on
the chord, Mach number M∞ at 0.725 with AoA = 2.466◦. A shock wave appears
at the pressure side at x/C ≈ 0.55 where C is the chord.

The starting mesh is the same for the standard base refinement (i.e. by dou-
blingNi,j at each step) and for the CD-based mono-block adaptation. Namely, with
Ni = Nj = 51 uniformly distributed in i direction and NBL = 10. Concerning the
multi-block adaptation, the first block is frozen and uniformly refined in i with 401
nodes with 40 nodes in the BL as mentioned in Section 3.3.1. This first block has
been extracted from the second last base mesh of the black curve in Figure 3.3.
The remaining blocks have Ni = 101. The CD convergence is plotted in Figure 3.3
where the asset given by the proposed method is patent for the mono-block adap-
tation with respect to the standard refinement. The method equally managed to
refine the non-matching multi-block case where the physical shock cross the non-
matching interface between blocks 1 and 2. The limit output values may be found
in Table 3.1. For both kind of meshes, the CD estimation error is under 4 drag
counts. A very good agreement also between numerical results and experiments is
proved. The underestimation of CD is visible also in Figure 8 (right) of Venditti et
al. [65] paper through the Allmaras’ computation. The CL values show excellent
agreement one to each other. The nodes saving for the mono-block case is of the
order of 75% with respect to the second last base mesh. While concerning the
multi-block case, please note that almost 19000 nodes out of 39500 are imposed by
the frozen first block. The precision scatter between the results of the mono- and
multi-block meshes may be explained by the quasi-conservative approach at high
curvature interfaces (e.g. leading edge) between the two non-matching blocks, as
mentioned in Section 3.2.2. The obtained mesh pattern is discussed in Section
3.3.4.

3.3.3 Subsonic detached flow

For the subsonic detached case, the operational condition has been derived from
the transonic one by keeping the same Reynolds to Mach number ratio as in heli-
copter rotor operational condition. Namely, the flow is at Reynolds number equals
to 2.7·106 based on the chord, farfield Mach number at 0.3 with AoA = 11◦. The
converged flow exhibits a trailing edge separation bubble at x/C > 0.9.

Figure 3.4 shows the CD convergence. The starting mesh are equal to the one
used for the transonic case except for the first cell height h0 and the physical size of
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Figure 3.3: Convergence of CD for the base solution, mono- and multi-block adapta-
tion in the transonic flow condition.

Table 3.1: Transonic case. Comparison of CD and CL values obtained from the stan-
dard base refinement (finest grid) and from the CD-based adapted mono- and multi-
block meshes. Number of nodes in i and j direction are shown as well as the num-
ber of nodes in the BL and the total mesh size, NTOT . The experimental values from
Cook et al. [76] are equally reported.

Block Ni Nj NBL NTOT CD CL

Experiment - - - - - 0.0127 0.743

Base (finest) - 801 801 80 641601 0.01200 0.744

Mono-block - 221 179 77 39559 0.01213 0.738

1 (frozen) 401 47 40
Multi-block 2 210 71 - 39437 0.01235 0.743

3 142 40 -

the first block in the case of multi-block refinement as mentioned in Section 3.3.1.
This justifies the different starting point in term of number of nodes of the blue
curves in Figure 3.3 and 3.4. Also in this case, the proposed method well behaved
w.r.t. the standard base refinement. In Table 3.2, the limit values are reported.
The CD estimation error is also in this case of maximum 3 drag counts while of
0 drag count for the mono-block case. The CL values are also all coherent. The
nodes saving for the mono-block case is of the order of 82% with respect to the
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second last base mesh. For the multi-block mesh, almost 24000 nodes out of 45000
are imposed by the frozen first block. The obtained mesh pattern is discussed in
the following section.
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Figure 3.4: Convergence of CD for the base solution, mono- and multi-block adapta-
tion in the subsonic detached flow condition.

Table 3.2: Subsonic detached case. Comparison of CD and CL values obtained from
the standard base refinement (finest grid) and from the CD-based adapted mono- and
multi-block meshes. Number of nodes in i and j direction are shown as well as the
number of nodes in the BL and the total mesh size, NTOT .

Block Ni Nj NBL NTOT CD CL

Base (finest) - 801 801 80 641601 0.02987 1.295

Mono-block - 163 179 71 29177 0.02986 1.290

1 (frozen) 401 59 40
Multi-block 2 178 80 - 45027 0.03018 1.293

3 132 54 -

3.3.4 Analysis of the obtained mesh pattern

In order to deepen the analysis of the proposed method and of the results, it is in-
teresting to get a closer look to the obtained anisotropic CD-based adapted meshes
as well as to the values of the θ-criterion. This analysis is carried out only for the
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mono-block case for the sake of brevity. The same considerations apply to the
multi-block case.

Figure 3.5 shows the starting mesh as well as the CD-based adapted ones for
both operational conditions. The image layout is similar to the one of Figure 9
of Venditti et al. [65] paper which allows a straightforward comparison between
the obtained meshes. Taking into account the intrinsic construction differences
between structured and unstructured grids, in the transonic case (b), similar areas
are highlighted. Namely, the upstream flow region (typical for adjoint-based adap-
tation), the wake, the shock region at x/C ≈ 0.55, leading and trailing edge. In
structured grid is clear that these local refinements are convected through all the
computational domain. For the subsonic case (c), refinement is performed in the
upstream flow region, separation region at x/C > 0.8, wake, leading and trailing
edge.

The Mach iso-contours are given in Figures 3.6-3.8 for the starting mesh as
well as for the finest mesh of the standard base refinement and for the CD-based
adapted meshes for both operational conditions. Good agreement is proved be-
tween Figure 3.7 (a) with Figure 3.8 (a) and Figure 3.7 (b) with Figure 3.8 (b).
Please note the poor initial estimation of the flow for the starting meshes, Figure
3.6.

The θ-criterion for the mono-block transonic case adaptation is shown in Figure
3.9 for all adaptation steps. It is possible to notice the progressive reduction of the
θ values as well as the crucial zones for this operational condition, e.g. upstream
flow region, the wake and the shock region at x/C ≈ 0.55. Please note that the
relation (3.12) which defines θ depends both on the local mesh size through ri,j
but also on the dJ/dX. For this reason, θ may vary also in zone where no mesh
refinement has been performed, e.g. pressure side in Figure 3.9 (e)-(f).

Finally, in Figure 3.10, the starting mesh as well as the CD-based adapted ones
for both operational conditions for the multi-block case are shown. The block
interfaces are depicted in green. The same area highlighted in Figure 3.5 are
visible here. In this case, the use of non-matching multi-block approach limits the
convection of these refinements to the farfield boundaries. For the upstream flow
region, the refinement crosses the interfaces and equally for the wake region but
in a lightly fashion.

3.4 Some concluding remarks

An enhanced goal-oriented mesh adaptation method has been presented based on
aerodynamic functional total derivatives with respect to mesh nodes in a finite-
volume mono-block and non-matching multi-block structured grid framework for
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RANS flow. The linearisation of the Spalart-Allmaras turbulence model improves
the precision of the estimated adjoint. The retained refinement indicator θ based
on the dJ/dX and on the local mesh size has been proved to be a robust tool
for identifying zones considered as influential in the QoI estimation in the sense
of a first order Taylor expansion of J w.r.t. single node displacement, i.e. equa-
tion (3.11). Applications to 2D RANS flow about a RAE2822 airfoil have been
presented. For the mono-block mesh case, for both aerodynamic conditions, the
obtained CD-based adapted meshes lead to a good estimation of forces. Although
structured grid has been used, a clear anisotropy in the mesh pattern is visible.
The constraints given by this kind of meshes have been relaxed thanks to non-
matching multi-block technique which limits the spread of local mesh refinement
through all the domain. In this context, the proposed method has proven to be
efficient also to adapt the multi-block mesh in the presence of a more refined frozen
wall mesh block. This recalls how also regions of the domain which are not close to
the airfoil boundary need refinement. This is equally true for QoI (thus J) whose
support is only the airfoil surface mesh (e.g. CD) which is entirely included in
the well refined frozen wall mesh block. The method has proven its efficiency and
versatility in term of flow types (Euler [66] and RANS here), of aerodynamic op-
erational conditions (transonic and detached subsonic) and of mesh types (mono-
and multi-block under constraints). The method can be extended to unstructured
grid [81] and to 3D case.

The following chapter will address the analysis of the impact of input values’
uncertainty on the QoI for 2D aerodynamic simulations about an airfoil. The Un-
certainty Quantification approach is a valuable tool to quantify the latter. Stochas-
tic methods through which uncertainties (typically operational and geometrical)
are taken into consideration in the physical problem are introduced. A method for
improving the performance of one of this stochastic approximation is reported as
well as tested on test functions.
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(a) Starting mesh (2061 nodes)
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(b) CD-based adapted mesh, transonic flow (39559 nodes)
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(c) CD-based adapted mesh, subsonic flow (29117 nodes)

Figure 3.5: Comparison of mono-block meshes. The starting mesh is given in (a) while
final adapted meshes in (b) and (c).
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Figure 3.6: M isocontour. Mono-block starting mesh. Left: transonic, right: subsonic.
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Figure 3.7: M isocontour. Mono-block finest mesh. Left: transonic, right: subsonic.
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Figure 3.8: M isocontour. CD-based adapted mono-block starting mesh. Left: tran-
sonic, right: subsonic.
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(f) Step 5: final mesh.

Figure 3.9: Comparison of the θ-criterion for the mono-block transonic case mesh
adaptation.
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(a) Starting mesh - transonic (22284 nodes) - subsonic (26603 nodes)
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(b) CD-based adapted mesh, transonic flow (40005 nodes)
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(c) CD-based adapted mesh, subsonic flow (45027 nodes)

Figure 3.10: Non-matching multi-block meshes. The starting one is given in (a) while
final adapted ones in (b)-(c).
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Non-intrusive uncertainty
quantification study for
aerodynamic simulations

The fast development and availability of computational models and ressources in
various fields of science and engineering, such as Computational Fluid Dynamics
(CFD), has led to a growing awareness of the researchers towards the reliability
and limitations of their simulations. In particular, the assessment of the range of
applicability of these models to varying operational and environmental conditions
is closely dependent on the definition and understanding of the model parameters.
CFD is widely accepted as a key tool for aerodynamic design. Initial aerody-
namic performance is explored by computational simulations and through wind
tunnel tests. Unfortunately while CFD computations are in general performed
for given fixed conditions, experiments and real flight conditions persistently show
alterations of the observed quantities from nominal values. Evans et al. [82] have
carefully itemized many possible disparities between calculations and experiments,
including changes in flow conditions, manufacturing tolerances, design to manu-
facture issues, dynamic distortion, permanent or degrading factors. Hence, any
validation of CFD simulations with respect to experimental data must include es-
timation of discretization error [83], modeling error and assessment of uncertain
parameters influence [30]. A natural way of representing this dependability on pa-
rameters is by evaluating/sampling the solution of the system under investigation
for different values of the parameters.

When these parameters are discretized with random variables from a prob-
ability space, the system becomes stochastic and response sampling for infinite
values of the parameters becomes intractable. The numerical challenge is then to
represent the parameter-dependent solution or related quantities of interest (QoI)
of the system with a continuous approximation (i.e. surrogate) over the entire
range by relying only on discrete system evaluations (or realizations) for (possibly
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few) different values of the parameters. These non-intrusive approaches, despite
relying on samples, may therefore be seen as functional approximations of the
QoI. There exists in fact many computational methodologies – such as (robust)
optimisation and control [84], uncertainty quantification (UQ) [85], parametric cal-
ibration via inference [86, 87] – that may benefit vastly from global and accurate
computational model surrogates in order to quantify and reduce uncertainties. An
important aspect of UQ, that is of great value for engineering applications, is the
global sensitivity analysis (GSA) which describes how the variation in the output
can be apportioned to different sources of variation in the input parameters of a
model.

Aerodynamic modelings may be subject to numerous uncertainties [88, 89]
in the geometry [90] and in the operational conditions [91] of an aircraft. For
instance, even small parametric deviations from the planned geometry have a
significant effect on the drag/lift coefficients, so that geometry uncertainties must
be included in the aerodynamic robust design optimization problem. Depending
on the scarcity of the available experimental data, the probability distributions of
these uncertainties have to be inferred or modeled. Two types of situations are of
interest when dealing with these uncertainties: wind-tunnel (WT) and real flight
(RF) conditions. The nature and the magnitude of these uncertainties are very
different in those two situations and will be described in the following.

Operational uncertainties

Operational parameters include streamflow velocity (Mach number), density, angle
of incidence, temperature, pressure, altitude i.e. all the streamflow properties. The
sources of uncertainties that may influence these parameters differ in WT and RF
situations. Three main uncertainty sources may be identified in WT applications.

1. errors due to sensor uncertainty. It is given by the sensor constructor after
calibration and later on may be adjusted comparing the signal with other kind
of sensor. This error may be decomposed in a random and a bias components.

2. errors given by spatial and temporal non-homogeneity in the WT test section.

3. errors resulting from WT corrections in order to suppress walls and model
support effects. These kinds of uncertainties are closely linked with the test
case performed.

Uncertainty ranges and distributions also depend on the flow regime. In general,
uncertainty ranges are quite small, especially for large Mach number values that
are easier to obtain and control.

In RF conditions, the sources are linked with the spatial and temporal non-
homogeneity of the streamflow, the complex flight kinematic and possible extreme
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rare events, e.g. wind gust [92]. Most influent macroscopic flight conditions have
been shown to be the angle of incidence and the Mach number. The uncertainty of
these parameters mostly results from atmospheric and flow fluctuations that are
higher than in the WT case. Incidence and Mach number may be modeled as in-
dependent [93] or dependent random parameters [91]. The literature is very scarce
on the representation of these parameters as time-dependent random processes.

Geometrical uncertainties

Optimal shape of aircraft wings has been the subject of a large body of research
literature. Impact of geometric variability is in general reduced thanks to ro-
bust design (with adjustment of nominal design parameters) and tolerancing (with
ajustement of the local level of variability). But the result still remains very haz-
ardous mainly due to the sequentiality of these approaches. Therefore, despite
advances in manufacturing and maintenance engineering techniques, airfoils very
often exhibit some deviation from their intended shape and size due to noisy man-
ufacturing processes or wear. Stochastic representations are useful for estimating
the impact of geometric variability on the aerodynamic performance.

WT facilities exhibit several types of imperfections that often requires a detailed
calibration process in which flow features, e.g. airspeed, pressure/temperature
variations, disturbances/turbulence levels, influence of measurement sensors, and
related uncertainties are determined at various tunnel sections. After calibration,
the control of these uncertainties remain flow-dependent (e.g. supersonic regime
are less prone to spatial/temporal non-homogeneity). In this work, only the airfoil
surface shape imperfections are considered, thus the scatter between the theoreti-
cal and measured profile. The range of accuracy depends mainly on the tolerance
class and the bluff body material (composite structure accuracy is lower than the
metal one) that have been chosen. For a full-scale aircraft in RF conditions, the
sources are clearly linked with the manufacturing and assembly constrains e.g.
surface imperfections, junctions or unknown deformations/wear during operation,
e.g. ice aggregation during the flight.

Considering only surface shape imperfections in the characterization of geo-
metric variability, several possible types of discretization may be considered. Ge-
ometrical uncertainties may be modeled by variations of characteristic quantities
(i.e. random variables) globally controlling the shape, such as the camber and
thickness [94, 89] or the position of some trailing-edge controls, such as the flap
angle [95]. In general, this approach does not allow to properly model ad-hoc input
uncertainties estimated by local measurements. Stochastic approaches describing
the uncertainties by random fields are also feasible as long as they are paired with
efficient approximation and discretization techniques in order to reduce the addi-
tional computational effort. With a large amount of geometry data, it becomes
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then possible to find a statistically optimal basis for representing the scatter of
the measured data. This is called the principal-component analysis (PCA) [96]
or the Karhunen-Loève (KL) expansion [97]. Standard formulations often assume
stationarity of the random process which indicates that correlations are constant
along the profile. While this may be conceptually well suited to model rugosity
that is mainly a property of the material, it is not appropriate for the represen-
tation of spatially varying manufacturing tolerance for instance. Indeed, near the
leading edge (x/c < 0.2), airfoil geometrical accuracy is much higher with respect
to the remaining part.

An Uncertainty Quantification study will allow to take into account these
sources of uncertainty and quantify their effects on the QoI. In Section 4.1 the
stochastic framework and computational approaches are introduced with a special
focus on methods based on sparse grids introduced in Section 4.2. The pseudospec-
tral polynomial chaos and the stochastic collocation representation with details
on a new stochastic collocation algorithm and implementation of a dimension-
adaptive refinement based on sensitivity analysis are described in Section 4.3. Ap-
plications of these UQ methods to test functions and 2D aerodynamic simulations
through a simplified aerodynamics model as well as through RANS approach are
shown in Section 4.4.

The main achievements of this chapter have published in paper [98].

Nomenclature

Abbreviations

ANOVA ANalysis Of VAriance
AoA Angle of Attack
BL Boundary Layer
CC Clenshaw-Curtis rule
CDF Cumulative Density Function
CFD Computational Fluid Dynamics
CoD Course of Dimensionality
DES Detached Eddy Simulation
DNS Direct Numerical Simulation
FJ Fejer rule
G Gauss-type rule
GP Gauss-Patterson-Kronrod rule
gPC generalized Polynomial Chaos
GSA Global Sensitivity Analysis
GSG Generalized Sparse Grid
LES Large Eddy Simulation
MC Monte Carlo
PS PeudoSpectral
PDF Probability Density Function
QoI Quantity of Interest

RANS Reynolds-Averaged Navier-Stokes
RF Real Flight
RSM Reynolds Stress Model
SA Spalart-Allmaras turbulence model
SC Stochastic Collocation
SC-Full Full tensor grid SC
SC-Sobol Sobol-based SC
SgPC Sparse generalized Polynomial Chaos
SI Sobol’ Indices
UQ Uncertainty Quantification
V&V Verification and Validation
WT Wind Tunnel

Greek letters

Λ Set of nodes of a quadrature
µ Mean value
ξ Random variables
Ξ Random space

Ξ̃ Nodal set
φj Orthonormal polynomials
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Φj N-variate polynomial
ω Realizations
σ Standard deviation (std)

Latin letters

A Bump amplitude
A New active set gathering all j
c Airfoil chord
Cd Drag coefficient
Cdp Pressure drag coefficient
Cl Lift coefficient
Cm Momentum coefficient
d Physical space dimension
E Expectation
j Index vector defining the refinement

in each (i) dimension
j+1
1,...,N Isotropic refinement

j+1
i Anisotropic refinement in (i) dimension
j+1
i,j Anisotropic refinement in cross-dimension

K Number of MC samples
Lk Lagrange interpolation polynomials
M Mach number
n Number of nodes of Q
N Stochastic dimension
Ncrit Exponent of the eNcrit method
O Order of magnitude
O Old active set gathering all j
P Projection approximation

q Polynomial exactness of Q
Q Quadrature rule
R Stochastic problem
Re Reynolds number
S Pseudospectral approximation

S(i) Main Sobol’ index

S(i),(j) Cross Sobol’ index

S
(i)
T Main total Sobol’ index
u Solution of problem R
U Uniform distribution
V Variance
w Weights of Q
x Deterministic variables
Xtr Transition point
y Node of Q
y+ Dimensionless wall distance

Superscripts

TD Total Degree
SD Sparse Degree
(i) Stochastic dimension i component

Subscripts

l Level of the quadrature rule Q
l(j) j-th node of Q of level l

4.1 Stochastic framework and computational approaches

Powerful methods have been developed in which the regularity of the solution
through polynomial approximation is put to use [99]. Projection and interpolation
are two possible strategies to construct multivariate (global or piecewise) polyno-
mial approximations. The generalized Polynomial Chaos (gPC) [100, 101, 102] in
its pseudospectral (PS) form [85] and the Stochastic Collocation (SC) [103, 104]
methods are among the most exploited ones. Both approaches rely on discrete
and uncoupled model evaluations (as Monte-Carlo method) and have no concep-
tual difficulties in treating non-linear problems. However, they face the same curse
of dimensionality (CoD), they lead to a number of function evaluations that scales
exponentially with the number of random dimensions.

The use of sparse grids (based on sparse tensor product approximation spaces)
[105] alleviates to some extent the CoD and is particularly effective for the approxi-
mation of sufficiently smooth functional in moderately high-dimensional parameter
spaces. Nevertheless, quadrature grids pose strong limits on the way with which
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the grid is enriched. This is due mainly to the orthogonality constraint and to
the limited flexibility on the sampling procedure. Other options than sparse grids
are also available. In a SC approach, for instance, the simplex method proposed
by Witteveen et al. [106] is worth mentioning. The latter may be even improved
through a goal-oriented uncertainty propagation using stochastic adjoints [107]. In
a gPC framework, it is possible to use adjoint equations in order to identify random
variables providing maximum impact on the QoI by using the gradient information
[108]. It is also worth mentioning the least square method with l1-regularization
based on purely Random Sampling (RS) or RS on a quadrature grid. This method
is also known as Compressed Sensing (CS) [109].

The impact of the combination of different interpolating polynomial spaces
and corresponding sparse grids on the SC accuracy have been investigated and
compared in great details to intrusive approaches, such as spectral Galerkin meth-
ods [110]. On the other hand, spectral projection methodology has been recently
improved. Several groups have proposed (Smolyak–based) sparse pseudospectral
approximations (SgPC) [111, 112]. These approximations are general and well
adapted to a broad choice of sparse grids and quadrature rules and they guarantee
no internal aliasing errors [113]. These recent advances advocate for a more fair
comparison between SC and PS surrogate models, in particular when those are
constructed on the same sparse input points. For a moderate number of parame-
ters (O(10)) with bounded spans, isotropic and nested sparse grids make possible
a systematic exploration of the response of the computational model to parametric
variations/uncertainties. In particular, variance-based GSA [114] is now available
to both representations. While straightforward for hierarchical PS approximation,
it is also possible to compute efficiently global sensitivity coefficients of Sobol’ [115]
from interpolating SC approximations based on Smolyak cubatures [116, 117].

In order to further reduce the number of function calls, anisotropic adaptivity
may be used. Most efforts so far have been carried out in the SC community,
e.g. [118, 119]. A standard approach is the one of Gerstner [120] who generalized
the sparse grid construction for integration based on greedy selection of admis-
sible grid index sets according to some predefined measure. More sophisticated
adaptive techniques [121, 122] also take advantage of low effective dimensions well
approximated by low-dimensional functions of the solution, e.g. sum of functions of
increasing dimensions, cf. the analysis of variance (ANOVA) decomposition [123]
and Sobol indices (SI) calculation [115]. With these approaches, an (anchored-)
ANOVA decomposition of the QoI is constructed/truncated, either a priori or a
posteriori, in order to reduce the dimensionality of the approximation with the
consequence of introducing a modeling error. The recovered lower-order dimen-
sional problems – involving at most second- to third-order interaction terms – are
then integrated or interpolated thanks to anisotropic adaptive schemes based on
sparse grids; this second step introducing this time a discretization error.
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Inspired by the idea of taking advantage of the emerging low-order functional
interactions of high-dimensional models, a simpler adaptive strategy is proposed
here in the framework of SC. The dimension adaptivity of the interpolation is
driven by a variance-based GSA where SI are iteratively calculated. Successive
evaluations of first- and second-order indices provide guidance to the refinement
procedure thanks to a greedy selection of admissible index sets that contributes
the most to the solution global variability.

An important step is the choice of an appropriate stochastic approximation,
handling both the description of the input uncertainties and the computation of
the statistics and sensitivities of the CFD solution. Stochastic spectral methods
have emerged as potential good candidates [99].

In the following, let us consider a general problem that may be written in the
following fashion: let u(x, ξ(ω)) be the solution of equation

R(x, ξ) ≡ G
(
x, ξ(ω);u(x, ξ(ω))

)
− V

(
x, ξ(ω)

)
= 0, (4.1)

where G and V are differential operators acting on D × Ξ, where x ∈ D ⊂ Rd

with d ∈ {1, 2, 3}, ξ(ω) = {ξ(1)(ω1), . . . , ξ(i)(ωi), . . . , ξ
(N)(ωN)} ∈ Ξ ⊂ RN are N

independent random variables. On the probability space (Ω,F ,P), the realizations
are ω ∈ Ω (set of outcomes), F ⊂ 2Ω the σ-algebra of sets and P : F → [0, 1] the
probability measure. The probability density function of ξ is noted as ρ : ξ 7→ R+

. It is assumed that the solution of our problem belongs to the space L2(Ξ, ρ) of
second-order random variables, with an appropriate inner product [99]. Within
this framework two main classes of methods may be identified:

1. Galerkin (Intrusive) methods: probabilistic model is introduced within the
partial differential equations describing the flow and therefore the CFD code
needs to be modified in order to solve the obtained stochastic system of
equations.

2. Direct (Non-intrusive) methods: the CFD deterministic code is seen as a
black-box by the stochastic approximation. It is then only possible to operate
by means of input and output data sampling.

In this study, one of the requirements was to use the ONERA finite-volume com-
pressible CFD elsA solver [2] without modifications, therefore intrusive methods
have been disregarded. Nevertheless, there exists semi-intrusive methods which
are - strictly speaking - intrusive schemes but require only a limited number of
modification to an existing numerical code [124].
The most well-known non-intrusive approach is the Monte-Carlo (MC) method
[125]. This sampling method consists in randomly generating K input data real-
izations and performing a deterministic simulation for each of these realizations.
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The approach is straightforward and robust and the convergence is dimension-
independent, although slow, i.e. O(K−

1
2 ). Several methods exist to improve the

MC convergence rate, e.g. Quasi MC methods [126] with a computational com-
plexity of order O

(
(logK)NK−1

)
.

Other methods have been developed in which the regularity of the solution through
polynomial approximation is put to use [99]. Projection and interpolation are two
possible strategies to construct multivariate polynomial approximations. Within
all the spectral methods, the generalized Polynomial Chaos (gPC) [100, 101, 102]
in its pseudospectral form and the Stochastic Collocation (SC) [103, 104] methods
are among the most exploited ones. Both approaches rely on discrete model evalua-
tions and face the CoD: i.e. the number of function evaluations scales exponentially
with the number of random dimensions. Sparse sampling/approximations – and
adaptive variants [120] – of linear operators on tensor product spaces [127] some-
what alleviate the computational burden to O

(
K−r(logK)(N−1)(r+1)

)
1 by taking

advantage of higher smoothness and lower-effective dimensionality of the functional
to represent.

4.2 Sparse sampling

There exists a large body of literature dedicated to the use of sparse grids/cubatures
[105] for lowering the cost of high-dimensional integral computations [127, 128] and
stochastic interpolations [129, 130]. Sparse grids that are structured in the form
of quadratures/cubatures make error analysis more convenient because they inte-
grate exactly functionals that are polynomials of a certain degree.
In one dimension (noted dimension (i)), one may predict the polynomial exactness

ql obtained with a quadrature Q(i)
l of a certain level l ∈ N0 and corresponding

number of points n
(i)
l and weights w

(i)
l . Sparse grids are always hierarchically and

incrementally assembled from a sequence of one-dimensional quadrature formulas

and their performance is strongly dependent on the growth of ql vs. n
(i)
l as l in-

creases.
Many quadrature families exist with different (linear or exponential) growth of

n
(i)
l with respect to l, e.g. Table 6.1 in [112]. Noting Λ

(i)
l the set of nodes for a

quadrature level l

Λ
(i)
l =

(
y

(i)
l(1), ..., y

(i)

l(n
(i)
l )

)
, (4.2)

where y
(i)
l(j) stands for the j-th node of quadrature Q(i)

l , one may distinguish two

classes of grids: – if Λ
(i)
l ⊂ Λ

(i)
l+1 then the rule is said to be nested. This is

for instance the case in Newton-Cotes, Clenshaw-Curtis (CC) [131], Fejér (FJ)
and Gauss-Patterson-Kronrod (GP) [132] formulae, which are often preferred for

1For integrands which have bounded mixed partial derivatives of order r.
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bounded measures. However, if – Λ
(i)
l 6⊂ Λ

(i)
l+1, such as for all standard Gauss-type

(G) formulae, the rule is said to be non-nested. In this work, we mainly rely on

exponential growths such as CC rule: n
(i)
l = 2l + 1, or G/GP rules: n

(i)
l = 2l+1−1.

Due to the extensive use of the CC rule, its formulation is given. The nodes are
the extrema of the Chebyshev polynomials including the boundary of the support
Γ ∈ [−1, 1]:

y
(i)
l(j) = − cos

(
π(j − 1)

n
(i)
l − 1

)
, j = 1, ..., n

(i)
l , (4.3)

while for n
(i)
1 = 1, y

(i)
1(1) = 0. The weights are given by the following relation

w
(i)

l(n
(i)
l +1−j)

=
2

n
(i)
l − 1

1− cos(π(j − 1))

n
(i)
l

(
n

(i)
l − 2

) − 2

n
(i)
l

−3

2∑
k=1

1

4k2 − 1
cos

(
2πk(j − 1)

n
(i)
l − 1

)
(4.4)

for j = 2, ..., n
(i)
l − 1. For the first and last weights the value is 1

n
(i)
l

(
n
(i)
l −2

) .

The polynomial degree of exactness q
(i)
l = deg(Q(i)

l ) differs for different rules,
for instance:

G: q
(i)
l = 2n

(i)
l − 1, ∀u ∈ P(i)

2nl−1,

CC, FJ: q
(i)
l = n

(i)
l − 1, ∀u ∈ P(i)

nl−1,

GP: q
(i)
l = 2n

(i)
l − n

(i)
l−1, ∀u ∈ P(i)

2nl−nl−1
.

Although Gauss-type formulae are the most accurate (e.g. by a factor of two
compared to CC formula), it was reported that the degree of accuracy is compara-
ble for non-polynomial functional, i.e. u 6∈ P [133]. In the same paper, Trefethen

found the error bound of a n
(i)
l -point CC formula to be approximatelyO

(
(2n

(i)
l )−k

k

)
for a k-times differentiable integral. CC and FJ rules are particularly flexible be-
cause there exists explicit formulae for their nodes and weights.

If N > 1, prescribing the multi-index l = (l1, . . . , lN) ∈ NN
0 , the grid may be

built through a simple full tensor product:

Q(N)
l =

(
Q(i)
l1
⊗ ...⊗Q(i)

lN

)
. (4.5)

Figure 4.1 shows the index diagram refinement for a full tensor product grid with

N=2. It is clear that for high N , the total number of nodes n
(N)
l grows exponen-

tially. In order to limit this growth, sparse techniques are an efficient solution.
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4.2.1 The isotropic Smolyak method

The Smolyak [127] algorithm with sparse tensorization may be used [128, 129]. The
Smolyak algorithm is a linear combination of product formulae. The chosen linear
combination preserves the one dimensional interpolation property for N > 1. The
obtained grid has a significant less number of nodes w.r.t. to the tensor product
one2. By defining quadrature differences in the following fashion

∆Q(i)
lk
≡
(
Q(i)
lk
−Q(i)

lk−1

)
k = 1, ..., N, (4.6)

the sparse cubature formula in N dimension is:

Q(N)
l =

∑
k∈L

(
∆Q(1)

k1
⊗ . . .⊗∆Q(N)

kN

)
. (4.7)

The isotropic (uniform) sparse grids are then given by:

Λ
(N)
l ≡ H(l, N) =

⋃
j∈L

(
Λ

(1)
j1
⊗ . . .⊗ Λ

(N)
jN

)
,

where the set of indices L must be admissible3: i.e. ∀j = (j1 . . . jN) ∈ L | j1≤i≤N >
0 then (j − ei) ∈ L for all i, where {ei=1...N} is the canonical basis of NN , and
l1 = l2 = . . . = lN ≡ l (the same applies for index k). Any admissible set is
valid to construct L, even though Smolyak suggested truncating with a total order
multi-index set: i.e. L := {j ∈ NN

0 : ‖j‖1 ≤ l}, but other options exist [110].
As the sparse quadrature is enriched, the grid points used in the earlier levels are
retained. Therefore, the sparse quadrature is always embedded regardless of the
nature of the 1D basis quadrature rule used. If the one-dimensional quadrature

rule is nested, i.e. if Λ
(i)
l ⊂ Λ

(i)
l+1, then:

Λ
(N)
l =

⋃
‖j‖1=l

(
Λ

(1)
j1
⊗ . . .⊗ Λ

(N)
jN

)
,

resulting in a much smaller grid. Growth rate of points per level do not take
analytical form and have to be tabulated [134]. Figure 4.2 shows the 2D index
diagram for three consecutive quadrature level l, with a isotropic Smolyak sparse
grid (SSG) growth. Each square represents the index j1,2 := (j1, j2). This method
significantly reduces the number points but the obtained grid is clearly symmetric
in all directions. In this case, the representation is efficient if the influence of each

parameter/dimension on the QoI is comparable. In order to reduce further n
(N)
l

while keeping a good accuracy, anisotropic dimension-adaptive features may be
introduced [120, 118].

2It is important to notice that for non-nested Q(i)
l , the asset of the Smolyak algorithm is generally

patent for N ≥ 4. In the nested case, Smolyak sparse grids have less nodes for N > 1.
3This is a necessary condition for the sum of the sparse quadrature to telescope correctly.
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(a) Initialization, l0 (b) l0 + 1 (c) l0 + 2

Figure 4.1: 2D index diagram for full tensor refinement.

(a) Initialization, l0 (b) l0 + 1 (c) l0 + 2

Figure 4.2: 2D index diagram for the isotropic Smolyak sparse grid algorithm.

4.3 Stochastic approximations

4.3.1 Pseudospectral polynomial approximation

Spectral expansions are in general efficient provided sufficient smoothness is present
in the solution. In situations where the modification of legacy solvers is not
tractable, a non-intrusive formulation is an alternative to the Galerkin formal-
ism. In this case, a finite set of basis functions is considered, and the solution is
projected onto the subspace spanned by these functions. Thanks to the probabilis-
tic framework and approximation theory, the hierarchical nature of the spectral
representation provides a functional format that is very convenient to perform
subsequent tasks such as sensitivity analysis, optimization, etc... In the following,
the standard and – a more recent Smolyak-based sparse – projection-based gPC
approximations will be reviewed in their respective pseudospectral form.

Orthonormal polynomials φ
(i)
j with respect to ρ(i) along the direction (i) are con-

sidered. It is now possible to construct the N -variate polynomial in ξ: Φj(ξ) =∏N
k=1 φ

(k)
jk

(ξk) that will be the base of the full tensor approximation of the solution.
The notation {Φj∈NN} stands for an orthonormal polynomial basis of L2(Ξ, ρ).

The projection approximation P(i)
l (u) of the quantity of interest u at level l along
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the dimension (i) is:

u(x, ξ) ≈ P(i)
l (u) ≡

q
(i)
l∑
j=0

E
[
u(x, ξ) · φ(i)

j (ξ)
]
φ

(i)
j (ξ) =

q
(i)
l∑
j=0

uj(x)φ
(i)
j , (4.8)

where q
(i)
l is the polynomial truncation4. In higher dimensions, its multivariate

polynomial approximation variant would be for instance obtained via full tensor
products:

P(N)
l (u) ≡

q
(i)
l∑

j1=0

. . .

q
(N)
l∑

jN=0

uj(x) Φj . (4.9)

In the following, only univariate approximations are considered but the extension
to N -variate approximations is straightforward. Assuming the expectations in
Eq. (4.8) are perfectly evaluated i.e. the coefficients {uj(x)

j=0:q
(i)
l
} are exact, the

approximation error is only due to the truncation of the series. The convergence
in the L2 sense reads: ∥∥∥u− P(i)

l (u)
∥∥∥2

2
=

∞∑
j=q

(i)
l +1

u2
j <∞ (4.10)

In practice, the expansion coefficients are calculated thanks to some numerical

approximations such as e.g. quadratures/cubatures Q(i)
l at some level l. In this

case, pseudospectral approximation S of Eq. (4.8) is defined as:

S(i)
l (u) ≡

q
(i)
l∑
j=0

Q(i)
l

(
u · φ(i)

j

)
φ

(i)
j =

q
(i)
l∑
j=0

ũjφ
(i)
j (4.11)

Recent studies [135, 112], carried out in the context of adaptive stochastic approx-
imations based on sparse grids, have shown that L2 aliasing errors between S and
P may be decomposed as follows5:

∥∥∥P(i)
l (u)− S(i)

l (u)
∥∥∥2

2
=

q
(i)
l∑
j=0

(
uj −

q
(i)
l∑
k=0

ukQ(i)
l

(
φ

(i)
j · φ

(i)
k

)
︸ ︷︷ ︸

internal aliasing

−
∞∑

m=q
(i)
l +1

umQ(i)
l

(
φ

(i)
j · φ(i)

m

)
︸ ︷︷ ︸

external aliasing

)2

(4.12)

4As we will see in the following, here we have used on purpose for the upper bound the same nota-
tion as the polynomial degree of exactness of the quadrature introduced in the previous section.

5Here, the notations closely follow the detailed derivations from [112].
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(a) Clenshaw-Curtis (29
points)

(b) Fejer’s (49 points) (c) Gauss-Patterson (49
points)
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Figure 4.3: Examples of level l = 3 nested 2D sparse grids and corresponding polyno-

mial exactness of Q(2)
3 ; (top) quadrature points are located at the circle centers and

quadrature weight magnitudes are proportional to the circle diameters. (bottom):
quadrature polynomial exactness (grey symbols) and monomial coverage of the sparse
pseudospectral representation with no internal aliasing (black symbols).

It becomes apparent that aliasing error comes from the inability to recover numer-
ically discrete orthogonality. Internal aliasing is due to inaccuracies of the quadra-
ture to correctly capture polynomials orthogonality within the expansion basis.
In principle, aliasing errors should tend to zero for very large l (i.e. for powerful

quadratures). In practice, for a given l, one is left with a choice of q
(i)
l that should

guarantee that the internal aliasing is null. Relating the cardinality of the polyno-
mial approximation space to the quadrature integration capability is an easy choice
for one(multi)-dimensional quadrature rules with sharp polynomial exactness deg

(such as full tensor-based grids), where one can choose: q
(i)
l = bdeg(Q(i)

l )/2c based
on the so-called half-accuracy set [112], required to cancel the internal aliasing
term in Equation (4.12). It becomes more tedious for isotropic and anisotropic
sparse grids with dimension-dependent polynomial exactness, for which the ten-
sorization procedure is only partial.
A wise choice to avoid full tensor products is to take advantage of the fact that
input dimensions may not be fully coupled: this is the strength of the Smolyak
algorithm here applied to pseudospectral operators. In this case, the sparse pseu-
dospectral approximations harnesses the full power of its underlying sparse grid by
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projecting the solution onto a larger polynomial space that guarantees no internal
aliasing, regardless of the admissible Smolyak multi-index set K retained [112].
The approximation may be summarized as:

u ≈ A(N)
S,K (u) ≡

∑
k∈K

ck S(N)
k (u), (4.13)

where ck are Smolyak integers computed from the combinatorics of difference for-

mulations and S(N)
k (u) is the general form of Equation (4.11). We refer to the

excellent paper of Conrad et al. for all numerical details about the formulation
[112]. The Smolyak algorithm is therefore a sum of different full tensor pseu-
dospectral approximations, where each approximation is built around the polyno-
mial accuracy of a single full tensor quadrature rule. It converges under sim-
ilar conditions as the one-dimensional operators from which it is constructed.
In fact, each polynomial Φj in (4.13) is included in the approximation, only if

∃k ∈ K : q
(N)
j ≤ bdeg(Q(N)

k )/2c, where Q(N)
k is the multivariate cubature based

on multi-index k ∈ K. In the following, sparse pseudospectral approximation
will be the method of choice when compared to stochastic collocation. Note that
adaptive variants exist [112] but will not be pursued in this PhD thesis.

4.3.2 Stochastic collocation

Interpolating methods in (finite) multi-dimensions are often labelled as (stochas-
tic) collocation (SC) methods [130, 119, 104]. They are non-intrusive in the sense
that they are prone to parallelization of decoupled computations.

The key idea is to collocate the Eq. (4.1),R(x, ξ), on a nodal set Ξ̃N = {ξk}ñk=1.
Introducing a smooth function f , it is necessary to find a polynomial I(f) ∈ VI
such that I(f)(ξk) = f(ξk), ∀k = 1, ..., ñ where VI is the interpolation space
corresponding to the random space Ξ. This leads to the following relation

I(f)(ξ) =
ñ∑
k=1

f(ξk)Lk(ξ), (4.14)

where Li(ξ) ∈ VI , Li(ξi) = δi,j, 1 ≤ i, j ≤ ñ are the Lagrangian polynomials. The
solution (interpolant) approximation may be then rewritten as follows

u(x, ξ) ≈ û(x, ξ) ≡ Iu(x, ξ) =
ñ∑
k=1

u(x, ξk)Lk(ξ) (4.15)

The solution approximation may be obtained also with some more local piecewise
polynomials [136]. Using the property of Lagrange interpolation, the method leads
to ñ deterministic decoupled problems:

R(û(x, ξ))|ξk = 0 ∀k. (4.16)
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The statistics may be computed as soon as the numerical solutions of (4.16) are
obtained at all collocation points. The expectation reads:

E(û(x, ξ)) =
ñ∑
k=1

u(x, ξk)

∫
Ξ

Lk(ξ)ρ(ξ)dξ

'
ñ∑
k=1

u(x, ξk)

n
(N)
l∑
i=1

Lk(ξi)wi, ∀k = 1, ..., ñ, (4.17)

where the Gauss quadrature rule has been used. Please note that no constraints

have been imposed on the nodal set Ξ̃N yet. Let us further assume that Ξ̃N = {ξi}
n
(N)
l
i=1 ,

i.e. the collocation points now coincide with the quadrature point set introduced
in Section 4.2:

E(û(x, ξ)) '
n
(N)
l∑
k=1

u(x, ξk)Lk(ξk)wk =

n
(N)
l∑
k=1

u(x, ξk)wk. (4.18)

The method’s efficiency is strictly linked with the chosen quadrature for the col-
location points. In Section 4.2 isotropic sparse grids have introduced. The size of

n
(N)
l may be further reduced by using adaptivity.

Adaptivity

In order to relax the isotropic construction inherent to the standard version of
the Smolyak sparse grid algorithm, anisotropic ingredients may be introduced,
e.g. [119]. Three main procedures are identified from the literature for greedy
dimension-adaptive sparse grid applications: – variance-based decomposition, –
spectral coefficient decay rates and – goal-oriented adaptation.
The first two lead to anisotropic tensor or sparse grids while the last one leads to
generalized sparse grids (GSG). It seems that the goal-oriented adaptation tech-
nique is the most efficient in terms of convergence with respect to the number
of numerical simulations, [120, 111]. In practice, efficient implementation of this
algorithm in terms of efficient data structures for the storage and index sets book-
keeping is not straightforward. Indeed, the efficiency may be contested if the
number of trial set is taken into consideration. With the procedure introduced by
Gerstner et al. [120], only the trial sets that induces the largest change in the QoI
statistics are selected. It seems that because not all of trial sets are being used
in the approximation, some costly CFD computations that have been performed
along the way may have been waisted. Another drawback resides in the fact that
the algorithmic search might be put on hold if the next important set of indices
is not admissible. In consequence, the variance-based decomposition methods are
worth investigation.
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ANOVA and GSA are at the base of the mentioned variance-based decompo-
sition method. A dimension-adaptive procedure may be based on the SI [115].
These indices identify which (combinations of) variables ξ(i) influence the most
the QoI u(x, ξ) in terms of total variance. Three indices may be identified that
correspond to main (or first-order) S(i), cross- (or second-order) S(i),(j) directions,

and total S
(i)
T effects. Following the notations of Eldred [111], these indices are

defined in the following fashion:

S(i) =

Vξ(i)

[
E
[
u|ξ(i)

]]
V [u]

with 1 ≤ i ≤ N, (4.19)

S(i),(j) =

Vξ(i),(j)

[
E
[
u|ξ(i),(j)

]]
V [u]

with 1 ≤ i, j ≤ N, j 6= i, (4.20)

S
(i)
T = 1−

V
[
E
[
u|ξ(∼i)

]]
V [u]

with 1 ≤ i ≤ N, (4.21)

where V[·] is the variance operator and ξ(∼i) =
(
ξ(1), ..., ξ(i−1), ξ(i+1), ξ(N)

)
. Recent

developments point out the advantages of the anchored ANOVA especially in term
of computational savings [137].

The N -dimensional integrals are in general evaluated through Monte-Carlo
techniques. Tang et al. [117] recently showed how to evaluate the above defined
indices based on a SC approximation. As correctly pointed out by the authors,
GSA should not be confused with UQ. In the present study a GSA has been per-
formed as a subset of a UQ study thus, given uncertain inputs, the most influential
ones have been identified thanks to relations (4.19-4.21).
A dimension-adaptive procedure based on SI is not a novel idea. Nevertheless, the
literature about related approaches is very scarce and does not discuss algorithmic
implementation [111]. Moreover, it relies only on total-order SI. Hereafter, an im-
proved method together with its detailed algorithmic implementation is proposed.
Its efficiency with respect to the few available data in literature is also investigated
[111]. The refinement approach proposed in this study is based on the main and
cross-direction effects monitored by the S(i) and S(i),(j) terms, respectively and

not only based on the total direction effect S
(i)
T . With the present technique, the

information arising from the GSA is richer and a more straightforward dimension-
adaptive refinement procedure may be performed.

Algorithm 3 provides the main steps of the numerical implementation. The
notation is in part inspired by the one of Gerstner et al. [120]. The algorithm
inputs are: – the stochastic dimension N , – the previous (old) active index set
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Data: N,O,S, nbmaxIT , nbmaxiso , lmaxi , cross
Result: A
A = O
for nbIT ≤ nbmaxIT or εconv > εconv0 do

if |
∑

i[S
(i) +

∑
j>i S

(i),(j)]− 1| > ε1 and nbiso ≤ nbmaxiso and aniso = 0 then

A = A ∪ j+1
1,...,N

nbiso + +
nbIT + +

else
for i ≤ N do

if |S(i)
max − S(i)|/S(i)

max ≤ ε2 and li ≤ lmaxi then

A = A ∪ j+1
i

aniso = 1
li + +
i+ +

end

end

for all
(
N
2

)
combinations of i, j do

if |S(i),(j)
max − S(i),(j)|/S(i),(j)

max ≤ ε3 and cross = 1 then

A = A ∪ j+1
i,j

aniso = 1
end

end
nbIT + +

end
Evaluation of εconv

end
Algorithm 3: Main steps of the Sobol’ based dimension-adaptive Smolyak sparse
grid (SC-Sobol) construction algorithm.

O (typically from a grid of level l2), – the SI vector S =
(
S(i), S(i),(j)

)
estimated

on the set O – the user-defined limiters nbmaxIT , nbmaxiso and lmaxi – and the user-
defined boolean variable cross which allows the user to decide whether to use the
second-order information from S(i),(j) or not. The algorithm returns: – the (new)
active index set A. The index sets O and A are two sets gathering all indices
j = (j1, ..., jN) ∈ NN (introduced in Section 4.2) which basically identify the
quadrature levels. One main if -loop and two second if -loops may be identified.
The first one states whether the refinement should be isotropic, i.e. following the
standard Smolyak algorithm (noted in compact form as j+1

1,...,N), or anisotropic. If

anisotropic, the refinement may be taken along the main direction (noted as j+1
i )

and/or in a cross-direction ( noted as j+1
i,j ). These three loops are explained in

more details hereafter:
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1. Isotropic refinement (three main conditions need to be fulfilled)

(a) |
∑

i[S
(i) +

∑
j>i S

(i),(j)] − 1| > ε1: check is necessary to avoid wrong
refinement suggested by a poor initial estimation of S. Namely, it is
suggested that

∑
i[S

(i)+
∑

j>i S
(i),(j)] should tend to 1 (condition coming

from relations (4.19-4.21)). No condition has been imposed on single
S(i),(j) since the cross-dimension effect may be exactly null.

(b) nbiso ≤ nbmaxiso : isotropic refinement is user-bounded by nbmaxiso .

(c) aniso = 0: checks whether the dimension-adaptive procedure has been
already performed once. If this is the case, the isotropic refinement
cannot be launched again. It is important then to carefully choose ε1
and nbmaxiso .

If these conditions are satisfied, the active setA becomes the union ofO and
the isotropic increment in all direction noted as j+1

1,...,N . The index diagram
is then similar to Figure 4.2.

2. Anisotropic refinement.

Introducing S
(i)
max = maxi(S

(i)), S
(i),(j)
max = maxi,j(S

(i),(j)), refinement may be
taken along:

(a) main direction if |S(i)
max − S(i)|/S(i)

max ≤ ε2. Supposing that there is at
least one6 dimension for which S(i) is large, the condition states whether

the refinement in a main direction has to be done with respect to S
(i)
max.

For ε2 = 1, the enrichment is in all main directions (i). This type of
refinement is user-bounded by lmaxi . Figure 4.4 (a) shows the updated
index diagram.

(b) cross directions if |S(i),(j)
max −S(i),(j)|/S(i),(j)

max ≤ ε3. This is a similar condition
as the previous one but expressed for cross-direction indices. Figure 4.4
(c) shows an example of index diagram. The refinement in a ((i), (j))
plane may not be trivial since several intermediate refinement options
may be identified. The chosen one is shown in Figure 4.4 (b). Please note
the steps ordering. Even if some steps may be switched7, e.g. 2 and 3,
the method would not be consistent. Since the cross-direction refinement
is addressed in this loop, all the possible cross-refinement options must
be preferred. When cross-refinement is not allowed anymore and the
refinement in the ((i), (j)) plane has to be pursued, the refinement along
the main direction (i) is allowed, e.g. step 3 in Figure 4.4 (b).

6If not, there is no reason for using adaptivity.
7since they are still admissible, please refer to Section 4.2
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(a) Refinement along the
main direction (i): j+1

i

(b) Progressive refine-
ments along the cross-
direction

(
(i), (j)

) (c) Refinement along the
cross-direction

(
(i), (j)

)
:

j+1
i,j

Figure 4.4: 2D index diagram for the Sobol’ based dimension-adaptive Smolyak sparse
grid algorithm.

Table 4.1: Suggested thresholds for limiters of Algorithm 3.

ε1 ε2 ε3 nbmaxiso lmaxi

1 · 10−3 0.8 0.8-0.9 1-3 6-10

The adaptation loop is stopped as soon as the convergence target εconv0 for
the mean or the variance is achieved or the maximum number of loop iterations
nbmaxIT is reached. Note that there is no stopping criterion based on the analysis
of statistics between two (or more) consecutive refinement steps. This is one of
the originalities of the proposed contribution. Without loss of generality, in this
study, the dimension-adaptive approximation only uses up to second-order SI. A
user guideline for the suggested thresholds for the ε1, ε2, ε3, nbmaxiso and lmaxi limiters
of Algorithm 3 are reported in Table (4.1).

4.4 Applications to test functions and 2D aerodynamic
simulations

In this section, the methods introduced in Section 4.3 have first been applied to
test functions, in Section 4.4.1, and then to airfoil aerodynamics simulations, in
Section 4.4.2. The compared results are obtained from sample-based numerical ap-
proximations that all share same computational Smolyak-constructed sparse grids,
unless otherwise acknowledged. The stochastic dimension N ranges from three (or
four) for the test functions to N = 8 for the RANS aerodynamics simulations.
In this section, the different results will be designated by compact acronyms as
follows. Pseudospectral approximations results will be mentioned with notations
containing the term ‘gPC’ to indicate that they rely on generalized Polynomial
Chaos representations:
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1. Standard projection approximation will be mentioned as gPC#D, with su-
perscript referring to the type of construction retained for the polynomial
approximation basis, i.e. gPCTD for total, and gPCSD for sparse8, polyno-
mial degree.

2. Sparse Smolyak projection approximations will be referred as SgPC.

Stochastic Collocation methods will be denoted as:

3. SC for the uniform/isotropic enrichment and

4. SC-Sobol for the Sobol’–based anisotropic one

4.4.1 Test functions

In this section, a nonlinear and anisotropic stochastic multi-variate test functions
are considered. Low-order moments and sensitivity coefficients are exactly known
for these functions and will be used to measure the performance of the numerical
approximations. The gPCTD results are obtained for a choice of TD polynomial
order close, but not necessarily equal to the theoretical one provided by the poly-
nomial exactness of the quadrature used. Several orders are tested and the one
providing the lowest statistical error is selected.

Ishigami function - N = 3

The Ishigami or Homma-Saltelli function [138] reads as follows:

f(ξ) = sin(2πξ(1) − π) + 7 sin2(2πξ(2) − π) + 0.1(2πξ(3) − π)4 sin(2πξ(1) − π),
(4.22)

for independent and equally distributed ξ(i) ∈ U[0,1]. This function is characterized
by two particular features which make the function particularly challenging for
GSA studies: – it cancels at ξ(1),(2),(3) = 0.5 and at bounds and – there is a strong
dependency of the function to the single variables ξ(1) and ξ(2) and to the (ξ(1), ξ(3))
combination.
SI seem a good candidate for studying the latter feature. The analysis of these
indices shows, as expected, that S1, S2 and S1,3 dominate. This example represents
a typical case in which the S(i),(j) indices, monitoring the cross interaction between
two random variables, are important.

The efficiency of the proposed dimension-adaptive method SC-Sobol based on
SI has been tested. Convergence plots based on the relative error in the solution
variance are shown in Figure 4.5. Results are compared from several methods in-
cluding ones from the literature, e.g. Eldred et al. [111]. The comparison is done

8Sparse degree here refers to the monomial coverage of the underlying sparse quadrature. It
projects onto the same basis as SgPC. Roughly speaking this is a polynomial degree of half the value
of the gray symbols in Figure 4.3 but which does not guarantee the discrete orthogonality of the ap-
proximation [112].
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both in terms of stochastic approximation methods and quadrature rules. The uni-
form refinement almost leads to the same convergence rate for both SC and SgPC
with CC nodes while the slowest convergence is obtained for gPCTD. Dimension-
adaptive SC-Sobol methods perform better than isotropic approximations and the
use of GP grids makes the convergence faster than CC nodes. For GP nodes,
the method based on our algorithm reaches machine accuracy with around 3.5
times less evaluations than Eldred’s implementation. As expected from the liter-
ature, the GSG goal-oriented method with the GP points performed the best [120].

The robustness of the proposed method has been investigated for different val-
ues of nbmaxiso and lmaxi , see for instance Figure 4.6. Another interesting feature
of this method is the presence of step-wise convergence patterns. The existence
of these plateaus is related to the refinement criterium illustrated in Figure 4.4
(b). For instance, in order to reach the index set #6, it may be necessary to go
through several successive steps/simulations that may not pay off right away in
term of variance convergence. This behavior gives grounds for the lack of stopping
criterion based on the analysis of statistics between two (or more) consecutive re-
finement steps as mentioned before.
Convergence results for the main (a) and cross (b) SI are presented in Figure 4.7.
For this function, the cross-dimension index is the hardest to capture, as its con-
vergence pattern follows the variance convergence, cf. Figure 4.5 (b). Again the
proposed Sobol’ based adaptive approximation performs well, especially for the
S(1),(3) index estimation.

In Figure 4.5-(b), gPCSD results were not given. The reason lies in its unsat-
isfactory convergence pattern. Both methods are further explored in Figure 4.8.
Figures 4.8 -(a) and -(b) show the monomial coverage emerging from the approx-
imations while -(c) shows the polynomial approximations coefficients. It is clear
from the colors distribution and the modal coefficients that the sparse pseudospec-
tral representation correctly captures the sparsity and the cross interaction of the
response reflecting a much better convergence and lower aliasing errors than the
standard approximation.

Scalable Gerstner test function [120] - N = 4

The method can also be tested on functions with more additive effects, e. g.
where the dependency on the N independent variables is determined by

∑
and∏

operators of all terms. The scalable Gerstner [120] test problem, here extended
to N (even) dimensions, reads as follows:

f(ξ) =

N/2∑
i=1

[
exp−(ξ(2i−1))

2

+10 exp−(ξ(2i))
2
]
, (4.23)
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Figure 4.5: Variance convergence for the Ishigami function. Horizontal axis represents
the total number of function evaluations. Comparison of sparse grids-based SC and
gPC approximations. Clenshaw-Curtis and Gauss-Patterson nodes denoted respec-
tively by (CC) and (GP); Eldred results from [111].

(a) lmaxi = 6 (b) lmaxi = 10

Figure 4.6: Variance convergence for the Ishigami function with SC-Sobol’. Influence
of the choice of nbmaxiso for two different lmaxi .

(a) First-order SI S(i) (b) Second-order SI S(i),(j)

Figure 4.7: SI convergence for the Ishigami function; same caption as previous figure.
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(a) Ishigami gPCSD polynomial approxi-
mation
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(b) Ishigami SgPC polynomial approxi-
mation
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Figure 4.8: Comparison of standard gPCSD vs. sparse SgPC pseudospectral approx-
imations of the Ishigami function. Top two figures (a-b) display the monomial cover-
age emerging from the approximations. The horizontal axis refers to the order of each
term from the expansion and the color represents log10 of the coefficients magnitude.
Dark (respectively light) colors correspond to large (respectively low) magnitudes.
Squares with cyan (respectively green and red) edge color refers to the correct domi-
nant polynomial terms in the ξ(1) (respectively ξ(2) and (ξ(1), ξ(3))) variables. Corre-
sponding polynomial orders are indicated within those squares. (c) shows the magni-
tude of the polynomial approximation coefficients.
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(a) lmaxi = 6 (b) Comparisons

Figure 4.9: Variance convergence for the Gerstner test problem. Tests at nbmaxiso = 1, 2
with two different lmaxi .

for independent and equally distributed ξ(i) ∈ U[0,1]. In the following, results are
presented and discussed for N = 4. Figure 4.9-(a) shows the variance convergence
for two different nbmaxiso against the result obtained with uniform Smolyak sparse
grid. The target convergence is achieved faster thanks to the adaptivity. Please
note as well, that the computational speedup is lower with respect to the Ishigami
function. The reason may lay again in the nature of S(i),(j) indices. In Figure
4.9-(b) the comparison with gPCTD and SgPC results based on the same grid are
also given for CC and GP nodes. For this C∞ class of functions, SgPC based on
uniform grids performs better than any version of SC approximations based on the
same type of quadrature rule for CC nodes. While, for GP nodes, the behavior of
SC and SgPC is similar.

Discussion

• For uniform/isotropic refinement, the most straightforward approaches are
SC and SgPC. They perform similarly unless the problem is very smooth
with additive effects in which case the spectral accuracy of the SgPC approx-
imation seems to outperform the SC approximations. A possible explanation
lies in the a priori choice of the gPC polynomial space of approximation
which is obviously influent but beyond the scope of this study. gPC#D meth-
ods either converge slower or do not converge, the poor behavior of SD being
due to strong aliasing errors. Overall, GP grids show better performance
than CC grids for comparable number of nodes.

• For dimension-adaptive/anisotropic refinement, only the SC methods have
been tested. Adaptive interpolation methods based on SI criteria are more
accurate and less costly than their isotropic counterpart, in particular for
this kind of function where accurate capture of high-order cross interactions
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between the stochastic scales is required. Moreover, the algorithm together
with its numerical implementation seems more performant than the one found
in the literature. At this stage, it is hard to infer on the causes of such a
difference due to the lack of algorithmic details provided in the referenced
paper. It is conceivable that the control of the second-order S(i),(j) (and pos-
sibly third-order S(i),(j),(k)) terms, may cause the efficiency improvement of
the approximation.
Finally, generalized sparse grid methods based on adaptive tensor-product
quadrature are shown to perform very well when the solution is smooth [120].
However the efficiency of GSG can be significantly improved when small lo-
cal regions of the input space contribute to the model’s variability [105].
Moreover, efficient implementation of the algorithm in terms of efficient data
structures for the storage and index sets bookkeeping is not straightforward.

There exists a wide range of test functions for checking the efficiency of integra-
tion technique involved in statistics computation. The Genz’s [139] is one of the
most exploited benchmark packages. The Ishigami function behaves very differ-
ently from the Genz’s test functions for which dependency of the N independent
variables relate by definition to

∑
and

∏
operators of all the terms. On one hand,

functions with explicit cross relation within certain variables, e.g. Ishigami; on the
other hand, functions without explicit cross relation and more additive effects, e.g.
Gerstner (and continuous Genz’s) functions as in Section 4.4.1. In the latter case,
S(i) indices alone are reasonably able to capture the main direction in which the
refinement would be needed in term of analysis of the variance. Moreover, the
S(i),(j) terms are less relevant as there is no explicit interactions of variables i with
j and vice versa. It is then reasonable to think that a dimension-adaptive method
as defined in Section 4.3.2 is not the most efficient approach to reproduce such
functions.

Some remarks about the proposed SC-Sobol interpolation method: some re-
sults have shown the benefit of limiting the highest quadrature level along the
main direction via the lmaxi parameter. This should not be seen as a weak point
but as an asset. Indeed, for the level of accuracy foreseen for CFD applications
(let say with N > 4), it will not be possible to reach beyond the l6 level.
In the following Section, these stochastic approximation methods have been de-
ployed in the framework of airfoil aerodynamics in subsonic regime subject to
operational and geometrical uncertainties.

4.4.2 Airfoil aerodynamic simulations

The first step is the identification and quantification of the uncertainties [82] that
are relevant to the realistic constraints encountered during an aircraft concep-
tion and testing, i.e. wind-tunnel and real flight conditions. Then, the physical

95



Chapter 4 A. Resmini

model approximation plays a crucial role in the QoI estimation. Several models
exist which may give different values for the same QoI. Identified uncertainties
may have either an higher or lower impact on the QoI with respect to the cho-
sen physical approximations. In the following aerodynamic applications, models
may have a higher impact on the QoI. Nevertheless the UQ studies are still valu-
able to get some insight on the sensitivity of that particular model with respect
to the selected uncertainties. The present approach is based on the assumption
that the discretization and truncation effects are similar in all computations and
their impact on the observed quantities is minor. Due to the computational cost
of reliable CFD and the high-dimensionality of the probability space, there is a
need for efficient adaptive stochastic approximations. Approximations based on
sparse grid techniques are potential candidates and are worth investigation in an
aerodynamical framework.

The following studies address the aerodynamic performance prediction of two-
dimensional subsonic steady flow at Re = 1.95·106 with a freestream Mach number
M = 0.291 about a NACA0015 airfoil in the presence of bounded operational and
geometrical uncertainties. Two studies with different deterministic models have
been carried out in this framework, in an effort to quantify the effect of different
levels of accuracy and versatility of the models on the UQ analysis.
For the first study, in Section 4.4.3, the assessment of the effects of N = 3 si-
multaneous uncertainties on five different objectives has been made with different
stochastic approximation methods. The deterministic code retained, XFOIL [8], is
a fast interactive panel method based flow solver used for the design and analysis
of airfoils.
For the second study, in Section 4.4.4, a fully turbulent RANS solver has been used.
In this more challenging case, the stochastic problem has a dimension N = 8. Sec-
tions 4 and 4 motivate the choice of the sources of uncertainties that have been
considered in these studies.Some experimental values are available thanks to the
work of Piziali [29] performed at the NASA Ames Research Center.

Distribution laws

The probability distribution of the identified uncertain parameters has to be in-
ferred. Here, only minimal and maximal uncertain value estimates are available,
so the uniform distribution should be used, in order to fulfill the Jaynes’ principle
of maximum entropy [140]. At this stage, any other distribution will contain more
information and less uncertainty thus less entropy. Normal distribution abundant
in the literature is not always the best choice for three main reasons: 1. it is not
bounded, 2. it is symmetric, 3. the mean value is more likely to occur. If there is
no evidence of properties 2. and 3. in the experimental data, then the distribution
would not fulfill the Jaynes’ principle.
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Table 4.2: Uncertain parameters for the XFOIL study (std values are expressed as
percentage of mean values).

Uncertain param. iid uniformly distributed U[µ±std%]

AoA 8◦ ± 0.4%
M 0.291 ± 0.4%
Ncrit 9 ± 33%

4.4.3 Simplified aerodynamics model

The present application concerns the estimation of the statistics of five different
objectives in the presence of three simultaneous uncertainties. The five objectives
are the lift Cl, drag Cd, pressure drag Cdp, momentum Cm coefficients and the
transition point on the pressure side Xtr. As mentioned before, XFOIL developed
by Drela [8] has been used. It employs an inviscid formulation to solve the outer
domain and integral boundary layer (BL) formulation to solve the viscous inner
domain, near the airfoil surface and in the wake. Its inviscid formulation is a linear-
vorticity stream function panel method. Compressibility is included by applying
a compressibility correction for Mach numbers up to sonic conditions. The inter-
action between the BL and the external flow is dealt via a surface transpiration
model. Natural BL transition is predicted through an eNcrit method. Interesting
comparison of XFOIL prediction of transitions with respect to RANS flow may
be found in [141]. XFOIL is very convenient for UQ studies since it has a short
evaluation time of the order of a few seconds. Use of a XFOIL solver in an UQ
study of a WT experiment has been also adopted by Boon et al. [142].

The imposed uncertainties are listed in Table (4.2). The uncertain coefficient
on the angle of attack (AoA) is justified by the experimental campaign of Piziali
where it is stated that the instantaneous angle of attack may have a deviation of
as mush as 0.3◦ [29]. The third chosen parameter relates to the second item in the
list of Section 4. A standard value, for the aforementioned exponential factor Ncrit

needed for the prediction of the transition, is Ncrit = 9. In practice, this value
changes according to the WT condition: typically, 4 ≤ Ncrit ≤ 8 for dirty facilities
and 10 ≤ Ncrit ≤ 12 for clean ones. In accordance, it has been chosen a variability
of Ncrit in the range between 6 and 12. The transition point at the suction side
has been imposed very close to the leading edge at 0.5% x/c, in agreement with
the experimental conditions. This leads to the cancellation of the laminar leading
edge bubble. The simulations have been run with 245 panels.

Due to the very short computational time needed for each computation, it has
been possible to perform refined stochastic simulations in order to obtain valuable
reference statistical values for later comparison. The obtained estimations are
shown in Table (4.3). Imposing a maximum number of simulation in the order of
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4000, the results for the SC based on full tensor grid (SC-Full) of Gauss-Legendre
nodes as well as Monte-Carlo simulations are compared. Based on the high poly-
nomial exactness properties of the GL rule as well as other results not included in
this manuscript, the SC-Full (GL) results have been retained as reference values.

Table 4.3: XFOIL case. Reference objectives values with the available experimental
data (Exp.), the nominal simulation with XFOIL and the statistics from SC-Full (GL
nodes) and from MC.

Objective Exp. Nom. (1) SC-Full (n
(N)
l = 4096) MC (n

(N)
l = 4000)

Cl
mean [·10−1] 8.528 8.978834 9.027929 9.032001
std [·10−2] - - 2.563730 2.569163

Cd
mean [·10−2] 0.9 1.199885 1.203627 1.204123
std [·10�4] - - 2.466207 2.484428

Cdp
mean [·10−3] - −2.322750 −2.359028 −2.355695
std [·10−4] - - 4.239083 4.163407

Cm
mean [·10−2] 1.86 1.430439 1.326815 1.324301
std [·10−3] - - 1.827151 1.847993

Xtr
mean [·10−1] - 9.876674 9.832693 9.833519
std [·10−3] - - 9.764260 9.755916

Table (4.4) shows the relative errors of the statistics of the five objective ob-
tained from the different methods with respect to the reference solution. It is
important to emphasize that the obtained statistics accuracy is very high, i.e.
O(10−5) for the mean (except for the Cm quantity, one order of magnitude higher)
and O(10−3) for the standard deviation. Considering methods with uniform sparse
enrichment, i.e. SC and all gPC methods reported here, the std errors are all of
the same order of magnitude except for Xtr that is best estimated by SgPC and for
Cm that is worst estimated by gPCSD. It is also interesting to point out that for
the same grid the SgPC approximation is always more accurate than the gPC#D

approximations.
Moving to the adaptive SC-Sobol results, this part of the table should be reviewed

together with Figure 4.10 that shows the statistics convergence against the number
of samples. The SC-Sobol are better than the most refined isotropic approxima-
tion SC l5 for the Cl and Cdp std, of comparable magnitude for Cd and worse for
Cm and Xtr, which are the most difficult quantities to approximate. Interestingly,
the adaptive greedy approach is always more accurate than the level SC l4 with
similar number of simulations, except for the Xtr std.

In order to deepen the analysis, Figure 4.11 shows the centered and normalized
probability density functions (PDF) and the centered cumulative density functions
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(a) Mean (b) Variance

Figure 4.10: XFOIL. Convergence of the relative error of SC (continuous line) and SC-
Sobol (dashed line) with respect to SC-Full (GL with 4096 simulations).
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Figure 4.11: XFOIL-based PDF and CDF of aerodynamics coefficients Cx from SC
(CC l5) approximation with 1M samples. The functions are centered (cf. Table (4.3))
and normalized for the sake of comparaison. An additional (×4) factor is used for the
normalization of the results of the Xtr PDF.

Figure 4.12: XFOIL-based first- and second-order SI obtained from the SC (CC l5)
approximation.
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Table 4.4: XFOIL. Relative errors of the approximated mean and standard deviation
with respect to the reference values, cf. SC-Full (GL) computations from Table (4.3).
For each line, the lowest error in the statistics is identified by a black star∗. Lowest
errors between SC l4 and SC-Sobol are pointed by a dagger† symbol.

SC SC-Sobol gPCTD gPCSD SgPC
Objective stat. l4(177) l5(441) (-) (441) (441) (441)

Cl
mean [·10−5] 8.1235 3.2413∗ 4.0502† (117) 3.2413∗ 3.2413∗ 3.2413∗

std [·10−3] 2.4408 4.1348 2.1616∗† (117) 4.5754 4.1806 2.1862

Cd
mean [·10−5] 2.6226 0.3336∗ 0.9801† (117) 0.3336∗ 0.3336∗ 0.3336∗

std [·10−3] 2.9579 1.3439 2.1516† (117) 1.5168 1.2281 0.7188∗

Cdp
mean [·10−5] 12.6417 8.0567∗ 11.5950† (221) 8.0567∗ 8.0567∗ 8.0567∗

std [·10−3] 0.7888 2.4916 0.5278∗† (221) 2.5718 1.4419 1.2549

Cm
mean [·10−5] 114.6256 50.1033∗ 89.5465† (117) 50.1033∗ 50.1033∗ 50.1033∗

std [·10−3] 9.0573 1.2141 6.2652† (117) 2.7514 18.3797 0.4919∗

Xtr
mean [·10−5] 3.6997 3.2530∗ 3.2762† (117) 3.2530∗ 3.2530∗ 3.2530∗

std [·10−3] 1.0472† 1.4022 7.0975 (117) 0.7522 5.0904 0.2214∗

(CDF) for the five objectives from SC CC l5 obtained trough Lagrange interpo-
lation with 1 million (1M) MC samples. PDFs and CDFs approximations are
obtained on 200 equally spaced data points, from a kernel density estimate pack-
age with normal kernel and optimized bandwidth following Silverman’s rule of
thumb. From the analysis of the profiles together with coefficient of variations,
the following interesting observations may be derived:

1. Cdp and Cm are the most sensitive quantities with respect to the uncertain
parameters while Xtr is the least sensitive;

2. None of the distributions are fully symmetric, but Xtr and Cm have the most
skewed and nonlinear response with respect to the nominal deterministic
value;

3. Cl and Cd have very similar profiles close to uniform distributions, while Cdp
exhibits a hat-looking profile reminiscent of a sum of uniform distributions.

The variance decomposition in term of SI is depicted in Figure 4.12. Clear
interaction between stochastic scales (here S(AoA),(Ncrit)) are only present for the
Cm response (and to some extent for the Xtr one), which is coherent with their
multimodal PDF shape. All other physical quantities are strongly dependent either
on one (here S(AoA) for Cl and Cd) or two (here S(M) and S(AoA) for Cdp) random
inputs. While it makes sense that both Cl and Cd depend on the angle of attack and
to a lesser extent to the coefficient affecting the transition location, it is interesting
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(a) Approximations coefficients

Figure 4.13: Comparison of the standard gPCSD and the sparse SgPC pseudospectral
polynomial approximation coefficients of the Cm aerodynamic coefficient considered in
the study of Table (4.4).

to notice that due to removal of the friction effects, Cdp depends more evenly on
both the Mach number and the airfoil incidence. As expected, the position of the
transition point Xtr is strongly influenced by Ncrit.

It seems interesting to investigate why sparse pseudospectral approximations
are so successful in representing the Cm and Xtr statistics. The monomial cov-
erage emerging from the pseudospectral approximations and the polynomial ap-
proximations coefficients are provided in Figure 4.13. Again, colors distribution
and modal coefficients show that the sparse representation exhibits a more regular
decay across the higher modes indicating a better convergence and lower aliasing
errors than the standard approximation. It is also beneficial to compare the PDFs
obtained from the other approximations, cf. Figure 4.14. It shows the distribu-
tions obtained from the coarse and fine standard gPCSD and SgPC pseudospectral
approximations compared to fine and coarse stochastic collocations (all based on
uniform CC grids) of the Cm aerodynamic coefficient. The sparse approxima-
tions produce smoother and narrower distributions than the standard polynomial
approximations due to the reasons exposed herebefore. Fine sparse polynomial
approximation and stochastic collocation based distributions are very close. The
comparison with the reference distribution obtained from the SC-Full (GL) grid
shows that the peak and highest values are well resolved by these approximations.
However the left tail is not completely well captured (the difference is more visible
in the semi-logarithmic view).

The use of XFOIL is limited to moderate angle of incidence. The code indeed
does not always converge for AoA> 12◦ (severe flow detachment regime). For
more realistic configurations with presence of both operational and geometrical
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Figure 4.14: Distributions obtained from the coarse and fine standard gPCSD and
SgPC pseudospectral approximations compared to fine and coarse SC (all based on
uniform CC grids) of the Cm aerodynamic coefficient. The distributions have been
centered and scaled according to the reference value of Table (4.4).

uncertainties, the use of a more complex (but more costly) aerodynamic simulator
is needed. RANS modeling is a good candidate for this purpose.

4.4.4 Reynolds-Averaged Navier-Stokes model

The present study addresses the prediction of 2D subsonic turbulent flow about a
NACA0015 airfoil. The computations are carried out by means of RANS simula-
tions. The turbulence closure is assured by a Spalart-Allmaras turbulence model
[1]. The ONERA finite-volume compressible CFD elsA [2] code has been used.
The analysis of lift Cl, drag Cd and pressure Cp coefficients, in terms of mean and
standard deviation has been carried out.

The flow about the airfoil has been studied at detached condition, AoA= 16◦

in the presence of eight simultaneous uniform uncertainties summarized in Table
(4.5). Compared to the XFOIL study, the mean value of the Mach number has
been kept the same. However, the uncertainty bounds has been raised to 6.25%
(i.e. M ± 0.0182) as well as for the angle of attack (i.e. AoA±1◦) for more pro-
nounced effects.

Geometrical uncertainties have also been introduced. Since the geometric mea-
surements data are scarce, an option that allows local control of the deforma-
tions consists in distributing bumps along the airfoil in order to reproduce at best
available surface shape imperfections. One of the most exploited is the so-called
Hicks-Henne [143] bump which use is common in literature for optimization pur-

102



A. Resmini Chapter 4

poses. Given the airfoil abscissa x, the height i-th bump is defined by the following
formula

hi(x) = Ai

[
sin

(
πx

log 0.5
log t1

)]t2
, (4.24)

where Ai is the bump amplitude, t1 controls the position maximum and t2 the
width. These small shape fluctuations may be applied to the airfoil camber, which
guarantees a constant airfoil thickness, or directly to the upper and lower sur-
face of the profile. Due to the very few available experimental assessments of
the real airfoil surface in WT testing9, the choice has been to keep determinis-
tic bumps location along the profile but to allow for independent random bumps
height. The amplitude Ai is then an uncertain parameter that should lay in the
identified accuracy range. This approach implies that the typical wavelength of
the geometrical fluctuations is kept constant while the amplitude of the bumps are
random and in particular the relative elevation of a given bump compared to its
neighbors. Please note that this shape modification may also induce in side alter-
ations of airfoil characteristics, i.e. chord length and camber. In WT condition,
similarly to the work of Piziali, these uncertainties lie in the range of 0.005%×
chord (i.e. ±0.05 mm). For this study, they have been multiplied by a factor of
three in order to mimic RF condition. The six bumps have been centered on the
suction side (which is the most sensitive to potential detachment condition) at
xb ∈ [0.10, 0.25, 0.40, 0.55, 0.70, 0.85] · x/c and t1 = 0.5 and t2 = 5.0 in Equation
(4.24). The bump span is equal to 0.20 ·x/c projected on the airfoil surface. With
this choice of bumps positioning, the chord length is not modified, namely c = 1.
Figure 4.15 (a - bottom) shows the profile displacement envelop bounded by the
local minimum and maximum surface position taken over all of the random events.
This envelop has been magnified by a factor of 20 for the sake of visual clarity.

In the present study, it has been decided to keep the same flow solver setup
and mesh refinement for each RANS simulation. The convergence is based on
the residual of conservative variables. The chosen structured mesh available from
Szydlowski et al. [144] has shown the best agreement with experiments [29] both
in term of loads prediction and pressure distributions, in attached and detached
cases. It is finer on the suction side, see Figure 4.15 (a - top). Moreover, the com-
putational domain extends to 10 chords away from the airfoil and y+ = 1 along
the surface. The mesh is of C-type with 200 nodes on the pressure side, 750 nodes
on the suction side, 48 in the wake and 105 in the direction normal to the wall,
for a total of 109930 points. Please note that for each shape modification of the
airfoil, the nominal mesh has been adapted accordingly by displacing nodes in the
affected region of the shape modification. Sufficiently far from that region, the
mesh is unchanged. This was an attempt to avoid unbalanced influence on results
given by the generation of a new mesh. The numerical scheme is based on Roe

9In general these evaluations are expensive and are also covered by confidentiality.
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(a) Mesh and bumps (b) M isolines, AoA= 16◦

Figure 4.15: NACA0015 profile geometry/discretization and flow field. (a) mesh (top)
and perturbed geometry (bottom) with displacement envelope (multiplication factor:
20). (b) Mach number isolines at AoA= 16◦.

Table 4.5: Uncertain parametric ranges for the RANS study.

Uncertain param. iid uniformly distributed U[µ±std%]

AoA 16◦ ± 6.25%
M 0.291 ± 6.25%
A1,..,6 0.0 ± 0.015% c

flux using a second-order MUSCL scheme (van Albada limiter) for the convective
term, while first-order Roe flux for the turbulent flow. The viscous fluxes of the
averaged and turbulent flows are discretized through a centred scheme with cell-
centred gradients corrected at the cell faces. With this setup, the deficiency of
all turbulence models to accurately predict the detachment phenomenon is well-
known. Notwithstanding, more complex CFD simulations (e.g. RSM, DES, LES,
DNS) nowadays remain too computationally demanding for such UQ study.

Figure 4.15 (b) shows the Mach number isolines for the nominal case, i.e. with
no uncertainty on the input data. Due to the high computational cost of the
RANS simulations, it was not possible to perform a reference estimation of the
statistics as it was done in Section 4.4.3. A budget of around 1000 computations
was the target. With this constraint, a level l3 isotropic sparse grid with a maxi-
mum 849 CC nodes was constructed. Table (4.6) shows the estimated mean and
standard deviation for Cl and Cd for all the stochastic approximation methods.
Fast evaluation of coefficients of variation shows that Cd is about 20 times more
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Table 4.6: RANS. Cl and Cd statistics. CC nodes. Lowest errors between SC l2 and
SC-Sobol with respect to SC l3 are identified by a dagger† symbol.

Method Grid n
(N)
l

Cl Cd
Mean Std Mean Std

SC (CC)l1 17 1.43012 0.0108767 0.0484011 0.0098380
SC (CC)l2 145 1.42744 0.0156279 0.0421365 0.0061201
SC (CC)l3 849 1.44612 0.0348340 0.0509102 0.0207006
SC-Sobol (CC) 205-201 1.44284† 0.0314871† 0.0463688† 0.0171121†

gPCTD (deg=2) (CC)l3 849 1.44612 0.0417952 0.0509102 0.0237432
gPCTD (deg=3) (CC)l3 849 1.44612 0.0667229 0.0509102 0.0399846
gPCSD (deg=4) (CC)l3 849 1.44612 0.0903712 0.0509102 0.0430063
SgPC (deg=4) (CC)l3 849 1.44612 0.0236920 0.0509102 0.0176705

Deterministic - - 1.44242 - 0.0452085 -

Experiment - - 1.0971 - 0.1262 -

sensitive than Cl in this case. For sufficiently fine grids, the obtained Cl and Cd
mean values converge, while the standard deviation results do not agree. The
best agreement between SC and gPC class of methods is obtained for SC l3 and
SgPC. Concerning the dimension-adaptive SC based on Sobol’, it is interesting to
observe that all results obtained from SC-Sobol get closer to SC l3 results from
below rather then SC l2, despite the few more simulations needed. In fact the
SC-Sobol std are ‘in between’ the SC l3 and SgPC results. In particular, it gets
very close to SgPC for the Cd std.

It is also beneficial to analyze the SI for both objectives. Figure 4.16 shows
the histograms of the main (a) and of the non-negligible cross-dimensional (b)
indices. The angle of attack strongly dominates, as in the XFOIL study, the vari-
ance estimation, and the Mach number has a smaller effect on Cd. The effects
on the objectives of the geometrical uncertainties are small with the most influent
bump being the first one (and also the last one for Cl). In Figure 4.17, the PDF
(a) and CDF (b) of the aerodynamic coefficients are also reported. They exhibit
non-uniform distributions and confirm the high sensitivity of Cd and its skewness
towards high values.

4.5 Some concluding remarks

This study was motivated first by recent literature introducing a way of construct-
ing polynomial pseudospectral approximation based on the direct application of
Smolyak algorithm. In this case, sparse sampling/approximations of linear oper-
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(a) Main SI (b) Non-negligible cross SI

Figure 4.16: RANS-based first- and leading second-order SI obtained from the SC CC
l3 approximation. Bumps amplitude are denoted as A1,..,6, where A1 is placed down-
stream the leading edge and A6 upstream the trailing edge.
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ators on tensor product spaces somewhat alleviate the curse of dimensionality, in
particular if the number of random dimensions remain moderate (i.e. O(10− 20))
and if the quantity under investigation presents some levels of regularity. With
this flexible formulation, the polynomial surrogate takes full advantage of sparse
sampling and guarantees no internal aliasing errors. It was then natural to com-
pare this approach with the well-known stochastic collocation approximation for
identical (nested) computational grids. Both classes of approximations were then
compared on regular isotropic sparse grids with different quadrature rules. During
this study and inspired by the literature, a newly designed adaptive stochastic
collocation with dimension-adaptivity driven by global sensitivity analysis of the
quantity of interest was developed. The different stochastic approximations effi-
ciency was assessed on nonlinear/anisotropic multi-variate test function as well as
on airfoil aerodynamics simulations. The latter study addressed the probabilistic
characterization of global aerodynamic coefficients derived from viscous subsonic
steady flow about an airfoil in the presence of geometrical and different operational
uncertainties. It was indeed envisioned that those global quantities resulting from
aerodynamic forces balance about the geometry and depending on moderate num-
ber of random variables would be good candidate for the aforementioned numerical
methods. Two studies with different deterministic models - aerodynamics simpli-
fied and RANS models - have been carried out in this framework. The idea was to
quantify the effect of the balance between accuracy and versatility of the models
and computational costs on the UQ analysis.

The results hints for some trends that are probably not extendable to all classes
of stochastic problems. Nevertheless, it is fair to say that sparse pseudospectral and
collocation approximations exhibit close level of performance, in terms of distri-
butions and statistics, for isotropic sparse simulation ensembles. We have noticed
that when the problem is very smooth with additive effects the pseudospectral
approximation keeps an edge over the collocation approach. The right choice of
the polynomial basis probably helps reducing external aliasing errors in this case.
Concerning adaptive approaches, i.e. based on a substantially smaller number of
samples and consequently at a smaller fraction of the computational cost, compu-
tational savings and accuracy gain of the proposed stochastic collocation driven
by Sobol’ indices are patent but remain problem-dependent. The approach is
performant when there exists high-order cross interactions between the stochas-
tic scales. Notwithstanding, it may be argued that the method can be used in
a different framework. Indeed, an interesting point of view is the one where the
adaptive collocation is utilized for the exploration of large (sparse) ensembles. This
was the case for the aerodynamics studies (as often for engineering applications)
where preexisting database collecting hundreds of realizations had been gathered,
holding several levels of sparse isotropic refinements. Then the collocation with
dimension-adaptivity driven by global sensitivity analysis, may be seen as a nu-
merical tool that incrementally and anisotropically selects a subset of realizations
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from the large isotropic ensemble structure, reaching the same (or even better)
level of accuracy with much less information. This raises the question of the rele-
vance of the systematic use of the largest available database at hand.
More efforts are needed but the present results provide support to the deployment
of adaptive stochastic approximations for aerodynamics uncertainty propagation
in a fully coupled and dynamic fashion. The development of greedy anisotropic
refinements based on global sensitivity analysis for sparse pseudospectral approx-
imation is the subject of ongoing work.
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Conclusions & perspectives

Sensitivity analysis, verification and validation (V&V) as well as uncertainty quan-
tification (UQ) are powerful tools in order to asses the validity and reliability of
numerical simulations. The application of these methods in the Computational
Fluid Dynamics (CFD) domain has risen significantly in the latter decades and
the provided insight into CFD simulations differs from one approach to the other.
The focus given in this PhD thesis research has been especially put on the nu-
merical side of CFD code. Numerical solutions show strong dependency over the
physical model, the discretization approach, the machine precision as well as the
treatment of the model parametric input values. Special care has been given to
the space discretization defined by the computational mesh and to the influence of
the input values on the obtained solution. In order to improve the results, it was
then essential to investigate the flow sensitivity with respect to the aforementioned
factors.

Optimisation methods extensively use gradients and in turn gradient compu-
tation methods became an essential tool, nowadays available in many commercial
CFD codes including elsA. The discrete direct differentiation and the discrete
adjoint methods require the linearisation of the governing flow equations with re-
spect to the conservative variables and to the metrics. In this PhD thesis research,
important improvements in gradient computation has been implemented in the
code. Namely, the full linearisation of the mean-flow viscous flux with respect to
the conservative variables and the full linearisation of the Spalart-Allmaras tur-
bulence model with respect to the metrics. The precision improvement has been
investigated through relevant examples. The influence of the frozen turbulent vis-
cosity hypothesis has been equally assessed and it turned out to be important for
some applications. In aeronautics, the design process is highly demanding from a
computational point of view, both for the numerous constraints given but also for
the time needed for each simulation. Therefore, it is common to focus on some
Quantity of Interest (QoI) of the flow (e.g. global aerodynamic functional) rather
than on the entire flow domain. For this reason, goal-oriented methods have caught
strong interest in the CFD community even for mesh adaptation. Goal-oriented
mesh adaptation techniques where the adjoint vector of the QoI is used started to
appear a couple of decades ago. An enhanced version of a mesh adaptation method
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based on total derivative of aerodynamic functions (goal function J) with respect
to mesh coordinates for one mesh level only has been given. The refinement indica-
tor θ based on the dJ/dX has proven its efficiency in highlighting the crucial flow
region in which a refinement is needed in a 2D RANS flow about an airfoil. In this
thesis, only structured meshes have been considered which facilitate the handling
of nodal addressing but in turn impose strong constraints on the construction of
the mesh itself. The adapted drag coefficient-based mono-block mesh shows strong
anisotropy according to the flow regime but local refinement unfortunately spreads
all over the computational domain. The use of non-matching multi-block meshes
relax this problem. The method has proven its flexibility also in the case where
it is used in order to adapt the coarse farfield mesh blocks in the presence of a
uniform refined boundary frozen mesh block.

CFD computations have been traditionally performed in a deterministic frame-
work, i.e. the input data are at a fixed values, often the experimental nominal
ones. Notwithstanding, reality exhibits fluctuations around the nominal values.
Since about two decades ago, UQ methods have rapidly grown their influence in
the V&V process by transforming CFD simulations into stochastic problems. The
input values are then subject to a distribution law which should mimic the experi-
mental recurrences or in any case fulfill the Jaynes’ principle of maximum entropy.
Given the high complexity of the elsA code, only non-intrusive approaches, which
avoid major code modifications, have been considered. Monte-Carlo methods need
generally an high number of computations which make their use quite rare in a
CFD framework. Powerful methods have been developed in which the regularity of
the solution through polynomial approximation is put to use. In particularly, gen-
eralized Polynomial Chaos (gPC) in its sparse pseudospectral form and Stochastic
Collocation (SC) methods have been used. Both approaches have been constructed
on Smolyak sparse grids which reduce the computational burden. The latter has
been further reduced by proposing a new implementation of a dimension-adaptive
algorithm driven by the Sobol’ indices. The use of nested quadrature helps even
more the computational savings while keeping the same quadrature precision with
respect to Gauss-type formulae. The latter is proven to be true especially for non-
polynomial functions. Multi-variate test functions as well as viscous aerodynamics
applications have been presented. The performance enhancement provided by the
gPC and the SC are similar for sparse isotropic grids. Nevertheless, when the
problem is very smooth with additive effects the pseudospectral approximation
keeps an edge over the collocation approach. The right choice of the polynomial
basis probably helps reducing external aliasing errors in this case. Concerning
anisotropy, the Sobol-based dimension-adaptive method has shown its efficiency
in reducing the dimension of the stochastic problem but it remains problem depen-
dent. It is reasonable to assume that for very non-smooth problem this approach
is not sufficient and the reason relies on the sparse grid enrichment which follows
the underlined quadrature rule.
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The achievements reached during this PhD thesis point towards more reliable
and robust CFD simulations. Indeed, more precise gradient computation, goal-
oriented adapted mesh and quantitative insights of the effect of parametric input
value uncertainties on the QoI are all beneficial. Improvements of this PhD the-
sis research are worth considering. On the gradient computation precision, minor
approximations persist in the elsA code as well as some more important implemen-
tation linked with the linearisation of turbulence models other than the Spalart-
Allmaras one. The extension to unstructured grid is undergoing and this will allow
to capitalize the information from the refinement indicator θ without the strong
mesh construction constraints imposed by the structured framework. On the UQ
side, many improvements are conceivable. Stochastic approximations methods
based on quadrature grid need an efficient and flexible way of grid enrichment
which sometimes is limited by the underlined quadrature rule. These enhance-
ments may lay on both new quadrature nested grids and on dimension-adaptive
methods. The right choice of the polynomial basis for the gPC has shown to
have an important influence on the QoI statistics precision, thus further studies in
this direction are worth considering. Improvements in regression methods for high-
dimensional problems are also interesting since the randomly selected computation
points avoid the quasi-exponential growth of quadrature grids. Nevertheless, it is
necessary to check that these points ensure some recovery properties (discrete or-
thogonality, mutual coherence et cet.) which for instance are only checked once as
long as a quadrature grid-based method is used. It is finally important to underline
one of the main perspective of this PhD thesis: a well-balanced goal-oriented de-
terministic/stochastic error control for CFD simulations. The integration of these
approaches is essential in order to have reliable and validated results. The adap-
tation of both the mesh and the way random variables are approximated seems
a research topic worth focusing on. The minimization of the discretization error
(for instance for the computation of drag coefficient) over the variations range of
the uncertain parameters (for instance Mach number, angle of attack and geomet-
rical uncertainties) would enhance the quality of the UQ results. This would be
possible by adapting the mesh for each parametric uncertainty. Another subject
worth considering is the application of adjoint techniques in the approximation
methods in order to identify the sources of uncertainty which impact the most the
statistics of QoI. This would reduce the stochastic space dimensions and would
allow UQ studies also for high-demanding computational simulations in aeronau-
tics. Notwithstanding, the Author would like to recall once more the essential
influence of the physical model which was not part of this PhD thesis research
topics. The presented results are valuable in a fixed physical model approach. A
complete control of the error on the CFD simulations cannot be detached from
physical model considerations.
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