
HAL Id: tel-01391819
https://hal.sorbonne-universite.fr/tel-01391819v1

Submitted on 3 Nov 2016 (v1), last revised 18 Dec 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

System-level modeling and simulation of
microelectromechanical systems for multi-physics virtual

prototyping in SystemC-AMS
Benoit Vernay

To cite this version:
Benoit Vernay. System-level modeling and simulation of microelectromechanical systems for multi-
physics virtual prototyping in SystemC-AMS. Micro and nanotechnologies/Microelectronics. Univer-
sité Pierre et Marie Curie (UPMC Paris 6); LIP6 UMR 7606, UPMC Sorbonne Universités, France,
2016. English. �NNT : �. �tel-01391819v1�

https://hal.sorbonne-universite.fr/tel-01391819v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORATDE L’UNIVERSITÉ PIERRE ETMARIE CURIE

Spécialité

Informatique

École Doctorale

ED130 Informatique, Télécommunications et Électronique

Pour obtenir le grade de

DOCTEURDE L’UNIVERSITÉ PIERRE ETMARIE CURIE

Sujet de la thèse

Modélisation et simulation haut-niveau

demicro-systèmes électromécaniques

pour le prototypage virtuel multi-physique en SystemC-AMS

Présentée par

Benoit Vernay

Soutenue le 16 Juin 2016

Devant le jury composé de

Prof. HabibMehrez Université Pierre &Marie Curie Président

Prof. Gaëlle Lissorgues ESIEE Paris Rapporteur

Dr. Matthieu Moy Grenoble INP Rapporteur

Prof. Robert Sobot ENSEA Membre du jury

Prof. Skandar Basrour Université Grenoble Alpes - TIMA Membre du jury

Prof. François Pêcheux Université Pierre &Marie Curie Directeur de thèse

Dr. Marie-Minerve Louërat Université Pierre &Marie Curie Co-Directrice de thèse

Dr. Gerold Schröpfer Coventor Directeur de thèse

Dr. Arnaud Krust Coventor Invité

Benoît Vernay

System-level modeling and simulation

of microelectromechanical systems for

multi-physics virtual prototyping in

SystemC-AMS

PhD Thesis

June 2016

University Pierre &Marie Curie

Computer Science Department

Paris

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives4.0 International License.

To view a copy of this license, visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

Embeddedsystemshaveevolved tomorecomplexassemblies, calledCyber-Physical Systems (CPS),mostly

operating through networks and tightly interacting with the environment. As actuators or sensors, micro-

electromechanical systems (MEMS) are essential elements in these systems where they are integrated

along with control and signal processing units. Designing such solutions requires a multi-domain ap-

proach like virtual prototyping. Based on system-level models, this technique allows to anticipate the

global behavior in early-design phases and to further refine it in more advanced steps. Integrated circuits

were progressively designed with respect to this method, especially through Hardware Description Lan-

guages (HDLs) like VHDL or Verilog. By adopting a higher-abstraction degree, SystemC enabled the co-

development of hardware/software specific applications. In parallel, the Analog and Mixed-Signal (AMS)

extensions proposed in SystemC-AMSpartly addressed the increasing amount of analog components and

are considered as apromising alternative for the virtual prototyping of heterogeneous systems. To that end,

this thesis addresses the system-level modeling and simulation of MEMS devices in SystemC-AMS. First,

we evaluate the current capabilities of the standard and supported models of computation in SystemC-

AMS. We demonstrate the limitations and the difficulty to elaborate equivalent models of MEMS devices

whose geometry and internal coupling require more detailed descriptions. Second, we propose to directly

integrateMEMS reducedmodels in SystemC-AMS.Model-order reduction is amathematical technique to

decrease the number of degrees of freedom and generate compact models from large-scale systems. We

thus integrate the reducedmodels exported from the finite-element analysis toolMEMS+ and propose an

Application Programmable Interface (API) to insert these ad hocmodels in SystemC-AMS. After reviewing

the main API features, we discuss some improvements of both the standard and the presented solution.

Finally, we verify our solution through the use case of an accelerometer and compare the results with the

state of the art in terms ofmodeling accuracy and simulation performance. This thesis introduces a frame-

work to integrate MEMS devices with the surrounding electronics in a unified system-level simulation

environment.

Keywords Microelectromechanical systems, virtual prototyping, system-level simulation, Hardware

Description Language (HDL), Analog and Mixed-Signal (AMS), SystemC, SystemC-AMS

v

vi Abstract

Résumé

L’évolution des systèmes embarqués se traduit aujourd’hui par des ensembles complexes, dits systèmes

cyber-physiques, opérant principalement en réseau et interagissant fortement avec leur environnement.

Intégrés à des circuits de contrôle et de traitement du signal, les micro-systèmes électromécaniques, ou

MEMS, jouent un rôle primordial dans ces ensembles en tant que capteurs ou actionneurs. La concep-

tion de tels systèmes requiert des solutions globales et pluri-disciplinaires telles que le prototypage virtuel.

Basée sur des modèles haut-niveau, cette technique permet d’anticiper le comportement du système

dès les premières phases de conception et de le raffiner lors de phases plus avancées. Ces méthodes

ont progressivement été appliquées à la conception de circuits intégrés, notamment avec l’utilisation

de langages de description matérielle, tels que VHDL ou Verilog. En adoptant un niveau d’abstraction

supérieur, SystemC a largement contribué au développement concourant des parties matérielles et logi-

cielles. Parallèlement, les extensions proposées dans SystemC-AMS répondent au nombre croissant de

composants analogiques dans les circuits intégrés et constituent une base prometteuse pour le prototy-

page virtuel de systèmes hétérogènes. Pour cette raison, cette thèse traite de la modélisation et de la sim-

ulation haut-niveau de dispositifs MEMS en SystemC-AMS. Dans un premier temps, nous évaluons les

capacités actuelles du standard et desmodèles de calcul proposés dans SystemC-AMS. Nous démontrons

les limites et la difficulté d’élaborer des modèles équivalents de dispositifs MEMS dont la géométrie et les

couplages internes nécessitent des descriptions plus détaillées. Nous proposons donc, dans un deuxième

temps, d’intégrer directement dans SystemC-AMSdesmodèles réduits de dispositifs MEMS. La réduction

d’ordre demodèle est uneméthodemathématique permettant de créer des représentations compactes de

systèmes initialement très larges en termes de degrés de liberté. Ainsi, nous utilisons les modèles générés

depuis l’outil d’analyse en éléments finisMEMS+ et proposons une interface de programmation pour les

insérer dans des modèles SystemC-AMS. Après avoir détaillé les principales fonctionnalités de l’interface,

nous discutons les améliorations possibles du standard et de la solution présentée. Enfin, nous vérifions

notre solution avec l’étude d’un accéléromètre et comparons les résultats avec l’état de l’art en termes

de précision des modèles et de performances de simulation. Cette thèse propose ainsi une méthodologie

complète pour intégrer des dispositifs MEMS dans un environnement de simulation haut-niveau.

Mot-clés Micro-systèmes,MEMS, prototypage virtuel, simulation haut-niveau, langage de description

matérielle (HDL), analogique et signal-mixte (AMS), SystemC, SystemC-AMS.

vii

viii Résumé

Acknowledgments

"Je comprends que si je puis par la science

saisir les phénomènes et les énumérer, je ne

puis pour autant appréhender le monde."

Albert Camus, Le Mythe de Sisyphe, 1942.

I am grateful tomy advisors, François Pêcheux andMarie-Minerve Louërat, for their guidance throughout

my time at the University Pierre and Marie Curie and the autonomy in my work at LIP6. I want to express

mymost sincere gratitude to Gerold Schröpfer for the trust and encouragement he afforded me. I learned

a lot from his insights on the MEMS industry and innovation management. I want to thank Arnaud Krust

who significantly contributed to this research project and always gave me precious advice.

I would like to acknowledge the support received from the CIFRE program and the CATRENE organization

which co-funded this work, realized in partnership betweenCoventor and LIP6, and part of the European

project CA-701 H-Inception. I thank our European collaborators, especially the project leaders at ST Mi-

croelectronics, Serge Scotti and Olivier Guillaume. I want to thank Fabio Cenni for his great support and

the numerous technical discussions we had. I am also grateful to TorstenMähne for sharing his expertise

and commitment though a fruitful collaboration at LIP6 during this project.

I was fortunate to be part of Coventor's development team and really enjoyed sharing such a great work-

ing environment. I hope this company, lead by Mike Jarowlovski, and the MEMS+ product, now driven by

Stephen Breit and Stéphane Rouvillois, will both meet the success they deserve. It was a real pleasure to

work with theMEMS+ team in Paris and I want to thank its members. In alphabetical order, these are Au-

rélie Cruau, Igor Favorskiy, Gunar Lorenz, Arnaud Parent, Olivier Renaud, Alexandre Sinding and Daniele

Timarchi.

I want to thank my workmates at LIP6, especially Liliana Andrade, Cédric Ben Aoun and Vanessa Tran

with whom I shared great moments in our daily work and had a wonderful time in Greece. I also thank

the former and current PhD students met at LIP6 laboratory: Jean-Baptiste Brejon, Alexandre Brière, Clé-

ment Devigne, Wilfried Dron, Cesar Fuguet, Zhi Hao, Thomas Hujsa, Laurent Lambert, Yao Li, Hao Liu,

and Quentin Meunier. I wish them all the best in their future career and personal life.

In the end, life is a tremendous journey where lovemattersmost. I would thus remembermy parents from

whom I have learned the value of work and the sense of integrity. I am incommensurately grateful to my

sister, Marilyne, without whom I would not have been so far. I want to thank my family and friends for

their unwavering support and the joy to spend time with them. Finally and above all, I want to thank my

beloved, Sophie, for her devotion and patience throughout these years, teaching me that "real generosity

towards the future lies in giving all to the present".

ix

x Acknowledgments

"L’esthétique, envisagée comme science des

structures, mérite de devenir le guide sûr des

actions humaines quelles qu’elles soient."

Henri Laborit, Biologie et structure, 1968.

xii Acknowledgments

Contents

1 Introduction 1

1.1 Multi-domain virtual prototyping . 2

1.2 Electronic system-level design . 5

1.3 MEMS modeling and simulation . 7

1.4 Contributions . 8

1.5 Outline . 9

2 State of the art 11

2.1 Introduction . 11

2.2 MEMS system-level design . 12

2.2.1 Electrostatic transducers . 12

2.2.2 Component-basedmodeling . 15

2.2.3 Simulation strategies . 18

2.3 HDL-based reducedmodels . 22

2.3.1 Model order reduction principles . 22

2.3.2 Implementation in HDLs . 24

2.4 SystemC, a system-level design language . 27

2.4.1 Basic concepts . 28

2.4.2 AMS extensions . 31

2.4.3 Other extensions . 36

2.4.4 Signal conditioning . 37

2.5 Summary . 38

3 ESL-basedMEMSmodeling 41

3.1 Introduction . 41

3.2 Modeling methodologies . 42

3.2.1 Equivalent-circuit representations . 43

3.2.2 Energy-basedmethodologies . 45

3.2.3 Transfer function and state-space system . 47

3.3 MEMS macromodels . 48

3.3.1 Accelerometers . 49

3.3.2 Gyroscopes . 53

3.4 Conclusion . 57

xiii

xiv CONTENTS

4 System-level simulation API 59

4.1 Introduction . 59

4.2 Motivating example . 60

4.2.1 Model definition . 60

4.2.2 Use case . 63

4.2.3 Results . 68

4.3 API Implementation . 71

4.3.1 Device . 75

4.3.2 Test bench . 77

4.3.3 Add-ons . 78

4.4 API use case . 82

4.4.1 Test-bench configuration . 83

4.4.2 Simulation results . 84

4.4.3 Simulation performance . 85

4.5 Conclusion . 86

5 Case study 87

5.1 Introduction . 87

5.2 Methods &Material . 88

5.2.1 Device under test . 88

5.2.2 Modeling procedure . 90

5.2.3 Test-bench definition . 93

5.3 Experiment . 94

5.4 Results . 96

5.4.1 Modeling accuracy . 96

5.4.2 Simulation performance . 98

5.5 Conclusion . 99

6 Conclusions 101

6.1 Contributions . 101

6.2 Future work . 102

6.3 Closing thoughts . 103

Bibliography 105

Appendices 121

A Functionals of coupled electromechanical systems 121

B MEMS+model definition 125

C Modeling procedures 129

D Source code - Gyroscope 133

E Source code - Accelerometer ST LIS332AR 137

F Source code - Accelerometer ST SEM 139

List of Acronyms

3-D Three Dimensional . 38, 62, 64, 72, 82, 135, 137
AC Alternating Current . 15–17, 51, 75, 76, 78, 79, 89, 135
AMS Analog/Mixed-Signal 2, 3, 6, 8, 12, 22, 24, 28, 31, 32, 34, 37, 39, 41, 55, 57, 59

API Application Programming Interface . 2, 5, 9, 20, 26, 36, 59, 68, 71–73, 78, 79, 82, 86, 87, 98,

99, 102, 139

ASIC Application Specific Integrated Circuit . 1, 2, 7, 42, 86, 87
BEM Boundary-Element Method . 7, 12–15, 18, 38
CAD Computer Aided Design . 7, 21, 39, 46
CMOS Complementary Metal-Oxide Semiconductor . 1, 2, 50
DAE Differential Algebraic Equation . 5, 22, 26, 35, 36, 42, 43, 45, 47
DC Direct Current . 15–17, 37, 50, 75, 76, 78, 79, 89, 135
DE Discrete Event . 4, 35, 36, 79
DEVS Discrete EVent System specification . 36, 103
DoF Degrees of Freedom . 7, 12, 14, 20, 22, 38, 53, 60, 86, 98, 139
DTDF Dynamic Timed Data Flow . 34, 73, 79, 102
EDA Electronic Design Automation . 1, 26
ELN Electrical Linear Network . 31–33, 35, 36, 50, 55
ESL Electronic System-Level . 5, 8, 9, 12, 24, 26–28, 39, 41
FE Finite Element . 21, 22, 25, 38, 42, 60
FEA Finite Element Analysis . 7–9, 11, 16, 18, 25, 26, 57, 59, 61, 63, 68
FEM Finite Element Method . 2, 7, 9, 11–15, 18, 25, 26, 38
FMI Functional Mock-up Interface . 4, 5
HDL Hardware Description Language 2, 5, 8, 9, 11, 20–22, 24, 26, 27, 30, 31, 39, 59, 88
HetSC Heterogeneous specifications in SystemC . 36

xv

xvi List of Acronyms

HW Hardware 1–9, 11, 19, 22, 26, 27, 31, 37–39, 41, 49, 57, 59, 84, 86, 88, 101–103
I2C Inter-Integrated Circuit . 93
IC Integrated Circuit . 1, 2, 5, 6, 8, 11, 12, 21, 22, 24, 27, 28, 36, 39
IP Intellectual Property . 2, 5, 28, 104
LSF Linear Signal Flow . 31–33, 35, 36, 50, 62
LTI Linear Time Invariant . 55, 84
MARTE Modeling and Analysis of Real-Time and Embedded systems . 3
MDVP Multi-Domain Virtual Prototyping . 3, 7, 36, 41, 57, 97, 103

MEMS Microelectromechanical System . . 1–3, 6–9, 11–15, 17–22, 24–26, 31, 36–39, 41–43, 46, 48,

49, 52, 57, 59, 60, 71–73, 78, 79, 84, 86–88, 93, 94, 99, 101–103, 135, 140

MIMO Multiple-Input Multiple-Output . 47
MoC Model of Computation 4–9, 28, 30–38, 41, 42, 46, 49, 50, 55, 57, 62, 73, 78, 79, 98, 101, 103

MOR Model Order Reduction 7–9, 11, 12, 19–26, 38, 41, 59, 60, 68, 71, 84, 101, 103, 139
ODE Ordinary Differential Equation 4, 5, 7, 12, 20, 22, 23, 26, 41, 45, 47, 48, 57
PDE Partial Differential Equation . 7, 12, 22, 23, 36, 38, 42, 45
RF Radio Frequency . 15, 41, 57
RTL Register Transfer Level . 5, 27, 28
SCAX SystemC AMS extensions eXperiments . 36, 46, 55
SDF Synchronous Data Flow . 32, 34
SiP System in Package . 1, 7, 8, 39
SoC System on Chip . 1, 2, 5, 7, 8, 39
SPI Serial Peripheral Interface . 93
SVD Singular Value Decomposition . 140
SW Software 1–4, 6–9, 11, 19, 22, 26, 27, 31, 38, 39, 41, 49, 57, 59, 84, 86, 88, 101–103
SysML SystemsModeling Language . 3
TDF Timed Data Flow . 31–36, 50, 55, 62, 64, 67–69, 73, 78, 79, 93, 98, 103
THELMA® THick Epipoly Layer for Micro-actuators and Accelerometers 63, 88, 135
TLM Transaction Level Modeling . 27–29, 31
TPWL Trajectory Piecewise-Linear . 24, 140
UML UnifiedModeling Language . 3, 67, 73
UVM Universal Verification Methodology . 6, 28, 72
VLSI Very Large Scalable Integration . 22, 42

List of Figures

1.1 State-of-the-art HW/SW platform interfaced withMEMS sensors. 3

2.1 Parallel plate capacitor . 14

2.2 Parallel plate. 15

2.3 Lateral comb finger arrays. 16

2.4 Transverse comb finger arrays. 16

2.5 Beam resonator. 17

2.6 MOR applied to MEMS simulation. 20

2.7 Levels of abstraction supported byMEMS CAD tools and system simulators. 21

2.8 Input-output system. 22

2.9 Levels of abstraction supported by HDLs. 28

2.10 Base classes in SystemC. 29

2.11 SystemC communication model. 29

2.12 SystemC simulation phases. 30

2.13 Layered architecture of the SystemC standard with AMS extensions 32

2.14 Signal processing and equations supported by the models of computation in SystemC-AMS. 33

2.15 TDFmodeling topology. 34

2.16 LSF modeling topology. 35

2.17 Principle of an electronic unit with a control feedback loop. 38

2.18 IC and MEMS design flows with standard HDLs and traditional CAD tools. 39

3.1 Lumped-element representation of micromechanical transducer 44

3.2 Equivalent representations of a resonant mechanical structure. 44

3.3 Causality, equations and block diagram representation of main elements in bond graph. . . 45

3.4 Block diagram of a linear state-space system. 48

3.5 Principle of the acceleration measurement by an accelerometer. 49

3.6 Basic capacitive displacement sensing configurations with horizontal plates. 51

3.7 Basic capacitive displacement sensing through sidewall capacitance of comb fingers. 51

3.8 Principle of the angular displacement measurement by a gyroscope. 54

3.9 System-level representation of a gyroscope with Coriolis force modeling. 54

3.10 Simulation result in SystemC-AMS for a gyroscope. 56

4.1 First implementation of the model export . 63

4.2 Explodeddiagramof thedifferentMEMS+ componentsused in theaccelerometerSTLIS332AR. 64

4.3 Biaxial accelerometer. 65

4.4 UML diagram of the private data class pattern. 67

xvii

xviii LIST OF FIGURES

4.5 Definition of the test bench implementing the biaxial accelerometer ST LIS332AR. 68

4.6 Accelerometer response. 70

4.7 Device under test in a system-level simulation environment. 72

4.8 Principle of theMEMS+ API. 73

4.9 UML diagram ofMemsplus::MROM main classes. 74

4.10 SystemC-AMS runtime environment associated to MROM devices. 76

4.11 Processing algorithm associated to MEMS+ MROM devices. 77

4.12 Supported stimuli profiles. 79

4.13 Generator base class and inherited objects. 80

4.14 Multiplier base class and inherited objects. 80

4.15 API block modeling topology. 81

4.16 Exploded diagram of the gyroscope double-mass. 82

4.17 Modal analysis run inMEMS+ anddetailed for the driving and sensingmodes of the gyroscope. 83

4.18 Test-bench configuration of the gyroscope double-mass. 84

4.19 Simulation results highlighting the influence of the time-step selection. 85

4.20 Performance analysis . 86

5.1 Exploded diagram of the accelerometer x/y . 88

5.2 Sensing mode in x-axis for the accelerometer simulated inMEMS+. 89

5.3 Displacement error. 91

5.4 Capacitance shift error. 91

5.5 Refined high-level model. 91

5.6 Block diagram of the refined high-level model. 92

5.7 Step response parameters. 92

5.8 Integration of the MEMS reduced-order or high-level model in a SystemC-based test bench. 94

5.9 Mechanical response to an accleration impulse. 94

5.10 Signal processing in x-axis . 95

5.11 Evolution of the system variables with regard to the acceleration amplitude. 96

5.12 Step response of the accelerometer to an acceleration step. 97

5.13 Relative error observed for various acceleration step amplitudes. 97

5.14 Performance analysis . 99

A.1 Domain definition for the mechanical and the electrostatic problems. 121

A.2 Definition of the primal and dual energy functionals . 123

B.1 Thematerial database stores information characterizing the differentmaterials used during

the process (density, inertia, crystal orientation, thermal or electrical conductivity. . .). . . . 125

B.2 Each layer is described in the process editor by its thickness and the associated material. . . 126

B.3 MEMS+ Component library. 126

B.4 MEMS+ Innovator plugin. 127

B.5 MEMS+ Simulator plugin . 127

C.1 Mechanical forces acting on rotating device. 131

List of Listings

4.1 Definition and declaration of an MROM instance in SystemC-AMS. 75

4.2 Use of API callback functions . 75

4.3 AC analysis of the MEMS reduced-order model . 75

4.4 Basic simulation steps encapsulated in the base classMemsplus::MROM::Testbench 77

4.5 Testbench reset function . 78

4.6 Analyses related to the base classMemsplus::MROM::Testbench . 78

4.7 Generation of a sinusoidal temperature stimuli with internal unit conversion 81

D.1 Gyroscope TDFModule Definition . 133

D.2 Gyroscope TDFModule Declaration . 134

E.1 TDFModule Definition of the accelerometer ST LIS332AR . 137

F.1 Testbench Definition . 139

F.2 Testbench Declaration . 143

xix

xx LIST OF LISTINGS

List of Tables

1.1 Overview of the frameworks, projects and software solutions for system-levelmodeling and

simulation. 6

2.1 Simulation strategies . 19

2.2 MOR applied to MEMS design and simulation in HDLs. 26

2.3 Elaboration and simulation in Timed Data Flow (TDF) MoC 34

3.1 Conjugate power variables . 42

3.2 Numerical application of gyroscope . 56

4.1 Accelerometer Parameters . 64

4.2 Modal analysis realized inMEMS+ . 64

4.3 Index of the models of the accelerometer LIS332AR in the different simulation environments. 67

4.4 Simulation results for a ramp impulse in translation acceleration in x-axis (Amplitude: 1g) . 69

4.5 Actuation of the gyroscope electrodes. 83

4.6 Simulation results for a ramp impulse of angular velocity around the y-axis (Amplitude: 1 rad) 85

5.1 Modal analysis of the accelerometer. 89

5.2 Actuation of the accelerometer electrodes . 89

5.3 Index of the models of the accelerometer ST SEM. 90

5.4 Negative capacitance response to a 2g acceleration step. 92

5.5 Simulation results for a ramp impulse in translation acceleration in x-axis (Amplitude: 1g) . 98

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

"There is plenty of room at the bottom."

Richard Feynman, 1959 [1].

Embedded systems benefited over the last decade from the shrinking of subsystems, better integration

into networks and more efficient autonomy. Microelectromechanical System (MEMS) devices have been

massively integrated in embedded systems and more generally in Cyber Physical Systems (CPS) [2]. CPS

integrate computing, communication, and storage capabilities with the monitoring and/or control of en-

tities dependably, securely and efficiently [3]. They operate in real-time in the physical world, from the

nano-world to large-scale wide-area systems of systems. These smart systems embed among others me-

chanical and electrical sub-systems, like MEMS [4]. These parts are connected to one another through

Hardware (HW) and Software (SW) components responsible for their control and monitoring [5].

MEMS or microsystems are micro-scaled devices usually manufactured by lithographic technologies [6],

initially developed for CMOSmicrochips and based on semiconductor process. These systems rely on the

principle of energy conversion betweenmechanicalmovableparts and electrodes. They are packagedwith

microelectronics in order to integrate sensing and actuation, digital processing and control functions in

a single package (SiP) or in some cases into a monolithic integration through single chip (SoC) [7, 8]. De-

veloped for years, MEMS devices find a broad range of applications, for example inertial, fluid or pressure

sensors [9, 10, 11], ink-jet headers [12] or micro-mirrors [13]. Moreover, the manufacturing processes en-

able the development of new kinds of devices such as microphones [14] or bio-sensors [15, 16, 17].

Historically, MEMS manufacturing relies on highly-specialized processes, custom-made for each device

type.However the largeamountofMEMSfabricationprocesses increases theproductioncostsandextends

the time tomarket. Simultaneously Application Specific Integrated Circuit (ASIC) andMEMS devices have

been incorporated intocontinuouslygrowingSoCandSiPbatchproductions [18].MEMStechnologiesalso

tend to shorten the development time and reduce the related costs while meeting high-level performance

and reliability requirements [19]. To this end, EDA vendors, foundries and fabless companies collaborate

to standardize processes, likewise Integrated Circuit (IC) market [20].

1

2 1 Introduction

To accelerate the design of MEMS devices, some virtual prototyping solutions propose to integrateMEMS

devices into the CMOS traditional design flow throughmultidisciplinary simulation tools [21]. TheMEMS

designers can also exchange low-level information in a structured and efficientmanner throughMEMS In-

tellectual Property (IP) libraries and PDKs (Process Design Kits) delivered by foundries [22]. Additionally,

the test engineers can specify some environment constraints and appropriate operating configurations.

In practice, MEMS, HW and SW components are considered separately with low-level descriptions. For

instance, ICs and SoCs are often implemented in languages such as C, assembly, or Hardware Description

Languages (HDLs) like VHDL or Verilog. Similarly, MEMS are modeled in Finite Element Method (FEM)

modelswhich contain lots of details andmay slow down the computing. These solutions are well fitted for

the fabrication and the design of devices themselves, but need to be completed to also ensure their cor-

rect integration of into heterogeneous architectures. To this purpose, we investigate higher-levelmodeling

methods to bindMEMS, HWand SWcomponents into dedicated simulation frameworks.We consider the

virtual prototyping offers novel opportunities at system level to tackle the integration of embedded sys-

tems.

In this thesis, we explore the question of how to efficiently integrate MEMS devices within electronic

system-leveldesign environmentwhile preservingmodeling accuracy and simulationperformance. To

solve this problem, we are interested in the definition of a unified simulation framework in which system-

level models of ASIC and MEMS are merged in what we callmulti-physic virtual prototypes. To this end,

we integrate the behavioral description ofMEMS within the Analog/Mixed-Signal (AMS) extensions of the

system design language SystemC. Our solution consists in an Application Programming Interface (API)

between the commercial toolMEMS+® [23] and the standard implementationSystemC-AMS [24].Wehope

that higher level representationswill lead to faster integrationandprovide strong robustness andefficiency

guarantees, as well as an improved designer productivity. Moreover, we think that such an investigation is

valuable to highlight some limitations and possible improvements of existing solutions.

1.1 Multi-domain virtual prototyping

Today,micro-electronicsmanufacturers use platforms to test processor applications with companion sen-

sors. The keyobjective is to verify the system responses to software requests, e.g., interrupts or events asser-

tion upon threshold overruns. Moreover, such tools aim to improve the power management and calibrate

the embedded software applications. To this end, these platformsmust include devices likeMEMS to guar-

antee the coherency and the calibration of the overall system which depends for instance on the device

mechanics or sensor positions. The state-of-the-art solutions aim to virtually reproduce the behavior of

MEMS either through co-emulation or by reading results of experiments, as summarized in Figure 1.1. In

co-emulation, the platform is directly interfaced with the physical sensors while the software is emulated

on a virtual platform running on a server. The co-emulation solutions also require a complex setup and

are limited to lowparametric configurations. Alternatively, results of experiments on the actual devices can

be recorded and stored in database in order to replay the corresponding sequence as input of the HW/SW

platform. Despite an easier setup, this solution still remains limited to specific use cases. We therefore ex-

plore an alternative solutionwhich is fully based onvirtual prototypes in order tomake theplatformsmore

open andmodular, improve the reproducibility of experiments and fulfill the requirements of the product

assembler.

1.1 Multi-domain virtual prototyping 3

L2 Cache

Dual-Core
ARM v7

SMP

Interconnect

Graphic
Engine

2x LPDDR 2/3
Controller

Modem
LTE HSPA

TD-SCDMA

Sensor
Processor

Peripherals

5x SD/MMC
Controllers

ARM

USB
3.0/2.0

Sensor
Processor

ARM

Video

Display

Imaging
DigRF

SIM IC-USB

UART

I2S

HSIC

e.MMC v4.5 SD 3.0 32b DDR32b DDR CPU & GPU
Power

Power &
Control

TDM/I2 S

I2C/SPI

PDM

HDMI

DPI

DSI

CSI-2

CSI-2

CSI-2

USB

HSIC

SDIO

HW / SW PlatformMEMS Sensors

(a) Co-emulation

(b) Digital player

(c) Virtual prototyping

MEMS
devices

File
reader

Digital
Interface

Experiment results

MEMS
Models

Virtual digital
Interface

Fig. 1.1: State-of-the-art HW/SW platform interfaced with MEMS sensors. This platform was presented
by STMicroelectronics during the European project H-Inception. The co-emulation solution (a) refers to
the actual devices while the digital player (b) generates the stimuli observed in experiments and stored
in databases. Our study aims to replace such infrastructures by a complete virtual prototype (c) which
comprises both the MEMS devices and the AMS front-end and is connected to the rest of the HW/SW
platform.

Our motivation is to find a lighter and more reproducible solution than the current ones employed by

electronic manufacturers. To this end, we focus our study on the use of virtual prototypes able to repre-

sent complete solutions comprising MEMS, HW and SW parts. A virtual prototype is an analytical model

of selected design properties. This allows the engineer to predict the system behavior without building

expensive, inflexible, physical prototypes.

Model-based design produces a global view of the system and enables further refinements through high-

fidelity mathematical models in specific area, e.g., kinematics, multibody dynamics or electronics. The

related solutions setup the rules for syntax, semantics and pragmatics to define the representation, the

meaning and the edition of the corresponding models, respectively. The Object Management Group stan-

dardized most of syntax used in model-based systems engineering [25] in regard to block-diagram prin-

ciples. For instance, Unified Modeling Language (UML) [26] provides a generic visual syntax to represent

systems as sets of interconnected blocks, or actors, with respect to connectivity and communication rules.

SysML [27] restricts UML principles to systems engineering and targets the functional and structural ver-

ification of systems. To that purpose, SysML introduces an internal block diagram notation and the use

of flow ports. The behavioral description of systems remains flexible enough to allow multiple behavioral

definitions of the same entity. Alternatively, MARTE [28] supports performance analyses and quantitative

predictions through a common way of modeling both hardware and software aspects. This enables a bet-

ter interoperability betweendevelopment tools used for the specification, design or verification steps. The

aforementioned standards only address the syntactic modeling of systems andmust therefore be comple-

mented by simulation environments to fully anticipate their behavior.

The complexity of systems induces a tight interplay across domains (mechanics, electronics, software,

communication networks . . .) and requires more integrated tools to provide Multi-Domain Virtual Pro-

totyping (MDVP) solutions. MDVP intends to merge domain-specific methods into unified modeling and

4 1 Introduction

simulation environments to address the heterogeneous nature of embedded systems. Co-simulation and

coupled simulation are the two complementary approaches commonly employed to this end.

On the one hand, co-simulation combines several domain-specific simulators. This approach defines in-

terfaces betweendifferent modeling tools. Such frameworks support the necessary concurrency and com-

municationmechanisms to orchestrate the overall simulation without the structural and abstraction con-

straints of hierarchy. Based on detailed models, this method ensures the accuracy of results but may lead

to long computation time that is not acceptable in early-design phases. The deployment of standard im-

plementations, e.g., High-Level Architecture [29] or Functional Mock-up Interface (FMI) [30], aims at the

synchronizationofdifferent software tools.Dedicated interfaces, like FunctionalMock-upUnit [31] inFMI,

address the proper cross-tool integration. The corresponding programmable interfaces and software solu-

tions also need to be actively maintained and documented to guarantee the large adoption and the global

compatibility of the tool chain. Additionally, the combination of traditional tools can lead to incompatible

syntax, misleading semantics and inconsistent pragmatics, as demonstrated by Lee in [32].

On the other hand, coupled simulation tackles the heterogeneity of systems by specifying a unified mod-

eling language. Rather than addressing software problems of tool integration, the multi-paradigm model-

ing is focused on the semantics of inter-operation, i.e., the structural definition and the synchronization

of multiple Model of Computations (MoCs). A MoC supports a particular definition of time and refers to

domain-specific modeling and simulation rules. Nonetheless such a unified language cannot meet all re-

quirements of a system modeling and specification tool. Therefore, the principle of MoC is generally ap-

plied in order to achieve strong semantics, yet address heterogeneity and provide mechanisms to allow

heterogeneous models to interact concurrently [33]. In this case, the simulation core allows the addition

of new MoCs to cover different physical domains. Such an architecture must preserve the integrity and

coherence of simulations while staying scalable [34].

Ptolemy II [35, 36]provides a coordination framework anddescribes systems through the actor-basedmod-

eling technique. The actor-based description deepens the traditional use of block diagrams by adding in-

formationon the structural link that exists between components. Furthermore, this approach supports the

notion of hierarchy directly in the model since an actor can itself contain several actors. The Ptolemy ap-

proach [37] influenced many of coupled simulation environments. For instance, SystemC architecture is

extensible and could offer high-fidelity modeling framework with specificMoC structures and simulation

facilities. Nevertheless, its current micro-kernel structure implies that any additional MoC must refer to

the underlying Discrete Event (DE) simulator. Alternatively, ModHel’X [38] decouples the modeling from

the execution process and refers to meta-modeling techniques in order to support component-oriented

and hierarchical semantics. ForSyDe [39] rather extends the usage of MoCs in abstracting functions and

features of complex heterogeneous systems. The low expressive and high-fidelity level of suchmodels can

address the abstraction and formal verification, but is not necessarily for HW/SW co-design.

Multiple tools already implement MoC-based fixed solutions to address system-level design of heteroge-

neous assemblies. MATLAB® [40] was first intended to provide routines to the powerful LINPACK [41] and

EISPACK [42] libraries, developed to solve linear equations and eigenvalue problems, respectively. Built

upon these initial matrix packages, MATLAB provides a general-purpose programming language that in-

corporates standard functions for the solution of Ordinary Differential Equations (ODEs). This language

can beapplied to simulation of continuous anddiscrete-timesystems too.MATLAB/Simulink, or the open-

1.2 Electronic system-level design 5

source equivalent Scilab/Scicos [43], indeedenablesmodel-baseddesignand systemsimulation.Bothpro-

vide a graphical input to definemodels and handle hierarchical structure through block diagrams. Benefit-

ing from themathematical foundations ofMATLAB, Simulink can dynamically solve complexmatrix func-

tions. This environment is extensively used to design applications in micro-mechatronics [44]. Moreover,

toolboxes and APIs enable the co-simulation with external solvers, e.g., to test HW prototype or real-time

software [45].

Alternatively, Modelica® [46] implements a modeling language with the intent to ease the description of

multiphysics systems. This uses expressions essentially referring to themathematical equations of the un-

derlyingmodel.Hence,Modelicamodels are usually based ona functional descriptionof systems and refer

to non-causal modeling with true Differential Algebraic Equations (DAEs) and ODEs [47]. As an object-

oriented language, Modelica is well adapted to design purposes and aims to easily exchange models and

model libraries. Moreover, Modelica, together associated with simulation tools such as Dymola or Open-

Modelica, supports the simulation of systems mixing continuous and discrete time descriptions in the

FMI environment. LMS Amesim® [48] is another versatile physical modeling and simulation tool using

primitive components and predefined libraries.

1.2 Electronic system-level design

HDLs shorten SoC design phases by modeling and verifying digital ICs through virtual prototypes. These

languages are constructed on top of a single MoC that defines the elements, relationships and events fur-

ther combined into models. The associated discrete-event simulator generates and updates the value of

variableswitha timestampasdefinedbyoperations. Their relative cost can thusbe evaluated regarding the

underlying hardware obtained from logic synthesis. In industry, VHDL [49] and Verilog [50] are the de facto

standards to address the digital simulation of ICs. In order to include analog front-end components, these

HDLswere extended to analog simulation, e.g., withVHDL-AMSandVerilog-AMS [51]. Nevertheless, these

solutions remain decoupled from the development of software running on the targeted architectures.

To address SoC growing complexity, specific modeling and analysis methodologies were developed. For

instance, ad-hoc C/C++ based models are commonly used by designers to validate basic architectural

choices. In addition, algorithms are defined and validated by complementary dataflow models target-

ing an optimal implementation, either on hardware or software. Moreover, IP reuse and associated tech-

niques, such as platform-based design, notably accelerate SoC back-end implementation processes, i.e.,

fromRegister Transfer Level (RTL) to the layer definition [52]. These steps are now considered reliable and

cost-efficient. As a consequence, the major design phases shift up in abstraction level to system level, de-

noted Electronic System-Level (ESL) design [53]. ESL enables the concurrent development of application-

specific software and hardware systems. To that purpose, higher-level languages emerged over the last

decade [54]. Involving multiple MoCs, they handle additional timing constraints and data types. Further-

more, these languages extend the capabilities of traditional HDLs with a better support for concurrency,

communications and configurability of models [55].

SystemC became in the last few years a C/C++ modeling standard for systems architects [56]. This C++-

based library enables the system-level simulation and the co-development of digital hardware and soft-

ware. This is based on a single fixedMoC, the same as existing HDLs, namely the discrete event semantics.

6 1 Introduction

Therefore a system is described as a set of interconnected modules processing threads or methods, each

representing the system in a behavioral or functional manner [57]. These functions are then scheduled

and executedby the SystemCevent-drivensimulation kernel. Besides the co-development of software and

hardware, this standard enables the functional and behavioral modeling of ICs [53]. Furthermore, this sim-

ulation environment enables an early functional and architectural verification through dedicated frame-

works like Universal Verification Methodology (UVM) [58].

SystemC AMS extensions enable the continuous systems simulation in SystemC [24]. This standard im-

plements the synchronization between discrete-event and discrete-time solvers in charge of digital and

analog components simulation, respectively. Moreover, SystemC AMS layered architecture allows the def-

inition of additional MoCs [59], each dedicated to a specific physical domain. Another potential asset of

SystemC-AMS lies in its further coupling with a verification process like UVM [60]. Nonetheless, SystemC

AMS still remains limited to efficiently recover time-continuous behaviors, especially the nonlinear ones.

Despite these drawbacks, SystemC AMS is a valuable support to simultaneously handle the simulation of

software and digital hardware with additional non-electronic peripherals, in particular MEMS. This stan-

dard is used in the commercial software Coside® [61] which also supports VHDL-AMS to provide a com-

plete design flow for AMS solutions.

Table 1.1: Overview of the frameworks, projects and software solutions for system-levelmodeling and sim-
ulation of embedded systems comprising HW, SW and multiphysics elements.

Modeling Simulation

Digital HW
Embedded

SW
Multiphysics

MoC-based
architecture

Single
kernel

Co-
simulation

F
ra
m
e
w
o
rk
s

ModHel'X ∼ ✗ ✓ ✓ ✗ ✗

ForSyDe ✓ ∼ ✓ ✓ ✗ ✗

SystemC ✓ ✓ ✗ ✓ ✓ ∼

SystemC AMS ✓ ✓ ∼ ✓ ✓ ✗

Ptolemy II ✓ ✓ ✓ ✓ ✓ ∼

P
ro
je
c
ts

RapidMPSOC ✓ ✗ ∼ ✗ ✗ ✓

SMAC ✓ ∼ ✓ ✗ ✗ ✓

Beyond Dreams ✓ ✓ ∼ ✓ ✓ ✗

H-Inception ✓ ✓ ✓ ✓ ✓ ∼

S
o
ft
w
a
re

LMS Amesim ✗ ✗ ✓ ✓ ✓ ✗

Modelica ∼ ✗ ✓ ✓ ✓ ✓

MATLAB/Simulink ∼ ∼ ✓ ✓ ✓ ∼

Coside ✓ ✓ ∼ ✓ ✓ ∼

1.3 MEMSmodeling and simulation 7

The aforementioned solutions address the simulation of heterogeneous systems through specific soft-

ware tools or dedicated frameworks. Nevertheless, the rise of SoC/SiP in embedded systems encouraged

a digital-centric approach to build virtual prototypes. Alternative methods therefore emerged from the

electronics community to bindHW/SWdevelopmentwith system simulation environments.We reviewed

hereafter some of the research projects that contributed to the development of novel standards. RapidMP-

SOC [62] andSMAC [63]projectswere focusedonco-simulationenvironments to enable themulti-domain

simulation. One interesting result of the SMAC project relies on the automatic extraction of SystemC-AMS

and C++ models from heterogeneous system descriptions as shown in [64]. This thesis was conducted

during the H-Inception project that followed up the Beyond Dreams project which aimed to enlarge Sys-

temC with AMS extensions [65]. One noticeable contribution of H-Inception is the proof of concept of a

unified simulation environment for the MDVP with respect to SystemC and the MoC principles [66]. The

aforementioned frameworks, projects and commercial software solutions are summarized in Table 1.1.

1.3 MEMSmodeling and simulation

MEMS are generally designed and simulated in dedicated Computer Aided Design (CAD) tools, mostly

through Boundary-Element Method (BEM) or FEM [67]. These fined-grain models have a large number

of Degrees of Freedom (DoF) and are too complex to be further integrated at higher level in the models

of complete heterogeneous systems. The complexity of such descriptions is indeed relatively high and re-

sults in more than thousands or millions possibly nonlinear coupled Partial Differential Equations (PDEs)

or ODEs. The computation and solving of such systems is time consuming and cannot be directly used

in a circuit-design environment. Therefore MEMS system-level design intends to produce functional or

behavioral equivalent compact models to speed up the simulation.

Macro-modeling encapsulates the multiphysical behavior of MEMS (mechanics, electrostatics, fluidic

damping) into small components. Specific commercial solutions [68] already implement this modular ap-

proach and rely on MEMS dedicated high-order Finite Element Analysis (FEA), which concatenates the

multiphysics into one single equations system. This is in contrast to traditional FEM tools, which usually

rely on solver coupling formulti-physical simulation. Nevertheless, the transient simulationof FEA is likely

perceived as too slow for MEMS/ASIC co-design [69]. To address the system designer’s needs for simula-

tion speed while preserving the critical nonlinear characteristics of a device, the reference model must be

reduced to a lower but self-sufficient number of DoFs, e.g., through Model Order Reduction (MOR).

MOR is a well-established mathematical theory and an efficient technique to generate compact and ac-

curate models of large-scale dynamical systems [70]. This results in a reduced model, i.e., a small system

of ODEs, that is derived and computed to recover the solution of original system. In MEMS design, MOR

can be considered as solved in principle for linear systems regarding the support in simulation software

of robust numerical algorithms in order to automate the process [71]. Latest research are focused on es-

tablishing error estimators to guarantee the quality of compact views from large-scale systems [72]. In

addition configurable reduced models enable to preserve parameters and thus evaluate the design varia-

tions without performing MOR again [73]. Moreover, the MORmethods frequently handle nonlinearity of

the system by approximation either through a polynomial of low degree or a translated quadratic bilinear

form. An extensive review of MOR techniques in nonlinear cases is provided in [74]. The simplest tech-

nique remains the quadratic methodwhich can be reinforced by the bilinearizationmethod or variational

8 1 Introduction

analyses which lead to lower errors. In case of strong nonlinearities, piece-wise linear approximations are

preferred to handle the dynamic disparities of the system and refer to "snapshots" of intermediate states

[75]. All these methods derive from frequency-domain MORmethods whose accuracy is measured by the

related transfer functions.

Combining reduced models with HDLs is a promising way to enable the global system simulation. The

digital part is usually described in HDL like VHDL or Verilog and can be broaden to analog parts thanks

to AMS extensions. In addition, the AMS extensions of HDLs partly enable the simulation of continuous

systems through discrete-time solvers [76]. In the case of MEMS, reduced models have been successfully

integrated to AMS extensions of HDLs and found multiple applications as detailed in Section 2.3. Com-

monly based on VHDL-AMS or Verilog-AMS, we are interested in this work in higher-level descriptions in

SystemC-AMS.

Besides reduced models, AMS extensions of HDLs are used to model microsystems through lumped ele-

ments. These models apply the fundamentals of electrostatics and mechanics in equivalent descriptions,

for instance resonant systems like mass-spring-damper systems. The system-level simulation also raises

the level of abstraction to decrease the amount of detail and enable fast simulations [77]. Despite faster

computation, such models need to access parameters generally issued frommore detailedmodels in FEA

or collected fromexperiments. In addition to acumbersomedefinition, themodelshave a limited accuracy

andmay produce severe approximations, especially in nonlinear cases. This matters since the complexity

of MEMS devices is growing in terms of geometry and features. Lumped-element models are already sup-

ported by most AMS extensions of HDLs, but cannot be considered as accurate enough to appropriately

tune hardware or software.

1.4 Contributions

In this thesis we propose several innovations for the system-level modeling of MEMS in order to provide

suitablemulti-physics virtual prototypes. Inparticular,we address the current limitationsof SystemC-AMS

with the exploitation of reducedmodels directly issued from the FEA toolMEMS+. Webelieve that our con-

tributions improve the integrationofMEMSdevices in complex architectures andpropose analternative to

theMoC-based approach by directly coupling SystemC-AMS to the commercial software solutionMEMS+.

Evaluation of ESL-based system-levelmodeling

This work is focused on the simulation of MEMS once implemented with the surrounding IC, i.e. as

SoC or SiP. SystemC applies ESL design principles and provides an efficient way to tackle HW/SW co-

development. The digital-centered approach of SystemC is widely adapted from traditional HDLs. More-

over, themicrokernel structure of SystemCallowsflexibility and encourages the developmentof additional

MoCs and solvers. For instance, AMS extensions have been implemented in order to model and simu-

late analog or non-electronic sub-parts. In the following, we specifically use the SystemC-AMS standard

to model and simulate MEMS in complex architectures. The standard implementation of SystemC-AMS

partly supports system-levelmodelingmethodologieswell-adapted toMEMS devices. Inparticular, we de-

fine state-space systems or transfer functions by applying first principles and implement these models in

the standard SystemC-AMSMoCs. Additionally, we explore the capabilities of state-of-the-art extensions

toprovide equivalent descriptions through lumped-element circuits or bond graphs. Although thesemeth-

1.5 Outline 9

ods provide satisfactory results, they present strong limitations both in terms of modeling and simulation.

This introductory study intends to evaluate the top-down approach supported by SystemC-AMS through

high-level models of MEMS using commonmodeling methodologies by highlighting the difficulty to cor-

rectly handle the complex geometry of devices.

MEMS+ API for the system-level simulation of reducedmodels in SystemC-AMS

The generic definition, even of classical devices such as accelerometers or gyroscopes, may lead to ap-

proximations that cannot be acceptable when targeting the system verification. Since MEMS behavior is

strongly conditioned by the geometry of the device, MEMS behavioral description must refer to the ge-

ometry and therefore requires in-depth information from experiments or detailed FEMmodels to ensure

the correct configuration of models. We also support the idea that reducedmodels are more appropriated

than lumped-element ones to elaborate efficient multi-domain virtual prototypes containing MEMS. To

this purpose, we use the reducedmodels exported fromMEMS+ to correctly handle the coupling existing

betweenmechanics and electrostatics in MEMS devices.

A programmable interface is proposed in order to directly integrate reduced-order models in SystemC-

AMS. The reduced models are generated from preliminary FEA and spatial discretization of electrome-

chanical coupling, here the FEA toolMEMS+ [78]. These models are issued from a tested and already im-

plemented feature that guarantees the preservation of electrostatic nonlinearities [79]. Furthermore, we

analyze the influence of the simulation time step on its performance, especially with regard to the fre-

quency distribution of models and the selected integration schemes that may require high sampling rate.

The presented interface enables SystemC-AMS, and to some extend C++ users, to instantiate and access

reducedmodels through a set of functions and methods. We provide the necessary background to config-

ure themodel and import results inMEMS+. Additionally, we define functional simulation elements, such

as test benches or stimuli generators. This serialized framework intends to increase the re-use of the code

and enablemultiple scenario of simulation. The proposed API aims to take advantage from SystemC-AMS

without requiring any additional MoC and refer to accurate models initially created inMEMS+.

1.5 Outline

This thesis is structured as follows. Chapter 2 provides background on MEMS virtual prototyping and

HW/SW co-development. We present the principles of ESL design and MOR techniques and review the

state-of-the-art solutions to integrate reducedmodels in HDLs. SystemC and its extensions are also intro-

duced. Chapter 3 details the system-levelmodeling of MEMS in SystemC-AMS.We provide a comparative

study of existing modeling methods which are supported by the standard and the related MoCs. The lim-

itations of equivalent representations of accelerometers and gyroscopes are discussed in order to justify

the use of reduced models. In Chapter 4, we introduce the proposed API withMEMS+ software. We com-

pare our solution to the standard functions in order to assess the better performance and stability of the

reduced models. In addition, we propose a generic framework to ease the definition of test benches and

facilitate the reuse of the code. The proposed methodology is demonstrated and validated in Chapter 5.

The full and reducedMEMS+models of an accelerometer are simulated and compared with regard to the

state-of-the-art simulation tools and the SystemC-AMS standard. Chapter 6 concludes with a discussion

of contributions, topics for future work, and closing thoughts.

Chapter 2

State of the art

2.1 Introduction

Virtual prototyping poses several challenges inmodeling and simulation. To anticipate the fabrication and

implementationof complex systems suchasMEMS, an in-depthunderstandingof their behavior and inter-

faces is indeed required. Traditionally, to develop and test new devices, microsystem designers elaborate

models either based on analytical formulas or refined in FEM. The outcome of either approach generally

leads to contradictions with experimental results. A trial-and-error methodology is applied in order to re-

cursively refine models and designs leading to development times of several years. This approach directly

impacts the developmentwith long and costly cycles. Hencemodeling and simulation are still an essential

need for MEMS designers to advance and enhance the technology [80].

The key-aim of modeling and simulation tools is to provide a reliable description of the targeted devices.

The fabrication, designand implementationphases canbenefit frommore accurate andconfigurablemod-

els. First, by lowering the need for experimental verification, reliable simulation results can shorten the de-

velopment phases frommonth toweeks. Second, robust and reliablemodels broaden the design space. For

this reason, the designers can explore novel solutions and propose more aggressive choices both in terms

of geometry and feature requirements. Third, the devices already manufactured and commercialized de-

vices could be refined and improved from unexplored design solutions. Finally, beside the correct estima-

tion of internal phenomena, MEMS designers must also ensure the good integration of MEMS with the

surrounding electronics. To this end, we explore higher-level descriptions to be compliant with ICmodels

and integrated in system-level simulation environment. Here we propose novel methods to createMEMS,

HW, SWmodels at high level and allow in the end the simulation of complex systems.

In this chapter, we attempt to review the state-of-the-art techniques in MEMS system-level design. The

fined-grainmodels initially created in FEM tools are too complex to be considered for higher-level simula-

tion. Themacromodeling aims to speed up the simulation by encapsulating themultiphysical behavior of

MEMS (mechanics, electrostatics, fluidicdamping) into small configurable components. After introducing

the underlying physical principles of electrostatic transducers, we explore the capabilities of component-

based FEA and further discuss the different simulation strategies to correctly address the system-level in-

tegration into larger assemblies. We then assume the benefits of even more compact descriptions by us-

ing MOR techniques. These methods produce accurate models that preserve the main characteristics of

MEMS. Due to their small size, thesemodels are well-suited for fast simulation and have been extensively

used in the co-design of MEMS and IC through HDLs. Additionally, we consider SystemC as a standard

11

12 2 State of the art

language to co-develop hardware and software. As the abstraction level progressively evolves with ESL

design, we indeed envision SystemC-AMS as the preferred simulation environment for complete MEMS

devices represented by both reduced electromechanical and ICmodels. SystemCAMS extensions are also

introduced and discussed against alternatives.

2.2 MEMS system-level design

Transducerdesign requiresfinding theproper shape elements and structural dimensionsofMEMS to fulfill

all requirements at the given operational and environmental conditions [81]. To this end, modeling and

simulation aim to describe the physical effects occurring inMEMSwithout building expensive prototypes.

System-level and physical-level models are successively used during the design process.

The component-based modeling method, e.g., implemented in MEMS+, defines a preferred layout with

preliminary structural dimensions reliant on the main physical parameters. These models are frequently

based on lumped elements, such as parallel plate capacitors or simple beams. These are derived from

physics fundamentals and yield small ODE systems that can be solved within a few seconds. These mod-

els also capture a lot of the typical MEMS behavior and address first conceptual evaluation of the design.

However, to effectively build physical prototypes, refinedmodels are required.

The multidisciplinary foundations of MEMS introduced coupled electrodynamics effects. The shrinking

of systems also influences the force distribution andmay change the material macro-properties. At micro

scale, electrostatic forces indeed become very important as well as the damping due to the viscosity of

surrounding fluid. Therefore, the dynamical characteristics are more dependent on surface and interface

effects than bulk or volume forces. This can also lead to fringing effects directly impacting the performance

of themicrosystem. In consequence, themodeling and simulation ofMEMS dynamical characteristics rely

on accurate structural description.

Physical-level models describe the complete geometry of the device through three-dimensional PDEs.

These are discretized and solved with the BEM or FEM. Such descriptions also address the tight coupling

between electric andmechanical domains, especially the surface interactions betweenboth related fields.

Therefore, coupled solutions are generally preferred to the solutions dealing with the elastic and electri-

cal parts separately. Furthermore, these equations are highly nonlinear and require specific solving meth-

ods to provide an effective investigation of MEMS dynamics, e.g., finding the maximum allowable voltage

point to avoid pull-in effect. Due to the complexity and size of models with thousands of DoFs, these sim-

ulations require extensive computation resources in order to provide highly accurate results. Nevertheless,

physical-level models are progressively employed to automatically generate system-levelmodels through

MOR techniques. We next review the evolution of physical modeling tomacromodeling solutions in order

to further use reducedmodels in a system-level simulation environment, such as SystemC-AMS.

2.2.1 Electrostatic transducers

Electrostatic, piezoelectric and magnetic forces are employed in MEMS devices to sense or act on the mo-

tion of mechanical parts. This study is centered on electrostatic forces that indeed appear at the surface

of mechanical structures. On small scales, these forces are predominant compared to volume forces and

have comparable performance to electromagnetic forces. They also benefit from low power consumption

2.2 MEMS system-level design 13

properties and fast response time. Therefore the electrostatic transduction is one of the most common

actuation and sensing method in MEMS devices due to its simplicity and high efficiency. Tomanufacture

these devices, simple parallel-plate capacitors or comb-drive configuration are commonly employed. We

discuss hereafter the basic mathematical and physical relationships related to these.

2.2.1.1 Fundamentals

We first consider the mechanical and electric problems individually. Boundary value problems are intro-

duced with regards to domain equations and boundary conditions. This description yields the definition

of energy functionals adapted from the variational principles. Energy functionals are also expressed and

refined regarding the different fields of interest in bothdomains. These formulations are further combined

in order to define the coupling problem occurring inMEMS. The associated boundary value problems are

then solved through domain discretization, generally the BEMor the FEM. The literature on solidmechan-

ics and coupled systems is extensive, and we refer the reader to dedicated books for additional details on

methods and formulations related to the electromechanical coupling [67, 82, 83].

In solid mechanics, problems are defined by three basic components. First, the equations of constitu-

tion relate stresses to strains. Second, the equations of geometry of deformations relate displacements

to strains. Lastly, the equations of equilibrium relate external traction and body forces to stresses. Re-

spectively denoted as the constitutive, compatibility and equilibrium equations, these domain equations

describe what is happening inside the body. In order to fully define the associated mechanical problem,

boundary conditions also describe what is happening on the surface of the body. These boundary condi-

tions comprise given data about the displacements and applied forces on the surface. The domain equa-

tions and associated boundary conditions define a so-called boundary value problem. By analogy, these

fundamental equations and boundary conditions find equivalent definitions in electrostatics. Combined

with each other, these equations govern the behavior of electrostatically actuated microsystems (see Ap-

pendix A). The resulting electromechanical coupling inmicro-systems is expressed in termsof energy den-

sity as follows:

W = W int −Wext =
(
W int

m − W int
e

)
−

(
Wext

m − Wext
e

)
, (2.1)

whereW int andWext are the sumof internal and external energieswhich both consist in electrostaticmem-

bersW int
e and Wext

e and mechanical onesW int
m and Wext

m .

The derivation and discretization of (2.1) yield computational expressions of the energy distribution [84].

The functionals related to each domain are combined with one another to define the energy density, with

regard to the mechanical and electrostatic contributions. The classical approach, denoted primal/primal

approach, is further introduced in [85]. Note the computation of electromechanical coupling in MEMS+

derives from this method and is assumed in the following as the reference modeling technique for MEMS.

Alternative strategies can be employed to solve the coupling problems. For instance, Rochus et al. [86]

propose a primal/dual approach referring to the electrostatic dual functional to enrich the definition of

surface forces definition and better address convergence issues.

14 2 State of the art

2.2.1.2 Reference problem

Tounderstand transducer operations, we consider the simplifiedmodel of a parallel plate capacitor shown

in Figure 2.1. This is composed of two conducting plates with arbitrary shape. The electric field lines are

assumedperpendicular to theplates, evennear edges,which is equivalent to assuming infinite plates. Con-

sidering the voltage source, the charge of the capacitor reads:

Q = C V with C =
ε A

g
, (2.2)

where Q is the electrical charge, C is the capacitance, V is the voltage across the capacitor, ε is the rela-

tive permittivity of the gap space medium, A is the overlap area between the two electrodes, and g is the

distance separatingbothelectrodes. This relationship is obtainedbyapplying theLaplace equationgovern-

ing the electrostatic potential between the plates and neglecting the fringing [4]. For electrodes of simple

geometry, an analytic expression can be found for C. However, for more complicated geometries, the ca-

pacitance is function of additional DoFs and the fringing effects can not be neglected anymore. FEM or

BEM are also used and combined with curve fitting to characterize the relationship between C and these

DoFs.

V

g

E

Fig. 2.1: Theoretical representation of an electric field (E) in a parallel plate capacitor with variable gap (g)
actuated by a voltage source (V).

The electrostatic force can be derived from the expression of the co-energy stored in the capacitor which

is the electrical potential energyWe stored in the capacitor expressed as :

We(q) =
∫ Q

0

q

C
dq =

Q2

2 C
=

1

2
C V2 . (2.3)

Hence, the energy varies in a quadratic way regarding the charge evolution and is inverse proportional

to the gap variation. For instance, by positively varying the voltage at fixed gap, the charge will increase.

Conversely, the gap will decrease if a positive external force is applied with a constant charge. Finally, the

electrostatic force corresponds to the negative gradient of the potential energy, W, and depends on the

electric field, E = Q/(ε A) , as follow :

F =
1

2
Q E =

1

2

Q2

ε A
. (2.4)

The internal behavior of electrostatic microsystems has been introduced through boundary value prob-

lems with the governing equations of energy coupling. This also highlights the importance of surface ef-

fects occurring in MEMS. To address the modeling and simulation of such coupled systems, the previous

2.2 MEMS system-level design 15

models are computationally solved through domain discretization, e.g., by BEMor FEM. The parallel plate

capacitor finally illustrates a first application of thesemethods and is next assumed as a basic component

of electrostatic actuators and sensors.

2.2.2 Component-basedmodeling

MEMS devices are composed of elementary micro-structures. For instance, electrostatic actuation and

sensing mechanisms are mostly configured as either parallel plates or comb drives. Their mechanical re-

sponse can be further approximated by components such as beams, plates or suspended structures. There-

fore MEMS system-level modeling consists in the combination and the assembly of such basic elements

in order to create more complex assemblies. We next introduce the principal components used at system-

level and their related applications.

2.2.2.1 Microelectrostatic elements

The simplified model of parallel-plate capacitor depicted in Figure 2.2 can be part of an actuated mass-

spring system. Its dynamic behavior is also governed by the electrostatic load, the restoring mechanical

force and the damping force. The electrostatic load is composed of a Direct Current (DC) voltage and a

smaller amplitude AlternatingCurrent (AC) voltage. TheDCpolarization voltage generates an electrostatic

force directly acting on themovable plate. Additionally the AC voltagemakes the plate oscillate around the

newly established equilibrium position. This simple configuration is widely used in both actuation and

sensing applications.

Another capacitive configuration is referred as comb drives, which are widely used in MEMS design [87].

Comb drives present some advantages over parallel-plate actuators. They indeed have larger driving dis-

tance due to largermovement gap and avoid bi-stability 1 [89]. In addition, the actuation amplitude varies

linearly with the applied driving voltage. Furthermore, comb drive can be configured laterally or trans-

versely. Sliding film damping is more important in comb drives because of the orientation of the vibration

which is parallel to the plane of substrate, either translational or rotational. By contrast, in parallel-plate,

the squeeze-film damping is the dominant source of dissipation. Such damping distributions directly in-

fluence the dynamic performance of the MEMS [90].

lk

m

~z

g0

VDC bias

VAC = Va sin(ωt)

Fig. 2.2: Parallel plate.

1 Bi-stability offers the possibility to memorize a state without a continuous power supply, which is of interest to design, for
instance, switches in Radio Frequency (RF) applications [88], but must be avoided in most of sensors or actuators.

16 2 State of the art

In lateral configuration, a cell, i.e., a pair of fingers, consists in a movable part, the rotor, and a stationary

part, the stator, as depicted in Figure 2.3(a). A driving voltage, composed ofDCbias and ACdrive, is applied

betweenboth electrodes to actuate the rotor. The combdrive configuration produces a second term in the

electrostatic force that can be canceled trough push-pull actuation (Figure 2.3(b)).

The transverse comb drive is widely applied to sense very small displacements. This configuration indeed

benefits from high capacitance sensitivity regarding the transverse movement, as compared with lateral

combstructures (Figure 2.4(a)).Nevertheless side instabilitymayoccur in sucha side combanddifferential

configurations are used to reduce such an effect as shown in Figure 2.4(b).

~x

VDC

VAC

~y
Stator Moving finger

Vibration direction

(a) Single lateral comb finger.

~x

VDC
VAC

~y Vibration direction

VAC

(b) Push-pull actuation

Fig. 2.3: Lateral comb finger arrays.

~x

~y

Rotor

Oscillation

F

Stator

C

(a) Single transverse comb finger.

~x

~y

Rotor

Oscillation

F1 Stator

C2

F2

C1

(b) Differential configuration.

Fig. 2.4: Transverse comb finger arrays.

Coupled field solutions are necessary to cope the nonlinearity of electrostatic forces occurring in such as-

semblies, as depicted in Sec. 2.2.1. This nonlinearity directly influences the stiffness constant of mechani-

cal components andmay result in a frequency shift [90]. For instance, the mechanical restoring forces are

considered as linear in case of small deformations, but becomenonlinear for large deformations. These in-

duce stiffness nonlinearities that can be evaluated through FEA and expressed for example in the following

cubic form of a resonant system like the beam illustrated in Figure 2.5:

Fe(y) = m ÿ + b ẏ + k1 y + k3 y3 , (2.5)

where Fe(y) is the external electrical force, m is the mass, b is the damping, and k1 and k3 are respectively

the mechanical linear and cubic stiffness coefficients. The cubic damping term has a direct influence on

the usual Gaussian distribution of the deflection versus frequency curve. Hence, if k3 > 0, the peak of the

curve is bent towards right to higher frequency, and the non-linear spring of the system is denoted "hard

spring". When k3 < 0, the peak is bent towards left to lower frequency, and the non-linear spring of the

system is denoted "soft spring". This phenomena is well described in [91, 92].

2.2 MEMS system-level design 17

~x

~y

Substrate

F1

Anchor

VAC VDC

Beam
resonator

Equivalent
concentrated load

Fig. 2.5: Beam resonator.

The systemdescriptionmust thereforehandle the corresponding stiffness softeningorhardening to enable

behavioral, dynamic analyses. For instance, pull-in is an instability that occurs in parallel-plate capacitors

for any displacement over one-third of the initial gap. This effect pulls the movable plat all the way into

contact with the fixed part. Within the rest of the gap, i.e. for small displacements, the movable plate can

be positioned accurately. Additional effects due to the nonlinear dynamics, such as bifurcation or chaos,

have also been covered in the literature on electrostatic forces.

Afirst applicationofparallel-plate capacitor consists in abeamresonator, as shown inFigure 2.5. Thebeam

is deflected by the electrostatic force, generated by DC and AC applied voltages. The structure evolves un-

der boundary conditions, such as clamped-clamped or cantilevered. In clamped-clamped configuration,

the restoring mechanical force is composed of elastic, residual-stress and stretching forces. The elastic

force evolves linearly with regard to Young’s modulus and is dependent on the beam geometry [93].

As depicted above, MEMS devices with electrostatic actuation or capacitive sensing involve some nonlin-

earities, either electrostatic or structural. The system response tends to be nonlinear in particular configu-

rations of the constitutivematerial or in case of large deflections compared to the device dimensions. The

previous microelectrostatic elements are combined with models of basic micromechanical structures in

order to recover such behaviors.

2.2.2.2 Micromechanical elements

MEMS design relies on commonbuilding blocks, such as beams, plates or suspended structures [94]. Clas-

sical theories of beams and plates, namely the Euler-Bernoulli beam theory and the Kirchhoff-Love plate

theory, are widely employed to define one-dimensional problems with regards to structural mechanics.

These methods permit the modeling of such structures by defining deformation in terms of a single field,

i.e. the transverse deflectionof a point on theneutral axis of thebeam. The strains can be computedassum-

ing the normal to the neutral surface remained normal after deformation. The resulting single governing

differential equation is considered as an advantage although of high order.More general theories intended

to define a single formulation which remains valid throughout the range of length to cross-section consid-

erations. To this end, theTimoshenko theory [67] adds the transverse sheardeformation to theother strains

and is applicable onmost geometries with refinedmesh, i.e. with several integration points. Nevertheless,

when applied to cases where the Euler-Bernoulli theory is viable, the Timoshenko theory can lead to lock-

ing effects which are observed when an element cannot interpolate a field properly with its nodal values

18 2 State of the art

and the shape functions. These are counterbalanced with finite-element approximations which are useful

when considering plate and shell problems [95].

Here the component-based approach is assumed as accurate enough despite some restrictions on the

model definition. As an example, even in simple beams, residual stress may be observed. Although such

an effect can be neglected in case of single-crystalline thin film, the stress residual may become significant

enough in some MEMS designs to directly affect the dynamic behavior of the structure, e.g., the bending

stiffness of the system. Additionally, the anchors induce stretching on structure boundaries which evolves

in cubical way with displacement. Moreover, the stress within the beam are increased by the axial force

loading that causes stretch at the neutral plane [96].

Based on the previous FEA, beams, plates or suspended structures can be represented as configurable ele-

mentary systems. These are commonlydescribedwithdistributedparameters that canbe solvedbybound-

ary value problems (Sec. 2.2.1). The linear analysis of such distributed models is approximated though

closed-form solutions, applying the following assumptions. First, the displacements are small enough in

amplitude to assume the strain-stress as linear. Second, the systems are considered as conservative in the

sense there is no internal loss of energy nor external damping. Thirdly, external gravity is neglected. The

resulting static and dynamic analyses aim to determine the eigenfrequencies as well as the amplitude of

the system response [97].

2.2.3 Simulation strategies

Themost efficientmethod tomodel electrostaticmicrosystems remains the variation approach previously

introduced. This aims to properly estimate the electric field, i.e., the gradient of the electric potential. The

quality of electrostatic models is therefore relative to the quality of computed electrostatic forces. In order

toobtaina converged solution, the electric potentialmust alsobe computedwith regard to the singularities

observed in model, like mechanical or intrinsic nonlinearities as depicted in the above discussion. To this

end, FEM and BEM discretized solutions are combined together either through co-simulation or coupled

simulation.

In co-simulation, the structural and electricmodels are separately handled in twodifferent codes. To com-

pute the results, both codes must be recursively updated in each physical domain. The results are thus

communicated in a synchronized manner between the corresponding staggered solvers. In practice, the

mechanical displacements are sent to the electric model in order to update the geometry. Similarly, elec-

tric potentials or fields are sent to the structural model to generate electrostatic forces. Co-simulation en-

ables the use of different discretization procedures and also specialized software can solve the distribution

in each physical domain. For instance, structural FEM models can be co-simulated with an electrostatic

BEM [98]. The drawback of co-simulation is the synchronization of data betweenmodels that also limits

the computation of coupled derivatives.

In coupled simulation, all discretized fields are merged into a single, preferably using matching meshes.

This requires a solver able to discretize all the physical fields at once, but leads to efficient solutions. In

addition tomore flexiblemodels, the coupling expressions of internal behaviors are simplified and enable

the computations of global properties, such as stiffnessmatrix or eigenfrequencies. Moreover, thismethod

enriches the uncertainty quantification with more efficient stochastic analyses as demonstrated in [99].

2.2 MEMS system-level design 19

Both co-simulation and coupled simulation environments rely on solver configurations classified in three

categories that are the staggered, hybrid or monolithic solutions. Hannot [99] proposed the framework

presented in Table 2.1. This classification intends to help designers in choosing appropriate electrome-

chanical modeling strategies at physical level.

Staggered solutions involve solvers which are dedicated to each physical domain. These solvers solve the

domain equations and communicate the updated version to the other solvers in a cyclic way. The systems

to solve remain small and domain-specific, but the global solution suffers from slow convergence.

Inhybrid solutions, the static analyses are first computed through staggered solutions. The static analyses

aimat finding theboundary solutions required tobindbothdomains into a single expression. Thedynamic

analyses can then be computed on the unified system in a monolithic solution.

Monolithic solutions combine electrostatic and mechanical equations into one single system. This lat-

ter can be solved directly and enables the computation of elements needed to solve nonlinear equations,

e.g., the tangentmatrix. The large size of the systemmatricesmay nevertheless lengthen the computation.

Moreover, the estimation of scaling effects like the evaluation of squeeze film damping, is an important

scaling element in three field problems.

In order to integrateMEMSmodels into architectures comprisingHWand SWvirtual prototypes,we inves-

tigate models that are suitable for fast simulation, especially to enable the transient analysis of the whole

architecture. Based on the above comparison, MOR appears as the most adapted strategy and is achiev-

able through monolithic solutions that enable both static and dynamic analyses in a coupled simulation

environment.

Table 2.1: Simulation strategies for electromechanical systemmodeling and simulation [99].

Co-simulation
︷ ︸︸ ︷

Coupled Simulation
︷ ︸︸ ︷

Parameter Analysis Staggered Hybrid Monolithic

Displacement

Load/Displacement ✓ ✓ ✓

S
ta
tic

︷
︸
︸

︷

Pull-in ✓ ✓ ✓

Pull-in S&S ✗ ✓ ✓

Time

Transient ✓ ✓ ✓

D
yn
a
m
ic

︷
︸
︸

︷

Dynamic Pull-In ✓ ✓ ✓

Dynamic Pull-In S&S ✗ ✓ ✓

Frequency

(Damped) Frequency ✓ ✓ ✓

Frequency S&S ✗ ✓ ✓

MOR ✗ ✗ ✓

20 2 State of the art

2.2.3.1 Analyses

The pull-in voltage can be derived from load-displacement analysis which characterizes the quasi-static

response of an electromechanical device. Load-displacement curves are obtained by varying the voltage,

the charge or the displacement applied on the device applied on the device. As demonstrated in [4], these

curves provide information on the working voltage and stability range of the device.

Dynamicmodeling intends to address the transient and frequency analyses ofMEMS devices. This kind of

study is conditioned by the damping definition. It is assumed that no energy is lost in undamped case. If

added, the damping will generate forces proportional to the velocity and thus induce friction. Taking into

account this phenomenon highly depends on the purpose and design of the device. To further explore

the design space, Sensitivity & Stochastic (S& S) analyses can be performed on both static and dynamic

modeling. These intend to evaluate the impact on the design of the variation of parameters. Since finite

differences are expensive and not robust, analytic methods aim to efficiently cope with the design space

exploration, regarding a geometric description of devices. These methods are not presented in detail in

this work, but the reader can refer to previous works for more detail [100].

Reducedmodeling (MOR) aims to perform transient analysis on a compact view of the system. Onemajor

problem of these methods is the reduction of the nonlinear electrostatic forces. The related nonlinear-

ity indeed depends on both the applied potential and the displacement. The dependency on the applied

potential is quadratic and requires second order Taylor approximation. Nevertheless there is no optimal

method to overcome the complicated dependency on displacement. MOR techniques are introduced in

Section 2.3, and the selected method used in the API is described in Chapter 4.

Figure 2.6 depicts the interest of reduced models to overcome the complex description of devices in both

co-simulation and coupled environments. Reduced models indeed enable the transient simulation of

MEMS and are well fitted to be integrated in HDLs due to the limited number of ODEs to solve.

Specifications
Physics & Geometry

Co-simulation
Staggered system

n ODEs
ANSYS, COMSOL, CoventorWare . . .

FEM

MOR

HDL
Reduced system

n ≫ m ≫ r ODEs
VHDL-AMS, Verilog-A . . .

Coupled simulation
Monolithic system

n ≫ m ODEs
MEMS+ . . .

Fig. 2.6: MOR applied to MEMS simulation enables to decrease the number of DoFs of the considered
model and to integrate such models in faster simulation environments such as HDLs.

2.2 MEMS system-level design 21

2.2.3.2 Commercial software solutions

CAD software tools have been significantly improved the last two decades to design MEMS devices and

structures, e.g. Finite Element (FE) solutions developed by ANSYS [101], COMSOL [102] or Coventor [103].

These tools address thenonlinear andmulti-physicsproblemsandenable the simulationofMEMSdevices

with complex shapes and configurations. To evaluate the performance of the system as well as to perform

design refinements, the available software tools are mostly based on staggered solutions.

In the late 1990s, component-based solutions emerged from research projects like NODAS [97], SUGAR

[104] or Lorenz’s work [105]. These solutions are based on coupled simulation and consider MEMS as as-

semblies of basic elements. This approach encapsulates the behavior into components [106] and produce

synthesized information of the systemdesign. Themethod has been ported to CAD tools, e.g., Architect3D

andMEMS+ both developed by Coventor [78]. The use of pre-configured components is now considered

inMEMS industry as an efficient way for designers to cope with the structural and electrostatic definition

of the microsystems. In this work we refer to the component-based models created inMEMS+ following

the process detailed in Appendix B.

Upcoming challenges in MEMS modeling and simulation concern the acceleration of the simulation, the

transient analysis, and the better integration within the IC design flow [107]. This latter concerns both

low-level and system-level operations. At low level, the design rule check verify the layout is conformed to

the proposed schematic. Besides low-level verification, ICs and systems designersmust ensure the correct

integration of non-electronic peripherals like MEMS through system-level modeling and simulation. To

this end, we will assumeMOR as the ground layer to address the system-levelmodeling and simulation of

MEMS devices in HDLs.

System

Behavioral

Parametric

Component-based

Finite element

Layout

M
E

M
S

+

M
A

T
L

A
B

C
/

C
+

+

C
o

v
e
n

to
rW

a
re

C
O

M
S

O
L

A
N

S
Y

S S
U

G
A

R

N
O

D
A

S

R
e
d

u
c
e
d

-o
rd

e
r

M
o

d
e
l

Fig. 2.7: Levels of abstraction supported byMEMS CAD tools and system simulators.

22 2 State of the art

2.3 HDL-based reducedmodels

As the complexity of geometry and features of MEMS increases while their size is shrunk, different phys-

ical effects such as mechanical nonlinearities, electrostatic damping or thermal interaction cannot be ig-

nored anymore. The design of micro-structures also requires new multi-physical models describing their

complex internal behavior. The common approach for modeling MEMS devices relies on the coupling of

electrostatic equations with mechanical equations through the variation method as previously stated.A

spatial discretization of the electromechanical coupled PDEs leads to systems of very large state space di-

mensions that make the analysis and simulation unacceptably time consuming and expensive. Advanced

nonlinear dynamic analysis is hard to be conducted on FEmodels. Therefore, the system-level simulation

of MEMSmostly relies on DAEs and ODEs.

In this context, MOR appears as an efficient manner to approximate large-scale systems bymuch smaller

models. These aim to capture the input-output behavior of the original system to a required accuracy and

also preserve essential physical properties. With fewer DoFs, reduced models enable transient analyses

to provide insight on various physical aspects and understand properly the behavior of MEMS devices.

Furthermore, these models are highly interesting to design control systems and observe feedback effects.

AMS extensions of HDLs are geared for few DoF systems which includes reduced-order models. Tradi-

tional HDLs, i.e., VHDL and Verilog, enlarged their simulation capabilities to analog parts through AMS

extensions. Therefore, ICmodels can be enlarged to peripherals, such asMEMS devices. This system-level

approach also enriches the IC simulation with additional information on analog sub-parts and comple-

ments the low-detail FE modeling by accelerating the simulation. In the following, we review some of the

state-of-the-art techniques in MOR and their use in traditional HDLs.

2.3.1 Model order reduction principles

Weassume here thatMOR is required to reduce the simulation time and enable the transient simulation of

MEMS with larger systems integrating HW and SW parts. The general purpose of MOR is to approximate

large-scale systemsby smallermodels of lower state-space dimension, but preserving their behavior.MOR

finds multiple modeling applications in various domains [108] and is widely used in structural dynamics

problems [109].Most of the commonmethods are reported and deepened in dedicated books on the topic

[70, 110].

In this section, we consider the system-level modeling and simulation of MEMS, where MOR techniques

are similar to those developed for Very Large Scalable Integration (VLSI) design [111]. Mostly based on

projection and moment matching techniques [74], these methods were developed for linear systems and

extended by parametric methods [112]. The necessary mathematical background for matrix operations

and basic MOR techniques is introduced along with numerical algorithms by Feng et al. in [71].

ẋ = f(x(t), u(t))
y = g(x(t), u(t))...

...

u1(t)

um(t)

u2(t)

y1(t)

y2(t)

yp(t)

Fig. 2.8: Input-output system.

2.3 HDL-based reduced models 23

Dynamical coupled systems

We limit our study to ODEs and consider the general form of explicit finite-dimensional dynamical sys-

tems:

f(ẋ, x(t), u(t)) = 0, (2.6)

where x : R 7→ R
n is the state variable, u : R 7→ R

m is the input, t is the time, and f is the function related

to the behavior of the system. The observable outputs y : R 7→ R
p are defined as follow:

y = g(x(t), u(t)). (2.7)

We consider the linearized system represented in Figure 2.8 that consists of n-dimensional state space

vector x:

E ẋ = A x(t) + B u(t),

y = C x(t) + D u(t).
(2.8)

Here, A = ∂x f ∈ R
n×n is the system matrix, B = ∂u f ∈ R

n×m is the input or control matrix, C = ∂xg ∈
R

p×n is the output matrix, D = ∂ug ∈ R
p×m is the feed-forward matrix, and E = ∂ẋ f ∈ R

p×m is the mass

matrix.

Systems of the form (2.8) arise in electromechanical problems and are usually expressed by PDEs of sec-

ond order in time.Moreover, they are influenced by damping effects that can be approximated by Rayleigh

damping [113]. The termD u(t) is usually not affected by the selectedMORmethod and generally null, ex-

cept in piezoelectric structures where displacementsmay vary directly with the inputs [114]. For simplicity

and since our study is focused on electrostatic devices, we assumeD = 0 and refer to the following system:







E ẋ = A x(t) + B u(t),

y = C x(t).
(2.9)

For linear dynamical systems, MOR aims to reduce the number of internal states, i.e., the size of A, while

preserving both input and output terminals.

Projectionmethods

In the following, we briefly review approximation methods based on projection, as depicted by Antoulas

in [70]. These methods aim to truncate least important states from the original system in order to project

the high-dimensional state space of the originalmodel into a low-dimensional subspace. To this end, basis

transformation is applied as in the Galerkin projection introduced hereafter.

Let Π = V W∗ the projection of the original n-dimensional state space onto a k-dimensional subspace,

where V, W ∈ R
n×k and W∗ V = Ik. The resulting reducedmodel is defined as follow:

24 2 State of the art







Ẽ
.

x̃ = Ã x̃(t) + B̃u(t),

y = C̃ x̃(t).
(2.10)

where x̃ ∈ R
k is the reduced state vector such as x̃ = W∗x, Ẽ = E V ∈ R

k×k, Ã = A V ∈ R
k×k, B̃ = B V ∈

R
k×m and C̃ = C V ∈ R

p×k. IfV = W, i.e. the columns ofV form an orthonormal set, thenΠ is orthogonal

and is called a Galerkin projection. Otherwise, if V 6= W, we speak of a Petrov–Galerkin projection.

Galerkin projection has been further combinedwith othermethods, especially Krylov subspace, balanced

truncation and proper orthogonal decomposition. For a good introduction on these techniques, see Car-

doso [115] and Vasylev [116].

Methods for nonlinear systems

Theaforementionedmethodshavebeenextended tomore complex systems, suchas second-order, nonlin-

ear or parametric systemsas introduced in [71, 117]. In parametric systems, one ormore of the constitutive

matrices may vary with respect to a function of parameters p. For instance, the time-dependent systems

of the form 2.10 can be modeled as follow:

E(p)ẋ = A(p)x + B(p)u . (2.11)

The model reduction mainly relies on interpolation methods, multivariate moment-matching or series

expansion [118]. Parametric MOR is a efficient method for the space exploration and the evaluation of

parameter influence on the structure, e.g., the variation of temperature on the frequency response [119].

Systems with many nonlinearities have too many inputs to be isolated and specific methods are thus em-

ployed. There are twomain approaches formodel order reductionof nonlinear systems. The first approach

is based on trajectory reconstruction, i.e. interpolation betweendifferent snapshots of the systems. The re-

lated methods are proper othogonal decomposition, balancing and optimization, system identification,

and Trajectory Piecewise-Linear (TPWL) [75]. The second approach consists of weakly nonlinear polyno-

mial approximation through higher-order series expansion. To this end, bilinearization methods are com-

monly employed [74].

2.3.2 Implementation in HDLs

The above MOR techniques have been applied to MEMS design, especially to address the system-level

integration of devices. To this end, the reduced models are commonly incorporated into HDLs, such as

VHDL-AMS and Verilog-A. We discuss hereafter the evolution of traditional HDLs to ESL design solutions.

HDLs were first intended to realize the logic synthesis of digital ICs. For instance, VHDL [49] derived from

the Ada programming language and defines a strong-typed language. This makes VHDL more verbose

than Verilog, but intends to build self-documenting designs [120]. Moreover, additional coding is required

to explicitly convert data type to another, e.g., integer to bit-vector. VHDL relies on a clear semantics to

avoid unambiguous design. Alternatively, Verilog [50] introduced a weakly and limited typed language.

Adapted from a former HDL, called Hilo, Verilog was mostly influenced by the C programming language.

These languages progressively evolve to wider integrated solutions, especially to address ESL design [53].

2.3 HDL-based reduced models 25

Both languages also support the simulation of analog components in ICs as complemented by AMS exten-

sions which are VHDL-AMS and Verilog-A, respectively. These extensions enable the continuous systems

simulation through specific solving methods implemented along with the initial event-driven simulator

[51]. More recently, Verilog has been extended by SystemVerilog [121], a hardware design and verification

language already widely used by the digital community. But, despite its name, it has not been proven to be

useful for system-level specification, design, or verification yet. Therefore, we did not consider SystemVer-

ilog as an adapted environment for the simulation at system-level of complex systems. In the following,

we review first applications in VHDL-AMS, Verilog-A andMATLAB of reducedmodels in order to simulate

MEMS devices with surrounding electronics (Table 2.2).

Chen et al. [122] clearly stated the interest of MOR in MEMS design and depicted its advantage over

lumped-elementor traditional FEMmodels. Based on themethoddeveloped in [123], this study combines

theTaylor series expansionwith theArnoldimethod to automatically define reduced-ordermodels for cou-

pled energydomainnonlinearMEMS.Thepresented technique is testedonquadratic and third-ordernon-

linear models of fixed-fixed clamped beam. The results demonstrate that third-order models are far more

accurate than linearized models, e.g., the steady-state error is thirty times lower, and is computationally

more efficient compared to full-meshed solutions with a run time about five times faster. The proposed

method is also discussed against the Karhnen-Loeve decomposition which can retrieve the behavior of

weakly nonlinear device even in pull-in, see [124] for more details. Nevertheless, the authors highlight the

difficulty to simulate suchmodels directly in VHDL-AMS since the parameters of the corresponding Taylor

expansion must be updated at each time step of the simulation.

Mähne et al. [125] used reduced models created in FEA tool to simulate the behavior of a yaw-rate sensor

in VHDL-AMS. The selectedMOR technique applies the modal superposition introduced in [126] and im-

plemented in ANSYS. In order to integrate these models in VHDL-AMS, each mode of interest is treated

and reduced separately from the original FE model in ANSYS. Therefore, two different reduced models

are generated to handle the out-of-plane and in-plane rotations, respectively. The final implementation

in VHDL-AMS couples the entries and outputs of each models in order to correctly reconstruct the non-

linearity of the device, especially the Coriolis force. The results confirm previous refined studies with an

increased speed of computation. Suchmodels are finally considered to efficiently evaluate different circuit

concepts, e.g., driving, sensing and control circuits, or to reuse the device into new test benches.

Köhler et al. [127] extendedamoment-matchingMOR technique by automatically selecting the number of

expansion points. In addition, a parametric version of the selectedmethod is proposed in order to ease the

design and space exploration of the device. Tested on the aforementioned yaw-rate sensor, this method

presents competitive results in terms of computation and accuracy. However this remains inefficient in

high-dimensional problems, even if the influence of few parameters can be well estimated.

Schlegel et al. [128] identified MOR as a promising support for system-level simulation of MEMS devices

regarding the inaccuracy of equivalent lumped-element circuit models. Based on modal superposition

[129], the selectedmethod aims at identifying themost important modes to approximate the deformation

state of the FE model by a series of weighted modal functions, i.e., the eigenmodes. Thus, the response of

the system is approximated by the interpolation of the shape functions describing each operating mode.

Based on ANSYS MOR feature, this study highlights the limitations of VHDL-AMS to deal with recursive

algorithms that are needed to retrieve the nonlinearity of the system.Moreover, the interface of themodels

26 2 State of the art

may vary with the abstraction level. To avoid any incompatibility between low- and high-level models,

the Multi-Modeling Architecture framework [130] is proposed. This top-down methodology defines the

terminals and related quantities independently from the selected abstraction level. This allows for a test

bench to be first definedwith abstract models and further refinedwith reduced-ordermodels without any

modification to the interface. The proposed combination of EDA-tool with FEM simulator is validated on

a sensor array case study with a low error on reduced models (< 1%).

Verilog-A is the most popular alternative to VHDL-AMS. For instance, Hagleitner et al. [131] exemplified

the use of Verilog-A to co-design analog front-end circuit and MEMS device. The study is centered on a

scanning-probe storage device whose mechanical part is modeled as a micromechanical cantilever. The

correspondingMORmethod is based on Krylov subspace and instantiates a second-order system. Verilog-

A is considered as well fitted for low-level, parameterized analysis since it can directly solve DAEs and

ODEs systems. Moreover, the model takes into account the damping and noise effects and thus enables

the coupling of electrical, mechanical and thermal domains.

Mehner et al. [132] further employed Verilog-A models to measure the impact of packaging on the micro-

structure. A parametricmodel of cantilever beam is proposed in order to characterize the thermomechan-

ical coupling responsible of stress gradient in theMEMS structure. Additional shape functions are defined

to correctly retrieve the mechanical nonlinearity and create multiple system snapshots.

Despite its lack of support for low-level circuit modeling, MATLAB/Simulink has been extensively used

to simulate MEMS reducedmodels. Niessner et al. [133] proposed a framework to generate macromodels

from FEA, integrate the solution inMATLAB/Simulink and adapt it into HDL. Following a first application

onmicrophones [134], this study intended to automate themodel generation and enable a tighter integra-

tion of system-level simulation environment with HDL.

Finally, Parent et al. proposed to automatically generate reduced-order models from FEA inMEMS+ and

export them either to Verilog-A [79] or Matlab [135]. The related MOR method is based on modal super-

position and accelerates the simulation more than thirty times compared to full model. The results are

detailed in Section 4.3 to support our work on an equivalent export to SystemC-AMS through a dedicated

API.

Table 2.2: MOR applied to MEMS design and simulation in HDLs.

Reference Device MOR technique HDL

Chen et al. [122] Beammicrostructure Taylor series expansion & Arnoldi method VHDL-AMS

Mähne et al. [125] Yaw-rate sensor Modal superposition VHDL-AMS

Köhler et al. [127] Yaw-rate sensor Adaptive Moment Matching VHDL-AMS

Schlegel et al. [128] Vibration sensor Modal superposition VHDL-AMS

Hagleitner et al. [131] Probe-storage device Arnoldi method Verilog-A

Mehner et al. [132] Accelerometer Modal superposition & Shape functions Verilog-A

Niessner et al. [133] RF switch Galerkin projection MATLAB

Bedyk et al. [134] Microphone Galerkin projection &Modal superposition MATLAB

Parent et al. [79] Gyroscope Modal superposition Verilog-A

Parent et al. [135] Gyroscope Modal superposition MATLAB

2.4 SystemC, a system-level design language 27

TraditionalHDLsdemonstrate that low-leveldescriptions are not suitable for themodeling and simulation

of large systems regarding their evolution to ESLmethods. System-level solutions are therefore envisioned

as a promising alternative, e.g., MATLAB or SystemC. In the following section, we also explore the capabil-

ities of SystemC to address both the co-development of HW/SW specific applications and the simulation

of analog and non-electronic components through SystemC-AMS.

2.4 SystemC, a system-level design language

Traditional HDLs successfully tackle the logic synthesis of ICs. Nevertheless, these solutions mostly re-

main decoupled from the development of software running on the targeted architectures. To better ad-

dress the concurrent development of application-specific HW/SW, higher-level modeling and simulation

languages, mostly based on C/C++, emerged over the last decade, with regard to ESL principles [136].

Originally introduced in the late 1990s [137] and supported by the Open SystemC Initiative, now part of

the Accelera System Initiative consortium 2 [138]. SystemCwas first intended to accelerate the simulation

of digital systems. In practice, models were first created at high level in C/C++ and further adapted to RTL

in Verilog or VHDL for the logic synthesis. Hence the designers referred to separate HDLs unable to cope

the functional or behavioral description of the system initially defined [139, 140]. In order to smooth this

refinement process, SystemC introduced a C++ class library to support various levels of abstraction [141]

from RTL to transaction-based design (Figure 2.9). This evolved during the last decade to its current stan-

dard implementation [56].

SystemC is nowconsidered as a reference system-level language for the co-development of digitalHW/SW.

Like Verilog and VHDL, SystemC supports hierarchical models, i.e., blocks containing input/output ports,

internal signals and instances of other blocks. These blocks implement concurrently running imperative

processes that are scheduled and executed by an event-driven simulation kernel. From a structural view

point, a SystemC design consists in modules interconnected by channels. This structure clearly separates

the computation units from the communication channels that also support Transaction Level Modeling

(TLM) refinement. The event-driven simulation kernel thus interprets SystemC design as a set of synchro-

nized, concurrent processes that are coordinated by events and transmitted through channels.

Although its standard implementation relies on a discrete-eventMoC, SystemCarchitecture allows adding

more MoCs [142]. Therefore multiple extensions were proposed to cover a wider range of systems. For in-

stance, TLM is fully supported by the standard implementation and enables the abstraction of communi-

cations occurring inhardware architectures. Similarly, AMSextensions tackle themodeling and simulation

of analog components in ICs [143].

Furthermore, SystemC intends to enable the verification of system-level models, since there is no struc-

tured nor unified corresponding methodology available for ESL design. For instance, the UVM in Sys-

temVerilog is primarily targeting block/IP applications through RTL instead of system-level verification.

Porting UVM to SystemC/C++ would enable an early functional and architectural verification [144]. This

indeed allows the creation of more advanced system-level test benches and the reuse of verification com-

ponents between system-level and block-level verification.

2 Corporate Acceleramembers areAMD, ARM,Cadence, Ericsson, Intel,MentorGraphics,NXP,Qualcomm,STMicroelectron-
ics, and Synopsys.

28 2 State of the art

System

Behavioral

Functional

Register transfer

Logic

Circuit
S

P
IC

E

V
er

il
o

g
(-

A
M

S
)

V
H

D
L

(-
A

M
S

)
V

H
D

L
(-

A
M

S
)

S
y

st
em

V
er

il
o

g

M
A

T
L

A
B

C
/

C
+

+

S
y

st
em

C
(-

A
M

S
)

Fig. 2.9: Levels of abstraction supported by HDLs.

In this section, we first review the core principles of the SystemC structure and discrete-event simulation

kernel. Then, we introduce the AMS extensions that are envisioned for continuous systems simulation.

Finally, we review further extensions to the standard in order to build heterogeneous virtual prototypes.

For an in-depth introduction to SystemC and its AMS extensions, the reader can refer to [57, 145].

2.4.1 Basic concepts

The SystemC language is a C++ subset and the standard is limited to the ground principles of hardware

simulation. The core language, i.e., the semantics of SystemC, describes both the design structure and

behavior through dedicated macros, classes and methods. The structure consists in modules, channels,

ports and interfaces and the behavior is handled by events and processes. Additionally, SystemC provides

hardware-specificdata-types (bits, logic vectors, fixedpoint number . . .).Moreover, somepredefinedchan-

nels, such as first-in first-outmechanism, enable the functional and signal modeling. Benefiting from C++

inheritance, the SystemC architecture enables the creation of additional design libraries or models. These

can be complementary to more specific methodologies or MoCs not provided by the standard. We intro-

duce hereafter some of the structural and behavioral aspects of SystemC [56].

Model structure

Metropolis [146], Ptolemy [37] and Ptolemy II [36] defined a multi-MoC framework which became a refer-

ence in the design of heterogeneous systems also targeted by SystemC. SystemC hierarchy relies on basic

units calledmodules, similarly to actor-basedMoC in Ptolemy [147]. This notion is well-adapted to object-

orientedprogramming and allows for SystemCbase classes to be overspecialized through inheritance. The

basic structure ofmodels rely onmodules and the communication is coordinated through channels, ports,

and interfaces, as shown in Figure 2.10.

2.4 SystemC, a system-level design language 29

sc module sc signalsc event SC THREAD, SC METHODsc port

Module A

THREAD 1

event a event b

outAinC
inB outB1inA

sig1 sig3

sig5

outC1

outC2

sig6

outB2

Module B Module C

sig2

sig4THREAD 2

METHOD 1

Fig. 2.10: Base classes in SystemC [57].

Modules are the fundamental building blocks in SystemC. The functional or behavioral description of a

system is encapsulated in a module through internal processes. The corresponding state can be stored

in local variables or computed by subordinated hierarchy. Furthermore, a module defines external con-

nections, i.e. ports, to communicate with other instances through channels. Amodule can be instantiated

either by the base class sc_core::sc_module or the macro SC_MODULE.

Modules are interconnected through interfaces, ports and channels. The communication principle con-

sists in bounding each port (sc_port), i.e., input or output of a module, to an interface (sc_interface).

Ports and interfaces also define which communication feature a module may use, whereas channels

(sc_channel) implement these features. Therefore, a SystemC model is similar to a network of concur-

rent processes communicating over channels and synchronized by events. Moreover, SystemC is based

on TLM and must therefore guarantee the efficient control and execution of concurrent transactions. To

that end, it supports a set of primitive channels for the concurrency control, e.g., sc_signal or sc_fifo.

The flexibility of the SystemC standard enables amodular communication framework illustrated in Figure

2.11.

sc module sc interface sc channel

sc port

read(. . .){. . .}
write(. . .){. . .}

read()

write()

Module Interface Channel

Port

Fig. 2.11: SystemC communication model [148].

Model behavior

Events, sensitivity and notification are the key concepts of the SystemC executionwhich is based on event-

driven simulation. The simulation kernel invokes processes when sensitive to an event and the event oc-

30 2 State of the art

curs. These processes execute the behavior of the module and are instantiated either throughmethods or

threads. A method process, SC_METHOD, executes its content in its entirety, i.e., without any interruption

or step in its execution. Alternatively, a thread process, SC_THREAD, is a process which can be suspended

at any time during its execution. Note that a thread is only started once at the beginning of the simulation,

in contrast to method which can be invoked arbitrary often.

The sensitivity of these processes is either static or dynamic. Static sensitivity of both SC_METHOD and

SC_THREAD is implemented at elaboration, i.e., within the module constructor. In contrast, the dynamic

sensitivity enables a process to change its own sensitivity during the execution. Since a method cannot

be interrupted, the change is specified by sc_notify and will be effective on the next simulation cycle.

This mechanism is set by the next_trigger command. Similarly, the dynamic sensitivity of thread en-

ables interruptions by calling the sc_wait function. The execution can be resumed on demandwhere the

interruption occurs and refers to the internal state that has been stored by the process.

We reviewed above the modeling strategy in SystemC, further depicted in [57, 148]. To summarize, the

model structure relies on base classes and templateswhich define the connectivity and communication of

the system. The system behavior is then defined internally to modules through functions and procedures

orchestrated by the simulation kernel whose the constituting phases are exposed in Figure 2.12.

Simulation kernel

The SystemC simulator executes a sequence of operations which mainly consists in two phases which are

elaboration and execution [145, 149]. First, the elaboration consists in executing all statements prior to

sc_start() function and contained in the sc_main method. This phase aims to establish the system

hierarchy and connectivity with respect to the primitives of modules, channels and processes composing

the model. In addition, all internal data structures are initialized. Once the model is built, the execution

phase is operated by the SystemC simulator. This controls the simulation time, the execution of processes,

the notifications of events and the update of primitive channels. In case of immediate notifications, the

corresponding processes become ready to run and are directly executed. Like most HDLs, SystemC im-

plements the delta-cycle notion to handle concurrency and establish an arbitrary order of simultaneous

actions. Thus, the concurrent processes are first evaluated by executing internal methods and the corre-

sponding changes are temporary stored. If there are no delta-delay notifications, the changes are propa-

gated over channels by the update process. The simulation is advanced if no additional processes need to

be evaluated or if there are no timed notifications. When no more simulation processes need to be run,

the simulation ends. At the end of the execution, additional post-processing or cleanup operations can be

performed.The aforementioned simulation kernel is decoupled from themodeling framework in SystemC

which enables to extend the standard through specific MoCs and a broader range of applications.

sc start

Elaborate Cleanup

Initialize Evaluate

Advance
time

Update

while processes
ready

notify() / wait()
immediate

notify(0) / wait(0)
delta-delay

notify(t) / wait(t)
timed

delta
cyclesc main()

sc stop

Fig. 2.12: SystemC simulation phases.

2.4 SystemC, a system-level design language 31

2.4.2 AMS extensions

SystemC supports a wide range of MoCs in the digital domain and is very well suited to design HW/SW

systems [142]. However, in many applications, the digital HW and SW parts are coupled to analog compo-

nents which interact with the continuous-time environment. To address the complexity and influence of

these analog sub-parts, different low-level methods were proposed in traditional HDLs, e.g., VHDL-AMS

or Verilog-A. Alternatively, the SystemC AMS extensions adopt a higher abstraction level and a more flexi-

blemodelingmethodology to broaden the SystemCcapabilities. These AMS extensions is compatible with

existing SystemC (IEEE 1666–2005 specifications) and have been standardized in [24].

The AMS extensions enable to build system-level executable specifications to model and analyze analog

components [150]. These models can further be refined to create virtual prototypes and proceed to space

exploration or integration validation. SystemC AMS proposes a synchronization method between the dis-

crete event and continuous-time solvers respectively in charge of digital and analog simulation. Thismech-

anism enables the definition of additional MoCs [33], each dedicated to a specific physical domain. Sys-

temC AMS first intended to provide a generic framework for the system-level simulation of complex sys-

tems. The standard interfaces indeed allows to define additional simulation methods as well as the inte-

gration with commercial simulators. The standard implementation supports the MoCs shown in Figure

2.13, i.e., TimedData Flow (TDF), Linear Signal Flow (LSF) and Electrical Linear Network (ELN)MoCs. Sys-

temC AMS still has some limitations to recover continuous-time behaviors, especially the nonlinear ones

[151]. Nonetheless,we assume that SystemCAMS is one themost advanced solution to support the system-

level simulation of digital software and hardware applications with additional analog peripherals, such as

MEMS devices.

TheAMS language standard [24]defines the execution semantics of the supportedMoCs, i.e., TDF, LSFand

ELN MoCs. Moreover, this provides the necessary elements to build the underlying enabling technology

such as the synchronization layer, scheduler and linear solver. The interfaces and the class definitions are

only defined in dedicated implementation.We refer in the following to SystemC-AMS, the implementation

proposed by the Fraunhofer Institute [143].

Figure 2.13 summarizes the SystemC-AMS architecture, based on SystemC and extended to mixed-signal

systems.Built uponSystemC, theAMS infrastructure interactswith theexistingdigital environment through

the synchronisation layer. This allowsmixed-signal designs in which analog components directly interact

with pure digital units. The digital modules remain handled by the SystemC simulation kernel that acti-

vates the related processes to communicate and compute in a timelymanner. As depicted above, SystemC

efficiently supports discrete processes and covers a broad range of abstraction levels from gate level to

software systems (see Figure 2.9). In addition, SystemC-AMS refers to the TLM framework to supervise the

data exchange between the different processing elements as in SystemC. The user is thus free to focus on

the behavioral definitionof the processingmethods insidemodules, instead of defining how the datamust

be read or written between the different processing elements. Furthermore, SystemC-AMS tends to sup-

press low-level or component-specific details frommodels. The resulting description is centered onmain

parameters and aims to better understand the system behavior. The related lightweight models are also

useful to explore the design space. While traditional design tools like SPICE give an accurate estimation of

the circuit performance, they are inappropriate in early-design phase with regard to the cumbersome and

rigid definition of models. Furthermore, SystemC-AMS benefits from the C++ language to define domain-

32 2 State of the art

SystemC
Methodology-specific elements

Transactional Level Modeling (TLM)
Cycle-bit Accurate Modelling
SystemC Verification Library

TDF
Timed Data Flow

LSF
Linear Signal Flow

ELN
Electrical Linear Networks

Analog and Mixed-Signal (AMS)
Methodology-specific elements

Scheduler Linear DAE solver

Synchronization layer

SystemC 2.3.1 Language Standard (IEEE Std. 1666-2005) & Simulation Kernel

Fig. 2.13: Layered architecture of the SystemC standard with AMS extensions [24].

specific methods or extend the standard. Once the designer understands the behavior of new complex

system, hemay revert to tools like SPICE to estimate and optimize the performance characteristics at finer-

abstraction levels.

SystemC-AMS exploits both discrete-time static non-linear (non-conservative behavior) and continuous-

time dynamic linear (conservative and non-conservative behavior) model abstractions to fully support

continuous-systemmodeling. In the one hand, non-conservative systems are modeled through unidirec-

tional signals and mainly structured as block diagrams. For instance, this formalism is supported by TDF

and LSF MoCs. In the other hand, conservative models contain bi-directional signals that carry two com-

plementary quantities, i.e., the across and through values. These quantities are essential to compute the

system energy and estimate its internal distribution. For example in ELNMoC, an electrical network is de-

scribed through Kirchhoff laws which associate the voltage, i.e. the across value, with the current, i.e., the

through value. From a global viewpoint, designers may define analog modules with interfaces connected

to non-conservative signals while internally the model is refined through conservative signals. Thus the

system appears from the outside as a fully directed model while preserving internal couplings.

Similarly to SystemC, the models created in SystemC-AMS instantiate the predefined modules, ports,

terminals and signals [152]. The analog base class sca_module is derived from the standard SystemC

sc_module class andprovides common functionality to analogmodules. Themodules are interconnected

throughports (sca_port) and signals (sca_signal) and formclusters, i.e., sets of instantiatedAMSmod-

ules of the sameMoC. To support eachMoC formalism, the simulation process is declared in the underly-

ing solver. Figure 2.14 summarizes the different supported MoCs by the standard SystemC-AMS and clas-

sified with respect to the definition of time and nature of signals. We review hereafter the main properties

and specificity of the TDF, LSF and ELNMoC.

2.4.2.1 TimedData Flow

Adapted fromSynchronousDataFlow (SDF) [153],TDF is themost versatile formalismavailable inSystemC-

AMS. This MoC allows the designer to set up specific analysis within custom instances of sca_tdf::

sca_module. The internal behavior is defined in the member function processing and can be refined

through detailed simulation steps. In TDF, the designer is not restricted to the predefined TDF modules

and can add its ownmodules while specifying the related properties. The data flow is constrained by three

2.4 SystemC, a system-level design language 33

Discrete-event Discrete-time Continuous-time
Explicit equations Differential equations ODE/DAE

xk+1 = A(xk)xk + B(xk)uk ẋ = f (x, u, t) f (ẋ, x, u, t) = 0

↓ ↓ ↓ ↓
DE TDF LSF ELN

︸ ︷︷ ︸

Non-Conservative
︸ ︷︷ ︸

Conservative

Fig. 2.14: Signal processing and equations supported by the models of computation in SystemC-AMS.

strict principles. First, the type of attributes assigned to ports and modules must be compatible, e.g., a

unsigned-integer value cannot be written to a port supporting boolean. Second, the rate and time-step

definitionmust ensure a coherent sampling time in the sending and receiving ports. Third, in case of feed-

back loops, at least one port of the loop must implement a delay to enable the overall synchronization of

processes. Besides aflexiblemodeling formalism, thedata are represented through signals sampled in time.

In contrast to the tagged discrete events in SystemC or continous signals in LSF and ELN, this description

allows to indifferently carry discrete or continuous information like signal amplitude despite being tagged

discrete in time as shown in Figure 2.14.

A TDFmodel is a directed graph in which TDFmodules are interconnected through signals and form a so-

called TDF cluster. Themathematical functions implemented in eachmodule are executedwith respect to

inputs and internal states. Note that the functions are only computed if the required number of input data

is available. The results are then written to the output ports and tagged with time information regarding

the selected time step. Additionally, the rates imposed on input and output ports allows the number of

produced values to be different from the one of input values. The topology of TDF modules is illustrated

in Figure 2.15. In Figure 2.15(a), a simple TDF loop is definedwith a delay, denoted d, on the output port in

order to correctly initialize and perform the simulation. A feedback loop is depicted in Figure 2.15(b) with

the corresponding delay definition. Moreover, the rate on the input and output ports, denoted r, defines

amultirate signal, i.e., the concatenation of multiple values on a single instance. To connect two different

MoCs, converter ports are used, as represented by half filled-in boxes in Figure 2.15(c). The filled-in white

are SystemC-specific ports on discrete-event modules. SystemC-AMS modules can also directly interact

with pure SystemCmodules allowing for mixed-signal analysis.

The elaboration and simulation phases in TDFMoC are detailed in Table 2.3. At elaboration, a time step is

assigned to each module and port regarding the user-defined configuration on specific modules. In addi-

tion, the optional method set_attributes initialize the input/output delay and rate value. Themethod

initialize is then activated to set the class specific data structures to user-defined or default values.

During the simulation, the class-specific computation is performed through the processing method.

The post-processing operations are finally executed with end_of_simulation.

34 2 State of the art

Table 2.3: Elaboration and simulation in Timed Data Flow (TDF) MoC

Step Action Phase

Elaboration

1 Set TDFmodule attributes by executing set_attributes for each module
in TDF cluster.

2 Define the TDF time step to propagate through all modules on cluster and
check its consistency.

3 Define the cluster schedule and check its computation.
4 Initialize all TDFmodules in cluster by executing initializemethod.

Simulation

5 Activate all TDF modules and start the simulation by executing recursively
the processingmethod of each module

6 Execute the TDFpost-processingmethods and finish the simulation through
all end_of_simulationmember functions

A B C

d=1

(a) Simple TDF model with internal
loop and delay set on the related port.

A B C

d=1

D

r=2 r=2

(b) Feedback loopwith delay andmul-
tirate signal.

A B C

d=1

D

r=2

TDF cluster

(c) Connection to SystemC module
through converter ports.

Fig. 2.15: TDFmodeling topology.

Similarly to SDF, TDF formalism elaborates a static schedule prior to the simulation and executed regard-

ing a fixed time step. This method leads to high-speed simulation performance and is well fitted for usual

sampling methods such as communication protocols.

2.4.2.2 Dynamic TimedData Flow

Thefixeddefinitionof the time step in TDFcannot addressmore reactive systems, like control units. There-

fore, Dynamic Timed Data Flow (DTDF) aims to support dynamical change of the time step during the

simulation as introduced in [154]. This feature enables the dynamic control of the time step through the

change_attributes() functionwithin themodule that instantiates thedoes_attributes_change()

method. The request_next_activation()method enables the related module to change the current

time step to an updated value. The new value is accordingly propagated to the other modules of the TDF

cluster which must implement the accept_attributes_changes() function. This enables to advance

the simulation with the new time-step value. DTDF enriched the language semantics of the existing TDF

MoC. This improves the time-accurate synchronization of AMS signal processing and control systems.

Despite the dynamical time-stepping in TDF, SystemC-AMS lacks of support for an automatic definition

of the time step with regard to the dynamics of the system like in the state-of-the-art simulation tool MAT-

LAB/Simulink. In SystemC-AMS, the user is responsible to define the time step which may lead to over-

sampling or inaccurate choices that directly impact the simulation quality and performance.

2.4 SystemC, a system-level design language 35

The above definition of dynamical time step has been further extended to LSF and ELN MoCs. An experi-

mental version of the variable time-stepping method was proposed by Reuther and Einwich [155]. As in-

troduced below, the simulation in LSF and ELN relies on a linear DAE solver and numerical integration

schemes, like backward Euler or trapezoidal methods3. To avoid a refactorization of the system matri-

ces, this solution implements the Woodbury formula to solve the DAE system. The system is also solved

through the inverse of the system matrix instead of factorized coefficients which decreases the amount

of operations to perform at each time step. Furthermore, this method supports wider time steps and thus

speeds the simulation upwhile preserving the correctness and stability of the solution [157]. Nevertheless,

its application remains limited to small linear systems and has not been successfully applied to larger or

nonlinear systems.

2.4.2.3 Linear Signal Flow

The LSF MoC enables the modeling and simulation of non-conservative systems with continuous time. A

LSFmodel consists in a real-valued signal flowwhich instantiates a linear DAEwith respect to the relations

between variables. The graphical representation of an LSF model is a block diagram, i.e., a set of blocks

(LSF modules) interconnected by arrows (LSF signals). The related LSF cluster can directly interact with

other MoCs, e.g., TDF or DE MoC, through inputs and outputs defined as converter ports. Note that the

converter ports to SystemC DE MoC encapsulate a conversion to TDF and thus do not directly interact

with the DE MoC. In contrast to TDF, the user cannot implement customized functions in LSF modules,

but rather use a set of predefined LSF primitives (sum, multiplication, derivative, . . .) as shown in Figure

2.16 and provided in the standard [152]. When creating an LSFmodel, themathematical definition of each

module and its interconnection are used to compose the overall equation system.

+

y(t)

x(t) z(t) = x(t) + y(t)

(a) Addition block.

K

x(t) z(t) = Kx(t)

(b) Weighted multiplication block.

∫
x(t) z(t) =

∫

x(t)dt

(c) Time integration block.

Fig. 2.16: LSF modeling topology.

2.4.2.4 Electrical Linear Network

The ELN MoC introduces electrical primitives to model and analyze continuous-time, conservative elec-

trical circuits. An ELN model consists in electrical primitives connected to nodes to form an electrical

network. This network is interpreted through Kirchhoff’s current and voltage laws in order to define an

equivalent DAE system. ELN models are computed during the simulation by the linear DAE solver apply-

ing themodifiednodal analysis [158]. Note that thismethod is also employedby low-level simulation tools

like SPICE. Nevertheless, the aim of SystemC-AMS is to provide a set of method for high-level, rapid pro-

3 For instance, the implicit or backward Euler method solves the equation ẋ = A x by involving both the current state xn of
the system and the later one xn−1 such as xn+1 = ∆t(A − 1)xn where ∆t is the current time step.[156]

36 2 State of the art

totyping. Therefore, the ELN MoC intends to get similar results of SPICEmodels, but with less details, i.e.,

approximating nonlinear electronic components by ideal ones. To this end, like LSF, ELNMoC is restricted

to a set of predefined primitives connected via terminals to define an ELN cluster. Among others, the pro-

posed primitives consist of independent sources (voltage, current), lumped elements (capacitor, resitor,

. . .), ideal amplifiers or switches.

2.4.3 Other extensions

Besides the standard AMS extensions, various attempts have been proposed to extend SystemC and ad-

dress the system-levelmodeling and simulation of heterogeneous systems. Among themost recent contri-

butions, SystemC MDVP [66] provides an extensible definition of interfaces in SystemC. This implemen-

tation supports a better definition of the interconnection between different MoCs Following her work on

synchronization [159], Andrade [160] proposed a first implementation of the TDFMoC in this framework.

The related proof of concept also appears as a promising basis for MDVP in SystemC.

SC-DEVS [161] implements the Discrete EVent System specification (DEVS) methodology to support con-

tinuous systemsimulation in SystemC.DEVS formalism relies on atomic definitionof systemcomponents,

separating the inputs from outputs and focusing on the computation of internal state changes [162]. This

hierarchical, modular approach enables the simulation of concurrently running, time-discrete models.

Theproposed extensionalso implementsdifferentmodes toprocess the transition functions andpreserves

the overall performance of SystemC, although additional steps in the elaboration and simulation phases.

SystemC-A [163] addresses the simulation of analog and mixed-signal components through an extended

version of SystemC. SystemC-A provides an additional MoCs with DAE solver to model applications with

distributed effects. In addition, Zhao [164] developed a PDE solver using spatial discretization of PDEs and

finite difference analysis. Based on a coherent and robust definition, this framework has been applied on

various mixed-signal systems [165].

The SystemC AMS extensions eXperiments (SCAX) library [166] implements, among others, a MoC based

on the bond graph methodology. This energy-based method represents systems as bi-directional, conser-

vative models and can be extended to different physical domains through analogies. SCAX implements a

DAE solver and proposed a dynamical time-stepping algorithm to automatically adapt the solvingmethod

during the simulation. Despite goodperformance and first applications onMEMS [167], the current imple-

mentation of the solver does not support algebraic loops which limits the modeling of complex systems.

HetSC [168] intends to address the specification of complex architectures bydefining consistent semantics

and syntax. This methodology provides rules and guidelines to add newMoCs and allows heterogeneous

modeling in SystemC through abstractMoCs. In addition,HetSC supports SystemC-AMS[169] and defines

the synchronizationmechanismswith SystemC-AMSMoCs. These are realized either through theDEMoC

in SystemC or through dedicated border channels directly instantiated in HetSC. This work proves that,

despite its initial purpose [142], SystemC still lacks of a standard definition of interfaces with newMoC.

2.4 SystemC, a system-level design language 37

Among the formalisms introduced above, the TDF MoC offers the most flexible and extensible modeling

and simulation environment supported in SystemC-AMS. First, TDF allows the user to refine the prede-

finedmodules or to instantiate its ownmoduleswith custom internal, behavioral or functional definitions.

Second, TDF directly interfaces the synchronization layer with the DEMoC and encloses a scheduler used

by both LSF and ELNMoCs. Third, the converter ports between LSF or ELN and any other MoC encloses a

TDF conversion to ensure the correct communication between each other. Finally, the TDFMoC provides

additional features for dynamical time-step definition that are already supported by the standard. This ar-

gues in the further use of TDFMoC in our API to implement reduced models in SystemC-AMS in order to

connect analog and mixed-signal IC components.

2.4.4 Signal conditioning

Before being exploited by digital HW components like micro-controllers or processors, the raw signals

received from a sensor must be processed. To this end, MEMS devices are usually connected to signal

conditioning circuits thatmainly consist of amplifier andfilters. In this section,we consider theprinciple of

architectures for signal processing that are already supported in SystemC-AMS. Amore detailed discussion

of such circuits can be found in texts on electronic circuits and system control [170, 171].

Figure 2.17 shows the analog control of a differential measurement unit, similar to the capacitive config-

uration combs commonly applied in accelerometer, as depicted in Figure 2.4(b). Its principle is to con-

trol the position of the movable electrode through output voltages. The conditioning circuit first converts

the capacitive variation of the sensing cell into a voltage. Since capacitive sensing is equivalent to vari-

able capacitance, the charge variation is usually performed by operational amplifiers which convert the

related input current into an output voltage. For instance, the refined modeling of operational amplifiers

in SystemC-AMS has been proposed in [172].

Amplifiers and electronic circuits generate a thermal noise due to the heat turbulence and tomaterial prop-

erties of the circuit. The material especially produce noise at low frequency and whose the spectral power

density decreases in 1/ f . In order to reduce the influence of such parasitic signals, low-pass filters are em-

ployed in the feedback loop and aim to partially suppress the signal over a cut-off frequency. Besides a

low-pass filter, the feedback loop consists in a gain module which is defined to ensures the stability of the

system. The resulting signal aims finally to modulate the alternative sources in opposition phase, H1 and

H2. The electrostatic forces generated by the feedback loop follow the Equation (2.4). Since the forces defi-

nition is quadratic regarding the charge, only very low voltage variations are needed to be applied around

DC operating point in order to finely control the electrode. In this configuration, the feedback control can

be approached by a linear approximation.

The previous electronic control unit can be implemented in SystemC-AMS through the variousMoCs pre-

sented above. A good illustration of such signal conditioning in analog systems is provided in [173]. The

system-levelmodel of an inertial navigation system is indeedproposed inSystemC-AMSand testedagainst

physical implementation. The system consists in an accelerometer and a yaw-rate sensor connected to an

analog-to-digital conversion unit. The signal conditioning unit contains a control feedback loop, similar

to the above implementation. The output signal is digitally processed to reconstruct a trajectory and can

further be exploited by dedicated software applications. Based on different MoCs, the related model rep-

resents a good introduction to heterogeneous systemmodeling in SystemC-AMS.

38 2 State of the art

Amplification Demodulation

Amplifier

Rp

+

−

+

−

+

−

+

−

x

Feedback
electrodes

C1

C2

Movable electrode

V2

V1

Low-pass
filter

Gain

Low-pass
filter

Gain

Output

−1

Measurement
electrodes

Feedback control

Feedback control

Sensing

Cint

Cm

Cm

R1

R2

R3

R4

Amplifier

Amplifier

Amplifier

H2

Control

H1

Fig. 2.17: Principle of an electronic unit with a control feedback loopon amovable electrode. This symbolic
viewof analogmixed-signal system is supported by SystemC-AMS through the differentMoCs. In this case,
the MEMS model remains limited to an approximated definition of the differential capacitive sensing.

Digital architectures with MEMS devices commonly integrate the Σ∆ conversion principle. In this case,

the analog-to-digital converter is a synchronized comparator which casts the digital output signal into a

specific number of digits. This kind of implementations enables to adapt the sampling frequency or add

auto-zero features to increase the signal accuracy. A SystemC-AMS model of Σ∆ control loop is given in

[174] which describes the further use of SystemC to exploit the converted digital signal.

The AMS extensions supported by SystemC-AMSenable the high-levelmodeling of applications involving

analog, mixed-signal and digital subsystems. The aforementioned examples provide a first illustration of

the signal conditioning related to MEMS devices and already supported by the different standard MoCs.

The system-level modeling of MEMS described in Chapter 3 remains limited to approximated represen-

tations that could largely differ from actual devices, especially by avoiding some geometry details or elec-

tromechanical coupling arising in MEMS. In order to both improve the system-level modeling of MEMS

and their integrate with HW/SW applications, we propose in Chapter 4 a solution based on the reduced

models exported fromMEMS+ and compatible with the SystemC-AMS standard implementation.

2.5 Summary

MEMS are characterized by the tight coupling between the electrical andmechanical domains that occurs

at micro scale. The related physical principles yield to large-scale systems of PDEs, generally discretized

through BEM or FEM and solved by specific-domain algorithms. While being accurate, these models con-

tain a high number of DoFs (typically several thousands or millions) and lead to computationally expen-

sive analyses that are not suitable for first design phases and system-level simulation. To decrease the

amount of DoFs , alternative methods consist to assemble predefined, configurable, elementary compo-

nents. In contrast to traditional FE methods that mostly rely on coupling several domain-specific solvers,

2.5 Summary 39

the component-based approach yields a single matrix system solvable by a unique coupled solver. The

component-based method was first limited to suspended structures because of the application of rigid

body principles, but recent developments support nonlinear components, such as flexible elements, and

the accurate modeling of damping and stiffening effects. Nevertheless, the transient analysis of suchmod-

els still remains too slow tobe considered for system-level analysis. Therefore, the compact and lightweight

descriptions built upon original Three Dimensional (3-D) models through MOR techniques appear as an

efficient manner to integrate MEMS models in system-level simulation environments. Thanks to several

improvements during the last decade, MOR is now considered as a mature research area in applied math-

ematics.

System

Behavioral

Functional

Register transfer

Logic

Circuit

S
P

IC
E

V
er

il
o

g
(-

A
M

S
)

V
H

D
L

(-
A

M
S

)
V

H
D

L
(-

A
M

S
)

S
y

st
em

V
er

il
o

g

M
A

T
L

A
B

C
/

C
+

+

System

Behavioral

Parametric

Component-based

Finite element

Layout
M

E
M

S
+

M
A

T
L

A
B

C
/

C
+

+

C
o

v
en

to
rW

ar
e

C
O

M
S

O
L

A
N

S
Y

S

S
U

G
A

R
N

O
D

A
SR
ed

u
ce

d
-o

rd
er

M
o

d
el

Fabrication

Integration

IC Design

System Design
Multi-Domain Virtual Prototyping

MEMS Design

S
y

st
em

C
S

y
st

em
C

A
M

S

V
er

il
o

g
-A

Fig. 2.18: IC and MEMS design flows with standard HDLs and traditional CAD tools converge at system-
level into multi-domain virtual prototypes that allow the simulation of complex architectures that consist
in MEMS, HW and SW sub-systems.

This PhD thesis is focused in the following on the use of reduced models in order to integrate MEMS re-

ducedmodels directly in HDLs. First applications in VHDL-AMS or Verilog-A demonstrated the interest of

such solutions to test the device with the surrounding electronics. Nevertheless, due to the low-level de-

scription of ICs provided by traditional HDLs, these solutions are not well fitted for large-scale system sim-

ulation. Moreover, the related languages remain decoupled from the development of software solutions.

Therefore ESL design principles have been progressively incorporated into simulation environments, rais-

ing the level of abstraction of the overall simulation. SystemC is also considered as one of the most ad-

vanced solutions for the system-levelmodeling and simulation of SoC/SiP. By introducing conceptual rep-

resentations for complex architectures, such as processors or micro-controllers, SystemC indeed enables

the co-development of HW/SW specific applications. This C++ library benefited from recently standard-

ized AMS extensions, i.e., SystemCAMS, already illustrated in several use cases. In this work, we thus envi-

sion to use the SystemC-AMS implementation to address themulti-domain virtual prototyping of systems

integrating among others MEMS devices.

Chapter 3

ESL-basedMEMSmodeling

3.1 Introduction

In conceptual design, system-level models aim at evaluating the preferred layout with preliminary struc-

tural dimensions and related physical parameters. To model the electromechanical coupling, lumped el-

ements such as parallel plate capacitor or simple beams are frequently employed to reproduce the elec-

tromechanical coupling. Derived from fundamentals of physical background introduced in the previous

chapter, thesemodels yield small ODE systems that can be solved in fewminutes and are compatible with

traditional ESL solutions. Thesemodels capture a lot of the typical MEMS behavior and enable a first eval-

uation of the design. In the following, we consider SystemC-AMS as solid basis to address the MDVP of

MEMS devices with HW/SW specific applications.

By raising the abstraction level, SystemC provides a fast-simulation environment for electronics and no-

tably improved the co-development of HW/SW solutions. The AMS extensions broaden the SystemC stan-

dard capabilities to the simulation of analog systems like RF or signal processing units. This chapter in-

tends to demonstrate the ability of the current SystemC-AMS implementation to address the system-level

modeling of MEMS, but also recall the limitations of a generic approach in terms of accuracy.

This chapter is also organized as follow. Tomake the chapter self-contained, we briefly review system-level

modeling techniques usually employed. Section 3.2 also deals with themacro-modeling ofMEMS devices.

We introduce lumped-equivalent circuit and energy-based methods that represent MEMS through con-

servative systems to cope with internal physical couplings. These formalisms are then discussed against

the traditional representation of MEMS as state-space description or transfer function. The specific use of

the SystemC-AMSMoCs is further discussed with regard to MEMS system-level simulation requirements.

To illustrate the different methods, macro-models of micro-machined inertial sensors, consisting of ac-

celerometers and gyroscopes, are introduced in Section 3.3. We discuss the use of equivalent models to

address the simulation ofMEMS devices and their interface circuit with regard to the current limitations of

a top-downmodeling approach. To take into account the influence of the geometry and designer's choices

on the behavior of the device, we finally argue for refined models built upon three-dimensional descrip-

tions and sufficiently compact thanks to MORmethods.

41

42 3 ESL-basedMEMSmodeling

3.2 Modelingmethodologies

Themonolithic integration ofMEMS deviceswith ASIC requires the development of simulation and analy-

sis tools that allow the coupling of circuit andmicro-mechanical simulation [175]. Thismainly relies on the

development ofmodels compatible with bothmicro-mechanical devices and control or signal-processing

units. The modeling techniques of electronic components are now considered as mature, even in VLSI

cases [176]. However, there is still a lack in developingmodels for MEMS with high level of abstraction. To

describe the tight coupling of multiple energy domains in these systems, MEMS devices are usually rep-

resented by PDEs describing the motion of the structural members, by the characteristic equations of the

transducer elements, and by a set of boundary conditions (see Section 2.2). The direct solution of these

equations is obtained through fully meshed structures and remains computationally intensive. Thus, the

system-level simulation and analysis of MEMS is still complicated to achieve with detailed models.

To overcome the tight computational cost of FE representations, different techniques have beenproposed

to build fast and efficient system-level models, called macromodels [177]. A common approach to con-

struct lower-order device models is to develop semi-analytical macromodels. These models consist of

equivalent circuit or system of DAEs whose parameters are determined through experiments or from de-

tailed numerical simulations. Similarly, energy-basedmethods such as bond graphs [178] provide the nec-

essary background to create conservative models based on the physical behavior of the device. Generat-

ing the forms of equivalent-circuit or energy-basedmodels thus depend on designer's choice and requires

an in-depth comprehension of the system. The modeling process may also take a long time. Neverthe-

less, both methods generate system-level models useful to evaluate the preferred layout with preliminary

structural dimensions and the related physical parameters. These models generally recover the first- and

second-order device behaviors and are effective to bind electronics and MEMS models in a unified sim-

ulation environment like SystemC-AMS. To this purpose, after introducing the principles of equivalent

circuits and bond graphs, we explore in this section the capabilities of SystemC-AMS to implement such

models in the different MoCs presented above.

Energy domain Effort e Flow f
Generalized
momentum q

Generalized
displacement p

Mechanical translation Force F Velocity ẋ, v Momentum p Position x

Mechanical rotation Torque τ Angular velocity ω
Angular

momentum J
Angle θ

Electric circuit Voltage V Current i . . . Charge Q

Magnetic circuit
Magnetomotive

force Fmm
Flux rate φ̇ . . . Flux φ

Fluid flow Pressure P Volumetric flow Q
Pressure

momentum Γ
Volume V

Thermal flow Temperature T Entropy flow rate Ṡ . . . Entropy S

Table 3.1: Conjugate power variables, adapted from [4].

3.2 Modelingmethodologies 43

Lumpedelements represent conservative systemsas idealphysical entities connected toeachother through

bi-directional signals and ports. The exchange of energy between the device and the environment is

achieved through ports. A port is defined by a pair {e, f} of conjugate dynamic variables called the effort

and the flow, respectively. These conjugate power variables can be specified for a broad range of physi-

cal domains. For instance, the most used variables in MEMS design are summarized in Table 3.1. Note

the product of the conjugate variables is the power exchange through the port. The flow is given by the

time derivative of the corresponding state variable. Figure 3.1 illustrates the energy exchange occurring in

electromechanical transducers like electrostatic MEMS. The system is a two-port energy storage element.

The electrical ports are characterized by the voltage-current pair {v(t), i(t)}, while the mechanical ports

are defined by the force-velocity pair {F(t), v(t)}. These storage elements can be described by an energy

function of two independent state variables each related to the mechanical and electric ports, i.e., the dis-

placement x and the charge Q, respectively. The key-aim of lumped-elementmodels is to clearly state the

energy exchange and storage occurring in conservative systems such asMEMS. This approach is extended

to other physical domains through energy-basedmethodologies, especially bond graph.

3.2.1 Equivalent-circuit representations

An often used lumped-parameter modeling approach describes the dynamics of the system through an

equivalent electrical circuit. Once elaborated, this representation can be directly implemented in circuit

simulators like SPICE in order to perform system-level simulation. Alternatively, the related DAE system

can be extracted from the electrical network and solved in standard mathematical tools such as MATLAB.

In thismodeling framework,mechanical elements are symbolized as electrical components with regard to

equivalent conjugate power variables. With this approach, the stored potential energy in springs is repre-

sented by capacitors, the kinetic energy of themass is represented by inductors, the dissipationof damping

elementsby resistors, and transforms betweenenergy domains by transformers and gyrators. The develop-

ment of suchmodels is basedon the analogy in themathematical formofbehavioral descriptions that exist

in bothdomains. These analogies result from the formal similarities of the differential equations governing

the behaviors of the electric and mechanical systems. For instance, the equation of motion which relates

the force F andvelocity vofa rigidmassm is givenby F = m dv/dt = m d2x/dt2. Fromamathematical view-

point, this is similar to the constitutive equation of an electric inductor such as v = L di/dt = L d2q/dt2.

This direct analogy associates the force and voltage variables as well as the displacement and current vari-

ables together.Adomain transformation isalsoconsideredasadual relationequatinganextensive variable

(effort) to an intensive one (flow). The network topologies in mechanical and electrical domains are thus

different from one another. In this case, a series connection in the electrical domain becomes a parallel

arrangement in the equivalent mechanical system, and conversely. For example, a resonant system, i.e., a

simple mass-spring-damper system, is modeled as RLC circuit, i.e., through capacitor, resistor and induc-

tance assembled in series as shown in Figures 3.2(a) and 3.2(b). Additional resonances can be included

by placing additional capacitor-resistor-inductance sets in parallel. Specific circuit elements appropriate

to a wide range of linear MEMS sensor and actuator devices have been reviewed in [179]. Furthermore, to

address nonlinear behaviors such as pull-in inMEMS, specificmethodshave been introduced in [180] and

discussed by Senturia in [181]. This highlights the difficulty to correctly support the coupling between dif-

ferent energy domains through high-levelmodeling. Also, despite widely adopted, thismethod introduces

twomajor issues in the modeling process.

44 3 ESL-basedMEMSmodeling

Linear
electromechanical

transducer

Velocity
v(t) = ẋ(t)

Voltage
v(t)

Current
i(t) = Q̇(t)

Force
F(t)

Fig. 3.1: Lumped-element representation of micromechanical transducer

b

k

m
F

~x

(a) Resonant mechanical system.

V

R

L

C

(b) RLC circuit.

MSe

R

I

C1

Resonant mass

Damper

Spring
stiffnessExternal

force

(c) Bond graph.

Fig. 3.2: Equivalent representations of a resonant mechanical structure.

On the one hand, the continuum device must be partitioned into an equivalent network of lumped ele-

ments which is particularly burdensome. Contrary to purely electric circuits, there is no clean mapping

between geometry of general mechanical structures and corresponding network. Although more than a

decade since first insights on the topic [80, 182], there is apparently no method nor tool to automatically

generate an energetically correct lumped-element topology from an arbitrary device geometry. Moreover,

the proposed equivalent representation would not necessarily be the right one and the definition of re-

lated parameters depends on experimental or simulation results. Therefore, even in early-design phase,

designer input is required to build system-level models compatible with the targeted device.

On the other hand, a numerical valuemust be defined for each parameter characterizing the different ele-

ments. The definition of descriptive variables is required to represent a three-dimensional device through

lumped-equivalent system. In case of rigid bodies, these variables are the positions and orientations of

constitutive elements. Similarly, the amplitude of deformation is observed for flexible entities through a

shape functionwhich is definedwith regard to the structure and distributed loading of the element. For ex-

ample, a flexible beamwould be represented by a capacitor varying with regard to the load-displacement

characteristic of the related spring element.Nevertheless, the energy variation in the spring, respectively in

the capacitor, requires a shape function which is apparently not supported by a simple lumped equivalent.

Defined fromsimulation or energymethods, the shape function represents the total stored energy in the el-

ement and aims at itsminimizationwith respect to one ormore undeterminedparameters. Its correctness

depends on the implementation of the stored energy computation. Regarding the previous limitations, en-

ergymethods like bond graph describe the coupling betweendifferent domains through transformers and

gyrators. These bi-directional methods are considered as a good complement to lumped-elementmodels

in order to get first-order estimates of the device behavior, especially insights on the dependence of behav-

ior on geometry and material properties.

3.2 Modelingmethodologies 45

3.2.2 Energy-basedmethodologies

Asdiscussed inChapter 2, the continuous behavior of dynamic systems is usually described inDAEs,ODEs

and PDEs. The numerical simulation of these systems is performed by solving the set of equations and

finding consistent initial conditions. To ease the definition of such representations, different techniques

have been developed to decompose the systems into smaller lumped elements, as depicted above with

equivalent circuits. Alternatively, bond graph provides amodeling formalism and a graphical notation that

allows domain-independent description of the dynamic behavior of continuous systems and supports the

hierarchical description of systems.

Bond graphs are based on the energy conservation principle and the use of a lumped approach. A bond

graph consists of elements defining the system properties that are integrated through ideal connections.

The related bi-directional model represents the energy exchanged in the system and determines the dy-

namics of the system through the estimation of power which is the product of effort and flow, i.e., the

derivative of energy over time. This guarantees continuity since no energy is generated or dissipated.

Bond graphs are directed graphs whose edges represent physical processes and nodes are lumped ele-

ments. These latter exchange effort and flow though bonds with directions which represent the ideal ex-

change of energy in the system. Initially defined as non-causal models, bond graphs support the principle

of causality in order to compute the exchange of power between elements, since the values of the two

power variables, i.e., effort and flow, can not be computed at the same time. The causal analysis of bond

graph also describes the model in computational terms and allows to derive the related set of equations.

Therefore, a causal bond graph aims to identify which of the components causes the flow, or the effort.

0
e1

f1

e2

f2

f3e3

f3e3

f1

e1 e2

f2

e1 = e2 = e3

f1 = f2 + f3

(a) 0-junction node.

1
e1

f1

e2

f2

f3e3

f3e3

f1

e1 e2

f2

f1 = f2 = f3

e1 = e2 + e3

(b) 1-junction node.

Se
e

S f
f f (t)

MS f

e(t)
MSe

(c) Source.

C : c
e

f
f

e

f = c
de

dt
C : c

e

f

e =
1

c

∫

f dt

1/c

f

e
d/dt

c

∫

(d) Capacitor.

I : l
e

f
f

e

f =
1

l

∫

edtI : l
e

f

e = l
d f

dt

l

f

e ∫

1/l

d/dt

(e) Inductor.

R : r
e

f
f

e

f =
1

r
eR : r

e

f

e = r f
r

f

e
1/r

(f) Resistor.

Fig. 3.3: Causality, equations and block diagram representation of main elements in bond graph.

46 3 ESL-basedMEMSmodeling

Bond graphs consist in various standard components also called nodes, including junctions, capacitor (C-

type), inductors (I -type), resistors (R-type), sources (Se, Sf), transformers (TF) or gyrators (GY). We briefly

present hereafter some of these components, namely the junction, storage and resistive nodes (Figure 3.3).

For more details on notation and methods of system analysis in bond graph, see [178, 183].

Junction nodes define the interactions between elements in a power-continuous way, i.e., by assuming

no energy dissipation or storage. As set by Kirchhoff's laws in electrical networks, there are only two ways

in which components exchange power. In the one hand, the 0-junction represents a node where all the

efforts of the connected bonds are equal, e.g., the parallel connections in electrical circuits. The sum of all

the flows on the junction with regard to the power direction is zero, as defined by the Kirchhoff's current

law in the electrical domain. In the other hand, the 1-junction represents a node where all the flows of the

connecting bonds are equal. In this case, the sum of efforts is assumed null corresponding to Kirchhoff's

voltage law in the electrical domain or the force balance in the mechanical domain.

Storage nodes are characterized by port variables that are the generalizedmomentum q or the generalized

displacement p. Depending on the imposed causality, these variables must be obtained either by the inte-

gration of the power variable with respect to time before being incorporated in the constitutive relation of

the node, or by the differentiation of the the power variable with respect to time from a result of the con-

stitutive equation. In the one hand, C-type nodes are related to q-type state variable, i.e, the integration of

the flow or on the differentiation of the effort (Figure 3.3(d)). In the other hand, I -type nodes are related to

p-type state variable, i.e., the integration of the effort or on the differentiation of the flow (Figure 3.3(e)).

Resistive nodes define components resisting to flow, e.g., current in the electrical domain, producing ef-

fort to be reduced between the input and output terminals, e.g., voltage in the electrical domain, while

dissipating energy. This kind of element is used in various domains, i.e., resistors in the electrical domain

or dampers in the mechanical problems. The constitutive equation is a linear relation between the effort

and the flow such as e = ri, where r is the resistance value (Figure 3.3(f)).

As depicted above, every primitive of bond graph element defines one or more equations that involve the

effort or flow variable values. These are handle by the two-signal connections, i.e., bonds, that connect

the different nodes of the model and determine the bond causality with regard to the signal orientation

and preferred integration scheme. Bond graphs support a wide scope of systems due to the multi- and

inter-domain nature of this formalism. Moreover, the lumped approach allows an efficient evaluation and

generation of design alternatives relying on the association features of bond and node components. Those

attributesmake bond graphs suitable for modeling mutli-domain systems or appropriate networks [184].

This formalism requires nevertheless a specific modeling knowledge. Moreover, like equivalent circuits,

the definition of bond graphs relies on an in-depth understanding of the internal coupling of devices. The

related parameters and constitutive properties must be obtained from a combination of analysis and nu-

merical simulation. Despite recent support in CAD tools such as Modelica [46] or in SystemC-AMS with

the development of the SCAXMoC [166], bond graphs remain difficult to connect directly to circuit simula-

tors, which limits their applicability in the overallMEMSmodeling environment. Since any lumped-circuit

model or bond graph results in a set of coupled state equations, we explore in the following section how

to directly construct model in the form of a set of coupled differential equations without any underlying

circuit representation.

3.2 Modelingmethodologies 47

3.2.3 Transfer function and state-space system

As illustrated above through equivalent-lumped circuits and bond graphs, analytic models are derived

from the fundamentals of physics and the principle of energy conservation. The related mathematical

representation ultimately results in a set of coupled state ODEs or DAEs. In order to describe the entire dy-

namics of a system and its subsystems, it is necessary to introduce a vector, namely the state vector, whose

components allow to describe the state of the system at any time. The state vector definition implicitly

depends on the degree of complexity of the model which is set with regard to the underlying phenomena

arising in the system. Since analytic models are always an approximation of real systems, it is primordial

to correctly define the purpose of the model. For example, the same dynamical system will have a simu-

lation model that differs from its control model. A first high-level model is sufficient to define the control

synthesis. But, this control lawmust be verifiedwith a simulationmodel whose the dynamical behavior is

more realistic, and can be used as model in the loop for real time applications [185].

State-space representation and transfer function are two complementary approaches to analyze system

behavior with regard to time and frequency domains, respectively. The time behavioral analysis concerns

the transient response of the system to stimuli varying over time and potentially in space. The related dif-

ferential system can be solved with traditional numerical tools. Alternatively, a system can be analyzed in

frequency domain which is equivalent to a temporal analysis with trigonometric inputs, i.e., u0 ejω0t. Fre-

quency analysis introduces the notion of transfer between inputs and outputs through dedicated integral

transformations (Laplace, Fourier). Although the same information can be retrieved in both representa-

tions, transfer approach has some limitations that we discuss below justifying our use of state-space sys-

tems.

Based on an external description, the definition of internal dynamics usually refers to multiple transfer

functions. These functions can then be multiplied by one another which may introduce some simplifica-

tions of the system by so called pole-zero. The problem with the simplification by pole-zero is to assume

the initial conditions as null which anneal some dynamical modes. This is a major inconvenient of the

transfer approach since the system response relies on its past evolution, for instance, its initial conditions.

Moreover, the input-output behavior may exclude internal dynamics that only affect the outputs. State-

space representation overcomes this limitation by including all internal dynamics in the state vector. This

method also supports Multiple-Input Multiple-Output (MIMO) systems which is not the case of the trans-

fer function. Finally, transfer notion assumes the system linear in order to apply Laplace's transform. In

case of nonlinear systems, Laplace's transform can not be definedor does not find any analytic expression.

Therefore, the transfer notion does not apply to nonlinear systems.

The transfer approach allows to analyze linear systems from an input-output viewpoint. This external rep-

resentation only relates inputs and outputs and may exclude some internal dynamics from the model.

Moreover, the applicability of the concept of the transfer function is limited to linear, time-invariant, dif-

ferential equation systems. As introduced above, its limitations reside in its difficulty to address the sim-

plification by pole-zero, to set initial conditions, and to support multivariable systems. Furthermore, the

Laplace's variable (s) does not enable a direct use of numerical simulation schemes. In order to simulate

a transfer function, the transfer function must first be transformed into differential equations with null

initial conditions, before to be solved by traditional methods.

48 3 ESL-basedMEMSmodeling

The state-space representation proposes a unified analysis of the dynamical properties of systems. This

method comprises a set of internal dynamics and takes into account the initialization of the system.

Through the introduction of structural properties, this approach enables to study the problems of sim-

plification by pole-zero or specific internal dynamics. Finally, it directly defines a set of ODEs easily solved

by numerical algorithms.

The state-space sysem (2.8) is defined in the descriptor form, further studied in [186]. In the following, we

consider the linear form of state-space systems that reads:

ẋ = Ax + Bu (3.1)

y = Cx + Du (3.2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m. The state vector x ∈ R
n, the input vector u ∈ R

n, and

the output vector y ∈ R
n. Equation (3.1) is the evolution equation while Equation (3.2) is the observation

equation. The matrix quadruplet (A, B, C, D) fully characterizes the state model. At any moment t0, the

value of an initial condition of the state x(t0) = x0 and of a piece-wise input vector u(t) ∈ U , t ≥ t0,

define in a unique way the trajectory x(t) ∈ H which is solution to (3.1) and thus the output trajectory

y(t) ∈ Y , t ≥ t0. The spaceH in which the trajectory x(t) evolves is called the state space.

This state model can be represented by block diagram, as shown in Figure 3.4. This is based only on

elements related to basic operations (addition, multiplication, integration). These components are well

adapted to analyze linear systems and useful to simulation. The analysis and the control of such systems

has been broadly covered in the literature [171, 187, 188].

B C

A

D

+ +

+

u yxẋ ∫

+

Fig. 3.4: Block diagram of a linear state-space system.

3.3 MEMSmacromodels

Using the above rationale, we discuss below the system-level models of two widely used MEMS sensors

that are accelerometers and gyroscopes. Thesemicromachined inertial sensors represent themost impor-

tant type of silicon-based sensors and are embedded in a wide range of applications, especially in inertial

measurement units. Therefore, many models have already been proposed [189] and we limit our study

to the generic definition of such devices. Apart from the description of these sensors with the previous

methodologies, we have also devoted a small discussion on the signal processing related to analog out-

3.3 MEMSmacromodels 49

puts. In this section, we provide a first application of the modeling methods introduced above and that

could be implemented in the different SystemC-AMSMoCs. The devices are also described by high-level

descriptions, directly adapted from the underlying fundamental laws. This aims to definehow sensormod-

els can be developed using generalized field elements and understand the limitations of systemmodels to

design transducers and correctly tune the related HW/SW specific applications.

3.3.1 Accelerometers

Acceleration is the change in velocity for a given time period. In linear motion case, a mass that moves

in straight line has positive acceleration with an increasing velocity. This is described by Newton's second

motion law that establishes the relationship between force,mass and acceleration such as F = m awhere F

is the force,m is themass and a is the acceleration. An acceleration can thus be estimatedbymeasuring the

force applied on a mass through a scalar description that would be negative in case of decreasing velocity.

MEMS accelerometers are devices able to determine the force required to create a velocity change. The un-

derlying principle can be approximated by mass-spring-damper system (Figure 3.2(a)). The correspond-

ing system is sensitive to acceleration since the motion of the proof mass implies a variation of the spring

length. The spring is indeed extended or contracted when acted upon respectively positive or negative ac-

celeration. The observed displacement is generally linear with the force and is described by the equation

F = k x, where k is the spring constant, also called stiffness coefficient. Inmost configurations, spring-mass

systems are damped by drag and viscous forces which may induce nonlinear displacements. Therefore,

bandwidth and usable frequency ranges must be correctly set according to these behavioral constraints.

Theprinciple of accelerometers relies onaoscillatingmass enclosed ina suspended frame (Figure 3.5). The

mechanical input and the measured displacement may be different regarding the mounting resonance

and damping characteristics. The accelerometer is based on a mass-spring-damper configuration and is

characterized by a specific transfer function (3.4) from the case or package to moving mass. The aim of

the device is to convert the sensed displacement of the frame into an electrical signal, e.g., through piezo-

electric or capacitive measurement. This signal is then conditioned and processed by the interface circuit

which operates the signal amplification, filtering and digital conversion. The governing equation formass-

spring-damper system is given by:

m
d2x

dt2
+ b

dx

dt
+ k x = u . (3.3)

b

k

m
acceleration

Mounting

Amplifier
& Filter

Displacement
to voltage

Output signal

Mechanical system Electrical system

Accelerometer

Fig. 3.5: Principle of the acceleration measurement by an accelerometer.

50 3 ESL-basedMEMSmodeling

Hence the transfer function:

H(s) =
X(s)

Y(s)
=

1

s2 + (b/m) s + (k/m)
=

1

s2 + (ω0/Q) s + ω2
0

, (3.4)

where b is thedampingcoefficient of theproofmassm,ω0 is the resonant frequencydefinedbyω0 =
√

k/m

and Q is the quality factor defined by Q = (m ω0)/b. Note the mechanical sensitivity is inversely propor-

tional to the square of the resonant frequency, i.e., proportional to 1/ω2
0. This criterion is a fundamental

design trade-off between device with good sensitivity or wide operating bandwidth.

Let the displacement be the output of the system, i.e., y = x, the equivalent state-space system is:

{

ẋ = Ax + Bu

y = Cx
(3.5)

where x =

[

x

ẋ

]

, u =

[

0

u

]

, A =

[

0 1

−k/m −b/m

]

, B = [0 1/m], C = [1 0] ,

The abovemechanical systemhas an equivalent lumped-elementnetworkwhere the speed dx/dt is equiv-

alent to an electrical current i, themassm to an inductance L, the damping coefficient b to a resistor R and

the stiffness coefficient k to the inverse of capacitance C. The electrical characteristic equation is given by:

L
di

dt
+ R i +

1

C

∫

i dt = V . (3.6)

The mechanical description of the system (3.3), the related transfer function (3.4) or state-space system

(3.5) and the equivalent electrical circuit (3.6) can all be implemented in SystemC-AMS in the different

MoCs supported by the standard. For example, the state-space representation is supported in both TDF

and LSF through the sca_ss class. Similarly, LSF MoC supports the definition of first- and second-order

transfer functions with the sca_lsf::sca_ltf class. The above electrical network can be implemented

in either ELN with a lumped-equivalent circuit or in LSF by defining the state-space equivalent to (3.6).

We limit our study to capacitive accelerometers and refer to [9] for an an in-depth introduction. Besides

low fabrication cost, these devices are easily integrated with CMOS and have a high sensitivity as well as

good temperature performance. They usually operate with natural frequencies in the range of 100 Hz to

20 kHz. The two most commonly used electrodes are parallel plates and finger comb arrays, as depicted

below.

Figure 3.6 shows the basic configurations for capacitive displacement sensing through horizontal plates.

This generally consists in structures composed of a pair of electrodes with one of them movable. Paral-

lel plate electrodes are suitable for vertical sensing while comb fingers are preferred for sensing lateral

displacement. The configuration in Figure 3.6(b) is generally preferred for DC offset and temperature vari-

ation cancellation thanks to the fully differential capacitance measurement. However, the configuration

with a fixed reference capacitance shown in Figure 3.6(a) is much easier to implement.

3.3 MEMSmacromodels 51

d − z
~z

Cz

Vm Vs

C0

C0

Cz

(a)

d + z

~z

Cz+

Vm Vs

Cz−

Cz+

Cz−

d − z

(b)

~x

Cx+

Vm Vs

Cx−

Cx+

Cx−

(c)

Fixed part Movable plate
Reference
potential

Fig. 3.6: Basic capacitive displacement sensing configurations with horizontal plates.

d − x
d + x

C1 C2

rotor

stators

~x

(a)

−Vm

Vs

C2

C1

Vm

Cp

(b)

Fig. 3.7: Basic capacitive displacement sensing through sidewall capacitance of comb fingers.

Figure 3.7 illustrates the basic solution for capacitive displacement sensing with comb fingers. Comb-

finger electrodes are normally used for lateral displacement sensing. As illustrated in Figure 3.7(a), each of

the capacitors C1 and C2 formed by the three comb fingers include a sidewall parallel-plate and an edge

capacitance. When the middle part, i.e., the rotor, moves along the x-axis, C2 decreases while C1 increases

which is equivalent to the fully differential capacitive half-bridge depicted in Figure 3.6(b). Note that the

parasitic capacitance CP attenuates the signal and should beminimized. The resulting sensitivity to accel-

eration for this configuration is given by:

VS

aext
=

1

xω2
r

(
2Vm(C1 − C2)

C1 + C2 + CP

)

≈ 2Vm

ω2
r d

(

1 + CP
2C0

) , (3.7)

whereVS is the output voltage, aext the external acceleration applied on the device,Vm a balanced ACmod-

ulation voltage, d is the gap between plates when the proof mass is not displaced, C0 the value of the cor-

responding capacitance at steady state.

52 3 ESL-basedMEMSmodeling

The resolution of inertial sensor may be limited by external parameters like temperature, power supply

changes or electrical noise. For instance, the thermomechanical noise is related to the damping and is

defined by its spectral density as follow:

√

a2
n

∆ f
=

√
4kBTb

m
, (3.8)

where an is the Brownian equivalent acceleration noise, ∆ f is the system bandwidth usually set by the

interface circuit, kB is the Boltzmann's constant, and T is the absolute temperature in Kelvin. The unit

of the thermal density is m/s2Hz−1/2 or gHz−1/2. Assuming the damping between the capacitor plates is

mostly due to squeezed-film effect, the damping coefficient is:

b =
ηLh3

d3
=

4ηC0h2

ε0d2
, (3.9)

where η is the viscosity of the fluid between the parallel plates, ε0 is the permittivity of fluid, L is the total

length of the plates in the system and h is the width of the plates. The damping is directly related to the

aspect ratio of the plates. Let assume hC ≪ LC which is the case in lateral capacitive sensing, the Brownian

noise with squeezed-film damping is also defined by:

√

a2
n

∆ f
= 4

√

kBTη

ε0

(√
C0

ρAmd

)(
h

hm

)

, (3.10)

where ρ is the density of the proof mass, Am is its area and hm is its height. Finally, the Brownian noise can

be expressed by introducing (3.7) in (3.10) with regard to the capacitive bridge output voltageVS as follow:

√

V2
S

∆ f
≈ 8Vm

ρAmω2
r d2

√

kBTη

ε0





√
C0

1 +
Cp

2C0





(
h

hm

)

. (3.11)

To decrease the noise, a larger mass would decrease its amplitude and the fluid damping would be an-

nealed if the device operates in vacuum. In other fluids, especially air, smaller sense capacitors and larger

sense gap would reduce the noise since the squeezed-film effect would be less important. However, this

approximation is limited by the shear damping induced by the plate deflection which is not taken into

account in the above macromodels. Different topologies are also employed to counterbalance the noise

incidence on the capacitive interface, the most common being switched capacitor circuits [189].

The bias, i.e., offset, and gain stability are important characteristics of accelerometers. Bias issues may

durably change the stress in microstructures. The corresponding stress gradients defined in Chapter 2

are also conditioned by the temperature of the structure and chip substrate. Moreover, external stresses

may be induced by actions on the package such as temperature changes, external forces ormanufacturing

variations in mounting, wire-bonding or encapsulation in the chip. The resulting bias drift may directly

impact the mechanical behavior of the device. Therefore, the study of thermal and packaging effects is

required even at system-level, but needs for refined definition of the device [119].

3.3 MEMSmacromodels 53

3.3.2 Gyroscopes

Gyroscopes have been successfully designed as microsystems through the MEMS technology. Vibrating

gyroscopes use oscillating mechanical elements to sense the rate or the angle of rotation. These sensors

are based on the transfer of energy between two vibration modes of a structure induced by Coriolis force,

well introduced in [190].

As illustrated in Figure 3.8, a gyroscope consists of a suspended mass connected to a fixed frame through

two pairs of springs. The mass is thus free to vibrate in two mutually perpendicular directions and tilts

around the z-axis. Themassoscillates ina sinewavepattern in thedriving axis, here x-axis, and the rotation

sensing is done on y-axis (see results simulation in Figure 3.10). If a rotation speed θ̇ is applied on around

z-axis, the corresponding tilt induces an additional force on themass with regard to the velocities in the x-

and y-axis. This force is called Coriolis force, FCoriolis and is given by the following equations of motion:

mẍ + b1 ẋ + k1x = F1 + 2mθ̇ẏ

mÿ + b2ẏ + k2y = F2 − 2mθ̇ẋ ,
(3.12)

where m is themass, b1, b2 are the damping terms, k1, k2 are the stiffness of springs and F1 is the excitation

force applied on x-axis and F2 is the sensing force measured on y-axis. Hence the state-space system:
{

ẋ = Ax + Bu

y = Cx
, (3.13)

where

x =









x

ẋ

y

ẏ









, u =

[

F1

F2

]

, A =









0 1 0 0

−k1/m −b1/m 0 2θ̇

0 0 0 1

0 −2θ̇ −k2/m −b2/m









, B =









0 0

1/m 0

0 0

0 1/m









, C =

[

1 0 0 0

0 0 1 0

]

.

Themotion in the sensing direction, here y-axis, is defined as follow:

∆y =
FCoriolisQy

mωy

1
√

(

ω2
x − ω2

y

)2

+
(ωxωy)

2

Qy

(3.14)

where∆y is the displacement variation, i.e., themeasurement, in the y-direction,ωy andωx are the natural

pulsations in bothdirections respectively, andQy is the quality factor for themotion in the y-direction. The

Coriolis force, FCoriolis, is equal to−2mθ̇ẋ and allows to compute the angular rate θ from the displacement

in the y-direction. The quality factor Qy for the motion in the y-direction can be written as:

Qy =

√
mky

b2

. (3.15)

We easily understand through this equation that a minimized damping increases the quality factor of the

device. Therefore, the system is usually operated in vacuum [191].

54 3 ESL-basedMEMSmodeling

k1

m

Rotation axis

k2 b2

~x

~y

Driving
axis Sensing

axis

b1

Mounting

Fig. 3.8: Principle of the angular displacement measurement by a gyroscope.

ẏ
n1

n2

n3

n4

n5

n6

~F1

~F1

m

2mθ̇
~F2

~F2

m

1/k2

b2

b1

1/k1

−2mθ̇

ẋ

ẏ

(a) Equivalent electrical circuit.

MSe

R

I

C

1

Resonant
mass

Force
~x axis

MSe

MS f

1

MSe
Force
~y axis

Spring
stiffness

k1

Damping
coefficient

b1

×

××

×

Constant
negative 2

Coriolis force
~x axis

Constant
negative 1

~z angular
velocity

∫

Output velocity
~y axis

Output velocity
~x axis

R

I

C

1

Resonant
mass

MSe

Spring
stiffness

k2

Damping
coefficient

b2

Coriolis force
~y axis

∫

(b) Bond graph.

Fig. 3.9: System-level representation of a gyroscope with Coriolis force modeling.

3.3 MEMSmacromodels 55

Figure 3.9(a) shows the equivalent circuit to the proposed gyroscopemodel. Themass-spring-damper sys-

tem is also described by two complementary electrical resonant systems that consist of RLC lumped ele-

ments with regard to the aforementioned rules on analogy. This system represent the DoFs on both x- and

y-directions, and the rotation about the z-axis is modeled through modulated resistors. The force inputs

are defined as voltage sources.

The bond graph representing the gyroscope is given in Figure 3.9(b). Modulated sources of flow, MS f , gen-

erates the rotation about the z-axis. This induces the Coriolis forces for both x- and y-axis as depicted by

the central coupled binding. The resonant systems on both directions are modeled through I -, C- and R-

type elements. Finally, the external forces, F1 and F2 are delivered by modulated source of effort, MSe. We

can notice that bond graph refers to the same model for both the mechanical and the electrical system.

Additional modeling elements enable to access the integrated value of some variable, ,e.g., the output ve-

locity onbothaxis. Furthermore, the related analysis of causality canbe exploited todesigncontrol systems

and test the design itself by simply tuning the coefficients [192]. In SystemC-AMS, the electrical network

can be implemented in the ELN MoC using the standard predefined elements. Similarly, the bond graph

model could be implemented in the SCAX library. To compute the Coriolis forces on both axes, the model

defines a loop over the output velocities that are multiplied with the angular velocity and re-injected in

the system. This also induces an algebraic loop which is nevertheless not supported by the solver yet. We

therefore chose to instantiate the state space system (3.13) in the TDFMoC and thus refer to the standard

AMS extensions. We discuss hereafter the simulation configuration and limitations.

To solve this system, we used the sca_tdf::sca_ss class that accepts as attributes the systemmatrices,

the state and input vectors and the current time step of the module. But, the sca_ss definition is limited

to Linear Time Invariant (LTI) systems, i.e., with no variation in the constitutivematrices. Since thematrix

A depends on θ variation over time, wemust update the corresponding terms during the simulation. The

SystemC-AMS vectors (sca_vector) and matrices (sca_matrix) correspond to data structures without

support formathematical operations. Inorder to solve the system,weuse theEigen library [193]whichcon-

tains data structures and operations for linear algebra. In addition, we instantiated our own procedures to

convertEigen data structures into SystemC-AMS (writeEigen2Sca) and conversely (writeSca2Eigen).

Note this conversion directly impacts and lengthens the simulation run-time. The proposed implementa-

tion is detailed in Appendix C.

The simulation results are given in Figure 3.10 and the numerical application is detailed inTable 3.2. Figure

3.10(a) showsa sinusoidal force applied along x-axis at the resonant frequencyof thedevice, 495 rad/s. This

input is modulated by the angular velocity θ̇ varying at a pulsation of 20 rad/s as shown on Figure 3.10(b).

Finally, the displacement in y-direction obtained by the simulation is depicted in Figure 3.10(c).

The system-level modeling of gyroscopes enables to quickly evaluate the behavioral response of such sys-

tems. Nevertheless, the coupling of the angular velocity with the displacement and velocity on both the

sensing and the driving directions requires to tune the simulation in SystemC-AMS. Such models can fur-

ther be connected to control units which are specifically detailed for gyroscopes in [194]. Despite some

limitations in both the modeling and simulation processes, SystemC-AMS supports a wide range of stan-

dard procedures to cover the signal conditioning associated to global assemblies like inertialmeasurement

units and introduced below.

56 3 ESL-basedMEMSmodeling

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

0 0.25 0.5 0.75 1
F
o
rc

e
F
(N

)
Time (s)

(a) Applied force on x axis.

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

0 0.25 0.5 0.75 1

A
n
g
le

θ
(r

ad
)

Time (s)

(b) Variation of the angular velocity.

−3e − 08

−2e − 08

−1e − 08

0

1e − 08

2e − 08

3e − 08

4e − 08

0 0.25 0.5 0.75 1

D
is

p
la

ce
m

en
t

y
(m

)

Time (s)

(c) Displacement on y axis.

Fig. 3.10: Simulation result in SystemC-AMS for a gyroscope.

Variable Symbol Value Unit

Mass m 9.425e−10 kg
Stiffness x-axis k1 25e−03 -
Stiffness y-axis k2 25e−03 -
Damping x-axis b1 0.0 -
Damping y-axis b2 3480.0 -
Pulsation x-axis ωx 495 rad/s
Pulsation y-axis ωy 495 rad/s
Angular velocity θ̇ 20.0 rad/s

Table 3.2: Numerical application of gyroscope, adapted from [195].

3.4 Conclusion 57

3.4 Conclusion

In this chapter, we provided the necessary background for themodeling and simulation of MEMS devices

in SystemC-AMS through high-level representations. The SystemC AMS extensions enable the simulation

of more complex systems and enrich the co-development of HW/SW specific applications with the mod-

eling of, e.g., RF or signal processing units. The related MoCs allow the representation of systems as data

flows, block diagrams or electrical networks. Furthermore, themodular definition of SystemC encouraged

the development of additional MoCs to address the MDVP of heterogeneous systems.

Different techniques are envisioned to address the system-level modeling of MEMS. We also introduced

modeling techniques to represent MEMS either as conservative or non-conservative systems. On the one

hand, equivalent-lumped circuits or bond graphs define microsystems as conservative entities. These

modeling methodologies take into account the description of internal couplings and provide equivalent

representations applying analogies between the different physical domains involved in the system.On the

other hand, state-space representation or transfer function provide a non-conservative and oriented def-

inition of systems. The related set of ODEs enable to refine the system and control design through matrix

analyses.

To illustrate the previous methodologies, we proposed macromodels of inertial sensors, consisting in ac-

celerometers andgyroscopes. Thedifferent formalismsprovide abasic representationof thedeviceswhich

is acceptable for a first-cut design, but becomes irrelevant for complex geometry or specific feature realiza-

tion. Thesemodels lack sufficient level of accuracy andmay not predict complicated dynamical behaviors,

such as the effect of higher order modes on the response of microstructures. Furthermore, parasitic phe-

nomena like thermal noise are difficult to integrate in suchmodels but directly impact the systembehavior,

e.g., packaging influence.

The top-down approach supported by the definition of additional MoCs in SystemC-AMS has also two

main disadvantages. First, the underlying description may ignore important effects on the structure and

will limit the refinement of HW/SW specific application like control and signal processing units. Second,

the proposed models can not be automatically generated for a specific device. The assumptions made on

the geometry may also lead to approximations that will not ensure the correct behavioral representation

of the device. Designing MEMS remains a complex task requiring the designer's input. To overcome the

limitation of traditional system-levelmodeling techniques, we further propose to integrate reduced-order

models, initially created in FEA tool, in SystemC-AMS.

Chapter 4

System-level simulation API

4.1 Introduction

In the previous chapter, we introduced lumped-element and energy-basedmodeling methods to address

the system-level simulation of MEMS devices. We demonstrated the ability of SystemC-AMS to support

the definition and simulation of such models with respect to the standard implementation. This environ-

ment enables fast simulationswith runtimeof few seconds instead ofminutes or hours in traditionalHDLs

which is highly valuable in early-design or integration phases The modeling and simulation of MEMS in

SystemC-AMSprimarily aim to correctly configureHW/SWdedicated applications. To this end, themodels

must verify good performance, smooth definition and sufficient accuracy.

The behavior of MEMS devices is highly dependent on the geometry and material properties. As depicted

in Chapter 2, this is generally handled by large-scale systems for which transient simulation still remains

hard to compute. InChapter 3,we introduced lumped-elementand energy-basedmodels inwhich it is still

hard to take into account such parameters. To overcome the above limitations, MOR techniques are the

preferred alternative to extract themainparameters andgenerate compact, lightweightmodels from initial

refined descriptions. This bottom-up approach is compatible with the system-level simulation supported

by most HDLs, especially through AMS extensions. SystemC-AMS enables the co-development of digital

HW/SW applications with analog or non-electronic components. We investigate here the integration of

MEMSmodels into SystemC-AMS architectures.

In this chapter, we deal with reduced-order models automatically generated from the FEA tool MEMS+.

We limit our investigation to the integration of thesemodels in SystemC-AMS and the analog part of larger

architectures. By using reduced models, we hope to cope with the geometry complexity and nonlinearity

of devices with sufficient accuracy and thus provide a sustainable solution for MEMS system-level inte-

gration. This chapter follows the chronological development of the MOR feature implemented inMEMS+

and developed in parallel to this work. First, we justify the use of reduced models in SystemC-AMS by

presenting the initial version of the model export inMEMS+. This solution refers to a previous MOR im-

plementation inMEMS+ in which the reduced models are sampled at different operating points in order

to reconstruct the nonlinearity of the system. In a second part, we detail our specific contribution with

the implementation of an API in order to directly access the reduced models exported from MEMS+ to

SystemC-AMS.We reuse the feature initially developed forMATLAB/Simulink and based on the principles

of an updated MOR technique refined to cope with the electrostatic nonlinearity of studied systems. We

finally illustrate the use of the proposed API on test bench implementing a gyroscope.

59

60 4 System-level simulation API

4.2 Motivating example

We present below the first implementation of reduced models generated fromMEMS+ and integrated in

SystemC-AMS that we presented in the following publications [196, 197].

4.2.1 Model definition

MEMS are nonlinear dynamic entities, hereby modeled through the single multi-physics system of equa-

tions assembled inMEMS+. Consider F : R
n × R

n × R
m → R

n the sum of forces acting on the system at

equilibrium defined as follow:

F(ẋ, x, u) = 0 (4.1)

where x ∈ R
n is the state vector representing the internal dynamics of the system, i.e., all electrical and

mechanical DoFs, ẋ ∈ R
n is its derivative and u ∈ R

m is the input vector which includes all input voltages,

external accelerations and angular velocities.

Linearization

The 1st-order Taylor expansion of the conservation law (4.1) around a steady-state (xi, ẋi, ui) is given by:

F(x, ẋ, u) ≈ F0 − Aix − Biu + Eiẋ , (4.2)

withAi = ∂xF(x, ẋi, ui), Bi = ∂uF(xi, ẋi, ui), Ei = −∂ẋF(xi, ẋi, ui), F0 = F(x0, ẋ0, u0). Hence the linearized

form of (4.2) is defined as follow:

Eiẋ = Aix + Biu + ri, (4.3)

where Ei ∈ R
n×n is the mass matrix, Ai ∈ R

n×n is the system matrix, Bi ∈ R
n×m is the input or control

matrix and ri = F0 − Aixi − Biui + Eiẋi is the force residual.

Model Order Reduction

The transient analysis of FEmodels is generally not possible due to the huge number ofDoFs (> 106).MOR

aims to decrease the number of DoFs of the systemwhile preserving the principal dynamics of the system.

This method is applied to produce smaller models, well suited for system-level simulation. In this section,

we apply a first approximation based on the Petrov-Galerkin projection (see Section 2.3)

Let V ∈ R
m×n with m ≪ n be the reduction matrix. It aims to approximate the manifold where the state

vector x resides through a transformation of basis that replaces x by Vx̃ in (4.3) with x̃ ∈ R
m leads to:

EiV
.
x̃ = AiVx̃ + Biu + ri. (4.4)

4.2 Motivating example 61

The above system has more equations than unknowns which can be solved through the Petrov-Galerkin

projection. Let W a matrix in R
n×m, the corresponding reduced system reads:

WEiV
.
x̃ = WAiVx̃ + WBiu + Wri. (4.5)

To enhance the stability of the solution, we follow the method developed by Amsallem et al. [198] and

further depicted in [79]. We remain in the case W = VT leading to the following linear reducedmodel:

Ẽi

.

x̃ = Ãix̃ + B̃iu + r̃i, (4.6)

where Ẽi = VTEiV, Ãi = VTAiV, B̃i = VTBi, and r̃i = VTri.

Nonlinearity Reconstruction

The reduction method defines a linear reduced model (Ẽi, Ãi, B̃i, r̃i) around a specific operating point

(
.

x̃i, x̃i, ui). In order to reconstruct the nonlinear behavior of the whole system, several linear models are

generated and interpolated. In this version, the order of approximation is fixed by the user at the export in

MEMS+ and determines the number of sampled linear systems required to further reconstruct the nonlin-

earity. The reduced nonlinear system to solve reads:

k

∑
i=0

ωiẼi

.

x̃ =
k

∑
i=0

ωiÃiVx̃ +
k

∑
i=0

ωiB̃iu +
k

∑
i=0

ωi r̃i, (4.7)

where ωi are weighted coefficients computed according to the current value of the current input values u,

satisfying:

∑
i

ωi = 1, with ωi(u) ∈ [0, 1]. (4.8)

After interpolation, the nonlinearity is thus preserved by updating the value of constitutive matrices re-

garding x̃, and u. The system reads:

Ẽ
.
x̃ = Ãx̃ + B̃u + r̃, (4.9)

with, Ẽ =
k

∑
i=0

ωiẼi, Ã =
k

∑
i=0

ωiÃi, B̃ =
k

∑
i=0

ωiB̃i, and r̃ =
k

∑
i=0

ωir̃i.

Linearization, model reduction, and nonlinearity reconstruction are the complementary steps to define

a system-level model in SystemC-AMS from FEA. In this case, the linearization and model reduction are

directly performed inMEMS+ asmodel export. Figure 4.1 showshow thenonlinearity is then reconstructed

during the simulation in SystemC-AMSwith respect to the current value of x̃ and u. These are read on the

module's ports during the execution of the processingmethod. For simplicity's sake, we assume in the

following the systemmatrices as reduced and don't use the tilde symbol to denote them anymore.

62 4 System-level simulation API

SystemC-AMS Implementation

SystemC-AMS defines two different modules for state-space representation, sca_tdf::sca_ss in TDF

MoC and sca_lsf::sca_ss in LSF MoC [24]. On the one hand, the TDFMoC is used for procedural be-

havior processing samples tagged in time. The activation schedule of a set of connected TDFmodules can

be statically determined since the number of read and written operations is known and fixed. This MoC is

thus well adapted formulti-rate signals. On the other hand, the LSFMoC is dedicated to the description of

linear time-invariant and non-conservative systems using block diagram primitives. Switching and mod-

ulation of module parameters via external signals are allowed, making this MoCmore suitable for simple

continuous-time controllers and filters. The TDF MoC is preferred in this first case study as it also imple-

ments the synchronization tasks with SystemC .

The predefined TDFmodule, sca_tdf::sca_ss, assumes the following state-space system:







ẋ = Ax + Bu,

y = Cx + Du.
(4.10)

This differs from the 3-Dmodel created inMEMS+ which is exported to SystemC-AMS as a reduced-order

model and represented by a state-space system in descriptor form:







Eẋ = Ax + Bu + r,

y = Cx.
(4.11)

To respect the SystemC-AMS standard, we need to convert (4.11) to (4.10), i.e., to invert the mass matrix E

and anneal the residual member r. To this end, a left multiplication by E−1 is first applied. Because of the

system nonlinearity, the matrix E is non-constant and so is its inverse. Therefore a LU (Lower Upper) de-

compositionneeds to be performed at each iteration and this directly impacts the simulationperformance.

In the same way, a variable change can deal with the constrain r = 0.

Let z = x + AE−1r. A similar variable change is performed on y which reads y = C(z − A−1E−1r). We

finally get the system:







ż = E−1Az + E−1Bu,

x = z − A−1E−1r,
(4.12)

To overcome the limitations of the standard SystemC-AMS state-space representation, we proposed alter-

native functions declared in the processing method of a dedicated TDF module. The solving method

deals with the exported system (4.12). As SystemC-AMS does not support matrix operations, we use Eigen

[193], a C++ header library dedicated to linear algebra, to solve the state-space system. Aswe are interested

in resonating sensors, i.e., potentially stiff systems, we have chosen the Crank-Nicolson time integration

method.

4.2 Motivating example 63

Nonlinear case
Interpolation betweenmultiple operating points

Weigthed coefficients
Lagrange method

ωi(u)

Operating points
Specific configurations

(E1, A1, B1) . . . (En, An, Bn)

Interpolator
Overall matrices

E, A, B

Control

u(t)

Output

y(t)

Eẋ = Ax(t) + Bu(t) + r
y(t) = Cx(t)

sca_tdf::sca_ss

Fig. 4.1: First implementation of themodel export with nonlinearity reconstruction during the simulation.

4.2.2 Use case

The selected MEMS is a biaxial accelerometer commercialized by ST Microelectronics, ST LIS332AR. It

measures in-plane motion in two directions, x- and y-axis through capacitive electrodes. Its fabrication

relies on THick Epipoly Layer for Micro-actuators and Accelerometers (THELMA®) micro-machining pro-

cess, dedicated to suspended structures of relatively large thickness.

This sensor is composed of an inertialmass suspended to a frame through twopairs of springs as shown in

Figure 4.3(a). Each spring is connected to a resonator that consists of anactuatedbeamvibrating at high fre-

quency, here about 100kHz. As demonstrated by Tocchio et al. [199], the use of an L-shaped resonator with

high-resonant frequency aims tomechanically reduce the signal-to-noise ratio. Here, the first mechanical

mode of the resonating beam is at a frequency of 105 378Hz as shown in Figure 4.3(b). The resonant struc-

ture is also decoupled from the measurement one which allows for sensing applications. While operating,

the in-plane displacements of the mass are captured through the folded springs. The resulting bending of

the resonator is sensed by electrodes alongside the resonator and is measured as a variable capacitance.

The signal can then be amplified and filtered by electronic components, not represented here.

The details provided by Comi et al. in [200] on the geometry and the sensing principle of the device are

summarized in the Table 4.1. We created the model corresponding to the device in MEMS+ and respect

the design as well as the modal analysis defined in [201]. InMEMS+, we selected specific items from the

component-based library as shown in the exploded diagram in Figure 4.2. For instance, the resonator is

modeled as a Timoshenko beam, instead of a Bernoulli beam, in order to fully reconstruct its modal re-

sponse.MEMS+ supports the definition of perforations and thus avoids to find an equivalent density for

the proof mass.

The FEA simulation performs the modal analysis of the proposed device. Table 4.2 lists the first six modes

with the corresponding frequencies. The two lowest frequency modes correspond to the sensing modes,

i.e. the translation in-plane modes. These modes have a frequency at 1 620Hz. The two following modes

occur around 1 976Hz and 7 178Hz and correspond to the in-plane rotation around z-axis and to out-of-

plane translation respectively. Due to the symmetry and the differential measurement scheme of the de-

vice, these two modes do not influence the output signal as demonstrated in [201]. The other modes pre-

serve the low sensitivity of the device since their frequencies are high enough, around 8 860Hz.

64 4 System-level simulation API

Table 4.1: Accelerometer Parameters

Parameter Value Unit

Resonator length 352.0 µm
Resonator thickness 1.5 µm
Nominal gap at rest 2.0 µm
Main spring length 320.0 µm
Folded spring length 273.0 µm
Spring thickness 1.5 µm
Proof mass 6.1 e-09 kg

Table 4.2: Modal analysis realized inMEMS+

Mode Description Frequency (Hz)

1 In-plane translation (x-axis) 1 620

2 In-plane translation (y-axis) 1 620

3 In-plane rotation 1 976

4 Out-of-plane translation 7 178

5 Out-of-plane rotation (x-axis) 8 849

6 Out-of-plane rotation (y-axis) 8 873

Based on the above 3-D model, a reduced-order model is exported from MEMS+ and encapsulated in a

TDFmodule. Themodes of interest, i.e., the x- and y-translations, are preserved by the reduction. To solve

the state-space system,we followeither the SystemC-AMSstandardor theproposedMOR implementation.

Themodel is weakly nonlinear regarding the translational acceleration. This nonlinearity is reconstructed

by an order-two interpolation on ax and ay inputs.

The inputs and outputs of themodel represent bothmechanical and electrical variables. The acceleration

in both x- and y-axis is assumed to evolve in the range 0 g to 1 g. The driving and sensing voltages are

considered as inputs. The driving voltage is fixed at 4 V. The sensing voltage is a sinusoidal signal biased

at 4 V with a small amplitude of 0.025 V and oscillating at a frequency of 105 378Hz which corresponds

to the resonance of the beam. The main outputs are the capacitances measured on each resonator. The

displacement of the oscillating beams is also retrieved.

Resonator (Timoshenko beam)

Spring (Bernoulli beam)

Perforated movable plate

Anchor

Driving electrode

Anchor

Sensing electrode

Fig. 4.2: Exploded diagram of the differentMEMS+ components used in the accelerometer ST LIS332AR.

4.2 Motivating example 65

y-sensing
electrode

Translation
acceleration

x-sensing
electrode

x

y

Symmetric configuration
for differential measurement

Bending of the resonator
⇒ capacitance variation

x-sensing
electrode

y-sensing
electrode

(a) In-plane translation on x-axis sensed through the bending of the resonator.

Proof mass

Folded spring

Anchor

Resonant beam
1st mode: 105378 Hz

Driving electrode

Sensing electrode

(b) L-shaped resonator first mechanical mode used for sensing application.

Fig. 4.3: The principle of the biaxial accelerometer ST LIS332AR is based onadifferential capacitive sensing.
To this end, complementary external resonators are actuated and aim to sense translation acceleration.
Here, an acceleration is applied in x-axis and moves the central plate laterally in the positive direction (a).
This implies the bending of the resonant beam as illustrated in (b) for the first mode (105 378Hz).

66 4 System-level simulation API

Implementation

This version differs from the final implementation of the API presented in Section 4.3. The current export

of the reducedmodel was realized fromMEMS+ by writing in a dedicated C++ source file the complete set

of matrices and vectors, i.e., (A, B, C, E, r), defining the system as well as its structure and the related solv-

ing methods. The corresponding model was instantiated as a C++ class which inherits from the base class

sca_tdf::sca_module as shown in appendix in Listing E.1. This module defines the input and output

ports of the system. Its internal behavior is defined in the processing() method which runs succes-

sive operations to solve the state-space system corresponding to the encapsulated data. First, the method

reads the inputs in order to update the approximation weights. The current system matrices are then in-

terpolated trough the update() and interpolate()methods. The state-space system is then solved by

the compute() function and the current output values are written on the corresponding ports.

As depicted in Section 4.2.1, the system is defined by a quintuple ofmatrices (A, B, C, D, E). To reconstruct

the nonlinearity, an interpolation is realized between k snapshots, each corresponding to the steady state

of the systemaround a specific operating point, i.e., amatrix set, andwhere n is the order of approximation

set by the user. In order to refine the model, the user may increase the approximation order n may which

defines the number of operating points. With the use of the D-pointer pattern, this can also occur without

changinganything to the structural descriptionof the system, i.e., thenumberof inputs, states andoutputs.

Therefore, to preserve the structure and avoid unnecessary operations, we decoupled the data from the

module.

To separate thedata from themoduledefinition,weapplied theprivate datapattern, also knownasopaque

pointer. In C++, a commonuse of opaque pointer is theD-pointerwhich consists in a private datamember

of the class pointing to an instance of a structure, here the class that contains the different snapshots of

the system (Figure 4.4). The D-pattern hides the class implementation from the user and protects the class

state by minimizing the visibility of its attributes. For instance, the matrices and all related operations

are defined and declared in the Data class, while the user will only use the ModelExport instance. The

corresponding header file (Listing E.1) needs only to contain the declaration of the exported model and

includes those other files needed for the class interface.

Experiment

In this case study, we are interested in twomain tests. First we evaluate the accuracy of the reducedmodel

with regard to the full description simulated in MATLAB/Simulink. We then investigate the performance

of the reducedmodel simulated in SystemC-AMS in comparison toMATLAB/Simulink. The configuration

of the different models used in this case study are indexed in Table 4.3. In the following, each model is

denoted by its index and is implemented in the test bench defined in Figure 4.5.

In the one hand, wewant to assess the reducedmodel exported fromMEMS+ is conformed to its full defini-

tion. The fullmodel, i.e.,Model 1, is created inMEMS+ and instantiated inMATLAB/Simulink. In the follow-

ing, Model 1 serves as reference in terms of accuracy since themodelingmethod used inMEMS+ has been

previously demonstratedwith regard to fullymeshed solutions likeCoventorWare [78]. The reducedmodel

is first exported in the MEMS+ file format (mrom) first elaborated to import reduced models into MAT-

LAB/Simulink. In Section 4.3, we propose to reuse this format in order to improve the presented solution

4.2 Motivating example 67

sca tdf::sca module

- a *: Eigen:MatrixXd[]
- b *: Eigen:MatrixXd[]
- c *: Eigen:MatrixXd[]
- d *: Eigen:MatrixXd[]
- e *: Eigen:MatrixXd[]
- x r *: Eigen::VectorXd
- y r *: Eigen::VectorXd
- w : Eigen::VectorXd
- w tmp : Eigen::VectorXd

+ NINPUT const std::size t
+ NOUTPUT const std::size t
+ NSTATE const std::size t
+ NINTER const std::size t
+ NSWEEP const std::size t
+ compute(Eigen::VectorXd& u, double t): Eigen::VectorXd
+ init dc(Eigen::VectorXd& u dc): Eigen::VectorXd
+ init ac(Eigen::MatrixXd& u ac): Eigen::VectorXd
+ interpolate(): void
+ update(Eigen::VectorXd& u sweep): void
+ a: Eigen::MatrixXd
+ b: Eigen::MatrixXd
+ c: Eigen::MatrixXd
+ d: Eigen::MatrixXd
+ e: Eigen::MatrixXd
+ x: Eigen::VectorXd
+ x r: Eigen::VectorXd
+ y r: Eigen::VectorXd

Data

- data *: Data
- u : Eigen::VectorXd
- u sweep : Eigen::VectorXd
- y : Eigen::VectorXd

processing(): void

+ in sca tdf::sca in<T>
+ out sca tdf::sca out<T>
+ get ninput() size t
+ get noutput() size t
+ get nstate() size t
+ get ninter() size t
+ get nsweep() size t

ModelExport







Exported
matrices







System
parameters

}
Interpolation
weigths







Internal functions
& methods







Interpolated
matrices

Standard
definition







System vectors
& parameters







I/O ports







System
information







Fig. 4.4: UML diagram of the private data class pattern using an opaque pointer, i.e., D-pointer, in order
to decouple the Data class instance that contains the model data from the main class which defines the
model structure.

Table 4.3: Index of the models of the accelerometer LIS332AR in the different simulation environments.

Index Simulation environment Model Integration scheme

Model 1 MATLAB/Simulink Full ode23
Model 2 MATLAB/Simulink Reduced ode23
Model 3 SystemC-AMS (standard) Reduced Euler-backward
Model 4 SystemC-AMS (modified) Reduced Crank-Nicolson

and thus ease the import in SystemC-AMS through a dedicated C++ API. The reduced model instantiated

inMATLAB/Simulink is denotedModel 2 and aims to verify the correctness of the MOR technique. Model

2 serves as reference in terms of speed since it is the fastest model we can run in MATLAB/Simulink. Note

that the transient simulation run in conventional FEA codewould run hours or days if at all possible due to

the high number of elements and solver-coupling. The two aforementionedmodels are computed inMAT-

LAB/Simulink following the integration scheme ode23which corresponds to the Runge-Kutta method of

order 2 used to solve non-stiff differential equations [156].

In the other hand, we use the reducedmodel in SystemC-AMS in order to compare the simulation perfor-

mance to the-state-of-the-art simulator, i.e., MATLAB/Simulink. A first TDF module, denotedModel 3, is

implemented in the SystemC-AMS standard. Model 3 solves the underlying state-space system through

the sca_tdf::sca_ss class. As exposed in Section 4.2.1, the systemmatrices need to be updated at each

time step of the simulation in order to handle the nonlinearity of the system. The SystemC-AMS standard

does not support any algebraic operation. For example, there is no available matrix-vector product be-

68 4 System-level simulation API

v E DX1

v E DX2

v E DY1

v E DY2

v E SX1

v E SX2

v E SY1

v E SY2

tax

tay

taz

F ProofMass x

F ProofMass y

F ProofMass z

M ProofMass rx

M ProofMass ry

M ProofMass rz

P ProofMass x

P ProofMass y

P ProofMass z

A ProofMass rx

A ProofMass ry

A ProofMass rz

Cap DX1

Cap DX2

Cap DY1

Cap DY2

Cap SX1

Cap SX2

Cap SY1

Cap SY2

MEMS+ Model

Position

Angle

Capacitance
Driving

Capacitance
Sensing

VDC

tax

Null 0

VAC

︸
︷
︷

︸
︸

︷
︷

︸
︸

︷
︷

︸
︸

︷
︷

︸

Fig. 4.5: Definition of the test bench implementing the MEMS+ model of the biaxial accelerometer ST
LIS332AR. InMATLAB/Simulink, Model 1 refers to the full model while Model 2 encapsulates the reduced
model through a dedicated format file. In SystemC-AMS,Model 3 andModel 4 use the reducedmodel and
are defined asTDFmodules respectively based on the standard ormodified solvingmethod for state-space
systems.

tween the sca_util::sca_matrix and sca_util::sca_vector classes. To overcome this limitation,

we use the linear algebra library Eigen [193]. We provide dedicated conversions between the Eigen and the

SystemC-AMS formats in order to use the standard class sca_tdf::sca_ss. As an alternative, we pro-

pose a modified version, denoted Model 4, that does not require to directly solve the state-space system

by using only the Eigen library.

4.2.3 Results

The simulation is based on the test-bench defined in Figure 4.5 which connects the differentmodels listed

in Table 4.3 to the corresponding voltage and acceleration sources. It intends to verify the mechanical

response of the accelerometer to a ramp impulse in acceleration against x-axis with an amplitude of 1 g.

The studyfirst comparesModel 1 againstModel 2 inorder to validate the accuracyof theMORmethod.The

relative error of the simulation is relatively low (< 1%) and is assumed to be induced by the MOR process

itself. This difference can notably be observed during the stabilization phase after the impulse as shown in

Figure 4.6(c) where the reducedmodel has the same profile either simulated inMATLAB or SystemC-AMS.

The capacitance response is given in Figure 4.6(a) for all simulations listed in 4.4.

Model 2 is then simulated inMATLAB/Simulink in two configurations, i.e., Simulation 2(a) and Simulation

2(b). In Simulation 2(a), MATLAB internal solver has a great performance with a simulation runtime about

3.7s and a time step automatically adapted during the simulation regarding a specific tolerance. In Simu-

lation 2(b), the time step is set as fixed with the same integration scheme, ode23t. In this case, the solver

4.2 Motivating example 69

requires a much smaller time step (1µs) and several iterations to converge to the expected solution. This

shows that if the time step control is left to the user, a sub-optimal choice can lead to huge performance

decrease.

Model 3 has comparable performance to Model 2 in terms of speed and accuracy for a well chosen time

step. If the selected time step is too large, the systemmay undergo numerical damping which has a direct

impact on accuracy. The solver then fails to recover the variations and nonlinearity of the model. In con-

trast, a small time step would increase the number of iterations and thus lengthen the simulation runtime.

Finding an acceptable time step is a task that should be automatedwith regard to an estimated error as de-

picted in [202]. Moreover, the integration scheme of SystemC-AMS (Backward Euler) limits the time-step

size and directly impacts the performance of the simulation.

Our modified version in TDF (Model 4) demonstrates better results than the standard implementation

of Model 3. Simulation 4 appears twice faster than Simulation 3 with the same time step, here 10µs. This

is mostly due to the use of Eigen library [193] to perform matrix-vector operations and solve the linear

system. The conversion between Eigen format and SystemC-AMS format realized in Model 3 is indeed

time consuming and would encourage for a better support from the standard for algebraic operations.

In Model 3, the solution oscillates at the beginning of the simulation as shown in Figure 4.6(b). These

instabilities are due to the implicit integration scheme, i.e., the Backward Euler method, implemented

in the standard. In Model 4, we therefore use an explicit scheme, i.e., the Crank-Nicolson method [156],

which stabilizes the solution and prevents fromnon-physical oscillations. With an appropriate integration

scheme and a proper use of dedicated libraries, solving state-space system in SystemC-AMS appears as an

efficient and competitive alternative to traditional solvers, as demonstrated by the result of Simulation 4.

The above results highlight the ability of SystemC-AMS to correctly handle continuous-time systems with

a discrete-event simulator. Nevertheless, SystemC-AMS still lacks proper time step control since the user

is responsible for its definition which is a cumbersome task. This implies a lot of trials before finding a

suitable fixed time step and may directly impact the simulation performance. The standard does not sup-

port linear algebra operations despite the definition of specific matrix and vector entities. We elaborated

amodified version (Model 4) based on the external library Eigen [193] in order to get faster, more accurate

and more stable results than the standard implementation initially proposed in Model 3.

Table 4.4: Simulation results for a ramp impulse in translation acceleration in x-axis (Amplitude: 1g)

Time step

Environment Index Model Type Max. (µs) Iterations Time (s)

Simulation 1 Model 1 variable 800.0 5 000 2 318.890

MATLAB/Simulink Simulation 2(a) Model 2 variable 800.0 43 893 3.725

Simulation 2(b) Model 2 fixed 1.0 400 000 797.036

SystemC-AMS
Simulation 3 Model 3 fixed 10.0 4 000 4.088

Simulation 4 Model 4 fixed 10.0 4 000 1.833

70 4 System-level simulation API

2.364e-14

2.365e-14

2.366e-14

2.367e-14

2.368e-14

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

C
ap

ac
ita

nc
e

(F
)

time (s)

Model 1 (Full - MATLAB)
Model 2 (Reduced - MATLAB)

Model 3 (Reduced - SystemC AMS standard)
Model 4 (Reduced - SystemC AMS modified)

(a) Global response to acceleration impulse.

2.364e-14

2.365e-14

2.366e-14

 0 0.0005 0.001 0.0015 0.002 0.0025

C
ap

ac
ita

nc
e

(F
)

time (s)

Model 1 (Full - MATLAB)
Model 2 (Reduced - MATLAB)

Model 3 (Reduced - SystemC AMS standard)
Model 4 (Reduced - SystemC AMS modified)

(b) Initialization difference between models.

2.3664e-14

2.3665e-14

2.3666e-14

2.3667e-14

2.3668e-14

2.3669e-14

 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02 0.021

C
ap

ac
ita

nc
e

(F
)

time (s)

Model 1 (Full - MATLAB)
Model 2 (Reduced - MATLAB)

Model 3 (Reduced - SystemC AMS standard)
Model 4 (Reduced - SystemC AMS modified)

(c) Damped oscillation before steady state.

Fig. 4.6: The results above display the different results obtainedwith full and reducedmodels. Figure 4.6(a)
highlights the numerical instability of the standard implementation at initialization. Moreover, Figure
4.6(b) compares the peak response observed at for each model and the delay observed in SystemC-AMS.

4.3 API Implementation 71

4.3 API Implementation

Directly interfacingMEMS+ reducedmodels appears as a robust alternative to the SystemC-AMS standard

solving methods to integrate and test MEMS devices in larger systems. The first implementation intro-

duced in Section 4.2.1 has three main disadvantages. First, the systemmatrices need to be reconstructed

and approximated at each time-step during the simulation through a specific evaluation of the current

input values. Second, this approximation method as well as the initial value of system matrices can be

directly accessed by the user. In order to preserve and protect the model, these data should be encrypted.

Third, the export was not generic enough to refer to a standard set of functions and features. To address the

aforementioned problems, we detail below the API implementation for the simulation ofMEMS+ reduced-

ordermodels in SystemC-AMS. In the following, weassume thesemodels are built with respect to theMOR

technique depicted in Appendix C.

TheproposedAPI relies onaC++dynamic library, i.e., a codepackage that aimsat reusing the implemented

functions and procedures in many programs. C++ libraries contain both header files and pre-compiled

libraries. A header file (.h) defines the functionality of the library and is exposed to the program using it.

The pre-compiled library contains the implementation of that functionality and is pre-compiled into the

language. Libraries are of two kinds, namely static and dynamic.

A static library is a set of routines that are compiled and linked directly into the program. At compilation

of a program using a static library, all the functionality of the static library becomes part of the executable.

The advantage of static libraries is to deliver an executable that is easily shareable with other users. The

downside of this approach is to copy the entire library in every executable which wastes memory space.

Moreover, once the executable is compiled, it can not be easily upgraded to more recent versions. The

executable needs also to be replaced in order to update the library. From a software production viewpoint,

dynamic libraries offer more flexibility.

A dynamic library defines a set of routines that are loaded into the targeted application at run time.When

compiling a program using a dynamic library, the library does not become part of the executable, but re-

mains a separate unit. This approach enablesmultiple programs to share only one copy of the library, thus

spare memory. Furthermore, the program can be updated to a newer version without replacing all of the

executables that use it. Dynamic libraries are not linked into the program, but programs using dynamic

libraries must explicitly load and interface the dynamic library. This can be confusing and requires a care-

ful interfacing with the dynamic library, usually automated. The import of library therefore relies on an

automated process to load and use the related dynamic library.

In C/C++, libraries rely on the declaration and definition of variables and functions. A declaration intro-

duces a name and its type to the compiler without allocating any memory for it. In contrast, a definition

provides details of a type's structure or allocates memory in the case of variables. The primary reason for

creating an API is to hide any implementation details so that these can be changed without affecting exist-

ing clients [203]. There are two main categories of hiding techniques: physical and logical hiding. On the

one hand, physical hiding means the private source code is simply not available to users. This essentially

relies on storing internal details, i.e., definitions, in a separate file (.cpp) from the public interface (.h), i.e.

declaration. On the other hand, logical hiding entails the use of language features to limit access to certain

elements of the API, i.e., using public, protected and private declarations in a class.

72 4 System-level simulation API

APIs define libraries that are considered asminimally complete since they implement a limited set of func-

tions and classes accessible through a unique entry point. An interface aims to separate the structural def-

inition of core elements from their implementation. To access internal data, differentmethods are applied

like callback functions, observers or notifications [203]. These functions enable tohide specific procedures

or data structures from the users and thus prevent any external misuse. Furthermore, the implementation

of APIs apply the principles of software architecturewhichmainly rely onpatterndefinition [204, 205]. APIs

such as QT [206] or Eigen [193] provide a good illustration of well structured and documented libraries in

the C++ language.

The targeted C++ interface between SystemC-AMS and MEMS+ aims to generate a system-level compati-

ble model of MEMS devices. At system-level, the objective of the simulation is to consider a component,

or entity, with regard to the design parameters. The device is virtually tested as illustrated in Figure 4.7.

The corresponding test bench aims to verify different configurations of the device through specific stim-

uli sources. For instance, MEMS devices are characterized with regard to their response to static impulse,

small oscillations and transient behavior. The simulation results can further be comparedwith a reference

model on which a monitor inspects the behavior response through different analyses. A potential asset of

SystemC-AMS is its further coupling with verification frameworks like UVM as illustrated in [60]. In the

following, we focus our efforts on the definition of test benches for MEMS devices.

Our API enables to add reduced-order models exported from MEMS+ in SystemC-AMS test benches, as

shown in Figure 4.8. To this end, we provide a limited number of classes and features to address the inte-

gration and the simulation of MEMS+models. The 3-Dmodel initially created inMEMS+ can be exported

to a specific binary file with anmrom extension. This format contains the structure and data of the corre-

sponding reduced-order model and was initially developed forMATLAB/Simulink to accelerate the simu-

lation [135]. Our objective is to re-use and read the samemrom files directly from C++ applications like in

SystemC-AMSandaccess someof the features already implemented inMEMS+ throughcallback functions.

Once compiled, the corresponding executable (.exe) runs the SystemC-AMSsimulation and generates a re-

sult file (.trans) that can be imported in MEMS+ to display results on the original 3-Dmodel.

Specifications

Device

Configurations Analyses

Testbench
Monitor

Stimuli

Parameters

Entity Results

ResultsReference

Fig. 4.7: Device under test in a system-level simulation environment.

4.3 API Implementation 73

MEMS+

.mrom

.exe.trans

Device

Testbench

Stack

refers reads

runs

API

callbacks generates

generates

All Testbenches
instantiates

reads

instantiates

MATLAB/Simulink

reads

SystemC-AMS

refers

executesSoftware solution

File format

Base class

Action

Dependence

API & Module library

Fig. 4.8: Principle of the MEMS+ API with SystemC-AMS and the import of mrom file in dedicated TDF
modules. Themrom format can also be imported in MATLAB/Simulink.

The API core elements belong to a specific namespace Memsplus::MROM and are accessible through a sin-

gle file (SystemCMROM.h) delivered alongside with MEMS+. This file contains the definition of the main

class SystemCMROMwhose UML diagram is shown in Figure 4.9. This class instantiates a private member

mromImporter_ which is a pointer to implementation, or pimpl [207], that refers to the mrom reader

defined in the internal MEMS+ class MROMImporter. Based on object-oriented programming principles

[208], the SystemCMROM class enables to instantiate devices either in SystemC, ScModule, or SystemC-

AMS, ScaModule. The discrete-event nature of SystemC would require to define specific local clocks in

order to recover the continuous behavior of MEMS devices. We therefore focus our study on the SystemC-

AMS implementation in the TDFMoC through sca_tdf::sca_module. In order to define the input and

output ports in a generic way, we use the standard class sc_vector [209] as data structure to dynami-

cally implement ports. This method requires to define all the ports with same type, usually as double.

To support the definition of quantity or unit on the different signals, conversion modules are required,

as depicted in Section 4.3.3. The specific SystemC-AMS method processing() is specialized with the

different methods required to initialize, update and solve the system, see Figure 4.11. In addition, the

set_attributes() function supports DTDF through the accept_attribute_changes() function

that allows to modify the time step internally or in another module during the simulation. This option

is of interest to implement dynamic integration schemes with error estimation as introduced in [202]. We

implemented the Crank-Nicolson method which is commonly assumed stable even with large time steps

[210]. We provide in Section 4.4 an illustration of the influence of the time step on standard SystemC-AMS

models compared toMEMS+ reducedmodels.

Although the API essentially provides amain class to correctly importmrom files in SystemC-AMS and de-

fine devices accordingly, we provide additional base classes to ease the edition of test benches in SystemC-

AMS, especially forMEMS designers and system integrators. In the following, we introduce add-on objects

of the API such as Device, Testbench or Stack. We also detail some of the classes and features shown

in Figure 4.9 and useful to refine models, support units, or perform post-processing operations.

74 4 System-level simulation API

A
ll

T
es

tb
en

ch
es

T
es

tb
en

ch

+
in

it
+

si
m

u
la

te
+

re
se

t

D
ev

ic
e

S
ta

ck

+
g

et
N

in
p

u
ts

()
+

g
et

N
o

u
tp

u
ts

()
+

g
et

N
st

a
te

s(
)

+
g

et
S

y
m

b
o

l(
)

-
m

ro
m

Im
p

o
rt

er
-

is
F

ir
st

It
er

a
ti

o
n

-
a

cF
re

q
u

en
cy

-
a

cI
n

p
u

ts
-

in
p

u
ts

-
st

a
te

s
-

o
u

tp
u

ts

S
y

st
em

C
M

R
O

M

sc
a

td
f:

:s
ca

m
o

d
u

le
sc

co
re

::
sc

m
o

d
u

le

+
in

+
o

u
t

+
k

in
d

()

♯
p

ro
ce

ss
in

g
()

♯
se

t
a

tt
ri

b
u

te
s(

)

S
ca

M
o

d
u

le
S

cM
o

d
u

le

+
in

+
o

u
t

+
k

in
d

()

♯
p

ro
ce

ss
in

g
()

T
B

D
ev

ic
e

+
co

n
fi

g
u

re
()

+
ru

n
()

+
in

it
tr

a
ce

()
+

st
o

p
tr

a
ce

()
+

a
n

a
ly

z
e(

)

G
en

er
a

to
r

A
P

I
C

o
r
e

A
P

I
B

lo
c
k

s

A
P

I
I
n

s
ta

n
c
e

s

in
st

a
n

ti
a

te
s

M
u

lt
ip

li
er

A
d

d
er

in
st

a
n

ti
a

te
s

C
o

n
v

er
te

r

F
il

e

D
a

ta
se

t

+
ad

d
R

o
w

()
+

ex
p

o
rt

D
at

as
et

()
+

g
et

D
at

a(
in

t,
in

t)
+

g
et

D
at

as
to

re
()

+
g

et
P

ar
am

et
er

s(
)

+
g

et
M

ea
n

()
+

g
et

M
in

()
+

g
et

M
ax

()
+

in
it

D
at

as
to

re
+

p
ri

n
tP

ar
am

et
er

s(
)

+
se

tD
at

as
to

re
()

+
se

tP
ar

am
et

er
s

-
p

ar
am

et
er

s
-

d
at

as
to

re
-

ro
w

s
-

co
ls

A
P

I
A

d
d

-o
n

s

U
n

it

F
il

eR
ea

d
er

F
il

eW
ri

te
r

+
ch

ec
k

D
ir

()
+

ch
ec

k
F

il
e(

)
+

ch
ec

k
F

il
eE

x
te

n
si

o
n

()
+

ch
ec

k
F

il
eN

am
e(

)
+

co
u

n
tL

in
e(

)
+

w
ri

te
F

il
e(

)
+

re
m

o
v

eE
x

te
n

si
o

n
()

M
R

O
M

Im
p

o
rt

er

im
p

le
m

en
ts

M
E

M
S

+

+
o

p
en

F
il

e(
)

+
g

et
D

at
as

et
()

+
g

et
P

ar
am

et
er

s(
)

-
li

n
eC

o
u

n
t

-
p

ar
am

et
er

C
o

u
n

t
-

in
p

u
tF

il
e

-
d

at
as

et

+
w

ri
te

F
il

e(
)

+
g

et
D

at
as

et
()

+
g

et
P

ar
am

et
er

s(
)

-
li

n
eC

o
u

n
t

-
p

ar
am

et
er

C
o

u
n

t
-

o
u

tp
u

tF
il

e
-

d
at

as
et

+
co

n
v

er
t(

)

g
en

er
a

te
s

ex
ec

u
te

s

Fig. 4.9: UML diagram ofMemsplus::MROM main classes.

4.3 API Implementation 75

4.3.1 Device

In contrast tosc_module, the sca_module class does not allow to enclose other instances of its ownclass

[24]. In the following, we thus consider a device as an instance of sc_module class which encapsulates a

Memsplus::MROM::ScaModule instance as follows:

Listing 4.1: Definition and declaration of anMROM instance in SystemC-AMS

1 template<T> // Templated definition of class allowing, e.g., the flexible typing of I/O.

2 class Device : public sc_core:: sc_module {

3 public:

4 // Definition of I/O ports and signals

5 sca_tdf:: sca_in<T> in;

6 sca_tdf:: sca_out<T> out;

7 sca_tdf:: sca_signal<T> *s_in; // Dynamic definition of input signals

8 sca_tdf:: sca_signal<T> *s_out; // Dynamic definition of output signals

9 [...]

10 // Defintion of sub-modules.

11 Memsplus::MROM::ScaModule* m_mems; // Instance of the MROM module

12 [...]

13 // Class constructor

14 Device(sc_core::sc_module_name nm) {

15 [...]

16 std::string path = "~/tools/memsp/mems.mrom"; // Definition of the path to the MROM file.

17 m_mems = new Memsplus::MROM::ScaModule("MEMS", path); // Declaration of MROM module in SystemC-AMS.

18 [...]

19 } [...]

20 }

The API proposes different callback functions to access the main parameters and get information on

the MROM file. To be compliant with the initial model created in MEMS+, the device must respect the

number of input and outpout ports. The number of inputs and outputs can also be retrieved through

getNinputs() and getNoutputs(), respectively. For instance, they can be used to dynamically define

thenumber of signals and thebinding to the correspondingmoduleports as depictedbelow for outputs. In

addition, a symbolic view canbe generated outside the SystemCcontext by calling getSymbol() function

which returns the map of inputs and outputs with their respective units. The output display of anmrom

file in the SystemC-AMS simulation run-time is illustrated in Figure 4.10

Listing 4.2: Use of API callback functions

1 // Initialization of sc_vector that encapsulate a set of output ports

2 s_out = new sca_tdf:: sca_signal<double>[m_mems->getNoutputs()];

3

4 // Binding of ports with output signals

5 for (int j=0; j < m_mems->getNoutputs(); ++j)

6 m_mems->out[j](s_out[j]);

To correctly operate the device, the corresponding module defines sources that generate specific stimuli

with regards to the model specifications. We review in Section 4.3.3 the functional definition of stimuli

generators through our generic definition of ScaGenerator class. The initialization of the device is part

of the processing method described in Figure 4.11 and aims to operate the device around an initial steady

state, i.e., DC operating point, with small oscillations set by AC entries. For example, the initial oscillating

state of a device can be specialized in a test-bench like in Listing 4.3.

Listing 4.3: AC analysis of theMEMS reduced-ordermodel

1 // AC initialization for specific inputs.

2 // @param acInput_ : vector that defines the amplitude and phase of AC entries.

3 // @param drivingFrequency_ : frequency of small oscillations required to operate the device

4 m_mems->setAcValues(acInputs_, drivingFrequency_);

76 4 System-level simulation API

As defined in the standard [24], the processing()method of each sca_module is called at each time

step of the simulation. In the ScaModule class, we implemented the algorithm depicted in Figure 4.11

which solves the Equation (2.8) by callingMEMS+ internal functions. At initialization, the inputs are set to

the values stored in themrom file, and both DC and AC analyses are performed on the device to switch it

on. The solving of the state-space system is realized through the following process. First, the input ports

are read and the corresponding values stored in the private inputs_ vector of the Device instance. Then,

the matrix system is updated with regard to the current input and previous state values. The evolution

equation, i.e., the differential relation between the state vector x and the input vector u is solved with

regard to an integration scheme, here the Crank-Nicolson method. The outputs are computed by solving

the trajectory equation, i.e., the linear relation between the state vector x and the output vector y. The

corresponding values are finally written on the related output ports and optionally exported to a trans

result file.

Analysis type
Transient, DC, AC

Inputs and outputs defined in the MROM file

Number of inputs and outputs

Verification and creation of result file

Initialization of the model

Simulation progress bar

Fig. 4.10: SystemC-AMS runtime environment associated to MROM devices.

4.3 API Implementation 77

Start

1 st iteration ?
Initialize model

DC & AC analyses

Read input ports
un

Initialize states
x0 = xDC + xAC

1 st iteration ?

Set current states
xn

Update system matrices
(An, Bn, Cn, Dn, En)

Set current outputs
yn

Write on output ports

Add result lineResult file ?

Stop

(

En −
h

2
An

)

xn =

(

En +
h

2
An

)

xn−1, n + h (Bnun − xresidual)

yn = Cnxn + yresidual

True

True

False

False

False

True

Fig. 4.11: Processing algorithm associated to MEMS+ MROM devices.

4.3.2 Test bench

In SystemC-AMS, any device is integrated into a test bench which is usually defined in the sc_main envi-

ronment and run through a unique executable. Since sc_main refers to a specific configuration of a test

bench, we propose a more generic definition in order to enable the recursive execution of multiple analy-

ses on the same SystemC model. Listing 4.4 illustrates below the main functions inherited from the base

class Memsplus::MROM::Testbench to perform a single analysis.

Listing 4.4: Basic simulation steps encapsulated in the base classMemsplus::MROM::Testbench

1 init_trace("./data/results.dat"); // Check the correct naming and create the result file.

2 simulate(); // Run the simulation.

3 stop_trace(); // Close tracefile.

4 reset(); // Reinitialize the simulation context.

78 4 System-level simulation API

Thesimulate() functionhides fromtheusers thedifferent stepsofSystemCsimulation, e.g.,sc_start(),

sc_stop(), and allows the designer to focus on the test-bench definition. In order to run multiple anal-

yses on the same test bench, we need to call the sc_main environment several times within the same

executable. Note that the SystemC model underlying a test bench refers to a particular structure and ex-

ecution process registered in the sc_simcontext object. For more details on this function, we refer the

reader to the SystemC standard [56]. The Testbench class enables to reinitialize the simulation context

as follow:

Listing 4.5: Testbench reset function

1 void Testbench::reset() {

2 // Check if the simulation has been stopped.

3 if (not sc_core::sc_end_of_simulation_invoked())

4 sc_core::sc_stop(); //< invoke end_of_simulation() function.

5

6 // Reset SystemC simulation context and allows the launch of further analyses on a test bench.

7 sc_core::sc_curr_simcontext = new sc_core::sc_simcontext();

8 sc_core::sc_default_global_context = sc_core::sc_curr_simcontext;

9

10 // Notification.

11 std::cout << "\nInfo:\t" << "RESET SIMCONTEXT" << std::endl;

12 }

The Testbench class also enables to define and simulate a test bench in different configurations. In the

case of MEMS devices, we are mainly interested in three different analyses, namely the DC, AC and tran-

sient analyses. The DC analysis aims at characterizing the response of the system around a steady state

defined by a specific operating point. The AC analysis is focused on the frequency response of the system.

Finally, the transient analysis characterizes the behavioral evolution of the system over time, e.g., the re-

sponse to an impulse or the linear evolution of a control input. The above analyses, i.e, DC, AC and TRANS,

are declared as follow:

Listing 4.6: Analyses related to the base classMemsplus::MROM::Testbench

1 enum class AnalysisType {DC, AC, TRANS};

Since the previous analyses only induce small changes, the AnalysisType enable to easily define and

overspecialize components dedicated to each analysis directly in the test-bench definition. Furthermore,

to switch between different test benches, we provide a simple overwhelming class, denoted Stack, in

which the run function executes test benches indexed by the user. As an example, the implementation

of the accelerometer studied in Chapter 5 is given in Appendix F.

4.3.3 Add-ons

To complete the definition of test benches, our API provides some elementary blocks to build the whole

systems in the TDF MoC. Mostly based on functional programming [211], the following base classes sup-

port the generation, the modulation and the unit typing of SystemC-AMS signals. We also provide some

utility tools to further exploit simulation results.

4.3 API Implementation 79

Stimuli generation

The class Generator defines amodule with an internal function, e.g., of time, producing a signal which is

then transmitted to either SystemC or TDF instance through a unique output port. The proposed solution

separates the general definition of the function from its execution in DE or TDFMoC, as shown in Figure

4.13. The Generator class has a template definition to type the output value of the function and automati-

cally convert the output signal to the corresponding quantity. Moreover, the functional implementation of

stimuli profiles let the user free to add profiles to the ones already provided and illustrated in Figure 4.12.

t

y

t

y

t

y

t

y

t

y

fre f fstep framp fpulse fsin

yre f

ymax

tstart

yo f f set

tstart

tramp

ymax

yo f f set

tdowntup

tstart

yo f f set

ymax

tend

tperiod

yo f f set

ymax

ymin

Fig. 4.12: Supported stimuli profiles.

ScGenerator is a SystemCmodulewhich samples the stimuli profilewith regard to a specific timeperiod.

Similarly, the ScaGenerator is a sca_tdf::sca_module instance which gets the current time value

when activated and generates the corresponding value of the function in a discrete-timemanner.We setup

two additional objects, i.e., DCScaGenerator and ACScaGenerator in order to respectively ease the DC

and AC analyses of MEMS devices. These modules generate signals with regard to specific amplitude or

frequency steps at a fixed-time period. This aims to characterize the response of the device at specific

steady states or small oscillations.

Stimulimodulation

TheMultiplierclass allows tomodulate any input signal bymultiplying it with a specific function.More-

over, the template definition of the inherited objects from the Multiplier class allows to convert the out-

put signal to a specific quantity. The ScMultiplier is a sc_module instance and supports the modula-

tionof discrete-event signal. TheScaMultiplier is a TDFmodulewhichmultiplies its entry by a variable

gain which can optionally be converted into a specific physical quantity as shown in Figure 4.15(b). To en-

able themodulation of discrete-event signals to continuous ones, we introduce the ScaDeInMultiplier

that instantiates an input converter port from DE to TDF MoC. Conversely, the ScaDeOutMultiplier

handles initial continuous signals and convert them to discrete-event ones.

Based on the same principle of the Multiplier, the Adder class enables to add a specific time function

to any input value. This allows to define gains or regulationmodules by using different stimuli profiles. Be-

sides simple operations like multiplication or addition, the Integrator class proposes a first implemen-

tation with the Crank-Nilcolson method. The functional definition of this class allows the user to choose

other integration schemes. Furthermore, the DTDF option will allow to use nonuniform time steps and

set a dynamic error checking during the simulation to ensure the convergence of the solution. The API

base classes provide a flexible way to create block diagrams in the TDFMoC and ease the configuration of

MEMS devices in SystemC-AMS.

80 4 System-level simulation API

s
c

m
o

d
u

le
s
c
a

td
f
::

s
c
a

m
o

d
u

le

te
m

pl
at

e<
T
>

G
e
n

e
r
a
to

r

+
se

t
fu

n
ct

io
n

(s
td

::
tr

1:
:f

u
n

ct
io

n
<

T
(d

o
u

b
le

)>
f)

+
∼

G
en

er
at

or
()

♯
f

st
d

::
tr

1:
:f

u
n

ct
io

n

te
m

pl
at

e<
T

,U
>

S
c
a
G

e
n

e
r
a
to

r

+
o

u
t

sc
a

td
f:

:s
ca

o
u

t<
U
>

+
S

ca
G

en
er

at
o

r(
sc

co
re

::
sc

m
o

d
u

le
n

am
e

n
m

)
+

∼
S

ca
G

en
er

at
or

()
+

k
in

d
()

ch
ar

∗

♯
p

ro
ce

ss
in

g
()

♯
se

t
at

tr
ib

u
te

s(
)

te
m

pl
at

e<
T

,U
>

S
c
G

e
n

e
r
a
to

r

+
o

u
t

sc
a

td
f:

:s
ca

o
u

t<
U
>

+
S

cG
en

er
at

o
r(

sc
co

re
::

sc
m

o
d

u
le

n
am

e
n

m
)

+
∼

S
ca

G
en

er
at

or
()

+
k

in
d

()
ch

ar
∗

♯
p

ro
ce

ss
in

g
()

-
p

er
io

d
sc

co
re

::
sc

ti
m

e

te
m

pl
at

e<
T

,U
>

A
C

S
c
a
G

e
n

e
r
a
to

r

+
o

u
t

:
sc

a
td

f:
:s

ca
o

u
t<

U
>

+
o

u
t

fr
eq

:
sc

a
td

f:
:s

ca
o

u
t<

U
>

+
A

C
S

ca
G

en
er

at
o

r(
sc

co
re

::
sc

m
o

d
u

le
n

am
e

n
m

)
+

∼
A

C
S

ca
G

en
er

at
or

()
+

k
in

d
()

:
ch

ar
∗

+
g

et
cu

rr
en

t
fr

eq
u

en
cy

()
:

d
o

u
b

le

♯
p

ro
ce

ss
in

g
()

♯
se

t
at

tr
ib

u
te

s(
)

-
in

d
ex

:
in

t
-

ac
st

ep
s

:
st

d
::

v
ec

to
r<

T
>

-
t

si
m

:
sc

co
re

::
sc

ti
m

e
-

b
an

d
w

id
th

:
d

o
u

b
le

-
o

ff
se

t
:

T
-

am
p

li
tu

d
e

:
T

-
fr

eq
u

en
cy

:
d

o
u

b
le

-
p

h
as

e
:

d
o

u
b

le

te
m

pl
at

e<
T

,U
>

D
C

S
c
a
G

e
n

e
r
a
to

r

+
o

u
t

:
sc

a
td

f:
:s

ca
o

u
t<

U
>

+
D

C
S

ca
G

en
er

at
o

r(
sc

co
re

::
sc

m
o

d
u

le
n

am
e

n
m

)
+

∼
D

C
S

ca
G

en
er

at
or

()
+

k
in

d
()

:
ch

ar
∗

♯
in

it
ia

li
ze

()
♯

p
ro

ce
ss

in
g

()
♯

se
t

at
tr

ib
u

te
s(

)

-
d

c
st

ep
s

:
st

d
::

v
ec

to
r<

T
>

-
t

si
m

:
sc

co
re

::
sc

ti
m

e
-

f
:

st
d

::
tr

1:
:f

u
n

ct
io

n
<

T
(d

o
u

b
le

)>

Fig. 4.13:Generatorbase class and inheritedobjects.

sc
m

o
d

u
le

sc
a

td
f:

:s
ca

m
o

d
u

le

te
m

pl
at

e<
T
>

M
u

lt
ip

li
e
r

+
se

t
fu

n
ct

io
n

(s
td

::
tr

1:
:f

u
n

ct
io

n
<

T
(d

o
u

b
le

)>
f)

+
∼

M
u

lt
ip

li
er

()

♯
f

:
st

d
::

tr
1:

:f
u

n
ct

io
n

te
m

pl
at

e<
T
>

S
ca

M
u

lt
ip

li
e
r

+
in

:
sc

a
td

f:
:s

ca
in
<

d
o

u
b

le
>

+
o

u
t

:
sc

a
td

f:
:s

ca
o

u
t<

T
>

+
S

ca
M

u
lt

ip
li

er
(s

c
co

re
::

sc
m

o
d

u
le

n
am

e
n

m
)

+
∼

S
ca

M
u

lt
ip

li
er

()
+

k
in

d
()

ch
ar

∗

♯
p

ro
ce

ss
in

g
()

♯
se

t
at

tr
ib

u
te

s(
)

te
m

pl
at

e<
T
>

S
cG

e
n

e
ra

to
r

+
in

:
sc

a
td

f:
:s

ca
in
<

d
o

u
b

le
>

+
o

u
t

:
sc

a
td

f:
:s

ca
o

u
t<

T
>

+
S

cG
en

er
at

o
r(

sc
co

re
::

sc
m

o
d

u
le

n
am

e
n

m
)

+
∼

S
ca

G
en

er
at

or
()

+
k

in
d

()
ch

ar
∗

♯
p

ro
ce

ss
in

g
()

-
p

er
io

d
sc

co
re

::
sc

ti
m

e

te
m

pl
at

e<
T
>

S
ca

D
e
In

M
u

lt
ip

li
e
r

+
in

:
sc

a
td

f:
:s

ca
d

e:
:s

ca
in
<

d
o

u
b

le
>

+
o

u
t

:
sc

a
td

f:
:s

ca
o

u
t<

T
>

+
S

ca
D

eI
n

M
u

lt
ip

li
er

(s
c

co
re

::
sc

m
o

d
u

le
n

am
e

n
m

)
+

∼
S

ca
D

eI
n

M
u

lt
ip

li
er

()
+

k
in

d
()

:
ch

ar
∗

♯
p

ro
ce

ss
in

g
()

♯
se

t
at

tr
ib

u
te

s(
)

te
m

pl
at

e<
T
>

S
ca

D
e
O

u
tM

u
lt

ip
li

e
r

+
in

:
sc

a
td

f:
:s

ca
in
<

T
>

+
o

u
t

:
sc

a
td

f:
:s

ca
d

e:
:s

ca
o

u
t<

d
o

u
b

le
>

+
S

ca
D

eO
u

tM
u

lt
ip

li
er

(s
c

co
re

::
sc

m
o

d
u

le
n

am
e

n
m

)
+

∼
S

ca
D

eO
u

tM
u

lt
ip

li
er

()
+

k
in

d
()

:
ch

ar
∗

♯
p

ro
ce

ss
in

g
()

♯
se

t
at

tr
ib

u
te

s(
)

Fig. 4.14:Multiplier base class and inherited objects.

4.3 API Implementation 81

ScaGenerator

f (x)
sca out<T>

(a) Stimuli generation.

ScaMultiplier

f (x)

× convert

sca out<U>sca in<T>

(b) stimuli modulation.

ScaConverter

convert()
sca out<U>sca in<T>

(c) Unit typing or conversion.

Fig. 4.15: API block modeling topology.

Physical quantities and units

As introduced by Mähne in [212], SystemC-AMS allows to use external libraries to support dimensional

analysis. We also use theBoost::Units library [213] to annotate signals withunits. This library relies onphys-

ical quantities, i.e., physical domains with their corresponding units. This allows to verify the coherency

of typed signals and perform operations on them. We instantiate a list of reference types defining physi-

cal quantities. Moreover, the Unit class enables the automatic typing of values through the convert()

function that adds the corresponding units to the selected signal. This feature is by default included in

the aforementioned classes, i.e., Generator, Multiplier or Adder, and is specifically realized by the

Converter class.

The Converter class is a sc_moduleor sca_module instance that automatically adds the unit to a value

associated to the selected quantity. This especially allows the typing of input or output ports of a model

exported fromMEMS+ since the related module has only ports typed with double values. Moreover, from

a systemviewpoint, the use ofBoost::Units guarantees the coherency and the compatibility of the different

typed signals connected between each other. For example, the Listing 4.7 implements a ScaGenerator

instance which produces a temperature signal with regard to a sinusoidal profile.

Listing 4.7: Generation of a sinusoidal temperature stimuli with internal unit conversion

1 // Definition of the temperature type

2 typedef quantity<celsius::temperature> temperature_celsius_type;

3 [...]

4

5 // Instance of signal handling a temperature value.

6 sc_core:: sc_signal<temperature_celsius_type> s_temperature;

7

8 // Sinusoidal stimuli profile defining the variation.

9 f_sin<double> sin_temperature(0, 120, 0.3, PHASE);

10

11 // Generator of the sinusoidal profile from the previously defined function and typing the output as a

temperature expressed in Celsius degrees.

12 src_temperature =

13 new Memsplus::MROM::ScGenerator<double, temperature_celsius_type>("src_temperature", sin_temperature_);

14

15 // Write result on an output port

16 src_temperature->out(s_temperature);

17 [...]

82 4 System-level simulation API

Post-processing operations

The API offers the possibility to export the results in a .trans file, as defined in the MROMImporter class in-

herited fromMEMS+. The functionaddResultLine() can also be called at the endof theprocessing()

method of a Device instance. At the end of the simulation, the generated trans file can be directly opened

in MEMS+ in order to display the results on the initial 3-D model and thus analyze graphically the tran-

sient behavior of the device. For instance, this facilitates the analysis of mechanical deformations or the

evolution of parameters such as pressure.

By default, the SystemC-AMS standard enables to export results to different formats such as vcd or dat. To

perform first analyses on such files, the File base class allows to load andmanipulate the results through

dynamic data structures, i.e., Dataset. In particular, the FileReader can load the results, extracts the

list of the different recorded parameters and find characteristic values of specific parts of the dataset, e.g.,

minimum or mean values.

4.4 API use case

To illustrate the use of the API,wepropose a first application on a dualmass gyroscope. The device consists

of twoperforatedproofmasses attached to afixed structure througha systemofbeams that formacomplex

suspension. Figure 4.16 provides an exploded diagram of the device with the different components used

inMEMS+. This sensor aims to detect the rotation of both masses about the y axis. The modes of interest

are the out-of phase translations of themasses in x and z axis, i.e., the third and fourthmodes of the device.

They respectively represent the driving and sensing modes of the gyroscope, as shown in Figure 4.17.

Spring

Fixed frame

Movable comb fingers

Fixed comb fingers

Perforated movable plate

Bottom electrode

Fig. 4.16: Exploded diagram of the gyroscope double-mass.

4.4 API use case 83

(a) Drivingmode (15 347Hz). (b) Sensing mode (15 940Hz).

Fig. 4.17: Modal analysis run inMEMS+ and detailed for the driving and sensing modes of the gyroscope.

The gyroscope behaves as follows. The driving mode aims at maintaining the masses in oscillation in x-

axis at constant amplitude. To this end, the comb drives are actuated with an alternative voltage at a bias

of 14.7V and a resonant frequency of 15 347Hz which generates a 10µm oscillation in x-axis. A rotation

along the y-axis will create an oscillating excitation of the sense mode, i.e., a displacement in z-axis. This

movement is captured through the plate electrodesbeneath eachmasses. These bottomelectrodes induce

capacitance variations of opposite sign, so it is possible to perform a differential measurement. The dis-

placement amplitude is proportional to the angular velocity of the rotation thanks to Coriolis force. As

introduced in Section 3.3.2, the Coriolis force, FCoriolis = −2mθ̇ẋ allows to compute the angular rate θ from

the displacement in the y-direction. The coupling of the angular velocity, θ̇, and the linear one, ẋ, is respon-

sible for the nonlinearity observed in the system response

4.4.1 Test-bench configuration

Figure 4.18 describes the test bench defined in SystemC-AMS to simulate the transient response of the

gyroscope to an impulse signal. The device is actuated by the voltage sources listed in Table 4.5 generat-

ing small driving oscillations (VAC) and setting up the sensing offset (VDC). An impulse source of angular

velocity around y-axis is also connected to the corresponding input (avy). These stimuli generators are all

instancesof theScaGeneratorbase class introducedabove. These are connected to the corresponding in-

puts of the reducedmodel exported fromMEMS+ and loaded through a Memsplus::MROM::ScaModule

object.

Voltage source Bias (V) Amplitude (V) Frequency (Hz)

Driving 14.7 ± 2.0 15 347

Sensing 0.1 - 15 940

Table 4.5: Actuation of the gyroscope electrodes.

Besides the integration of the reduced model in SystemC-AMS, we connect signal processing elements to

theoutputs of the device. First, themeasurement of the capacitance is realized through adifferential signal

84 4 System-level simulation API

avy

v Comb Inner

v Comb Outer

v Sense Left

v Sense Right

v Structure

F PositionLeftMass x

F PositionLeftMass z

F PositionRightMass x

F PositionRightMass z

P PositionRightMass x

P PositionRightMass z

Cap SenseLeft

Cap SenseRight

Cap CombInner

Cap CombOuter

MEMS+ Model

Displacement

Driving
Capacitance

Sensing
Capacitance

VDC

avy

null 0

VAC

︸
︷
︷
︸

︸
︷
︷
︸

Noise Amplifier

f (x)
+

-
C

ADC Filter

G

︸ ︷︷ ︸

Signal Processing

Fig. 4.18: Test-bench configuration of the gyroscope double-mass.

on which a white noise is added in order to reproduce a normal working environment. The signal is then

amplified to be finally converted into 8-bit filtered signal, well fitted for further digital processing. This first

application illustrates the ability of SystemC-AMStohandle signal processing and bit conversion as shown

in Chapter 3. In the following, we assume that SystemC supports the co-design of the HW/SW parts and

thus focus our study on the transient simulation of theMEMS device. Note that the differentmodules used

for the signal processing are all based on a functional definition in order to reuse these elementary blocks.

4.4.2 Simulation results

The simulation consists in generating an impulse stimuli of angular velocity around y-axis and measure

the resulting capacitive change induced by the displacement along z-axis. We first verify that the reduced

model is accurate enoughwith regard to the full description inMEMS+. This verification step is directly re-

alized inMATLAB/Simulink and showsa relative error lower than 1%whichvalidates theuseof the reduced

model encapsulated in themrom file as reference. This difference is mainly due to the MOR process itself

as verified in other formats, e.g., Verilog-A [79]. Although ensuring the model accuracy, the simulation of

the reducedmodel in SystemC-AMS aims to provide a fast environment compared to the state-of-the-art,

especially MATLAB/Simulink. Therefore the simulation run-time is considered as a major criterion.

As introduced in Section 4.3.1, we implemented the Crank-Nicolson method to solve the reduced model.

Regarding the influence of the selected time step on the relative error, as shown in Figure 4.19(c), this

choicemay be discussed against other availablemethods. Explicit single-stepmethods are not envisioned

since they do not ensure a sufficient stability in case of general linear models with unstable eigenvalues

like the reduced models exported from MEMS+. On the other hand, the state transition matrix is a time-

step independent method which is well fitted for LTI systems as depicted in [214]. Despite linearized, the

reduced models may still include some nonlinearity as introduced in Appendix C. Therefore, we justify

the use of an implicit scheme like the Crank-Nicolson method in order to guarantee the stability and the

accuracy of the solution even for slightly nonlinear models. This implies to choose a “sufficiently small”

time step, i.e., ensuring the solution remains in the region of absolute stability [158]. Further information

on the eigenvalues of the main modes could be provided to let the user set a maximum time-step value.

The response of the gyroscope to an angular velocity impulse is presented in Figure 4.19(a). As introduced

above, the choice of the time step influences the solution and implies a strong numerical damping due to

4.4 API use case 85

thefixed time stepping and the selected integrationmethod. For instance, the initialization of the system is

illustrated inFigure 4.19(b)where the stabilizationof the solution is not achieved for a time step larger than

1µs. Despite a longer computation time, inversely proportional to the time step, we assume the simulation

with a time step of 1µs guarantees the correctness of results and can be compared to other simulators.

1.0072e-12

1.0074e-12

1.0076e-12

1.0078e-12

1.0080e-12

1.0082e-12

1.0084e-12

1.0086e-12

1.0088e-12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
ap

ac
ita

nc
e

(F
)

Time (s)

1.0 us
2.0 us
5.0 us

(a) Transient response.

1.0080e-12
1.0080e-12
1.0080e-12
1.0080e-12
1.0080e-12
1.0081e-12
1.0081e-12
1.0081e-12
1.0081e-12
1.0081e-12
1.0081e-12
1.0081e-12

0.0 0.1

C
ap

ac
ita

nc
e

(F
)

Time (s)

5.0 us
2.0 us
1.0 us

(b) Initialization.

 0.100

 1.10-2

 2.10-2

 3.10-2

 4.10-2

 5.10-2

 6.10-2

 7.10-2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
el

at
iv

e
er

ro
r

(%
)

Time (s)

1.0 us
2.0 us
5.0 us

(c) Relative error.

Fig. 4.19: Simulation results highlighting the influence of the time-step selection.

4.4.3 Simulation performance

In order to compare the performance of SystemC-AMS toMATLAB/Simulink, the test bench illustrated in

Figure 4.18 is configured in these environments. The simulation applies a ramp impulse of angular velocity

around the y-axis and about 1 rad in amplitude. The results listed in Table 5.5 correspond to one physical

second.

Table 4.6: Simulation results for a ramp impulse of angular velocity around the y-axis (Amplitude: 1 rad)

Environment Index Model Integration Time step h (µs) Runtime (s)

SystemC-AMS Simulation 1 Reduced Crank-Nicolson fixed 1.0 222.65

MATLAB/Simulink Simulation 2 Reduced ode23t variable − 248.21

Simulation 3 Reduced ode23t fixed 1.0 469.37

Simulation 4 Full ode8 variable − 702.68

86 4 System-level simulation API

Simulation 1
Simulation 2
Simulation 3
Simulation 4 702.68

469.37

248.21

222.65

Runtime (s)

SystemC-AMS

MATLAB/Simulink

︸
︷
︷

︸

Fig. 4.20: Performance analysis betweenSystemC-AMSandMATLAB/Simulink when both simulations are
configured with the same fixed time step (1µs).

The reducedmodel is runwithafixed timestepof1µs inSystemC-AMS(Simulation1)andMATLAB/Simulink

(Simulation 3). Both simulations are configured with equivalent time-stepping and integration methods.

Simulation 4 performs the transient simulation of the full model inMATLAB/Simulink and serves as refer-

ence. Simulation 4 requires a finer time-step definition and cannot be computed with fixed time step by

MATLAB. Simulation 3 appears almost twice faster than Simulation 4 inMATLAB/Simulink. This is due to

the difference of DoFs to compute in the full and the reduced models. In SystemC-AMS, we observe that

Simulation 1 is twice faster than in MATLAB/Simulink when imposing a fixed-time step resolution, here

of 1µs. In Simulation 2, we simulated the same reducedmodel inMATLAB/Simulink, but allows the solver

to adopt a variable time step. In this case, the runtime is a bit less than 250s in this case, i.e., slightly slower

than SystemC-AMS. The run-time of the above simulations is given in Figure 4.20.

4.5 Conclusion

The proposed API introduces a fully integrated solution for system-level simulation ofMEMS devices. The

evolution of the first implementation now allows system designers to fully benefit from SystemC-AMS as

a co-development environment for MEMS devices connected to HW and SW sub-parts. Moreover, using

MEMS+ provides an efficient system-level modeling tool to include reduced models and thus ensure the

simulation accuracy and speed. The add-on feature further help the user to be more productive in config-

uring and re-using its code by providing generic modules and base classes.

After verifying the accuracy and the coherence on a first use case of a gyroscope, we highlight the high

capability of the reduced models to speed up the simulation, even for nonlinear systems. Moreover, the

simulation in SystemC-AMS appears at least as fast as the current state-of-the-art solutions. Finally, the

ability of SystemC to address software simulation sets this solution as a promising extension to complete

the simulation of fully integrated MEMS solutions with the related ASIC and software sub-parts.

Chapter 5

Case study

5.1 Introduction

As argued inChapter 3,we consider that high-level behavioralmethods are too limited to correctly address

the setting of MEMS and their related ASIC. This motivates the implementation of the API with MEMS+

introduced in Chapter 4. This chapter concerns the application of the previousmethodology on the 3-axis

accelerometer ST SEM. This example intends to demonstrate the importance of the device geometry even

at high-level and the efficient simulation in SystemC-AMS of reduced models exported fromMEMS+.

The selected device has been tested in complementary studies during the SMAC project [215, 216, 217]

and theH-Inception project [218]. Sanginario et al. [119] also explored the influence of the package on the

device behavior, especially with regard to temperature variations. Moreover, Vinco et al. [219] proposed a

conservative representation of the device in a dedicated system-level simulation framework based on the

SystemC AMS standard.

We first describe the geometry and sensing principle of the device. We focus our study on the in-plane

motion detection through the x/y accelerometer. An equivalent model is built in order to compare the

reducedmodel with the SystemC-AMS standard modeling methods. The first simulation results highlight

strong approximations in the high-level model considering the device as a simple movable plate. This ap-

proach is nonetheless commonly applied to accelerometers.We therefore provide an enhanced high-level

representation which respects the device geometry and correctly represents its behavioral response. We

detail themodeling procedure and use thismodel to evaluate the simulation performance of the SystemC-

AMS standard with regard to the reducedmodel exported fromMEMS+.

The device is integrated into a digital processing unit that reproduces the different steps of signal fitting

to allow a further use in dedicated software applications. We analyze the device response to an accelera-

tion impulse in both axes and verify the correct signal processing through the different test-bench com-

ponents. Furthermore, we study the response of the device undergoing a step acceleration. We compare

existingmodelingprocedures directly applicable in SystemC-AMSwith the reducedmodels exported from

MEMS+. Finally, the performance of the simulation is compared to state of the art and the full model ini-

tially created inMEMS+. This case study aims at justifying the use of reducedmodels instead of high-level

descriptions that are disconnected from the design of the device. We also highlight some restrictions on

the solver provided by the standard SystemC-AMS implementation.

87

88 5 Case study

5.2 Methods &Material

The following example aims at taking advantage of the integration of reducedmodels in SystemC-AMS in

order to use specific output signals in dedicated software applications. We implement a test bench which

performs the digital processing of the measured capacitance variation and illustrates the use of SystemC-

AMS to interfaceHW/SWsub-parts. This study also demonstrates the limitations of an estimated represen-

tation of a priori simple devices like accelerometers. Furthermore, the system-level analysis conducted by

Sanginario et al. [119] demonstrates the importance of HDLs-based simulation in the estimation of pack-

age effects onMEMS structures.

5.2.1 Device under test

Thepresented case study concerns the 3-axis accelerometer ST SEM fabricated in the THELMA®microma-

chining process [220]. The device is composed of two separated sensing elements that measure motions

in the threemain axes through capacitive electrodes.We focus our study on the in-planemotion in x and y

axes by the accelerometer shown in Figure 5.1. The device has been created inMEMS+ based on different

elementary components detailed on the corresponding exploded diagram.

The x/y accelerometer consists of a perforatedmovableplate suspended through lateral springs. Twocom-

plementary sensing units are disposed in the central part of the device. Each of them consists of pairs of

comb electrodes with two opposite parts, one movable attached to the perforated mass and one fixed

on the underlying anchor. When the structure is exposed to an acceleration in x or y direction, the mov-

able mass makes the electrodes move closer to their fixed part on one side while on the reverse quadrant

theymove away, respectively. The resulting capacitance valuesmeasured in symmetric quadrants are then

summed into a differential signal which is linearly proportional to the acceleration of the frame.

Central anchor

Springs

Movable comb fingers

Movable perforated plate

Fixed comb fingers

Fig. 5.1: Exploded diagram of the accelerometer x/y as defined with elementary components inMEMS+.

5.2 Methods &Material 89

Themodal analysis of the accelerometer is perfomed inMEMS+ and summarized in Table 5.1. The vibrat-

ing structure is actuated by both aDC voltage, setting an offset position, and a AC voltage, provoking small

oscillations of the sensing part. The corresponding bias and amplitude values of each voltage are listed

in Table 5.2. The x/y accelerometer detects the in-plane motion in x and y-axis respectively illustrated in

Figures 5.2(a) and 5.2(b). The symmetry of its design defines the same sensing frequency on both axes, i.e.,

2 560Hz, which is used to actuate the perforated mass.

(a) Sensingmode (2 560Hz) for the sensing of translation acceleration in x-axis. (b) Displacement of the upper left quad-
rant sensing the plate displacement through
comb fingers.

Fig. 5.2: Sensing mode in x-axis for the accelerometer simulated inMEMS+.

Table 5.1: Modal analysis of the accelerometer.

Mode Description Frequency (Hz)

1 In-plane rotation (z-axis) 1 825

2 In-plane translation (x-axis) 2 560

3 In-plane translation (y-axis) 2 560

4 Out-of-plane rotation (x-axis) 13 148

5 Out-of-plane rotation (y-axis) 13 148

6 Out-of-plane translation (z-axis) 13 969

Table 5.2: Actuation of the accelerometer electrodes

Voltage source Bias (V) Amplitude (V) Frequency (Hz)

Driving (x-axis) 2.0 0.025 1 825

Driving (y-axis) 2.0 0.025 1 825

Sensing (x-axis) 2.0 - 2 560

Sensing (y-axis) 2.0 - 2 560

90 5 Case study

5.2.2 Modeling procedure

We review below the differentmodeling steps that lead us to a correct high-level description of the studied

device. Table 5.3 summarizes the different models employed below.Model 1 corresponds to a first approx-

imation at high-level which consists in amovable plate and has been refined by an equivalent representa-

tion of comb fingers inModel 2.We compare these high-level descriptions to themodel created inMEMS+

either in its reduced form in Model 3 or its complete definition in Model 4. We assume here the reduced

model as the reference since it has been validated in previous studies [119]. The objective of this section

is to demonstrate the importance of the geometry in the definition of high-level models and warn against

generic models that may induce errors in the design of the simplified system.

Table 5.3: Index of the models of the accelerometer ST SEM.

Description Index Model

High-level
Model 1 Equivalent movable plate
Model 2 Equivalent comb fingers

MEMS+
Model 3 Reducedmodel
Model 4 Full model

The different capacitive sensing configurations introduced in Section 3.3.1 and depicted in Figure 3.6 are

usually applied to accelerometers. We build a first approximation with a simple movable plate capacitor

inModel 1. The input of the system is an acceleration which is first converted into a displacement through

the transfer function of a resonant system as follow:

H(s) =
−1

ω2 + ω
Q s + s2

, (5.1)

where s is the Laplace variable, ω is the natural pulse and Q is the quality factor of the selectedmode. This

transfer function describes the mechanical response of the device. The related displacement enables to

compute the capacitance C through Equation (2.2) in which C = εA/g.

The step response of Model 1 is tested against the reduced model, denotedModel 3 which serves as refer-

ence. We compare both models with regard to the shift of displacement, respectively of capacitance, that

is observed between the initial state and the final steady state of the system. The test is repeated on each

model for different acceleration steps, i.e., with an amplitude of 1g, 2g, 4g, 8g and 16g.

Concerning themechanical displacement of the device, a good accordance between the transfer function

(5.1) and the reduced model is shown in Figure 5.3. Model 2 has a low error (0.29%) compared to Model 3

and is assumed conform the dynamics of the system. On the contrary, both models give different capaci-

tance response as show in Figure 5.4. The observed error is up to 15% for an acceleration of 1g and tends to

decrease with higher acceleration inputs since the capacitance is inverse proportional to the acceleration.

The equivalentmodel of amovableplate is considered as poorly accurate to transform adisplacement into

a capacitance for small accelerations.

5.2 Methods &Material 91

1g 2g 4g 8g 16g
0

2

4

6

·10−7
|x
|(
m
)

Model 1
Model 3

0.25

0.30.29 0.29 0.29 0.29 0.29

E
rr
o
r
(%
)

Fig. 5.3: Displacement error.

1g 2g 4g 8g 16g
0

2

4

6
·10−14

∆
C
(F
)

Model 1
Model 3

5

10

15
15.14

14.53
13.22

10.13

1.67

E
rr
o
r
(%
)

Fig. 5.4: Capacitance shift error.

Wedisqualify the use ofModel 1which is nonetheless employed to represent an accelerometer in a generic

way. This first analysis allows us to isolate the problem in the high-level representation which only con-

cerns the capacitance estimation. We assume in the following the correct reconstruction of the displace-

ment through the transfer function defined in Equation (5.1) which represents the system as a second-

order dynamical entity.

To enhance thedescriptionof the capacitance,we elaborate another solutionconsidering the actual design

of the device and denotedModel 2. The proposed model aims to better cope with the underlying sensing

principle. The configuration relies on comb fingers which are approximated by two complementary mov-

able plates with regard to a central fixed electrode. In this case, the comb fingers are asymmetric, i.e., the

steady state gap between a finger and the fixed part differs on both sides. The principle of the comb finger

is illustrated in Figure 5.5(a) and the parameters are exposed in Figure 5.5(b).

g1 − x

~x

C1

g2 + x

C2

A

(a) Sensing principle.

g1

~x

Fixed electrode

g2

Movable electrode

w

s

Parameter Value (µm)
Comb spacing (s) 10.7
Comb width (w) 3.1
Total gap (g1 + g2) 7.6

Offset ±1.4

g1 2.4

g2 5.2

(b) Geometry of comb fingers with parametric definition.

Fig. 5.5: Refined solution in Model 2 matching the sensing principle of the 2-axis accelerometer.

92 5 Case study

The differential capacitance Cdi f f in Model 2 is given by:

C1 =
ε0 A

g1 − x
and C2 =

ε0 A

g2 + x
, (5.2)

thus Cdi f f = C1 + C2 = ε0 A

(
g1 + g2

(g1 − x)(g2 + x)

)

(5.3)

where g1 and g2 are the offset gaps on both sides of the comb finger at steady state, C1 and C2 are respec-

tively the positive andnegative capacitancemeasurement values, A is the side-combarea, x is the displace-

ment of themovablemass and ε0 is the permittivity of air. Both capacitance values C1 and C2 are summed

into the differential signal Cdi f f which is then exploited, e.g., by digital sub-component. The corresponding

block diagram of the comb finger is illustrated in Figure 5.6.

acceleration

−1

ω
2 + ω

Q s + s2

ε0A

g1 − x

displacement capacitance

H(s)

a x Cdi f f

C1(x)

ε0A

g2 + x

C2(x)

+
Digital output

Amplifier

C
G(s)

Fig. 5.6: Block diagram of Model 2 based on differential capacitive measurement.

We simulate the step response of Model 2 and Model 3 to an acceleration step of a 2g amplitude which

presents an error about 14% on the capacitance shift in Model 1 as shown in Figure 5.4. The parameters

of the step response are detailed in Figure 5.7 and the corresponding numerical values of the negative

capacitance are summarized in Table 5.4 for Model 2 andModel 3. The step response contains qualitative

information on the stiffness, the speed and the dynamics of the system. We compare below Model 2 to

Model 3 in order to validate the further use of Model 2.

Rise time

Tr

Peak time

Tp

Overshoot
C

Steady state

Settling time

Ts

C ± δ

Time (s)

Fig. 5.7: Step response parameters.

Simulation Model 2 Model 3

Initial state (F) 3.427730e−13 3.427731e−13

Peak (F) 3.346286e−13 3.376021e−13

Steady state (F) 3.383855e−13 3.400797e−13

Acceptable error δ (F) 6.7677e−15 6.8016e−15

Overshoot (F) 3.7569e−15 2.4776e−15

Rise time (s) 0.19 0.19
Peak time (s) 0.25019 0.25019
Settling time (s) 0.25097 0.25097

Table 5.4: Negative capacitance response to a 2g accel-
eration step.

5.2 Methods &Material 93

The initialization of the system is correctly set in both models with similar value. Once the step is ap-

plied, the evolution of capacitance presents nevertheless some differences. The overshoot is twice higher

in Model 2 than in Model 3, that means the electrostatic stiffness of the reduced model is not fully recov-

ered byModel 2. The peak value also tends to bemore important in the approximatedmodel, but remains

acceptable since the absolute error is about 0.9%. Moreover, the final steady state of Model 2 differs from

Model 3 with an absolute error of 0.6% < 1% which is also assumed accurate enough.

The steady state value can be further used to design a control feedback loop, as introduced in Section 2.4.4.

To this purpose, we introduce an acceptable error of 2% which implies the controlled response to stay

within an interval [C ± δ]where δ = 0.02C and C is themeasured steady state in open-loop. InModel 2, the

corresponding interval is twice wider than in Model 3 and would require to reduce the acceptable error to

1% in order to meet control design requirements.

Finally, the periodic response of the high-level model is analyzed to validate the frequency definition of

the high-level model. The rise time Tr describes the response speed, the peak time Tp indicates the first

reached maximum and the settling time Ts informs on the stabilization of the resonant system. All these

three periods are equal in bothmodels which ensures the preserved frequency behavior. In the following,

the second high-level model presented above is assumed as accurate enough to run a trade-off with the

reducedmodel on the simulation accuracy and performance.

5.2.3 Test-bench definition

Thepreviousmodels are eachencapsulated inadedicatedTDFmodulewhichdefines aDevice connected

to further analog and digital components. The relatedTestbench implements the signal-processing open

loop shown in Figure 5.8. This simulation reproduces the system response to an acceleration change

and evaluates both the configurations of Model 2 and Model 3. The multi-physics part instantiates the

MEMS device with the corresponding stimuli sources. These latter are all instances of the base class

ScaGenerator and are connected to the electrical and mechanical inputs of the microsystem. The elec-

trical entries refer to the voltage settings listed in Table 5.2 in order to correctly actuate the device.

The acceleration is generated by a specific source producing various stimuli profiles, e.g., step or square

impulse, as detailed in the following section. The output signal of the device is then conditioned by the

analog part. To match real operating conditions, a white noise is added to the differential capacitance

measurement. The signal is then amplified and converted into a digital signal of 8 bits through dedicated

sca_tdf::sca_module. This conditioning aims at representing the traditional digital-signal processing

flow and connecting the presented solution to register banks and software emulation environments [167].

For instance, the filtered signal in output of the test bench can be further transferred to micro-controller

or processor units through specific protocols like SPI or I2C.

94 5 Case study

Noise
Injector

MEMS
Reduced-order model

Stimuli
Charge

Amplifier
ADC Filter

Interface
Bus, CPU . . .

SystemC-AMS
C++ add-ons SystemC-AMS SystemC

Multi-physics Analog Digital

Fig. 5.8: Integration of the MEMS reduced-order or high-level model in a SystemC-based test bench.

5.3 Experiment

The above test bench is tested in two different configurations. We first analyze the transient response of

Model 3 to a square impulse of acceleration and provide a complete digital-signal processing flow. Then,

the study is focused on theMEMS itself in order to verify themodeling accuracy and the simulation perfor-

mance ofModel 3 with regard toModel 4 and the simulation ofModel 3 andModel 4 in the state-of-the-art

solution MATLAB/Simulink. This second study only concerns the step response of the device.

Square impulse

The accelerometer is submitted to a squared impulse of 1g acceleration successively in x and y axis as

shown in Figure 5.9(a). The response of the accelerometer consists in a proportional displacement of the

proof mass as shown in Figure 5.9(b). This results in a capacitance change in the symmetric quadrant re-

sponsible for the sensing of lateral motion. For instance, Figure 5.10(a) details the negative and positive

values of the capacitance shift in x-axis. Note the displacement in y-axis induces a small change in capac-

itance as observed on the second part of the graph. This coupling between both axes is not reconstructed

in Model 2 since each capacitor is isolated from one another.

The sensing principle of the accelerometer relies on the difference of these capacitance values as depicted

in Figure 5.10(b) after the addition of a white noise that recreates real operating conditions. The analog

signal is then amplified and converted into a digital signal which is combined with a full-scale ratio that

varies from 2 to 16 bits as shown in Figure 5.10(b). Note the full-scale ratio conditions the accuracy of the

signal by defining the number of digits on which the signal is encoded. The proposed example defines a

full-scale ratio that doubles the available digits each 0.25s which thus decreases by twice the value of the

transferred digital signal. Finally, the digital signal is filtered (Figure 5.10(d)) and fitted for external use

through the output interface as shown in Figure 5.10(e).

0

1

2

3

4

5

6

7

8

9

10

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

A
cc

el
er

at
io

n
(m

/s
2)

Time (s)

tax
tay

(a) Acceleration input in x and y axes.

-8e-08

-6e-08

-4e-08

-2e-08

0

2e-08

4e-08

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

D
is

pl
ac

em
en

t (
m

)

Time (s)

x
y

(b) Displacement response in x and y axes.

Fig. 5.9: Mechanical response to an accleration impulse.

5.3 Experiment 95

3.36e-13

3.38e-13

3.4e-13

3.42e-13

3.44e-13

3.46e-13

3.48e-13

3.5e-13

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

C
ap

ac
ita

nc
e

(F
)

Time (s)

positive
negative

(a) Capacitance shift on x electrodes.

2

4

6

8

10

12

14

16

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

(-
)

Time (s)

fullscale

(b) Full-scale parameter.

-6e-15

-4e-15

-2e-15

0

2e-15

4e-15

6e-15

8e-15

1e-14

1.2e-14

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

C
ap

ac
ita

nc
e

(F
)

Time (s)

noise

(c) Differential capacitance with white noise.

-60

-40

-20

0

20

40

60

80

100

120

140

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

(-
)

Time (s)

adc

(d) Digital signal converted by the ADC.

-200

0

200

400

600

800

1000

1200

1400

1600

1800

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

(-
)

Time (s)

filter

(e) Filtered digital signal.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0

(-
)

Time (s)

gain

(f) Fitted output digital signal.

Fig. 5.10: Signal processing in x-axis through the different test-bench components.

Step response

The step response of both high-level and reducedmodels, respectivelyModel 2 and Model 3, is compared

in terms of modeling accuracy and simulation performance. To this end, a single stimuli source is instan-

tiated with the ScaGenerator base class which produces an acceleration step in x-axis with a variable

amplitude. We assume the same response would be observed in y-axis due to the symmetry of the device.

The results associated to this second configuration are detailed in the following section.

96 5 Case study

5.4 Results

The following results are focused on the transient simulation of the accelerometer response to an acceler-

ation step. We first verify the accuracy of Model 2 (TDF) through its step response to various acceleration

amplitudes. Then, we analyze the simulation performance of Model 3 (MROM) with regard to the state of

the art.

5.4.1 Modeling accuracy

As depicted in Figure 5.6,Model 2 clearly separates themechanical response from the electrostatic one. To

verify the proposed modeling procedure, we apply acceleration steps varying in amplitude from −16g to

16g. The transfer function correctly reconstructs the linear evolutionof thedisplacementwith regard to the

acceleration (see Figure 5.11(a)). The accelerometer intends to produce a capacitance shift proportional to

the acceleration or the force applied on the proof mass. The response in terms of capacitance is inversely

proportional to the acceleration as defined by the Equation (5.3) and verified in Figure 5.11(b). We further

analyze the difference between the high-level and reduced-order models.

-6e-07

-4e-07

-2e-07

0

2e-07

4e-07

6e-07

-16g-14g-12g-10g -8g -6g -4g -2g-g0g 2g 4g 6g 8g 10g 12g 14g 16g

D
is

pl
ac

em
en

t (
m

)

Acceleration (m/s2)

DC Analysis (Displacement vs. Acceleration)

MROM
TDF

f(x) = -3.874636e-09x + 7.504373e-08
g(x) = -3.863500e-09x + 7.531511e-08

(a) Linear evolution of the displacement.

3.2e-13

3.4e-13

3.6e-13

3.8e-13

4e-13

-16g-14g-12g-10g -8g -6g -4g -2g 0g 2g 4g 6g 8g 10g 12g 14g 16g

C
ap

ac
ita

nc
e

(F
)

Acceleration (m/s2)

DC Analysis (Capacitance vs. Acceleration)

MROM
TDF

(b) Nonlinear evolution of the capacitance.

Fig. 5.11: Evolution of the system variables with regard to the acceleration amplitude.

The displacement response to various acceleration steps varying from 1g to 16g is traced in Figure 5.12(a).

The related changes in capacitance are depicted in Figure 5.12(b). We discuss below the evolution of the

relative error made on both variables. In Figure 5.13(a), we observe the relative error for displacement is

relatively important during the transition period with a peak observed at 5% before returning to a 0.29%

high error at steady state. This result confirms the observation made in Section 5.2.2 on the first high-

level model. Moreover, the error made on the capacitance remains relatively low, i.e., under 1%, as shown

in Figure 5.13(b). Note the response to high amplitudes tends to be more unstable, especially during the

transition phase, but leads to an error on the steady state that remains low enough to be acceptable. For

instance, the response at 16g is slightly impacted by the instability of the transition phase with amaximum

error about 5% at peak, before decreasing to a relative error lower than 0.5% at steady state.

5.4 Results 97

-1.2e-06

-1e-06

-8e-07

-6e-07

-4e-07

-2e-07

0

2e-07

0.25 0.255 0.26 0.265 0.27 0.275

C
ap

ac
ita

nc
e

(F
)

Time (s)

Transient analysis (Displacement response)

TDF (g)
TDF (2g)
TDF (4g)
TDF (8g)

TDF (16g)
MROM (g)

MROM (2g)
MROM (4g)
MROM (8g)

MROM (16g)

(a) Displacement variation.

3.4e-13

3.6e-13

3.8e-13

4e-13

4.2e-13

4.4e-13

4.6e-13

4.8e-13

5e-13

5.2e-13

5.4e-13

0.25 0.255 0.26 0.265 0.27 0.275

C
ap

ac
ita

nc
e

(F
)

Time (s)

Transient analysis (Capacitance response)

TDF (2g)
TDF (2g)
TDF (4g)
TDF (8g)

TDF (16g)
MROM (2g)
MROM (2g)
MROM (4g)
MROM (8g)

MROM (16g)

(b) Positive capacitance variation.

Fig. 5.12: Step response of the accelerometer to an acceleration step.

0

1

2

3

4

5

0.25 0.255 0.26 0.265 0.27 0.275

E
rr

or
 (

%
)

Time (s)

Error (Displacement)

TDF (g)
TDF (2g)
TDF (4g)
TDF (8g)

TDF (16g)

(a) Relative error on the displacement value.

0

1

2

3

4

5

0.2 0.3 0.3 0.3 0.3 0.3

E
rr

or
 (

%
)

Time (s)

Error (Capacitance)

(g)
TDF (2g)
TDF (4g)
TDF (8g)

TDF (16g)

(b) Relative error on the capacitance value.

Fig. 5.13: Relative error observed for various acceleration step amplitudes.

Based on the previous observations, we conclude below on the correctness and the validity of the high-

levelmodel proposed in Section 5.2.2. Its refined version recovers the dynamic behavior of the device with

a relative error that remains low enough, i.e., less than 0.5%, to ensure a correct simulation of the steady

stateofboth thedisplacementand thecapacitance.Moreover, theuseof suchamodel for transient analysis

is assumedacceptable since the responseof the system tononlinearities ordiscontinuities in input leads to

a similar low-error range. Nevertheless, the observed errors on the first approximatedmodel, i.e., through

a single movable plate, disqualify a generic use of pre-configured models, even for system-level analysis.

We insist on the necessity to respect the actual geometry of the device in order to build correct descriptions

with high level of abstraction. To this purpose, the device design must be known and we justify the use of

reducedmodels since they encapsulate the information related to the inertial and spatial definition of the

device. In order to correctly configure system-level models, these requirements would be either extracted

from detailed descriptions or measured on the physical device itself. We also consider that a descendant

approach relying on pre-defined models for each kind of devices, like accelerometers or gyroscopes, is

inappropriate to build accurate-enough models. The inertial and the geometric definition of the device

are indeed required to cope with the overall behavior of the device as demonstrated through the above

accelerometer. Also, from a modeling viewpoint, we consider the reduced-order model as more adapted

to efficiently address the MDVP objective to quickly bind, integrate and test different devices together.

98 5 Case study

5.4.2 Simulation performance

Numerical methods for integrating equations of motion are usually compared in terms of their accuracy

and stability.We reviewedabove the accuracy of the simulation results for the high-level and reducedmod-

els. In the following, we are interested in the stability of solutions, especially with regard to the time-step

definition.

We noticed in Section 4.4 the influence of the time stepping in SystemC-AMS. The standard integration

method in TDFMoC is an explicit method, i.e., the Euler-backward method, for which the stability is gov-

erned by the shortest natural period. The accuracy and stability usually depend upon the ratio of the time

step, h, to the shortest natural period of the structural system [95]. The shortest natural period Tn can be

much shorter than the fundamental natural period T1. For instance, the sensing mode has a resonant fre-

quency at 2 560 Hz, i.e., a related period of T1 = 0.39 ms. The results presented above were obtained with

a fundamental natural period of Tn = 3 µs which is the maximum time step for which the relative er-

ror of Model 2 remains under 1 %. The stability is also preserved by a ratio to the shortest natural period

Tn/T1 > 103. In contrast,Model 3has ahighermaximumtime stepequal to 10 µs, since theCrank-Nicolson

method implemented inMEMS+ API is an implicit method, i.e., defined as unconditionally stable.

Table 5.5: Simulation results for a ramp impulse in translation acceleration in x-axis (Amplitude: 1g)

Environment Index Model Integration Time step h (µs) Runtime (s)

SystemC-AMS Simulation 1 Model 2 Backward-Euler fixed 3.0 12.03

Simulation 2 Model 3 Crank-Nicolson fixed 3.0 103.08

Simulation 3 Model 3 Crank-Nicolson fixed 10.0 30.93

MATLAB/Simulink Simulation 4 Model 3 ode23 fixed 10.0 152.48

Simulation 5 Model 4 ode8 variable − 335.46

In Simulation 1, the time step is constrained to 3 µs and one simulated second ofModel 2 has a simulation

runtime about 12 s. This is more than eight times faster than Simulation 2 that computes the equivalent

simulation of Model 3 in 100 s. In contrast to Model 3, Simulation 2 can be run with a larger time step of

10 µs which decreases the run time to 30 s, i.e., twice longer than the high-level model.

This simulation performance is finally compared to the state of the art in Simulation 4. The configuration

is similar to Simulation 3with an implicit integration scheme and a time stepof 10 µs. As noticed in Section

4.4,MATLAB/Simulink offers similar performance than in SystemC-AMS if the time stepping is configured

as dynamic and the integration scheme is based on on amultistepmethod like Runge-Kutta. The selection

of time-stepping and integration methods is an extensive area, well introduced by Burden et al. [156] and

further discussed with regard to the stability and convergence criteria in [221]. Figure 5.14 shows the simu-

lation runtimes of Model 3 in SystemC-AMS and MATLAB/Simulink. In addition, the full model (Model 4)

is integrated to Simulation 5 to evaluate the performance of the simulation. Here the linearity of the system

enables the simulation of the full model in MATLAB which is normally not possible due to the large num-

ber ofDoFs. In SystemC-AMS, Simulation 3 is five times faster than Simulation 4 inMATLAB/Simulink and

reduces by ten the simulation of the full model (Simulation 5).

5.5 Conclusion 99

Simulation 3
Simulation 4
Simulation 5 335.46

152.48

30.95

Runtime (s)

SystemC-AMS

MATLAB/Simulink

︸
︷
︷
︸

Fig. 5.14: Performance analysis between the different simulation environments highlighting a faster simu-
lation in SystemC-AMS than inMATLAB/Simulink when both environments are configuredwith the same
fixed time step and similar integration schemes.

5.5 Conclusion

The above example illustrates the use of the API between SystemC-AMS and MEMS+ on a two-axis ac-

celerometer and its integration into a full digital-signal processing flow. This study compared the mod-

eling procedure and the simulation performance of the reduced-order model issued from MEMS+ and

higher-level representations built upon the SystemC-AMSstandard.Wefirst discussed the validity of trans-

fer functions employedat high-level and concluded on the necessary knowledgeof the operating principle

to correctly recover the sensing capacitance of the device. High-level modeling approximations can lead

to severe errors on the behavioral representation of the device if not matching the proper geometry and

sensing principle of the device. To avoid such approximations, reduced models can be automatically gen-

erated fromdetailedMEMSdesign created inMEMS+. This eliminates the need for an equivalentmodeling

process as well as the extraction of specific parameters.

Based on a correct high-level description, we evaluated the simulation performance of the high-level and

reduced models in SystemC-AMS. The relative error of the high-level model is acceptable while its simu-

lation performance is twice faster than the reducedmodel. Nevertheless, the reduced-order model imple-

ments a more efficient integration method which allows for larger simulation time step and, in this case,

leads to comparable simulation runtime. The use of a dynamic time-stepping is seen as a potential im-

provement in order to accelerate the simulation which is, in this case, already up to ten times faster than

the state-of-the-art solution.

In a first pass, high-level models may grandly differ from the actual device design. We therefore argue for

a direct use of reduced models in order to simplify the definition and maximize the re-use of system-level

models of MEMS. This reproducible process is also independent of the nature of the MEMS device and

avoids first approximations or unnecessary equivalent models.

100 5 Case study

Chapter 6

Conclusions

This dissertation proposed a novel approach for the system-level simulation of MEMS models within a

state-of-the-art HW/SW co-development environment. Our study was focused on providing an efficient

method to integrate reduced-order models within the system-level language SystemC-AMS.

6.1 Contributions

In the presented work, we have made major contributions to the field of MEMS system-level integration

based on the SystemC-AMS standard and the commercial software solutionMEMS+. We explored existing

solutions to support the modeling and simulation of MEMS devices at system-level. We then evaluated

the use of reducedmodels extracted from detailed descriptions to preserve themodeling accuracy. Finally,

we elaborated a software solution to automate the MOR process and the interactions withMEMS+. The

proposed solution implements an interface with the SystemC-AMS simulation environment and enables

MEMS and system engineers to use a single model. By preserving the integrity and accuracy of themodel,

this method allows system engineers to verify that the targeted HW/SW applications are compliant with

regards to peripherals, such as sensors or actuators.

Modeling and simulation of MEMS devices in SystemC-AMS

Based on different MoCs, SystemC-AMS supports the modeling of MEMS at system-level through equiva-

lent circuit or lumped-element models and, to some extent, bond graphs. The lack of standardization in

modelingMEMSdevicesat system-leveldoesnot allowcomplexor refineddesigns.Theover-specialization

of system-level models make them hard to refine and highly dependable on initial assumptions. Further-

more, the SystemC-AMS standard does not support some basic operations in linear algebra and does not

provide a standardized implementation of integration and approximationmethods.We also used external

libraries to perform matrix-vector operations and implemented our own integration algorithms. In addi-

tion, the time-stepdefinition is not automated and the correct simulation settings are cumbersome for the

user. Despite the previous modeling and simulation limitations, SystemC-AMS correctly interfacesMEMS

devices with digital HW/SW components.

Integration of MEMS reducedmodels in System-AMS

Instead of the classic top-down approach, we proposed an alternativemehtod based on a first detailed de-

sign in order to integrate MEMS in complex systems. A precise reduced-ordermodel is automatically gen-

101

102 6 Conclusions

erated fromMEMS+. We implemented a C++ API to integrate the reduced-order model into any SystemC-

AMS test bench. It can then be connected to a full digital signal flow. In addition, the API provides basic

blocks and add-on features to help the designer in the definition of new case studies and analyses. From

amodeling viewpoint, the reducedmodels ensure a better accuracy than simple lumped-elementmodels

since they preserve the modal behavior and internal couplings of the device. The implemented integra-

tion scheme prevents the simulation fromnumerical damping as verified on a first gyroscope use case.We

finally validated the modeling method and the simulation performance on a real accelerometer.

6.2 Future work

Validation of the simulation framework

Our study is focusedon the system-levelmodeling and simulationofMEMSdevices assuming the electron-

ics, i.e., the HW and SW sub-parts, is already supported by the SystemC and SystemC-AMS standards. The

simulationof complex architectureswithMEMS,HWandSWsub-parts needs to be validated. This demon-

stration would aim at verifying the correct simulation of the different parts and evaluating the simulation

performance of the overall. A good example would be themodeling and simulation of an inertial measure-

ment unit that contain a microcontroller connected to a set of MEMS devices, usually an accelerometer,

a gyroscope and a magnetometer. These units are massively integrated to embedded systems in order to

measure their orientation and their position.

Time-stepping algorithms

The current solution could be improved by two complementary time-steppingmethods. On the one hand,

theuseof adynamic time-stepping is seenas apotential improvement inorder to accelerate the simulation

which is, in this case, already up to ten times faster than the state-of-the-art solutions. This could be further

tested in the current implementation of SystemC-AMS through DTDFmodules. Nevertheless, the current

dynamic time stepping defined in DTDF forces the simulation to change the whole time stepping, and

is not fitted for local changes. In addition, such an optimization would require to set a reasonable error

regarding the global dynamics of the system which greatly differs from digital to continuous-time sub-

parts. Therefore, specific conditionsmust preserve the simulation from recursive error testing and prevent

potential slow down. On the other hand, multi-step integration schemes should enhance the stability of

the solution. We demonstrate in the different use cases in our study the validity of an implicit method,

like the Crank-Nicolson one. Additional integration methods would thus complement a dynamical time

stepping and offers more flexibility to the user to address some unstable simulation cases.

Parametric reducedmodels

We proposed to predict the complicated dynamical behavior of MEMS devices through reduced models

instead of simplified equivalent representations. In general, theMOR techniques have been improvedover

the last decade to reconstruct the nonlinearities of the complex systems for which they provide compact

descriptions. The selected MOR method could be completed by further investigations on its ability to re-

cover the mechanical nonlinearities besides the electrostatic ones already supported. Furthermore, the

solution could benefit from a parametric definition of the reduced models in order to explore the design

6.3 Closing thoughts 103

space. This would allow the designers to test and optimize the design of MEMS devices by directly taking

into account the need of the global system.

Continuous systems simulation

Finally, the proposed solution respects the SystemC-AMS standard implementation especially the syn-

chronous formalism implemented in TDF. Nevertheless, the lack of interoperability between the discrete-

event solver in SystemC and the TDF one appears as a major limitation in SystemC-AMS to correctly ad-

dress the simulation of continuous-time systems. Therefore, the simulation environment could benefit

from an additional MoC implementing the DEVSmethodology. This intends to avoid a tight synchroniza-

tion between the discrete-event and continuous-time systems since the coupling between solvers is real-

ized through an state-based synchronization instead of the time-based formalism employed in SystemC-

AMS. This principle has largely been discussed in the literature and is used, e.g., in Modelica [222].

6.3 Closing thoughts

The tight integrationofMEMScomponents incomplex systems implies toaccuratelypredict their eletrome-

chanical response. This especially allows the calibration of dedicated HW/SW applications. The related

computer-aided analysis is an indispensable tool to predict and optimize the MEMS integration bottle-

necks in mixed-signal electronics. But to be effective, such a design-drivenmethod needs to be computa-

tionally efficient andmust support a pragmatic design iteration. Although the computational efficiency is

primarily driven by short product design cycles, the simulation speed is not sufficient to demonstrate the

full capacity of a simulation solution to address theMDVPof heterogeneous systems. The virtual prototyp-

ing can be enforced by the physics-based modeling and simulation and perceived as an enabling design

capability since the accuracy is necessary to verify complex systems.

We assumed in this work that SystemC is one of the most advanced solutions for the co-development of

HW/SW applications at system-level. Its digital-centered approach relies on a discrete-event simulation

kernel and partially allows to simulate continuous-time systems in SystemC-AMS. The object-oriented

foundations of SystemC enables the definition of additional MoCs in order to build a unified MDVP envi-

ronment. This aims at the modeling and simulation in several physical domains with regard to a satisfac-

tory and high fidelity semantics.

The MoC-based approach remains questionable in the case of complex systems like MEMS that requires

an in-depth understanding of the underlying multi-physics. In our case, we interfaced SystemC with an

existing software solution arguing for domain-specific modeling methodologies and standard simulation

environments. Such an hybrid solution avoids the cumbersome implementation of dedicated MoC and

the inaccurate use of high-level models. Despite their limited investigation to date, hybridmethodologies

are a promising path to improve the modeling flexibility and computational efficiency of existing solu-

tions. Relying on the concurrent use of different modelingmethodologies, hybridmethods allow different

degrees of accuracy and complexity in the same simulation environment. This facilitates the development

of comprehensive and accurate numerical models for heterogeneous systems. Regarding the presented

solution, hybrid methods could rapidly tackle current industrial needs.

104 6 Conclusions

Finally, the successful integration of heterogeneous systems through hybrid methodsmostly relies on the

convergenceof design flowsand the collaboration betweenexpert teams. Beyondnovelmodelingmethod-

ologies and simulation environments, the author would recommend to develop platforms to connect de-

signers and system engineers. Such distributed solutions would facilitate the exchange of IPs and models,

strengthen the interoperability between processes and speed up the integration of novel complex archi-

tectures.

Bibliography

[1] R. P. Feynman, There’s Plenty of Room at the Bottom, pp. 63–76. Perseus Books, 1999.

[2] A.Heinig,M.Dietrich, A.Herkersdorf, F.Miller, T.Wild, K.Hahn,A.Gruenewald,R. Brueck, S.Kroehnert,

and J. Reisinger, “System Integration - The Bridge betweenMore than Moore and More Moore,” IEEE,

2014. Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany,

March 24-28, 2014.

[3] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems, A Cyber-Physical Systems Approach.

2nd ed., 2015.

[4] S. D. Senturia,Microsystem Design. Springer US, 2001.

[5] S. P. D. Manoj and H. Yu, “Cyber-Physical Management for Heterogeneously Integrated 3D Thousand-

core On-chipMicroprocessor,” in 2013 IEEE International Symposium onCircuits and Systems (ISCAS),

pp. 533–536, IEEE, 2013. IEEE International Symposium on Circuits and Systems (ISCAS), Beijing,

China, May 19-23, 2013.

[6] S. Franssila and S. Tuomikoski, “MEMS Lithography,” in Handbook of Silicon Based MEMS Materials

and Technologies (M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lin-

droos, eds.), Micro and Nano Technologies, pp. 427 – 443, William Andrew Publishing, 2nd ed., 2015.

[7] J. W. Judy, “Microactuators,” inMEMS (O. Paul and J. G. Korvink, eds.), pp. 751 – 803, William Andrew

Publishing, 2006.

[8] F. Laermer, “Mechanical microsensors,” inMEMS: A Practical Guide to Design, Analysis, and Applica-

tions (J. Korvink and O. Paul, eds.), pp. 523–566, Springer, 2006.

[9] H. Xie, G. K. Fedder, and R. E. Sulouff, “Accelerometers,” in Comprehensive Microsystems (Y. Gianchan-

dani, O. Tabata, and H. Zappe, eds.), pp. 135 – 180, Elsevier, 2008.

[10] U. Bonne, “Gas sensors,” in Comprehensive Microsystems (Y. Gianchandani, O. Tabata, and H. Zappe,

eds.), pp. 375 – 432, Elsevier, 2008.

[11] A. D. Hennis and J. Chae, “Pressure sensors,” in Comprehensive Microsystems (Y. Gianchandani,

O. Tabata, and H. Zappe, eds.), pp. 101 – 133, Elsevier, 2008.

[12] J. Heinzl, “Ink jets,” in Reference Module in Materials Science and Materials Engineering (S. Hashmi,

ed.), pp. 335–368, Elsevier, 2008.

105

106 BIBLIOGRAPHY

[13] K. Hane andM. Sasaki, “Micro-mirrors,” inComprehensiveMicrosystems (Y. Gianchandani, O. Tabata,

and H. Zappe, eds.), pp. 1 – 63, Elsevier, 2008.

[14] R.-M. Chao, S.-Y. Li, C.-C. Hsu, and S. Y. Liang, “Characteristic evaluation of silicon-based MEMS

acoustic/acceleration sensor,” in Proceedings of the ASME International Conference onManufacturing

Science and Engineering - 2007, pp. 389–394, ASME, 2007. ASME International Conference on Ma-

nufacturing Science and Engineering, Atlanta, GA, Oct 15-18, 2007.

[15] V. Button, “New technological advancements in biomedical variables transducing,” in Principles of

Measurement and Transduction of Biomedical Variables (V. Button, ed.), pp. 351 – 360, Academic Press,

2015.

[16] Y.-H. Lin, T.-M. Pan, andM.-H.Wu, “Microfluidic technology and its biological applications,” in Com-

prehensive Biotechnology (M. Moo-Young, ed.), pp. 141 – 157, Academic Press, 2nd ed., 2011.

[17] A. Vasudev and S. Bhansali, “Microelectromechanical systems (mems) for in vivo applications,” in Im-

plantable Sensor Systems for Medical Applications (A. Inmann and D. Hodgins, eds.), Woodhead Pub-

lishing Series in Biomaterials, pp. 331–358, Woodhead Publishing, 2013.

[18] T. RyhänenandH.Pohjonen, “Impact of SiliconMEMS—40YearsAfter,” inHandbookof SiliconBased

MEMS Materials and Technologies (M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-

Kröckel, and V. Lindroos, eds.), Micro and Nano Technologies, pp. xix – xxxvii, William Andrew Pub-

lishing, 2nd ed., 2015.

[19] D. Tanner, “MEMS reliability: Where are we now?,” Microelectronics Reliability, vol. 49, no. 9–11,

pp. 937 – 940, 2009. 20th European Symposium on the Reliability of Electron Devices, Failure Physics

and Analysis.

[20] R. Schneiderman, “EDASets the Standard for Complexity,” inModern Standardization:Case Studies at

the Crossroads of Technology, Economics, and Politics, p. 288, Wiley-IEEE Standards Association, 2015.

[21] G. Schröpfer,M.McNie,M.daSilva, R.Davies, A. Rickard, andF.Musalem, “Designingmanufacturable

MEMS in CMOS compatible processes - Methodology and case studies,” inMEMS, MOEMS, and Mi-

cromachining (Urey, H and El Fatatry, A, ed.), vol. 5455 of Proceedings of the Society of Photo-optical

Instrumentation Engineers (SPIE), pp. 116–127, SPIE, 2004. Conference onMEMS,MOEMS andMicro-

machining, Strasbourg, France, Apr. 29-30, 2004.

[22] G. Hoelzer, R. Knechtel, S. Breit, and G. Schröpfer, “3-D Process Modeling - A Novel and Efficient

Tool forMEMSFoundryDesignSupport,” in2009 IEEE/SEMIAdvancedSemiconductorManucfacturing

Conference, pp. 200–205, IEEE, 2009. IEEE/SEMIAdvancedSemiconductorManufacturingConference,

Berlin, Germany, May 10-12, 2009.

[23] MEMS+®. http://www.coventor.com. Coventor.

[24] Standard SystemC AMS extensions Language Reference Manual. Accelera Systems Initiative, 2010.

[25] P. R. Wilson and H. A. Mantooth, Model-based engineering for complex electronic systems. Elsevier ;

Newnes, 2013.

[26] M. Fowler,UML Distilled. Addison-Wesley, 2nd ed., 2000.

[27] J. Holt and S. Perry, SysML for Systems Engineering, vol. 7. The Institution of Engineering and Technol-

ogy, 2008.

http://www.coventor.com

BIBLIOGRAPHY 107

[28] F.Mallet and R. de Simone, “MARTE: A Profile for RT/E SystemsModeling, Analysis–and Simulation?,”

in Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communica-

tions, Networks and Systems & Workshops, Simutools ’08, pp. 43:1–43:8, ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), 2008.

[29] “IEEEStandard forModeling andSimulation&HighLevelArchitecture (HLA)– Framework andRules,”

IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000), pp. 1–38, Aug 2010.

[30] G. Lasnier, J. Cardoso, P. Siron, C. Pagetti, and P. Derler, “Distributed simulation of heterogeneous and

real-time systems,” inDistributed SimulationandRealTimeApplications (DS-RT), 2013 IEEE/ACM17th

International Symposium on, pp. 55–62, Oct 2013.

[31] D. Broman, C. Brooks, L. Greenberg, E. Lee, M. Masin, S. Tripakis, and M. Wetter, “Determinate com-

position of FMUs for co-simulation,” in Embedded Software (EMSOFT), 2013 Proceedings of the Inter-

national Conference on, pp. 1–12, Sept 2013.

[32] C. Ptolemaeus, System design, modeling, and simulation: using Ptolemy II. Ptolemy.org, 2014.

[33] A. Jantsch, Modeling embedded systems and SoC’s concurrency and time in models of computation.

Morgan Kaufmann, 2004.

[34] D. J. Murray-Smith, “Issues ofmodel quality and the validation of dynamicmodels,” inModelling and

Simulation of Integrated Systems in Engineering (D. J. Murray-Smith, ed.), pp. 215 – 268, Woodhead

Publishing, 2012.

[35] J. Liu, X. Liu, and E. Lee, “Modeling distributed hybrid systems in Ptolemy II,” in American Control

Conference, 2001. Proceedings of the 2001, vol. 6, pp. 4984–4985 vol.6, 2001.

[36] C. Brooks, E. Lee, S. Tripakis, and others, “Exploringmodels of computationwith Ptolemy II,” inHard-

ware/Software Codesign and System Synthesis (CODES+ ISSS), 2010 IEEE/ACM/IFIP International Con-

ference on, pp. 331–332, IEEE, 2010.

[37] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong, “Taming

heterogeneity - the Ptolemy approach,” Proceedings of the IEEE, vol. 91, pp. 127–144, Jan 2003.

[38] F. Boulanger and C.Hardebolle, “Simulation ofMulti-FormalismModels withModHel’X,” in Software

Testing, Verification, and Validation, 2008 1st International Conference on, pp. 318–327, April 2008.

[39] I. Sander, A. Jantsch, and Z. Lu, “Development and application of design transformations in ForSyDe,”

Computers and Digital Techniques, IEEE Proceedings on, vol. 150, pp. 313–320, Sept 2003.

[40] MATLAB/Simulink®. http://www.mathworks.com. Mathworks.

[41] G. Stewart, “Research, Development, and LINPACK,” inMathematical Software (J. R. Rice, ed.), pp. 1–

14, Academic Press, 1977.

[42] B.Garbow, “EISPACK - Package ofMatrix EigensystemRoutines,”Computer Physics Communications,

vol. 7, no. 4, pp. 179–184, 1974.

[43] S. L. Campbell, J.-p. Chancelier, and R. Nikoukhah, Modeling and Simulation in Scilab / Scicos.

Springer, 2006.

[44] V. Giurgiutiu, Micromechatronics: modeling, analysis, and design with MATLAB. Nano- and micro-

science, engineering, technology, and medicine series, CRC Press, 2nd ed., 2009.

http://www.mathworks.com

108 BIBLIOGRAPHY

[45] D. Quaglia, R. Muradore, R. Bragantini, and P. Fiorini, “A SystemC/Matlab co-simulation tool for net-

worked control systems,” Simulation Modelling Practice and Theory, vol. 23, pp. 71–86, Apr. 2012.

[46] P. A. Fritzson, Introduction to modeling and simulation of technical and physical systems with Model-

ica. Wiley : IEEE Press, 2011.

[47] L. Ljung and T. Glad, Modeling of dynamic systems. Prentice Hall information and system sciences

series, PTR Prentice Hall, 1994.

[48] Arquimedes Canedo and Jan H. Richter, “Architectural Design Space Exploration of Cyber-physical

SystemsUsing the Functional Modeling Compiler,” Procedia CIRP, vol. 21, pp. 46 – 51, 2014. 24th CIRP

Design Conference.

[49] “IEEE Standard VHDL Language Reference Manual,” IEEE Std 1076-2008 (Revision of IEEE Std 1076-

2002), pp. 1–620, Jan 2009.

[50] “IEEE Standard for VerilogHardware DescriptionLanguage,” IEEE Std 1364-2005 (Revision of IEEE Std

1364-2001), pp. 1–560, 2006.

[51] F. Pêcheux, C. Lallement, and A. Vachoux, “VHDL-AMS and Verilog-AMS as alternative hardware de-

scription languages for efficientmodeling ofmultidiscipline systems,”Computer-AidedDesign of Inte-

grated Circuits and Systems, IEEE Transactions on, vol. 24, pp. 204–225, Feb 2005.

[52] B. Bailey, G.Martin, and A. Piziali, “Hardware implementation,” inESLDesign and Verification (B. Bai-

ley, G. Martin, and A. Piziali, eds.), Systems on Silicon, pp. 333 – 377, Morgan Kaufmann, 2007.

[53] R. Zurawski, ed.,Embedded systems handbook - EmbeddedSystemsDesign andVerification. Industrial

information technology series, CRC Press, 2nd ed., 2009.

[54] M. Radetzki, ed., Languages for Embedded Systems and their Applications, vol. 36 of Lecture Notes in

Electrical Engineering. Springer, 2009.

[55] B. Bailey and G. Martin, ESL Models and their Application. Springer US, 2010.

[56] IEEE Standard for SystemC Language Reference Manual. Jan 2012.

[57] D. C. Black, B. Bunton, A. Keist, and J. Donovan, SystemC - From the Ground Up. Springer, 2nd ed.,

2010.

[58] Universal Verification Methodology (UVM) 1.2 - Class Reference. Accelera Systems Initiative, 2014.

[59] H.D. Patel, S. K. Shukla, and R. A. Bergamaschi, “Heterogeneous behavioral hierarchy for system level

designs,” in 2006 Design Automation and Test in Europe (DATE), Proceedings of, pp. 563–568, March

2006.

[60] T. Mähne, Z. Wang, B. Vernay, L. Andrade, C. Ben Aoun, J.-P. Chaput, M.-M. Louërat, F. Pêcheux,

A. Krust, G. Schröpfer, M. Barnasconi, K. Einwich, F. Cenni, and O. Guillaume, “UVM-SystemC-AMS

based Framework for the Correct by Construction Design of MEMS in their Real Heterogeneous Appli-

cation Context,” in ICECS 2014, December 2014.

[61] Coside®. http://www.coside.de. Fraunhofer IIS, Design Automation Division.

[62] T. Kirchner, N. Bannow, C. Kerstan, and C. Grimm, System Specification and Design Languages:

Selected Contributions from FDL 2010, ch. A Framework for Interactive Refinement of Mixed

HW/SW/Analog Systems, pp. 71–89. Springer New York, 2012.

http://www.coside.de

BIBLIOGRAPHY 109

[63] N. Bombieri,D. Drogoudis, G. Gangemi, R. Gillon, E.Macii, M. Poncino, S. Rinaudo, F. Stefanni, D. Tra-

chanis, andM. van Helvoort, “SMAC: Smart Systems Co-design,” inDigital System Design (DSD), 2013

Euromicro Conference on, pp. 253–259, Sept 2013.

[64] F. Fummi,M. Lora, F. Stefanni, and S. Vinco, “CodeGeneration Alternatives to ReduceHeterogeneous

Embedded Systems to Homogeneity,” in FDL 2013, 2013.

[65] I. O’Connor, “From performance modeling to design space modeling: an exploration method for het-

erogeneous systems,” in Ecole d’hiver francophone sur la technologie de conception de systèmes embar-

qués hétérogènes (FETCH), (Ottawa, Canada), January 2014.

[66] C. B. Aoun, L. Andrade, T. Mähne, F. Pecheux, M. M. Louerat, and A. Vachoux, “Pre-simulation elab-

oration of heterogeneous systems: The SystemC multi-disciplinary virtual prototyping approach,” in

Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 International

Conference on, pp. 278–285, July 2015.

[67] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics. El-

sevier, 6th ed., 2005.

[68] G. Lorenz and G. Schröpfer, “3D Parametric-Library-Based MEMS/IC Design,” in System-Level Mod-

eling of MEMS, ch. 17, pp. 405–424, Wiley-VCH Verlag GmbH& Co. KGaA, 2013.

[69] B. Vigna, “It Makes Sense: How Extreme Analog and Sensing Will Change the World,” in Solid-State

Sensors, Actuators andMicrosystems, 2012 Workshop on, pp. 58–65, 2012.

[70] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems (Advances in Design and Control).

Society for Industrial and Applied Mathematics, 2005.

[71] L. Feng, P. Benner, and J. G. Korvink, “System-Level Modeling of MEMS by Means of Model Order

Reduction (Mathematical Approximations) – Mathematical Background,” in System-level modeling of

MEMS, pp. 53–93, Wiley-VCH Verlag GmbH & Co. KGaA, 2013.

[72] M. Rewieński, G. Fotyga, A. Lamecki, andM.Mrozowski, “Automated reducedmodel order selection,”

IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 382–385, 2015.

[73] H. Chang, Y. Zhang, J. Xie, Z. Zhou, andW. Yuan, “Integrated Behavior Simulation and Verification for

a MEMS Vibratory Gyroscope Using Parametric Model Order Reduction,” Journal of Microelectrome-

chanical Systems, vol. 19, pp. 282–293, Apr. 2010.

[74] U. Baur, P. Benner, and L. Feng, “Model order reduction for linear and nonlinear systems: a system-

theoretic perspective,” tech. rep., Max Planck Institute Magdeburg Preprints, 2014.

[75] M. Rewienski and J. White, “A trajectory piecewise-linear approach tomodel order reduction and fast

simulation of nonlinear circuits and micromachined devices,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 22, pp. 155–170, Feb. 2003.

[76] S. P. Levitan, S. Member, J. A. Martínez, S. Member, T. P. Kurzweg, A. J. Davare, M. Kahrs, M. Bails,

and D. M. Chiarulli, “System Simulation of Mixed-Signal Multi-Domain MicrosystemsWith Piecewise

LinearModels,” IEEETransactions onComputer AidedDesign of IntegratedCircuits and Systems, vol. 22,

no. 2, pp. 139–154, 2003.

[77] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, “System-level design: orthogonal-

ization of concerns and platform-based design,” Computer-Aided Design of Integrated Circuits and

110 BIBLIOGRAPHY

Systems, IEEE Transactions on, vol. 19, pp. 1523–1543, Dec 2000.

[78] G. Schröpfer, G. Lorenz, S. Rouvillois, and S. Breit, “Novel 3-D modeling methods for virtual fabrica-

tion and EDA compatible design of MEMS via parametric libraries,” Journal of Micromechanics and

Microengineering, vol. 20, pp. 64003–64003, June 2010.

[79] A. Parent, A. Krust, G. Lorenz, and T. Piirainen, “A novel model order reduction approach for generat-

ing efficient nonlinear verilog-a models of mems gyroscopes,” in Inertial Sensors and Systems (ISISS),

2015 IEEE International Symposium on, pp. 1–4, March 2015.

[80] S. Senturia, “CAD challenges for microsensors, microactuators, and microsystems,” Proceedings of

the IEEE, vol. 86, no. 8, pp. 1611–1626, 1998.

[81] J. Mehner, “Modal-Superposition-Based Nonlinear Model Order Reduction for MEMS Gyroscopes,”

in System-level modeling of MEMS (T. Bechtold, G. Schrag, and L. Feng, eds.), pp. 291–309, Wiley-VCH

Verlag GmbH & Co. KGaA, 1st ed., 2013.

[82] B. Simeon, Computational Flexible Multibody Dynamics. Springer, 2010.

[83] K. D. Hjelmstad, Fundamentals of structural mechanics. Springer, 2nd ed., 2005.

[84] J. Korvink, E. Rudnyi, A. Greiner, and Z. Liu, “MEMS and NEMS Simulation,” in MEMS: A Practical

Guide to Design, Analysis, and Applications (J. Korvink and O. Paul, eds.), pp. 93–186, Springer, 2006.

[85] V. Rochus, D. J. Rixen, and J.-C. Golinval, “Monolithic modelling of electro-mechanical coupling in

micro-structures,” International Journal for Numerical Methods in Engineering, vol. 65, pp. 461–493,

Jan. 2006.

[86] V. Rochus and C. Geuzaine, “A primal/dual approach for the accurate evaluation of the electrome-

chanical coupling in MEMS,” Finite Elements in Analysis and Design, vol. 49, pp. 19–27, Feb. 2012.

[87] W. C. Tang, Electrostatic Comb Drive for Resonant Sensor and Actuator Applications. PhD thesis, Uni-

versity of California, Berkeley, 1990.

[88] J.-M. Sallese andD. Bouvet, “Principles of space-charge based bi-stableMEMS: The junction-MEMS,”

Sensors and Actuators A: Physical, vol. 133, pp. 173–179, Jan. 2007.

[89] M. Sulfridge, T. Saif,N.Miller, andM.Meinhart, “NonlinearDynamicStudyof aBistableMEMS:Model

and Experiment,” Journal of Microelectromechanical Systems, vol. 13, pp. 725–731, Oct. 2004.

[90] R. Lin and W. Wang, “Structural dynamics of microsystems—current state of research and future di-

rections,”Mechanical Systems and Signal Processing, vol. 20, pp. 1015–1043, July 2006.

[91] C. Comi, A. Corigliano, G. Langfelder, A. Longoni, and A. Tocchio, “On the nonlinear behaviour of

mems resonators,” in Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-

electronics andMicrosystems (EuroSimE), 2011 12th International Conference on, pp. 1–6, April 2011.

[92] A. Tocchio, A. Caspani, G. Langfelder, A. Longoni, and E. Lasalandra, “A Pierce oscillator for MEMS

resonant accelerometer with a novel low-power amplitude limiting technique,” in Frequency Control

Symposium (FCS), 2012 IEEE International, pp. 1–6, IEEE, 2012.

[93] A. P. Kovacs and R. A. Ibrahim, “The nonlinear vibration analysis of a clamped-clamped beam by a

reducedmultibodymethod,”Nonlinear Dynamics, vol. 11, no. 2, pp. 121–141, 1996.

BIBLIOGRAPHY 111

[94] M.-H. Bao, “Basic mechanics of beam and diaphragm structures,” inMicro Mechanical Transducers,

Pressure Sensors, Accelerometers and Gyroscopes (M.-H. Bao, ed.), vol. 8 of Handbook of Sensors and

Actuators, pp. 23 – 88, Elsevier Science B.V., 2000.

[95] K.-J. Bathe, “Finite Element Procedures,” Prentice-Hall, 1996.

[96] R. B. Karabalin, L. G. Villanueva, M. H. Matheny, J. E. Sader, and M. L. Roukes, “Stress-induced vari-

ations in the stiffness of micro- and nanocantilever beams,” Phys. Rev. Lett., vol. 108, p. 236101, Jun

2012.

[97] Q. Jing, Modeling and Simulation for Design of Suspended MEMS. PhD thesis, Carnegie Mellon Uni-

versity, 2003.

[98] K. Liateni, D. Moulinier, B. Affour, A. Delpoux, M. A. Maher, and J. M. Karam, ch. Moving MEMS into

Mainstream Applications: TheMEMSCAP Solution, pp. 544–555. Springer US, 2000.

[99] S. D. A. Hannot,Modeling strategies for electro-mechanicalmicrosystems with uncertainty quantifica-

tion. PhD thesis, TU Delft, 2010.

[100] G. I. Schüeller, “Developments in stochastic structural mechanics,” Archive of Applied Mechanics,

vol. 75, no. 10, pp. 755–773, 2006.

[101] ANSYS. http://www.ansys.com.

[102] Comsol. http://www.comsol.com.

[103] Coventor. http://www.coventor.com.

[104] J. V. Clark, D. Bindel, N. Zhou, S. Bhave, Z. Bai, J. Demmel, and K. S. J. Pister, “Sugar: Advancements in

a3Dmulti-domain simulationpackage forMEMS,” inProceedings of theMicroscale Systems:Mechanics

andMeasurements Symposium, 2001.

[105] G. Lorenz, Netzwerksimulation mikromechanischer Systeme. PhD thesis, Universität Bremen, 1999.

[106] G. K. Fedder and Q. Jing, “A hierarchical circuit-level designmethodology for microelectromechani-

cal systems,” IEEE Transactions onCircuits and Systems II: Analog andDigital Signal Processing, vol. 46,

no. 10, pp. 1309–1315, 1999.

[107] P. Schneider, C. Bayer, K. Einwich, and A. Köhler, “System level simulation - a core method for effi-

cient design of MEMS and mechatronic systems,” in SSD-12, 2012.

[108] T. Hou, C. L. Bris, A. Patera, and E. Zuazua, eds., Reduced OrderMethods forModeling and Computa-

tional Reduction. No. 9 in MS&A - Modeling, Simulation and Applications, Springer, 2014.

[109] J. Mehner, W. Dötzel, B. Schauwecker, and D. Ostergaard, “Reduced Order Modeling of Fluid Struc-

tural Interactions in MEMS based on Model Projection Techniques,” in Tranducers 03, pp. 1840–1843,

2003.

[110] W. H. Schilders, “Model Order Reduction: Theory, Research Aspects and Applications,” Springer,

2008.

[111] E. Gad, M. Nakhla, and R. Achar, ch. Model-Order Reduction of High-Speed Interconnects Using

Integrated Congruence Transform, pp. 361–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

http://www.ansys.com
http://www.comsol.com
http://www.coventor.com

112 BIBLIOGRAPHY

[112] B. N. Bond, Stability-Preserving Model Reduction for Linear andNonlinear Systems Arising in Analog

Circuit Applications by. PhD thesis, Massachusetts Institute of Technology, 2010.

[113] A. H. Nayfeh, M. I. Younis, and E. M. Abdel-Rahman, “Reduced-Order Models for MEMS Applica-

tions,”Nonlinear Dynamics, vol. 41, pp. 211–236, Aug. 2005.

[114] M. Kudryavtsev, E. Rudnyi, J. Korvink, D. Hohlfeld, and T. Bechtold, “Computationally efficient and

stable order reduction methods for a large-scale model of MEMS piezoelectric energy harvester,”Mi-

croelectronics Reliability, vol. 55, pp. 747–757, Apr. 2015.

[115] M. A. Cardoso,Development and application of reduced-ordermodeling procedures for reservoir sim-

ulation. PhD thesis, Standford University, 2009.

[116] D. M. Vasilyev, Theoretical and practical aspects of linear and nonlinear model order reduction tech-

niques. PhD thesis, Massachusetts Institute of Technology, 2007.

[117] J. Lienemann,E. Bertarelli, A.Greiner, and J.G.Korvink,LinearandNonlinearModelOrderReduction

for MEMS Electrostatic Actuators, pp. 263–289. Wiley-VCH Verlag GmbH& Co. KGaA, 2013.

[118] U. Baur, P. Benner, A. Greiner, J. Korvink, J. Lienemann, and C. Moosmann, “Parameter preserving

model reduction for MEMS applications,”Mathematical and Computational Modelling of Dynamical

Systems, vol. 17, no. 4, pp. 297–317, 2011.

[119] A. Sanginario, A. Mehdaoui, S. Zerbini, G. Schröpfer, and D. Demarchi, “New design methodology

for MEMS-electronic-package co-design and validation for inertial sensor systems,” in Design, Test,

Integration and Packaging of MEMS/MOEMS (DTIP), 2015 Symposium on, pp. 1–6, April 2015.

[120] S. Bailey, “Comparison of VHDL , Verilog and SystemVerilog,” 2003.

[121] “IEEE Standard for SystemVerilog - Unified Hardware Design, Specification, and Verification Lan-

guage,” IEEE Std 1800-2005, pp. 1–648, 2005.

[122] J. Chen, S.-M. S. Kang, J. Zou, C. Liu, and J. Schutt-Aine, “Reduced-order modeling of weakly non-

linear mems devices with taylor-series expansion and arnoldi approach,”Microelectromechanical Sys-

tems, Journal of, vol. 13, pp. 441–451, June 2004.

[123] E. Hung and S. Senturia, “Generating efficient dynamical models for microelectromechanical sys-

tems from a few finite-element simulation runs,” Microelectromechanical Systems, Journal of, vol. 8,

pp. 280–289, Sep 1999.

[124] J. Chen,Modeling and Simulation of Integrated Microstructures and Systems. PhD thesis, University

of Illinois.

[125] T. Mähne, K. Kehr, A. Franke, J. Hauer, and B. Schmidt, “Creating Virtual Prototypes of Complex

MEMS Transducers Using Reduced-OrderModellingMethods and VHDL-AMS,” in FDL 2005, pp. 135–

153, 2005.

[126] F. Bennini, J. Mehner, andW. Dötzel, “Computational Methods for Reduced-OrderModeling of Cou-

pled Domain Simulations,” in Transducers01, 2001.

[127] A. Kohler, S. Reitz, and P. Schneider, “Sensitivity analysis and adaptive multi-point multi-moment

model order reduction in mems design,” in Design, Test, Integration and Packaging of MEMS/MOEMS

(DTIP), 2011 Symposium on, pp. 64–71, May 2011.

BIBLIOGRAPHY 113

[128] M. Schlegel, F. Bennini, J.Mehner, G.Herrmann,D.Muller, andW.Dotzel, “Analyzing and simulation

of MEMS in VHDL-AMS based on reduced-order FE models,” IEEE Sensors Journal, vol. 5, pp. 1019–

1026, Oct. 2005.

[129] L. D. Gabbay, J. E. Mehner, and S. D. Senturia, “Computer-Aided Generation of Nonlinear Reduced-

Order Dynamic Macromodels -I: Non-Stress-Stiffened Case,” Journal of Microelectromechanical Sys-

tems, vol. 9, no. 2, pp. 262–269, 2000.

[130] M. Schlegel, G. Herrmann, and D. Muller, “Application of the multi architecture modeling design

method to system level MEMS simulation,” in DTIP 2003, pp. 5–7, 2003.

[131] C. Hagleitner, T. Bonaccio, H. Rothuizen, J. Lienemann, D. Wiesmann, G. Cherubini, J. Korvink, and

E. Eleftheriou, “Modeling, Design, and Verification for the Analog Front-End of aMEMS-Based Parallel

Scanning-Probe Storage Device,” Solid-State Circuits, IEEE Journal of, vol. 42, pp. 1779–1789, Aug 2007.

[132] J.Mehner, V. Kolchuzhin, I. Schmadlak, T.Hauck,G. Li, D. Lin, andT.Miller, “The influence of packag-

ing technologies on the performance of inertial MEMS sensors,” in Solid-State Sensors, Actuators and

Microsystems Conference, 2009. TRANSDUCERS 2009. International, pp. 1885–1888, June 2009.

[133] M. Niessner, J. Iannacci, G. Schrag, and G. Wachutka, “Experimental analysis and modeling of the

mechanical impact during the dynamic pull-in of rf-mems switches,” in Advanced Semiconductor De-

vices Microsystems (ASDAM), 2010 8th International Conference on, pp. 267–270, Oct 2010.

[134] W. Bedyk, M. Niessner, G. Schrag, G. Wachutka, B. Margesin, and A. Faes, “Automated Extraction of

Multi-Energy Domain Reduced-Order Models Demonstrated on Capacitive MEMS Microphones,” in

Solid-State Sensors, Actuators andMicrosystems Conference, 2007. TRANSDUCERS 2007. International,

pp. 1263–1266, June 2007.

[135] A. Parent, A. Krust, G. Lorenz, I. Favorskiy, and T. Piirainen, “Efficient Nonlinear Simulink Models

of MEMS Gyroscopes Generated with a NovelModel Order Reduction Method,” in Solid-State Sensors,

Actuators and Microsystems (TRANSDUCERS), 2015 Transducers - 2015 18th International Conference

on, pp. 2184–2187, June 2015.

[136] B. Bailey, G. Martin, and A. Piziali, ESL design and verification: a prescription for electronic system-

level methodology. The Morgan Kaufmann series in systems on silicon, Morgan Kaufmann, 2007.

[137] S. Liao, S. Tjiang, and R. Gupta, “An efficient implementation of reactivity for modeling hardware

in the scenic design environment,” in Design Automation Conference, 1997. Proceedings of the 34th,

pp. 70–75, June 1997.

[138] Accelera Systems Initiative. http://www.accellera.org.

[139] G. Arnout, “SystemCStandard,” inDesign AutomationConference, 2000. Proceedings of the ASP-DAC

2000. Asia and South Pacific, pp. 573–577, June 2000.

[140] S. Liao, “Towards a new standard for system-level design,” in Hardware/Software Codesign, 2000.

CODES 2000. Proceedings of the Eighth International Workshop on, pp. 2–6, May 2000.

[141] P. Panda, “SystemC - a modeling platform supporting multiple design abstractions,” in System Syn-

thesis, 2001. Proceedings. The 14th International Symposium on, pp. 75–80, 2001.

[142] H. D. Patel and S. K. Shukla, SystemC Kernel Extensions for Heterogeneous SystemModeling. Kluwer

Academic Publishers, 2004.

http://www.accellera.org

114 BIBLIOGRAPHY

[143] K. Einwich, P. Schwarz, C. Grimm, and C.Meise, “SystemC-AMS: Rationales, State of the Art, and Ex-

amples,” inSystemCMethodologies andApplications (W.Müller,W.Rosenstiel, and J. Ruf, eds.), pp. 273–

297, Springer, 2004.

[144] M.Mefenza, F. Yonga, and C. Bobda, “Automatic UVMEnvironment Generation for Assertion-Based

and Functional Verification of SystemC Designs,” in Microprocessor Test and Verification Workshop

(MTV), 2014 15th International, pp. 16–21, Dec 2014.

[145] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC. Springer US, 2002.

[146] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli,

“Metropolis: an integrated electronic system design environment,” Computer, vol. 36, pp. 45–52, April

2003.

[147] E. Lee, “Heterogeneous actor modeling,” in Embedded Software (EMSOFT), 2011 Proceedings of the

International Conference on, pp. 3–12, Oct 2011.

[148] P. Herber, A Framework for Automated HW/SW Co-Verification of SystemC Designs using Timed Au-

tomata. PhD thesis, TU Berlin, 2010.

[149] W. Müller, W. Rosenstiel, and J. Ruf, SystemC: methodologies and applications. Kluwer Academic

Publishers, 2003.

[150] A. Vachoux, C. Grimm, and K. Einwich, “Towards Analog and Mixed-Signal SOC Design with

SystemC-AMS,” in 2004 IEEE International Field-Programmable Technology, 2004. Proceedings. Con-

ference on, pp. 0–5, 2004.

[151] P. a. Hartmann, P. Reinkemeier, A. Rettberg, and W. Nebel, “Modelling control systems in SystemC

AMS - Benefits and limitations,” 2009 IEEE International SOC Conference (SOCC), pp. 263–266, Sept.

2009.

[152] SystemC AMS extensions User’s Guide. OSCI, 2010.

[153] L. Scheffer, L. Lavagno, and G. Martin, Electronic Design Automation for Integrated Circuits Hand-

book, vol. EDA for IC SystemDesign and Testing. Taylor & Francis/CRC Press, 2006.

[154] M. Barnasconi, K. Einwich, C. Grimm, T. Mähne, and A. Vachoux, “Advancing the SystemC Analog /

Mixed-Signal (AMS) Extensions Introducing Dynamic Timed Data Flow,” tech. rep., 2011.

[155] C. Reuther and K. Einwich, “A SystemC AMS Extension for Controlled Modules and Dynamic Step

Sizes,” in FDL 2012 Forum on Specification and Design Languages, pp. 90–97, 2012.

[156] R. L. Burden and J. D. Faires, Numerical analysis. Brooks/Cole, 9th ed., 2011.

[157] E. Yip, “A Note on the Stability of Solving a Rank-p Modification of a Linear System by the Sherman-

Morrison-Woodbury Formula,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 2,

pp. 507–513, 1986.

[158] F. N. Najm, Circuit simulation. Wiley, 2010.

[159] L. Andrade, T. Mähne, A. Vachoux, C. Ben Aoun, F. Pecheux, and M.-M. Louerat, “Pre-simulation

symbolic analysis of synchronization issues between discrete event and timed data flow models of

computation,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2015, pp. 1671–

1676, March 2015.

BIBLIOGRAPHY 115

[160] L. Andrade, Principles and Implementation of a Generic Synchronization Interface between SystemC

AMSModels of Computation for the Virtual Prototyping ofMulti-Disciplinary Systems. PhD thesis, Uni-

versité Pierre & Marie Curie.

[161] F. Madlener, H. G. Molter, and S. A. Huss, “SC-DEVS: An efficient SystemC extension for the DEVS

model of computation,” in Design, Automation Test in Europe Conference Exhibition, 2009. DATE ’09.,

pp. 1518–1523, April 2009.

[162] F. E. Cellier and E. Kofman, Continuous System Simulation. Springer, 2006.

[163] H. Al-Junaid and T. Kazmierski, “Analogue and mixed-signal extension to systemc,” IEE Proceedings

- Circuits, Devices and Systems, vol. 152, pp. 682–690, Dec 2005.

[164] C. Zhao and T. J. Kazmierski, “An extension to systemc-a to support mixed-technology systems with

distributed components,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2011,

pp. 1–6, March 2011.

[165] C. Zhao and T. Kazmierski, “Systemc-amodelling of mixed-technology systems with distributed be-

haviour,” in Specification Design Languages (FDL 2010), 2010 Forum on, pp. 1–6, Sept 2010.

[166] T. Mähne, Efficient Modelling and Simulation Methodology for the Design of Heterogeneous Mixed-

Signal Systems on Chip. PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), 2011.

[167] F. Cenni, O. Guillaume, M. Diaz-Nava, and T. Mähne, “SystemC-AMS/MDVP-based modeling for

the virtual prototyping of MEMS applications,” in Design, Test, Integration and Packaging of MEMS/-

MOEMS (DTIP), 2015 Symposium on, pp. 1–6, April 2015.

[168] F. Herrera and E. Villar, “A framework for embedded system specification under different models of

computation in systemc,” in Proceedings of the 43rd Annual Design Automation Conference, DAC ’06,

pp. 911–914, ACM, 2006.

[169] F. Herrera, E. Villar, C. Grimm, M. Damm, and J. Haase, Embedded Systems Specification and De-

sign Languages: Selected contributions from FDL’07, ch. Heterogeneous Specification with HetSC and

SystemC-AMS:Widening the Support of MoCs in SystemC, pp. 107–121. Springer Netherlands, 2008.

[170] A. Antoniou,Digital Signal Processing. Mc Graw Hill, 2006.

[171] Norman S. Nise, Control Systems Engineering. Wiley, 6th ed., 2011.

[172] F. Paugnat, L. Fesquet, and K. Morin-Allory, “Model of a Simple yet effective Operational Amplifier

- A Generic Model Managing the Nonlinearities with No Topological Assumptions,” in SMACD 2012,

pp. 165–168, 2012.

[173] E. Markert, M. Dienel, G. Herrmann, and U. Heinkel, “SystemC-AMS Assisted Design of an Inertial

Navigation System,” IEEE Sensors Journal, vol. 7, pp. 770–777, May 2007.

[174] S. Adhikari and C. Grimm, “Modeling Switched Capacitor Sigma Delta Modulator Nonidealities in

SystemC-AMS,” FDL 2010, pp. 14–16, 2009.

[175] A. Schroth, T. Blochwitz, and G. Gerlach, “Simulation of a complex sensor system using coupled

simulation programs,” Sensors and Actuators A: Physical, vol. 54, no. 1–3, pp. 632 – 635, 1996.

[176] B. Tutuianu, D. Lehther, M. Pandey, and R. Baldick, ch. Efficient RLC Macromodels for Digital IC

Interconnect, pp. 293–304. Springer US, 2000.

116 BIBLIOGRAPHY

[177] S. Senturia, N. Aluru, and J.White, “Simulating theBehavior ofMEMSDevices,” IEEE Computational

Science and Engineering, pp. 30–43, 1997.

[178] W. Borutzky,Bond GraphMethodology: Development and Analysis ofMultidisciplinary Dynamic Sys-

temModels. Springer-Verlag, 2010.

[179] H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: I. Lumped-

parameter systems,” Journal of Micromechanics andMicroengineering, vol. 6, no. 1, p. 157, 1996.

[180] H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: II.

Distributed-parameter systems,” Journal ofMicromechanics andMicroengineering, vol. 7, no. 4, p. 285,

1997.

[181] ch. Lumped-element System Dynamics, pp. 149–180. Springer US, 2001.

[182] B. F. Romanowicz, M. H. Zaman, S. F. Bart, V. L. Rabinovich, I. Tchertkov, C. Hsu, and J. R. Gilbert,

ch. AMethodology and Associated CADTools for Support of Concurrent Design ofMEMS, pp. 636–648.

Springer US, 2000.

[183] P. Breedveld, Bond Graph Modelling of Engineering Systems: Theory, Applications and Software Sup-

port. Springer, 2011.

[184] Y. Liu, F. Bao, and Q. Cai, “Research on Bond Graph Simulation for Dynamic Performance Analysis

of MEMS,” in Intelligent Computation Technology and Automation (ICICTA), 2010 International Con-

ference on, vol. 2, pp. 1106–1109, May 2010.

[185] K. Popovici and P. J. Mosterman, Real-time simulation technologies: principles, methodologies, and

applications. CRC Press, 2012.

[186] G.-R. Duan, Analysis and Design of Descriptor Linear Systems, vol. 23 of Advances in Mechanics and

Mathematics. Springer New York, 2010.

[187] K. Ogata,Modern control engineering. Prentice-Hall electrical engineering series. Instrumentation

and controls series, Prentice-Hall, 5th ed ed., 2010.

[188] P. H. Lewis and R. Kernan, Basic Control Systems Engineering. Prentice Hall, 1997.

[189] O. Brand and G. K. Fedder, eds.,CMOS-MEMS. No. 2 in Advancedmicro & nanosystems, Wiley-VCH,

2005.

[190] F. Ayazi, M. F. Zaman, and A. Sharma, “Vibrating gyroscopes,” in Comprehensive Microsystems (Y. B.

G. T. Zappe, ed.), pp. 181 – 208, Elsevier, 2008.

[191] H. Cao andH. Li, “Investigation of a vacuumpackagedMEMS gyroscope architecture's temperature

robustness,” International Journal of Applied Electromagnetics and Mechanics, vol. 41, no. 4, pp. 495–

506, 2013.

[192] D. Vink, Aspect of Bond Graph Modeling in Control. PhD thesis, University of Glasgow, 2005.

[193] Eigen, C++ template library for linear algebra. http://eigen.tuxfamily.org. version 3.2.4.

[194] M. Egretzberger, F. Mair, and A. Kugi, “Model-based control concepts for vibratory {MEMS} gyro-

scopes,” Mechatronics, vol. 22, no. 3, pp. 241 – 250, 2012. Special Issue on Mechatronic Systems for

Micro- and Nanoscale Applications.

http://eigen.tuxfamily.org

BIBLIOGRAPHY 117

[195] S. Das,Mechatronic Modeling and Simulation Using Bond Graphs. CRC Press, 2009.

[196] B. Vernay, A. Krust, T.Mähne, G. Schröpfer, F. Pêcheux, andM.M. Louërat, “A novelmethodofMEMS

system-level modeling via multi-domain virtual prototyping in SystemC-AMS,” in Proceedings of the

EDAA/ACM SIGDA PhD Forum at DATE, March 2014.

[197] B. Vernay, A. Krust, G. Schröpfer, F. Pecheux, andM.-M. Louerat, “SystemC-AMSsimulation of a biax-

ial accelerometer based onMEMS model order reduction,” in Design, Test, Integration and Packaging

of MEMS/MOEMS (DTIP), 2015 Symposium on, pp. 1–6, Apr. 2015.

[198] D. Amsallem and C. Farhat, “On the stability of projection-based linear reduced-order models: De-

scriptor vs non-descriptor forms,” ArXiv e-prints, Sept. 2012.

[199] A. Tocchio, C. Comi, G. Langfelder, A. Corigliano, and A. Longoni, “Enhancing the Linear Range of

MEMS Resonators for Sensing Applications,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3202–3210, 2011.

[200] C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A new biaxial silicon

resonant micro accelerometer,” inMicro Electro Mechanical Systems (MEMS), 2011 IEEE 24th Interna-

tional Conference on, pp. 529–532, Jan 2011.

[201] A. Caspani, C. Comi, A. Corigliano, G. Langfelder, and A. Tocchio, “Compact biaxial micromachined

resonant accelerometer,” Journal of Micromechanics and Microengineering, vol. 23, p. 105012, Oct.

2013.

[202] D. F. Rossi, W. G. Ferreira, W. J. Mansur, and A. F. G. Calenzani, “A review of automatic time-stepping

strategies on numerical time integration for structural dynamics analysis,” Engineering Structures,

vol. 80, pp. 118–136, Dec. 2014.

[203] M. Reddy, API design for C++. Morgan Kaufmann, 2011.

[204] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern Oriented Software Archi-

tecture - A System of Patterns, vol. 1. Wiley, 2001.

[205] M. Richards, Software Architecture Patterns. O’Reilly Media, 2015.

[206] A. Ezust and P. Ezust, An Introduction to Design Patterns in C++ with Qt 4. Prentice Hall, 2007.

[207] H. Sutter and A. Alexandrescu, C++ coding standards: 101 rules, guidelines, and best practices.

Addison-Wesley, 2005.

[208] G. Booch, R. A.Maksimchuk,M.W. Engle, B. J. Young, J. Conallen, andK. A.Houston,Object-Oriented

Analysis and Design with Applications, vol. 40. Addison-Wesley, 3rd ed., Mar. 2001.

[209] R.Görgen, P. A.Hartmann, andW.Nebel, “AutomatedSystemCModel InstantiationwithmodernC++

Features and sc_vector,” in Proceedings of DVCon Europe 2015, Accellera Systems Initiative, 11 2015.

[210] A. Quarteroni, R. Sacco, and F. Saleri,Numerical Mathematics. Springer, 2000.

[211] B.McNamara and Y. Smaragdakis, “Functional programming inC++,”ACMSIGPLANNotices, vol. 35,

no. 9, pp. 118–129, 2000.

[212] T. Mähne and A. Vachoux, “Supporting dimensional analysis in SystemC-AMS,” in Behavioral Mod-

eling and Simulation Workshop, 2009. BMAS 2009. IEEE, pp. 108–113, Sept 2009.

[213] Boost library. http://www.boost.org/. version 1.59.0.

http://www.boost.org/

118 BIBLIOGRAPHY

[214] K. Janschek and K. Richmond,Mechatronic Systems Design: Methods, Models, Concepts, ch. Simula-

tion Issues, pp. 171–210. Springer Verlag, 2012.

[215] N.Bombieri,D.Drogoudis,G.Gangemi, R.Gillon, E.Macii,M.Poncino, S. Rinaudo, F. Stefanni,D. Tra-

chanis, andM. van Helvoort, “SMAC: Smart Systems Co-design,” inDigital System Design (DSD), 2013

Euromicro Conference on, pp. 253–259, Sept 2013.

[216] R. Gillon, G. Gangemi, M. Grosso, F. Fummi, and M. Poncino, “Multi-domain simulation as a foun-

dation for the engineering of smart systems: Challenges and the smac vision,” in Electronics, Circuits

and Systems (ICECS), 2014 21st IEEE International Conference on, pp. 858–861, Dec 2014.

[217] M.Grosso,G.Gangemi, S. Rinaudo, F. Cenni,M. Crepaldi, A. Sanginario, andD.Demarchi, “Enabling

smart system design with the smac platform,” in Design, Test, Integration and Packaging of MEMS/-

MOEMS (DTIP), 2015 Symposium on, pp. 1–6, April 2015.

[218] G. Schröpfer, G. Lorenz, A. Krust, B. Vernay, S. Breit, A. Mehdaoui, and A. Sanginario, “MEMS

System-Level Modeling and Simulation in Smart Systems,” in Smart Systems Integration and Simula-

tion (N. Bombieri,M. Poncino, and G. Pravadelli, eds.), pp. 145–168, Springer International Publishing,

2016.

[219] S. Vinco,M. Lora, andM. Zwolinski, “Conservativebehaviouralmodelling in SystemC-AMS,” in Spec-

ification and Design Languages (FDL), 2015 Forum on, pp. 1–8, IEEE, 2015.

[220] A. Corigliano, B.D.Masi, A. Frangi, C. Comi, A. Villa, andM.Marchi, “Mechanical characterization of

polysilicon through on-chip tensile tests,” Journal of Microelectromechanical Systems, vol. 13, pp. 200–

219, April 2004.

[221] P. Sehnalova, “Stability and Convergence of Numerical Computations,” Information Sciences and

Technologies Bulletin of the ACM Slovakia, vol. 3, no. 3, pp. 26–35, 2011.

[222] V. Sanz, A.Urquia, F. E. Cellier, and S.Dormido, “Systemmodelingusing the Parallel DEVS formalism

and the Modelica language,” Simulation Modelling Practice and Theory, vol. 18, no. 7, pp. 998 – 1018,

2010.

[223] B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, vol. 52,

pp. 145–197. JohnWiley & Sons, 1965.

[224] J. He, “Equivalent theorem of Hellinger-Reissner and Hu-Washizu variational principles,” Journal of

Shanghai University (English Edition), vol. 1, no. 1, pp. 36–41, 1997.

Appendices

Appendix A

Functionals of coupled electromechanical systems

Let the mechanical and electric domains be symbolized by Ωm and Ωe (Fig. A.1). They are delimited by

boundaries respectively denoted by δΩm = Γs ∪ Γt and δΩe = Γe ∪ Γd. We define S as the mechanical

strain tensor , T as the mechanical stress tensor, E as the electric field, and D as the electric displacement.

The constitutive equations define the material response in terms of displacement, i.e., strains, to applied

forces or fields as follows:

T = H S and D = ε E , (A.1)

where H is the stiffness matrix (Hooke’s law) and ε is the permittivity matrix.

The compatibility equations ensure the continuity of the displacement field. By analogy, in electrostatics,

Faraday’s law is applied toobtain the electric potential, i.e.,∇×E = 0 inΩe. The equations are summarized

below:







S = ∇su in Ωm

u = u on Γs

and







E = −∇φ in Ωe

φ = φ on Γe

, (A.2)

where u and φ are, respectively, the mechanical displacement vector and the electric scalar potential (the

prescribed values are over-lined). The operator ∇ is the gradient operator. ∇s is the matrix operator for

mechanics.

Γt

Γt

Γs

Ωm

δΩm

t = 0

b

t

ns

Γd

Γd

Γe

Ωe

δΩe

d = 0

ρ

d

n

Fig. A.1: Domain definition for the mechanical and the electrostatic problems.

121

122 A Functionals of coupled electromechanical systems

The equilibrium equations characterize the continuity of displacement field regarding external imposed

forces or fields. The term equilibrium is extensively applied to electrostatics and refers to the Gauss’s law,

second term in (A.3). The equations for both domains are defined as follows:







∇s · T = f in Ωm

ns · T = t on Γt

and







∇ · D = ρ in Ωe

n · D = d on Γd

, (A.3)

where f and ρ are respectively prescribed body forces and charge densities, t and d are imposed surface

tensions and normal electric displacement, n and ns denote the normal vectors to boundary.

Energy functionals are commonly employed to solve the previous boundary value problems. To this aim,

the principle of virtual work W̃ is applied as as a direct consequence of the fundamental theorem of the

calculus of variations as depicted below:

W̃ =
∫

Ω
f · ũ dΩ +

∫

Γ
t · ũ dΓ , (A.4)

where the virtual displacements ũ are the values of the corresponding field either inside the body, i.e. the

first term, or on the surface of the body, i.e., the second term.

In addition, the corollary of Vainsberg's theorem, also known as the energy extremumprinciple, states that

if an energy principle exists for a certaindifferential equation, thenone canfind the energy functional from

the associated virtual-work functional [83]. Therefore, energy principles can be formed with functionals

that consider not only the displacement, but also the stress or strain field as the independent function.

Thepreviousvariationalprinciple yieldsa reference3-field functional initiallydefinedbyFraeijsdeVeubeke

[223] and extended by theHu-Washizu energy functional [224]. As depicted in (A.1), the constitutive equa-

tions relate strain field to stress field in both domains. By merging these equations in Hu-Washizu energy

functional, Hellinger-Reisner variational principle [224] defines a 2-field energy functional that considers

only the stress and displacement fields. Single field functionals are finally obtained by merging either the

compatibility (A.2) or the equilibrium (A.3) equations in the Hellinger-Reisner energy functional.

These complementary approaches define respectively primal and dual energy functionals that are neces-

sary to estimate the total energy of the system.On the one hand, theprimal energy functionals,Fm andFe,

are respectively function of the mechanical displacement vector and the electric scalar potential directly

issued from the compatibility equations (A.2). They define the kinematic behavior of the systemas they are

basedon the strain field.On the other hand, thedual energy functionals, i.e. F̃m and F̃e, are focused on the

static definition of the system. They indeed refer to the stress field, as given in the equilibrium equations.

The definition of these functionals is summarized in Figure A.2.

A Functionals of coupled electromechanical systems 123

F
HW
m (u, T, S) =

∫

Ωm

(

Wm(S)− T · (S −∇su) − f · u
)

dΩ −
∫

Γt

t · u dΓ −
∫

Γs

(u − u) · ns · T dΓ

F
HW
e (φ, D, E) =

∫

Ωe

(

We(E)− D · (E −∇φ)− ρ φ
)

dΩ −
∫

Γe

d φ dΓ −
∫

Γd

(
φ − φ

)
· n · D dΓ

with strain-energy functions defined byWm(S) = 1/2 S · HS and We(D) = 1/2 E · εE.

F
HR
m (u, T) =

∫

Ωm

(

− W̃m(T) + T · ∇su − f · u
)

dΩ −
∫

Γt

t · udΓ −
∫

Γs

(u − u) · nsT dΓ

F
HR
e (φ, D) =

∫

Ωe

(

− W̃e(D)− D · ∇φ − ρ φ
)

dΩ −
∫

Γe

d φ dΓ −
∫

Γd

(
φ − φ

)
· n · D dΓ

with W̃m(T) = T · S − Wm(S) = 1/2 T · H−1T and W̃e(D) = D · E −We(E) = 1/2D · ε−1D.

Fm(u) =
∫

Ωm

Wm(∇su)dΩ

︸ ︷︷ ︸

W int
m

−
(∫

Ωm

f · u dΩ +
∫

Γt

t · u dΓ

)

︸ ︷︷ ︸

Wext
m

Fe(φ) = −
∫

Ωe

We(∇φ)dΩ

︸ ︷︷ ︸

W int
e

−
(∫

Ωe

ρ φ dΩ +
∫

Γd

d φ dΓ

)

︸ ︷︷ ︸

Wext
e

F̃m(T) =
∫

Ωm

W̃m(T)dΩ

︸ ︷︷ ︸

W̃ int
m

−
∫

Γs

u ·
(
ns · T

)
dΓ

︸ ︷︷ ︸

W̃ext
m

F̃e(D) = −
∫

Ωe

W̃e(D)dΩ

︸ ︷︷ ︸

W̃ int
e

+
∫

Γe

φ
(
n · D

)
dΓ

︸ ︷︷ ︸

W̃ext
e

W = W int −Wext

Coupled energy problem
Primal/Primal approach [85]

Primal 1-field functional
Imposing the compatibility equation (A.2)

2-field functional
Hellinger-Reisner variational principle [224]
Imposing the constitutive equation (A.1)

Dual 1-field functional
Imposing the equilibrium equation (A.3)

3-field functional
Hu-Washizu energy functional [224]

with W int = W int
m −W int

e =
∫

Ω

(
Wm(∇su)−We(∇φ)

)
dΩ =

∫

Ω

(
1/2(∇su) · H(∇su)− 1/2(∇φ) · ε(∇φ)

)
dΩ,

and Wext = Wext
m − Wext

e =
∫

Ω

(
f · u − ρ · φ

)
dΩ −

∫

Γd

dφdΓ +
∫

Γt

t · udΩ.

Fig. A.2: Definition of the primal and dual energy functionals based on the successive application of gov-
erning equations and boundary conditions in bothmechanical (m) and electrostatic (e) domains. The elec-
tromechanical coupling is defined through energy density combining each contribution [85].

Appendix B

MEMS+model definition

MEMS+ models are created in specific modeling and simulation plugins, directly inspired from the ma-

nufacturing and design of MEMS devices. These steps successively define the material properties (Figure

B.1), the layered process (Figure B.2), the elementary components (Figure B.3) and the 3-D design of the

device (Figure B.4).Moreover,MEMS+ allows static simulations likeDCormodal analyses in order to verify

the behavioral definition of the device (Figure B.5). Each plugin has a specific interface in which the user

can define the properties and elements of themodel. The system-levelmodels are built upon the standard

component library and the user'predefined components. Additional information on the environment like

the temperature or pressure are required to provide consistent simulation results.

We illustrate below the use of the differentMEMS+ plugins with the accelerometer LIS332AR used in Sec-

tion 4.2 and defined in [201]. This reference provides information about the process specification, here

the THELMA® process developed by ST Microelectronics. The geometry definition is also described by a

microscope scan and a 3-D view of a first model defined in Comsol. Moreover, the inertial description as

well as the definition of the driving and sensing modes are provided. We can finally compare our model

to the reference one through analyses directly run inMEMS+, e.g., DC or AC analyses, and thus verify the

expectedmodal response in terms of frequency and quality factors.

Fig. B.1: The material database stores information characterizing the different materials used during the
process (density, inertia, crystal orientation, thermal or electrical conductivity. . .).

125

126 B MEMS+model definition

Fig. B.2: Each layer is described in the process editor by its thickness and the associated material.

Fig. B.3: The component library regroups the standard or user-defined elements used to design novel de-
vices. These components are fully configurable and associated to specific geometry and material proper-
ties.

B MEMS+model definition 127

Fig. B.4: The main interface consist in a 3-D view where the user can assemble multiple elements in order
to create the device geometrically. Here themovable plate is selected in the component list on the left and
highlighted in the 3-D view.

Fig. B.5: Different analyses (DC, DC Sweep, AC. . .) or exports (Matlab, Verilog-A. . .) can be performed from
theSimulatorpluginand the results canbedisplayed inadditionalwindows likehere for themodal analysis
of the accelerometer LIS332AR.

Appendix C

Modeling procedures

The reduced models inMEMS+ start from a system like (4.11) to which nonlinear force terms are added.

We detail hereafter the MOR implemented independently from this work and developed in parallel to the

API. This section is directly adapted from [218].

Reductionmatrix

Definition

The accuracy and stability of the reduced systemgreatly depends on the choice of thematrixV. Themodal

superpositionmethod [81] ensures that certain eigenvalues of the systemare preserved and stability of the

reduced linear model is ensured, as long as the full model is stable. A vector x can be decomposed into:

x =
n

∑
i

φixi (C.1)

where the φi ∈ C
n are the eigenvectors of the system.

Suppose, for simplicity, that we are interested only in the first two modes. Each mode has a real part R

and an imaginary partI . The columns of thematrixV are thenR(φ1),I (φ1),R(φ2),I (φ2). For accuracy

reasons, we also want to make sure that the linearization point x0 belongs to the space spanned by the

columns ofV by simply including x0 as a new column of V. Doing so, we can no longer guarantee stability

of the system. It is however possible to preserve the block structure of the mechanical part of the system

with a simple modification of V. The full matrices A and E have the structure:

A =






K D ⋆

0 I ⋆

⋆ ⋆ ⋆




 and E =






0 M ⋆

I 0 ⋆

⋆ ⋆ ⋆




 (C.2)

withK, M, and D the stiffness, mass, and dampingmatrices. The stars ⋆ represent the electrical part of the

system. The corresponding state vector can be written as:

x =






xp

xv

xe




 (C.3)

where xp contains the displacement DoFs, xv the velocity DoFs, and xe the electrical DoFs. As the dimen-

sion of xe is very small (only a few DoFs), we only need to reduce xp and xv.

129

130 C Modeling procedures

In the same fashion, we defineVp as the first rows of the original matrixV. We ensure thatVpT
Vp = Iwith

a Singular Value Decomposition (SVD) on Vp. Consider the following reduction matrix:

V =






Vp 0 0

0 Vp 0

0 0 I




 . (C.4)

This preserves the original block structure of A and E:

Ã =






K̃ D̃ ⋆

0 I ⋆

⋆ ⋆ ⋆




 and E =






0 M̃ ⋆

I 0 ⋆

⋆ ⋆ ⋆




 (C.5)

with K̃ = VpT
DVp and M̃ = VpT

MV−p. The stars ⋆ are reduced as well. Compared to other methods, the

chosen reductionmatrix is expensive as it has twice asmany columns, leading to twice asmany unknowns

in the reduced model. However, the gain in stability proved to justify the extra computational cost.

Higher-order terms

A wide range of methods can be applied to reduce a full model to a linear model and this field of research

is now quite mature. However, a certain number of physical behaviors are nonlinear and cannot be recov-

ered by such a simple model. For example, the electrostatic force is known to be quadratic with respect

to voltage. Other examples are the rotating inertial forces (e.g., the Coriolis force), which a linear model

cannot represent. Accurately modeling these nonlinearities in a ROM is a challenging task.

Interpolation between different linear models can be used to recover nonlinearities that are added to the

reducedmodel, especially the electrostatic softening effect. This approach, although very accurate, tends

to create very large models especially if multiple electrodes are involved [79]. A well-known application of

interpolation is the TPWLmethod [75], which is quite successful at recovering mechanical nonlinearities

of theMEMS structure. Another approach is to add polynomial terms in an analytical or a semi-analytical

manner. Both approaches can successfully be mixed into a single reduced-order model [135].

System dynamics

Electrostatic forces

The input vector u can be decomposed into the voltage inputs ue and all other inputs u∗. For a gyroscope,

u∗ ∈ R
3 notably contains the angular rates. Decomposing the matrix B̃ accordingly yields B̃u = B̃eue +

B̃∗u∗. Electrostatic forces are known to be quadratic terms with respect to voltage and can be written as:

Fe(x, ue) =







uT
e C1(x)ue

...

uT
e Cn(x)ue







. (C.6)

C Modeling procedures 131

where C1, . . . , Cn are the corresponding capacitance matrices. The dependence of these matrices with re-

spect to displacement is nontrivial and needs to be approximated in a reduced model. In a first approxi-

mation, these matrices can be considered to be constant. This assumption removes cross terms between

displacement and voltage which are known to cause the electrostatic softening effect.

In order to accurately recover electrostatic softening terms at a lower cost, i.e., without interpolation, we

consider the matrices Ci to depend linearly on displacement. They are computed by finite differentiation

of Ã and B̃. With C̃i(x̃) = Ci(Vx̃), the electrostatic force term is reduced to:

VTFe(x̃, ue) =







uT
e C̃1(x̃)ue

...

uT
e C̃n(x̃)ue







. (C.7)

The model should no longer contain terms linear with respect to voltage. We also need to remove these

terms from thematrix B̃, which corresponds to removing B̃eue. The resulting system of the reducedmodel

is now:

Ẽ
.

x̃ = Ãx̃ + B̃∗u∗ + F̃e(x̃, ue) + r̃, (C.8)

This is enough to ensure that the first derivative with respect to displacement is exact at the point of ex-

traction, yielding a correct softening.

Mechanical forces

The mechanical nonlinearity of the device behavior is mostly related to three inertial rotating fictitious

forces to consider, i.e., the centrifugal force Fcentri f ugal, the Coriolis force FCoriolis and the Euler force FEuler,

that are given by:

FCentri f ugal = − m Ω × (Ω × r), (C.9)

FCoriolis = − 2m Ω × ṙ, (C.10)

FEuler = − m
dΩ

dt
× r, (C.11)

where r ∈ R
3 is the distance to the center of rotation and Ω ∈ R

3 the angular velocity of the reference

frame. Let Finertial = FCentri f ugal + FCoriolis + FEuler and note that r and ṙ can be expressed in terms of x. This

inertial term can be analytically preserved and reduced to:

F̃intertial(x̃) = VTFinertial(Vx̃). (C.12)

FCoriolis

FEuler
FCentri f ugal

Ω

Center of

rotation

r

Fig. C.1: Mechanical forces acting on rotating device.

Appendix D

Source code - Gyroscope

Listing D.1: Gyroscope TDFModule Definition

1 #include <systemc-ams>

2 #include <systemc>

3 #include <Eigen/Dense>

4

5 #ifndef GYROSCOPIC_SENSOR_TDF_H_

6 #define GYROSCOPIC_SENSOR_TDF_H_

7

8 class GyroscopicSensor : public sca_tdf:: sca_module

9 {

10 public:

11 // Coefficients

12 double m_;

13 double k1_, k2_, b1_, b2_; //stiffness (k1, k2), damping (b1, b2)

14

15 // Ports definition

16 sca_tdf:: sca_in<double> forceAppliedX;

17 sca_tdf:: sca_in<double> forceSensingY;

18 sca_tdf:: sca_in<double> angularRotationVelocity;

19 sca_tdf:: sca_out<double> displacementX;

20 sca_tdf:: sca_out<double> displacementY;

21

22 // Constructor

23 GyroscopicSensor(sc_core::sc_module_name);

24

25 virtual ~GyroscopicSensor();

26

27 void writeEigen2Sca(Eigen::MatrixXd & mRef, sca_util:: sca_matrix<double> & m);

28 void writeEigen2Sca(Eigen::VectorXd & vRef, sca_util:: sca_vector<double> & v);

29

30 void writeSca2Eigen(sca_util:: sca_matrix<double> & mRef, Eigen::MatrixXd & m);

31 void writeSca2Eigen(sca_util:: sca_vector<double> & vRef, Eigen::VectorXd & v);

32

33 Eigen::VectorXd initializeDC();

34 Eigen::VectorXd initializeAC();

35

36 protected:

37 // SystemC-AMS internal methods

38 //void set_attributes() {}

39 //void initialize() {}

40 void processing();

41

42 private:

43 // Time-step defintion

44 sca_core::sca_time tStep_;

45

46 // State Space Representation

47 sca_tdf::sca_ss stateSpace_;

48 sca_util:: sca_matrix<double> a_;

49 sca_util:: sca_matrix<double> b_;

50 sca_util:: sca_matrix<double> c_;

51 sca_util:: sca_matrix<double> d_;

133

134 D Source code - Gyroscope

52

53 // Vectors

54 sca_util:: sca_vector<double> x_;

55 sca_util:: sca_vector<double> y_;

56 sca_util:: sca_vector<double> u_;

57 double omega_;

58 bool first_call_;

59 };

60

61 #endif /* GYROSCOPIC_SENSOR_TDF_H_ */

Listing D.2: Gyroscope TDFModule Declaration

1 #include "gyroscopic_sensor_tdf.h"

2

3 GyroscopicSensor::GyroscopicSensor(sc_core::sc_module_name)

4 : m_(9.425E-10), k1_(0.00025), k2_(0.00025), b1_(0.0), b2_(3480.0), //damping effect with b2: 3480.0

5 forceAppliedX("AppliedForceX"), forceSensingY("SensingForceY"), angularRotationVelocity("

AngularRotationVelocity"),

6 displacementX("DisplacementX"), displacementY("DisplacementY"),

7 tStep_(sca_core::sca_time(10.0, sc_core::SC_US)),

8 //a_(Eigen::MatrixXd::Zero(4,4)), b_(Eigen::MatrixXd::Zero(4,2)), c_(Eigen::MatrixXd::Zero(2,4)), d_(

Eigen::MatrixXd::Zero(2,2)),

9 x_(4), y_(2), u_(2), omega_(0.0),

10 first_call_(true)

11 {

12 /// State-space representation

13 /// Xdot = A.X + B.U

14 /// Y = C.X + D.U

15 ///---

16 /// X = (x, xDot, y, yDot)

17 /// U = (0, Fx_driving, 0, Fy_sensing)

18 /// Y = (xDot, yDot)

19 ///---

20

21 a_.resize(4, 4);

22 a_(0, 0) = 0.0; a_(0, 1) = 1.0; a_(0, 2) = 0.0; a_(0, 3) = 0.0;

23 a_(1, 0) = -k1_/m_; a_(1, 1) = -b1_/m_; a_(1, 2) = 0.0; a_(1, 3) = 2*omega_;

24 a_(2, 0) = 0.0; a_(2, 1) = 0.0; a_(2, 2) = 0.0; a_(2, 3) = 1.0;

25 a_(3, 0) = 0.0; a_(3, 1) = -2*omega_; a_(3, 2) = -k2_/m_; a_(3, 3) = -b2_/m_;

26

27 b_.resize(4, 2);

28 b_(0, 0) = 0.0; b_(0, 1) = 0.0;

29 b_(1, 0) = 1.0/m_; b_(1, 1) = 0.0;

30 b_(2, 0) = 0.0; b_(2, 1) = 0.0;

31 b_(3, 0) = 0.0; b_(3, 1) = 1.0/m_;

32

33 c_.resize(2, 4);

34 c_(0, 0) = 1.0; c_(0, 1) = 0.0; c_(0, 2) = 0.0; c_(0, 3) = 0.0;

35 c_(1, 0) = 0.0; c_(1, 1) = 0.0; c_(1, 2) = 1.0; c_(1, 3) = 0.0;

36

37 d_.resize(2, 2);

38 d_(0, 0) = 0.0; d_(0, 1) = 0.0;

39 d_(1, 0) = 0.0; d_(1, 1) = 0.0;

40

41 x_(0) = 0; x_(1) = 0; x_(2) = 0; x_(3) = 0;

42

43 u_(0) = 0; u_(1) = 0;

44

45 std::cout <<"\n\n" << this->kind() << " " << this->name() << " constructed" << std::endl;

46 }

47

48 GyroscopicSensor::~GyroscopicSensor()

49 {}

50

51 Eigen::VectorXd GyroscopicSensor::initializeDC() {

52 Eigen::MatrixXd a(4,4);

53 Eigen::MatrixXd b(4,2);

54

55 // DC Angular velocity

D Source code - Gyroscope 135

56 double omegaDC = 0.0; //angular velocity

57

58 // update coefficients in A-matrix

59 a_(1, 3) = 2*omegaDC;

60 a_(3, 1) = -2*omegaDC;

61 writeSca2Eigen(a_, a);

62 writeSca2Eigen(b_, b);

63

64 // DC Inputs

65 Eigen::VectorXd uDC(Eigen::VectorXd::Zero(2));

66 uDC(0) = 0.0; //forceAppliedX

67 uDC(1) = 0.0; //forceSensingY

68

69 // DC Analysis

70 return a.fullPivLu().solve((-1) * b * uDC);

71 }

72

73 Eigen::VectorXd GyroscopicSensor::initializeAC() {

74 Eigen::MatrixXd a(4,4);

75 Eigen::MatrixXd b(4,2);

76 Eigen::MatrixXd e = Eigen::MatrixXd::Identity(4,4);

77 Eigen::MatrixXd uAC(2,2);

78 Eigen::VectorXcd acInput(Eigen::VectorXcd::Zero(2));

79

80 // AC Angular velocity

81 double omegaAC { 1.0 };

82

83 // update coefficients in A-matrix

84 a_(1, 3) = 2* omegaAC;

85 a_(3, 1) = -2* omegaAC;

86 writeSca2Eigen(a_, a);

87 writeSca2Eigen(b_, b);

88

89 // AC Inputs

90 uAC(0,0) = 1.0; uAC(0,1) = 0.0; //forceAppliedX

91 uAC(1,0) = 0.0; uAC(1,1) = 0.0; //forceSensingY

92

93 // AC Analysis

94 // Calculation of the AC contribution to initial conditions

95 for (int i = 0; i < 2; i++) {

96 double phaseAC = uAC(i, 1) * M_PI / 180;

97 acInput(i) = uAC(i, 0) * std::complex<double>(cos(phaseAC), sin(phaseAC));

98 }

99

100 // Mode definition

101 double freq { 495.0 / (2.0 * M_PI) };

102 std::complex<double> s {};

103 s = std::complex<double>(0.0, 2.0 * M_PI * freq);

104

105 Eigen::MatrixXcd aComplex(a.cast<std::complex<double> >());

106 Eigen::MatrixXcd bComplex(b.cast<std::complex<double> >());

107 Eigen::MatrixXcd eComplex(e.cast<std::complex<double> >());

108 Eigen::MatrixXcd sEminusA(e.rows(), e.cols());

109 Eigen::VectorXcd rhsAC(2);

110 Eigen::VectorXcd xAC(2);

111

112 sEminusA = eComplex * s - aComplex;

113 rhsAC = bComplex * acInput;

114 xAC = sEminusA.fullPivLu().solve(rhsAC);

115

116 return xAC.imag();

117 }

118

119 void GyroscopicSensor::writeEigen2Sca(Eigen::MatrixXd & mRef, sca_util:: sca_matrix<double> & m) {

120 for (int i=0; i<mRef.rows(); ++i) {

121 for (int j=0; j<mRef.cols(); ++j) {

122 m(i,j) = mRef(i,j);

123 }

124 }

125 }

136 D Source code - Gyroscope

126

127 void GyroscopicSensor::writeEigen2Sca(Eigen::VectorXd & vRef, sca_util:: sca_vector<double> & v) {

128 for (int i=0; i<vRef.rows(); ++i) {

129 v(i) = vRef(i);

130 }

131 }

132

133 void GyroscopicSensor::writeSca2Eigen(sca_util:: sca_matrix<double> & mRef, Eigen::MatrixXd & m) {

134 for (std::size_t i=0; i<mRef.n_rows(); ++i) {

135 for (std::size_t j=0; j<mRef.n_cols(); ++j) {

136 m(i,j) = mRef(i,j);

137 }

138 }

139 }

140

141 void GyroscopicSensor::writeSca2Eigen(sca_util:: sca_vector<double> & vRef, Eigen::VectorXd & v) {

142 for (std::size_t i=0; i<vRef.length(); ++i) {

143 v(i) = vRef(i);

144 }

145 }

146

147 void GyroscopicSensor::processing() {

148 // Read sources actual value (update the Control Vector)

149 u_(0) = forceAppliedX.read();

150 u_(1) = forceSensingY.read();

151 omega_ = angularRotationVelocity.read();

152

153 a_(1, 3) = 2*omega_;

154 a_(3, 1) = -2*omega_;

155

156 if(first_call_) {

157 Eigen::VectorXd xInit(Eigen::VectorXd::Zero(4));

158 xInit += initializeDC(); //< perform DC analysis with input values

159 xInit += initializeAC(); //< perform AC analysis for initial oscillating state

160 writeEigen2Sca(xInit, x_);

161 first_call_ = false;

162 }

163

164 // Perform state-space representation

165 y_ = stateSpace_(a_, b_, c_, d_, x_, u_, tStep_);

166

167 // Export and store outputs to output ports

168 displacementX.write(y_(0));

169 displacementY.write(y_(1));

170 }

Appendix E

Source code - Accelerometer ST LIS332AR

Listing E.1: TDFModule Definition of the accelerometer ST LIS332AR

1 #include "Data.h" // Reference to the data description of the model

2

3 namespace memsp_sc {

4

5 // TDF module automatically generated.

6 // The reduced-order model of the MEMS is encapsulated as a state-space system.

7 // Dedicated data structure and methods are associated to this C++ class.

8 class ST_LIS332AR : public sca_tdf:: sca_module {

9

10 public:

11 // C++ class definition, i.e., constructor and destructor.

12 ST_LIS332AR(sc_core::sc_module_name);

13 virtual ~ST_LIS332AR();

14 [...]

15

16 // Input Ports

17 sca_tdf:: sca_in<double> V_E_DX1; // Driving voltage (x-axis)

18 sca_tdf:: sca_in<double> V_E_SX1; // Sensing voltage (x-axis)

19 sca_tdf:: sca_in<double> tax; // Translational acceleration (x-axis)

20 sca_tdf:: sca_in<double> F_ProofMass_x; // External force (x-axis)

21 sca_tdf:: sca_in<double> M_ProofMass_x; // Momentum (x-axis)

22 [...]

23

24 // Output Ports

25 sca_tdf:: sca_out<double> P_ProofMass_x; // Displacement (x-axis)

26 sca_tdf:: sca_out<double> A_ProofMass_rx;// Angle (x-axis)

27 sca_tdf:: sca_out<double> Cap_DX1; // Driving capacitance (x-axis)

28 sca_tdf:: sca_out<double> Cap_SX1; // Sensing capacitance (x-axis)

29 [...]

30

31 protected:

32 // SystemC-AMS method defining operations related to the sca_core::sca_module

33 // Processing() is called at each time-step of the simulation.

34 void processing() {

35 // Update inputs with actual values of the control vector.

36 u_(0) = double (E_DX1.read());

37 [...]

38

39 // Update weights and matrices regarding the inputs

40 // in order to interpolate and build the whole system.

41 data_->update(u_sweep_);

42 data_->interpolate();

43

44 // Return current output values computed from state-space system solving.

45 y_ = data_->compute(u_, get_timestep().to_seconds());

46

47 // Export output values to corresponding ports.

48 P_ProofMass_x.write(double(y_(0)));

49 }

50 [...]

51

137

138 E Source code - Accelerometer ST LIS332AR

52 private:

53 // Data structure and methods exported from MEMS+

54 Data* data_;

55

56 // SystemC-AMS I/O vectors

57 Eigen::VectorXd u_; // Input vector read during simulation

58 Eigen::VectorXd u_sweep_; // Input vector related to nonlinear variables

59 Eigen::VectorXd y_; // Output vector written during simulation

60 [...]

61

62 }; // class ST_LIS332AR

63 } // namespace memsp_sc

Appendix F

Source code - Accelerometer ST SEM

Copyright (C) 2013-2015 H-INCEPTION Consortium.

Licensed under the Apache License, Version 2.0 (the "License"). You

may not use this file except in compliance with the License. Youmay

obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless requiredbyapplicable lawor agreed to inwriting, softwaredis-

tributed under the License is distributed on an "AS IS" BASIS, WITH-

OUT WARRANTIES OR CONDITIONS OF ANY KIND, either express

or implied. See the License for the specific language governing per-

missions and limitations under the License.

Listing F.1: Testbench Definition

1

2 /// @file tb_mrom_accelerometer_2d.h

3 /// @brief Testbench implementing an accelerometer 2-D for translation sensing

4 /// in x- and y-axis.

5 ///

6 /// Related MEMS+ models and files:

7 /// - Material Database: ../memps/6.000_alpha/accelerometer_2d.mlib

8 /// - Process: ../memps/6.000_alpha/accelerometer_2d.proc

9 /// - 3-D model: ../memps/6.000_alpha/accelerometer_2d.3dsch

10 /// - Simulation configuration: ../memps/6.000_alpha/accelerometer_2d.msim

11 /// - Reduced-Order Model: ../memps/6.000_alpha/accelerometer_2d.MROM.mrom

12

13 #ifndef TB_MROM_ACCELEROMETER_2D_H_

14 #define TB_MROM_ACCELEROMETER_2D_H_

15

16 #include <cmath>

17 #include <ctime>

18 #include <iostream>

19

20 #include <systemc-ams>

21 #include <systemc>

22

23 #include "testbench.h"

24 #include "sc_generator.h"

25 #include "sca_generator.h"

26 #include "ac_sca_generator.h"

27 #include "dc_sca_generator.h"

28 #include "unit_util.h"

29

30 #include "mrom_accelerometer_2d.h"

31

32 /// This test bench implements a 2-D accelerometer sensing in x- and y-axis.

139

http://www.apache.org/licenses/LICENSE-2.0

140 F Source code - Accelerometer ST SEM

33 /// The design remains on a symmetric quadrant with two opposite sets of finger

34 /// combs in each axis in order to get a differential measurement of displacement.

35 class TB_MROM_Accelerometer2D : public Testbench

36 {

37 public:

38 // DSP SETTINGS

39 /// Bits number of the digital buffer.

40 static const int NBIT_BUFFER = 16;

41

42 /// Number of bits supported by the ADC to encode the input signal to digital one.

43 static const int NBIT_ADC = 8;

44

45 /// Bits number of temperature signal.

46 static const int NBIT_TEMPERATURE = 12;

47

48 /// ADC frequency.

49 static const double ADC_FREQ;

50

51 /// Oversampling ratio defining sampling frequency significantly higher than

52 /// the Nyquist rate.

53 static const int OVERSAMPLING;

54

55 // STIMULI SETTINGS

56 /// MEMS frequency of main mode.

57 static const double FREQ;

58

59 /// Stimuli offset value.

60 static const double OFFSET;

61

62 /// Stimuli amplitude in x-axis.

63 static const double AMPLITUDE_X;

64

65 /// Stimuli amplitude in y-axis.

66 static const double AMPLITUDE_Y;

67

68 /// Signal delay.

69 static const double DELAY;

70

71 /// Signal phase.

72 static const double PHASE;

73

74 // PARAMETERS

75 /// Average number of bits (bitrate) per unit time passing between equipment

76 /// in a data transmission system.

77 static const int DATARATE[];

78 static const std::vector<int> v_datarate;

79

80 /// Full-scale ratio.

81 static const int FULLSCALE[];

82 static const std::vector<int> v_fullscale;

83

84 /// Powering of the device.

85 static const bool POWER[];

86 static const std::vector<bool> v_power;

87

88 /// Definition of the amplification.

89 static const float GAIN[];

90 static const std::vector<float> v_gain;

91

92 /// Definition of the scaling coefficient.

93 static const float SCALING[];

94 static const std::vector<float> v_scaling;

95

96 // SIGNALS

97 /// Signal binding acceleration in x-axis.

98 sca_tdf:: sca_signal<double> s_tax;

99

100 /// Signal binding acceleration in y-axis.

101 sca_tdf:: sca_signal<double> s_tay;

102

F Source code - Accelerometer ST SEM 141

103 /// AC frequency (x-axis).

104 sca_tdf:: sca_signal<double> s_ac_freq_x;

105

106 /// AC frequency (y-axis).

107 sca_tdf:: sca_signal<double> s_ac_freq_y;

108

109 /// Global output signal in x-axis.

110 sc_core:: sc_signal<float > s_out_x;

111

112 /// Global output signal in y-axis.

113 sc_core:: sc_signal<float > s_out_y;

114

115 /// Signal defining the data rate.

116 sc_core:: sc_signal<int> s_datarate;

117

118 /// Signal defining the fullscale ratio.

119 sc_core:: sc_signal<int> s_fullscale;

120

121 /// Signal turning on/off the device under test.

122 sc_core:: sc_signal<bool> s_power;

123

124 /// Signal defining the temperature of the system [C].

125 sc_core:: sc_signal<hi::util::temperature_celsius_type> s_temperature;

126

127 // MODULES

128 /// Source defining the fullscale ratio.

129 hi::stimuli::ScGenerator<int, int>* src_fullscale;

130

131 /// Data rate source.

132 hi::stimuli::ScGenerator<int, int>* src_datarate;

133

134 /// Source turning the system on/off.

135 hi::stimuli::ScGenerator<bool, bool>* src_power;

136

137 /// Temperature source.

138 hi::stimuli::ScGenerator<double, hi::util::temperature_celsius_type>* src_temperature;

139

140 /// DC source with incremental acceleration steps (x-axis).

141 hi::stimuli::DCScaGenerator<double, double>* src_dc_tax;

142

143 /// Acceleration source with different frequency steps for AC analysis (x-axis).

144 hi::stimuli::ACScaGenerator<double, double>* src_ac_tax;

145

146 /// Source for transient analysis regarding x-axis acceleration.

147 hi::stimuli::ScaGenerator<double, double>* src_trans_tax;

148

149 /// DC source with incremental acceleration steps (y-axis).

150 hi::stimuli::DCScaGenerator<double, double>* src_dc_tay;

151

152 /// Acceleration source with different frequency steps for AC analysis (y-axis).

153 hi::stimuli::ACScaGenerator<double, double>* src_ac_tay;

154

155 /// Source for transient analysis regarding y-axis acceleration.

156 hi::stimuli::ScaGenerator<double, double>* src_trans_tay;

157

158 /// Module encapsulating the MROM file corresponding to Accelerometer2D.

159 hi::mems::mrom::Accelerometer2D<NBIT_ADC, NBIT_BUFFER>* m_accelerometer2D;

160

161 /// Tracefile

162 sca_util::sca_trace_file* atf;

163

164 /// Default constructor.

165 TB_MROM_Accelerometer2D();

166

167 /// Constructor to compute a specific @a analysis.

168 /// @param analysis defines either @c DC, @c AC or @c TRANS simulations.

169 TB_MROM_Accelerometer2D(const AnalysisType& analysis);

170

171 /// Constructor for transient analysis

172 /// @param config defines the selected transient profile definition.

142 F Source code - Accelerometer ST SEM

173 TB_MROM_Accelerometer2D(const int& config);

174

175 /// Destructor

176 virtual ~TB_MROM_Accelerometer2D();

177

178 // Member functions specialization

179 /// Initialize the configuration profiles for transient analysis and

180 /// the different parameters (power, fullscale, datarate).

181 void init();

182

183 /// Configure the parameter sof the selected @a analysis.

184 /// @param analysis defines either @c DC, @c AC or @c TRANS simulations.

185 void configure(const AnalysisType& analysis);

186

187 /// Perform the simulation wrt to its configuration (@see Testbench).

188 void run();

189

190 /// Perform post-processing operations on result file.

191 void analyze();

192

193 // TRACING

194 /// Defines the name of the results @a file.

195 /// @param file

196 void init_trace(const std::string& file);

197

198 /// Close the result file.

199 void stop_trace();

200

201 protected:

202 // METHODS

203 /// Select the @a analysis

204 /// @param analysis defines either @c DC, @c AC or @c TRANS simulations.

205 void set_analysis(const AnalysisType& analysis);

206

207 /// Select the transient profile corresponding to @a config.

208 /// @param config defines the selected transient profile definition.

209 void set_configuration(const int& config);

210

211 private:

212 // ANALYSES

213 /// Analysis mode (DC, AC or TRANS)

214 AnalysisType analysis_;

215

216 /// Simulation configuration for transient analysis.

217 int config_;

218

219 std::string filename_;

220

221 // PARAMETERS

222 /// Full-scale coefficient profile or steps.

223 std::tr1::function<int (double)> f_fullscale_;

224

225 /// Data rate profile or steps.

226 std::tr1::function<int (double)> f_datarate_;

227

228 /// Powering function.

229 std::tr1::function<bool (double)> f_power_;

230

231 // Stimuli profiles

232 std::tr1::function<double (double)> f_temperature_;

233

234 /// Acceleration stimuli profile (x-axis).

235 std::tr1::function<double (double)>* f_tax_;

236

237 /// Acceleration stimuli profile (y-axis).

238 std::tr1::function<double (double)>* f_tay_;

239 };

240

241 #endif // TB_MROM_ACCELEROMETER_2D_H_

242

F Source code - Accelerometer ST SEM 143

243 /// Local Variables:

244 /// Mode: C++

245 /// End:

Listing F.2: Testbench Declaration

1

2 #include "tb_mrom_accelerometer_2d.h"

3 #include "file_reader.h"

4 #include "dataset.h"

5

6 #include "f_sin.h"

7 #include "f_step.h"

8 #include "f_pulse.h"

9 #include "f_multistep.h"

10

11 // CONSTANTS

12 const double TB_MROM_Accelerometer2D::ADC_FREQ = 6720;

13

14 const int TB_MROM_Accelerometer2D::OVERSAMPLING = 1;

15

16 const double TB_MROM_Accelerometer2D::FREQ = 2560.53; // si::hertz;

17

18 const double TB_MROM_Accelerometer2D::OFFSET = 0.0; // si::meter / si::second / si::second;

19

20 const double TB_MROM_Accelerometer2D::AMPLITUDE_X = 9.81; // si::meter / si::second / si::second;

21

22 const double TB_MROM_Accelerometer2D::AMPLITUDE_Y = 9.81; // si::meter / si::second / si::second;

23

24 const double TB_MROM_Accelerometer2D::DELAY = 0; // si::second;

25

26 const double TB_MROM_Accelerometer2D::PHASE = 0.0; // si::radian

27

28 const int TB_MROM_Accelerometer2D::FULLSCALE[] = {2,4,8,16};

29

30 const int TB_MROM_Accelerometer2D::DATARATE[] = {1344};

31

32 const bool TB_MROM_Accelerometer2D::POWER[] = {true, true, true, true};

33

34 const float TB_MROM_Accelerometer2D::GAIN[] = {55.36326e12, 27.68163e12, 13.840816e12, 4.6136e12}; // from 2

ratio

35

36 const float TB_MROM_Accelerometer2D::SCALING[] = {1e-3, 2e-3, 4e-3, 12e-3};

37

38 const std::vector<int> TB_MROM_Accelerometer2D::v_fullscale (FULLSCALE, FULLSCALE + sizeof(FULLSCALE) /

sizeof(FULLSCALE[0]));

39

40 const std::vector<int> TB_MROM_Accelerometer2D::v_datarate (DATARATE, DATARATE + sizeof(DATARATE) / sizeof(

DATARATE[0]));

41

42 const std::vector<bool> TB_MROM_Accelerometer2D::v_power (POWER, POWER + sizeof(POWER) / sizeof(POWER[0]));

43

44 const std::vector<float> TB_MROM_Accelerometer2D::v_gain (GAIN, GAIN + sizeof(GAIN) / sizeof(GAIN[0]));

45

46 const std::vector<float> TB_MROM_Accelerometer2D::v_scaling (SCALING, SCALING + sizeof(SCALING) / sizeof(

SCALING[0]));

47

48

49 TB_MROM_Accelerometer2D::TB_MROM_Accelerometer2D()

50 : config_ (0)

51 {

52 // Initialization.

53 init();

54 }

55

56 TB_MROM_Accelerometer2D::TB_MROM_Accelerometer2D(const AnalysisType& analysis)

57 : analysis_ (analysis)

58 {

59 // Initialization.

60 init();

144 F Source code - Accelerometer ST SEM

61 }

62

63 TB_MROM_Accelerometer2D::TB_MROM_Accelerometer2D(const int& config)

64 : config_ (config)

65 {

66 // Transient analysis

67 analysis_ = AnalysisType::TRANS;

68

69 // Initialization

70 init();

71 }

72

73 TB_MROM_Accelerometer2D::~TB_MROM_Accelerometer2D()

74 {}

75

76 void TB_MROM_Accelerometer2D::init()

77 {

78 // RUNTIME DEFINITION

79 //---

80 this->set_simulation_time(sc_core::sc_time(2.0, sc_core::SC_SEC));

81 this->set_simulation_timestep(sc_core::sc_time(3.0, sc_core::SC_US));

82

83 int n_config = 12;

84

85 f_tax_ = new std::tr1::function<double (double)> [n_config];

86 if (f_tax_ == nullptr) {

87 // error assigning memory. Take measures.

88 std::cout << "Please add function for" << this->f_tax_->target_type().name() << std::endl;

89 }

90

91 f_tay_ = new std::tr1::function<double (double)> [n_config];

92 if (f_tay_ == nullptr) {

93 // error assigning memory. Take measures.

94 std::cout << "Please add function for" << this->f_tay_->target_type().name() << std::endl;

95 }

96

97 for (int k =0; k < 5; ++k) {

98 f_pulse<double> impulse_X(0.0, pow(2, k) * AMPLITUDE_X, sca_core::sca_time(0.25,

sc_core::SC_SEC), sca_core::sca_time(0.5, sc_core::SC_SEC), sca_core::sca_time(0,

sc_core::SC_MS), sca_core::sca_time(0, sc_core::SC_MS));

99 f_pulse<double> impulse_Y(0.0, pow(2, k) * AMPLITUDE_Y, sca_core::sca_time(1.25,

sc_core::SC_SEC), sca_core::sca_time(0.5, sc_core::SC_SEC), sca_core::sca_time(0,

sc_core::SC_MS), sca_core::sca_time(0, sc_core::SC_MS));

100

101 f_tax_[k] = impulse_X;

102 f_tay_[k] = impulse_Y;

103

104 f_step<double> step_X(0.0, pow(2, k) * AMPLITUDE_X, sc_core::sc_time(0.25, sc_core::SC_SEC));

105 f_step<double> step_Y(0.0, pow(2, k) * AMPLITUDE_Y, sc_core::sc_time(0.5, sc_core::SC_SEC));

106

107 f_tax_[k+5] = step_X;

108 f_tay_[k+5] = step_Y;

109 }

110

111 f_sin<double> sin_X(OFFSET, AMPLITUDE_X, FREQ, PHASE);

112 f_sin<double> sin_Y(OFFSET, AMPLITUDE_Y, FREQ, 2*M_PI);

113

114 f_pulse<double> pulse_X(0.0, AMPLITUDE_X, sca_core::sca_time(0.25,

sc_core::SC_SEC), sca_core::sca_time(0.25, sc_core::SC_SEC), sca_core::sca_time(0.125,

sc_core::SC_SEC), sca_core::sca_time(0.125, sc_core::SC_SEC));

115 f_pulse<double> pulse_Y(0.0, AMPLITUDE_Y, sca_core::sca_time(1.25,

sc_core::SC_SEC), sca_core::sca_time(0.25, sc_core::SC_SEC), sca_core::sca_time(0.125,

sc_core::SC_SEC), sca_core::sca_time(0.125, sc_core::SC_SEC));

116

117 f_tax_[10] = sin_X;

118 f_tax_[11] = pulse_X;

119

120 f_tay_[10] = sin_Y;

121 f_tay_[11] = pulse_Y;

122

F Source code - Accelerometer ST SEM 145

123 f_sin<double> sin_temperature(0, 120, 0.3, PHASE);

124 f_temperature_ = sin_temperature;

125

126 f_multistep<int> multistep_fullscale(0, v_fullscale, this->get_simulation_time());

127 f_fullscale_ = multistep_fullscale;

128

129 f_multistep<int> multistep_datarate(0, v_datarate, this->get_simulation_time());

130 f_datarate_ = multistep_datarate;

131

132 f_multistep<bool> multistep_power(true, v_power, this->get_simulation_time());

133 f_power_ = multistep_power;

134 }

135

136 void TB_MROM_Accelerometer2D::configure(const AnalysisType& analysis)

137 {

138 switch (analysis) {

139 case AnalysisType::DC : {

140 // Turn off other analysis profiles.

141 src_ac_tax = nullptr;

142 src_ac_tay = nullptr;

143 src_trans_tax = nullptr;

144 src_trans_tay = nullptr;

145

146 // Configure DC simulation range (x-axis).

147 std::vector<double> dc_steps_x;

148 double dc_amplitude_x_min = -16 * AMPLITUDE_X;

149 double dc_amplitude_x_max = 16 * AMPLITUDE_X;

150 double dc_step_x_size = 2 * AMPLITUDE_X;

151

152 // Configure DC simulation range (y-axis).

153 std::vector<double> dc_steps_y;

154 double dc_amplitude_y_min = -16 * AMPLITUDE_Y;

155 double dc_amplitude_y_max = 16 * AMPLITUDE_Y;

156 double dc_step_y_size = 2 * AMPLITUDE_Y;

157

158 // Number of steps to apply on each axis.

159 int n_steps_x = trunc((dc_amplitude_x_max - dc_amplitude_x_min) / dc_step_x_size);

160 int n_steps_y = trunc((dc_amplitude_y_max - dc_amplitude_y_min) / dc_step_y_size);

161

162 // Set the DC values.

163 for (int i = 0; i < (n_steps_x + n_steps_y); ++i) {

164 if (i < n_steps_x) {

165 dc_steps_x.push_back(dc_amplitude_x_min + i * dc_step_x_size);

166 dc_steps_y.push_back(0.0);

167 } else {

168 dc_steps_x.push_back(0.0);

169 dc_steps_y.push_back(dc_amplitude_y_min + (i - n_steps_x) * dc_step_y_size);

170 }

171 }

172

173 // Define the DC source (x-axis).

174 src_dc_tax = new hi::stimuli::DCScaGenerator<double, double>("DC_Source_tax", dc_steps_x, this->

get_simulation_time());

175 src_dc_tax->out(s_tax);

176

177 // Define the DC source (x-axis).

178 src_dc_tay = new hi::stimuli::DCScaGenerator<double, double>("DC_Source_tay", dc_steps_y, this->

get_simulation_time());

179 src_dc_tay->out(s_tay);

180

181 // Get info.

182 std::cout << "\nInfo:\t" << "DC Analysis" << std::endl;

183 break;

184 }

185

186 case AnalysisType::AC : {

187 // Turn off other analysis profiles.

188 src_dc_tax = nullptr;

189 src_dc_tay = nullptr;

190 src_trans_tax = nullptr;

146 F Source code - Accelerometer ST SEM

191 src_trans_tay = nullptr;

192

193

194 // Define the AC source (x-axis).

195 src_ac_tax = new hi::stimuli::ACScaGenerator<double, double>("AC_Source_tax", this->

get_simulation_time(), FREQ/4, 0.0, 0.01 * AMPLITUDE_X, FREQ, 0.0);

196 src_ac_tax->out(s_tax);

197 src_ac_tax->out_freq(s_ac_freq_x);

198

199 // Define the AC source (y-axis).

200 src_ac_tay = new hi::stimuli::ACScaGenerator<double, double>("AC_Source_tay", this->

get_simulation_time(), FREQ/4, 0.0, 0.01 * AMPLITUDE_Y, FREQ, 0.0);

201 src_ac_tay->out(s_tay);

202 src_ac_tay->out_freq(s_ac_freq_y);

203

204 // Get info.r

205 std::cout << "\nInfo:\t" << "AC Analysis" << std::endl;

206 break;

207 }

208

209 case AnalysisType::TRANS : {

210 // Turn off other analysis profiles.

211 src_dc_tax = nullptr;

212 src_dc_tay = nullptr;

213 src_ac_tax = nullptr;

214 src_ac_tay = nullptr;

215

216 // Define the transient source.

217 src_trans_tax = new hi::stimuli::ScaGenerator<double, double>("TRANS_Source_taz", f_tax_[config_]);

218 src_trans_tax->out(s_tax);

219

220 src_trans_tay = new hi::stimuli::ScaGenerator<double, double>("TRANS_Source_tay", f_tay_[config_]);

221 src_trans_tay->out(s_tay);

222

223 // Get info.

224 std::cout << "\nInfo:\t" << "TRANS Analysis" << std::endl;

225 break;

226 }

227 }

228 }

229

230

231 void TB_MROM_Accelerometer2D::run()

232 {

233 // SIMULATION RUNTIME

234 //---

235 sc_core::sc_time TSIM = this->get_simulation_time();

236 sc_core::sc_time TSTEP = this->get_simulation_timestep();

237

238 // SUBMODULES

239 //---

240 // Stimuli

241 configure(analysis_);

242

243 // Parameters

244 src_fullscale = new hi::stimuli::ScGenerator<int, int>("src_fullscale", f_fullscale_, (TSIM / 2) /

v_fullscale.size());

245 src_fullscale->out(s_fullscale);

246

247 src_datarate = new hi::stimuli::ScGenerator<int, int>("src_datarate", f_datarate_, (TSIM / 2) / v_datarate

.size());

248 src_datarate->out(s_datarate);

249

250 src_power = new hi::stimuli::ScGenerator<bool, bool>("src_power", f_power_, (TSIM / 2) / v_power.size());

251 src_power->out(s_power);

252

253 src_temperature = new hi::stimuli::ScGenerator<double, hi::util::temperature_celsius_type>("

src_temperature", f_temperature_, sc_core::sc_time(1.0/(ADC_FREQ),

sc_core::SC_SEC));

254 src_temperature->out(s_temperature);

F Source code - Accelerometer ST SEM 147

255

256 // Accelerometer 2D

257 m_accelerometer2D = new hi::mems::mrom::Accelerometer2D<NBIT_ADC, NBIT_BUFFER>("Accelerometer2D",

v_fullscale, v_gain, v_scaling, OVERSAMPLING, pow(2*1.1e-18, 2.0), 1825.12, 1, 0.4, ADC_FREQ);

258 m_accelerometer2D->in_datarate(s_datarate);

259 m_accelerometer2D->in_fullscale(s_fullscale);

260 m_accelerometer2D->in_power(s_power);

261 m_accelerometer2D->in_tax(s_tax);

262 m_accelerometer2D->in_tay(s_tay);

263 m_accelerometer2D->out_x(s_out_x);

264 m_accelerometer2D->out_y(s_out_y);

265

266 m_accelerometer2D->m_mems->set_timestep(TSTEP);

267

268 // SIMULATION

269 //---

270 init_trace("mrom_accelerometer_xy_2d.dat");

271 simulate();

272 stop_trace();

273 reset();

274 }

275

276 void TB_MROM_Accelerometer2D::analyze()

277 {

278 std::ostringstream path;

279 hi::data::FileReader* file_reader;

280 hi::data::Dataset dataset;

281 std::map<int, std::string> parameters;

282

283 // Create a new reader.

284 file_reader = new hi::data::FileReader(filename_);

285

286 // Index of parameters

287 int t_index = 0;

288 int entry_index = 0;

289 int disp_index = 0;

290 int cap_index = 0;

291

292 switch (analysis_) {

293 case AnalysisType::DC :

294 case AnalysisType::TRANS :

295 t_index = 1;

296 entry_index = 4;

297 disp_index = 6;

298 cap_index = 8;

299 break;

300

301 case AnalysisType::AC :

302 t_index = 1;

303 entry_index = 4;

304 disp_index = 8;

305 cap_index = 10;

306 break;

307 }

308

309 // List of parameters

310 parameters[0] = "Index";

311 parameters[1] = "Time (s)";

312 parameters[2] = "Acceleration (m/s^2)";

313

314 // CAPACITANCE

315 // --

316 // Store maximum values

317 parameters[3] = "Max. Capacitance (F)";

318 dataset.setParameters(parameters);

319

320 path.str("");

321 path << file_reader->remove_extension(filename_) << "_cap_max.dat";

322 dataset.setDatastore(file_reader->getDataset().getMax(t_index, entry_index, cap_index));

323 file_reader->writeFile(path.str(), dataset);

148 F Source code - Accelerometer ST SEM

324

325 // Store minimum values

326 parameters[3] = "Min. Capacitance (F)";

327 dataset.setParameters(parameters);

328

329 path.str("");

330 path << file_reader->remove_extension(filename_) << "_cap_min.dat";

331 dataset.setDatastore(file_reader->getDataset().getMin(t_index, entry_index, cap_index));

332 file_reader->writeFile(path.str(), dataset);

333

334 // Store mean values

335 parameters[3] = "Mean Capacitance (F)";

336 parameters[4] = "Mean Dev. Cap. (F)";

337 dataset.setParameters(parameters);

338

339 path.str("");

340 path << file_reader->remove_extension(filename_) << "_cap_mean.dat";

341 dataset.setDatastore(file_reader->getDataset().getMean(t_index, entry_index, cap_index));

342 file_reader->writeFile(path.str(), dataset);

343

344 // DISPLACEMENT

345 // --

346 // List of parameters

347 parameters[0] = "Index";

348 parameters[1] = "Time (s)";

349 parameters[2] = "Acceleration (m/s^2)";

350

351 // Store maximum values

352 parameters[3] = "Max. Displacement (m)";

353 dataset.setParameters(parameters);

354

355 path.str("");

356 path << file_reader->remove_extension(filename_) << "_disp_max.dat";

357 dataset.setDatastore(file_reader->getDataset().getMax(t_index, entry_index, disp_index));

358 file_reader->writeFile(path.str(), dataset);

359

360 // Store minimum values

361 parameters[3] = "Min. Displacement (m)";

362 dataset.setParameters(parameters);

363

364 path.str("");

365 path << file_reader->remove_extension(filename_) << "_disp_min.dat";

366 dataset.setDatastore(file_reader->getDataset().getMin(t_index, entry_index, disp_index));

367 file_reader->writeFile(path.str(), dataset);

368

369 // Store mean values

370 parameters[3] = "Mean Displacement (m)";

371 parameters[4] = "Mean Dev. Disp. (m)";

372 dataset.setParameters(parameters);

373

374 path.str("");

375 path << file_reader->remove_extension(filename_) << "_disp_mean.dat";

376 dataset.setDatastore(file_reader->getDataset().getMean(t_index, entry_index, disp_index));

377 file_reader->writeFile(path.str(), dataset);

378

379 delete file_reader;

380 }

381

382 void TB_MROM_Accelerometer2D::init_trace(const std::string& file)

383 {

384 // Plotting configuration

385 /* ---

386 * Index | DC Analysis | AC Analysis | TRANS Analysis |

387 * ----- | ------------------- | ------------------- | ------------------- |

388 * 1 | Time | Time | Time |

389 * 2 | SourceAccelerationX | SourceAccelerationX | SourceAccelerationX |

390 * 3 | SourceAccelerationY | SourceAccelerationY | SourceAccelerationY |

391 * 4 | tax | AC_Frequency_X | tax |

392 * 5 | tay | AC_Frequency_Y | tay |

393 * 6 | Displacement_X | tax | Displacement_X |

F Source code - Accelerometer ST SEM 149

394 * 7 | Displacement_Y | tay | Displacement_Y |

395 * 8 | Capacitance Pos. X | Displacement_X | Capacitance Pos. X |

396 * 9 | Capacitance Neg. X | Displacement_Y | Capacitance Neg. X |

397 * 10 | Capacitance Pos. Y | Capacitance Pos. X | Capacitance Pos. Y |

398 * 11 | Capacitance Neg. Y | Capacitance Neg. X | Capacitance Neg. Y |

399 * 12 | NoiseInjector X | Capacitance Pos. Y | NoiseInjector X |

400 * 13 | NoiseInjector Y | Capacitance Neg. Y | NoiseInjector Y |

401 * 14 | ADC X | NoiseInjector X | ADC X |

402 * 15 | ADC Y | NoiseInjector Y | ADC Y |

403 * 16 | Filter X | ADC X | Filter X |

404 * 17 | Filter Y | ADC Y | Filter Y |

405 * 18 | Gain Amplifier X | Filter X | Gain Amplifier X |

406 * 19 | Gain Amplifier Y | Filter Y | Gain Amplifier X |

407 * 20 | Out X | Gain Amplifier X | Out X |

408 * 21 | Out Y | Gain Amplifier X | Out Y |

409 * 22 | Data rate | Out X | Data rate |

410 * 23 | Full scale | Out Y | Full scale |

411 * 24 | Power X | Data rate | Power X |

412 * 25 | Temperature | Power X | Temperature |

413 * 26 | | Temperature | |

414 * ---*/

415

416

417 // Path and prefix specification for result file.

418 std::ostringstream path;

419

420 switch (analysis_) {

421 case AnalysisType::DC : {

422 // Rename file and define the data directory.

423 path << "./data/dc_" << file;

424 filename_ = this->auth_file(path.str());

425 atf = sca_util:: sca_create_tabular_trace_file(filename_.c_str());

426

427 // Select the input data to store.

428 sca_util:: sca_trace(atf, src_dc_tax->out, "SourceAccelerationX");

429 sca_util:: sca_trace(atf, src_dc_tay->out, "SourceAccelerationY");

430 break;

431 }

432

433 case AnalysisType::AC : {

434 // Rename file and define the data directory.

435 path << "./data/ac_" << file;

436 filename_ = this->auth_file(path.str());

437 atf = sca_util:: sca_create_tabular_trace_file(filename_.c_str());

438

439 // Select the input data to store.

440 sca_util:: sca_trace(atf, src_ac_tax->out, "SourceAccelerationX");

441 sca_util:: sca_trace(atf, src_ac_tay->out, "SourceAccelerationY");

442

443 // Select the input data to store.

444 sca_util:: sca_trace(atf, src_ac_tax->out_freq, "FrequencyX");

445 sca_util:: sca_trace(atf, src_ac_tay->out_freq, "FrequencyY");

446 break;

447 }

448

449 case AnalysisType::TRANS : {

450 // Rename file and define the data directory.

451 path << "./data/trans_" << file;

452 filename_ = this->auth_file(path.str());

453 atf = sca_util:: sca_create_tabular_trace_file(filename_.c_str());

454

455 // Select the input data to store.

456 sca_util:: sca_trace(atf, src_trans_tax->out, "SourceAccelerationX");

457 sca_util:: sca_trace(atf, src_trans_tay->out, "SourceAccelerationY");

458 break;

459 }

460 }

461

462 // Mechanical variables

463 sca_util:: sca_trace(atf, m_accelerometer2D->in_tax, "tax");

150 F Source code - Accelerometer ST SEM

464 sca_util:: sca_trace(atf, m_accelerometer2D->in_tay, "tay");

465

466 sca_util:: sca_trace(atf, m_accelerometer2D->m_mems->out[0], "Displacement_X");

467 sca_util:: sca_trace(atf, m_accelerometer2D->m_mems->out[1], "Displacement_Y");

468

469 // Capacitances

470 sca_util:: sca_trace(atf, m_accelerometer2D->m_mems->out[8], "Cap_Sensing_Positive_X");

471 sca_util:: sca_trace(atf, m_accelerometer2D->m_mems->out[6], "Cap_Sensing_Negative_X");

472

473 sca_util:: sca_trace(atf, m_accelerometer2D->m_mems->out[9], "Cap_Sensing_Positive_Y");

474 sca_util:: sca_trace(atf, m_accelerometer2D->m_mems->out[7], "Cap_Sensing_Negative_Y");

475

476 // DSP flow

477 sca_util:: sca_trace(atf, m_accelerometer2D->m_noise_injector_x->out, "NoiseInjector_X");

478 sca_util:: sca_trace(atf, m_accelerometer2D->m_noise_injector_y->out, "NoiseInjector_Y");

479

480 sca_util:: sca_trace(atf, m_accelerometer2D->m_adc_x->out, "ADC_X");

481 sca_util:: sca_trace(atf, m_accelerometer2D->m_adc_y->out, "ADC_Y");

482

483 sca_util:: sca_trace(atf, m_accelerometer2D->m_filter_x->out, "Filter_X");

484 sca_util:: sca_trace(atf, m_accelerometer2D->m_filter_y->out, "Filter_Y");

485

486 sca_util:: sca_trace(atf, m_accelerometer2D->m_gain_amplifier_x->out, "GainAmplifier_X");

487 sca_util:: sca_trace(atf, m_accelerometer2D->m_gain_amplifier_y->out, "GainAmplifier_Y");

488

489 sca_util:: sca_trace(atf, s_out_x, "Out_X");

490 sca_util:: sca_trace(atf, s_out_x, "Out_Y");

491

492 // Parameters

493 sca_util:: sca_trace(atf, s_datarate, "Datarate");

494 sca_util:: sca_trace(atf, s_fullscale, "Fullscale");

495 sca_util:: sca_trace(atf, s_power, "Power");

496 sca_util:: sca_trace(atf, s_temperature, "Temperature");

497 }

498

499 void TB_MROM_Accelerometer2D::stop_trace()

500 {

501 sca_util::sca_close_vcd_trace_file(atf);

502 delete atf;

503 }

504

505 void TB_MROM_Accelerometer2D::set_analysis(const AnalysisType& analysis)

506 {

507 analysis_ = analysis;

508 }

509

510 void TB_MROM_Accelerometer2D::set_configuration(const int& config)

511 {

512 if (analysis_ == AnalysisType::TRANS) {

513 config_ = config;

514 } else {

515 std::cout << "The simulation configuration cannot be changed since no transient analysis is defined." <<

std::endl;

516 }

517 }

Modélisation et simulation haut-niveau demicro-systèmes électromécaniques

pour le prototypage virtuel multi-physique en SystemC-AMS

L’évolutiondes systèmesembarqués se traduit aujourd’hui par des ensembles com-

plexes, dits systèmes cyber-physiques, opérant principalement en réseau et inter-

agissant fortement avec leur environnement. Intégrés à des circuits de contrôle et

de traitement du signal, les micro-systèmes électromécaniques, ou MEMS, jouent

un rôle primordial dans ces ensembles en tant que capteurs ou actionneurs. La

conception de tels systèmes requiert des solutions globales et pluridisciplinaires

telles que le prototypage virtuel. Basée sur des modèles haut-niveau, cette tech-

nique permet d’anticiper le comportement du système dès les premières phases

de conception et de le raffiner lors de phases plus avancées. Ces méthodes ont

progressivement été appliquées à la conception de circuits intégrés, notamment

avec l’utilisation de langages de description matérielle, tels que VHDL ou Verilog.

En adoptant un niveau d’abstraction supérieur, SystemC a largement contribué au

développement concourant des parties matérielles et logicielles. Parallèlement, les

extensions proposées dans SystemC-AMS répondent au nombre croissant de com-

posants analogiques dans les circuits intégrés et constituent une base prometteuse

pour le prototypage virtuel de systèmes hétérogènes. Pour cette raison, cette thèse

traite de la modélisation et de la simulation haut-niveau de dispositifs MEMS en

SystemC-AMS. Dans un premier temps, nous évaluons les capacités actuelles du

standard et desmodèles de calcul proposés dans SystemC-AMS.Nous démontrons

les limites et la difficulté d’élaborer des modèles équivalents de dispositifs MEMS

dont la géométrie et les couplages internes nécessitent des descriptions plus dé-

taillées. Nous proposons donc dans un second temps d’intégrer directement des

modèles réduits de dispositifs MEMS dans SystemC-AMS. La réduction d’ordre

de modèle est une méthode mathématique permettant de créer des représenta-

tions compactes de systèmes initialement très larges en termes de degrés de lib-

erté. Ainsi, nous utilisons les modèles générés depuis l’outil d’analyse en éléments

finisMEMS+ et proposons une interface de programmation pour les insérer dans

des modèles SystemC-AMS. Après avoir détaillé les principales fonctionnalités de

l’interface, nous discutons les améliorations possibles du standard et de la solution

présentée. Enfin, nous vérifions notre solution avec l’étude d’un accéléromètre et

comparons les résultats avec l’état de l’art en termes de précision des modèles et

de performances de simulation. Cette thèse propose ainsi une méthodologie com-

plète pour intégrer des dispositifs MEMS dans un environnement de simulation

haut-niveau.

	Introduction
	Multi-domain virtual prototyping
	Electronic system-level design
	MEMS modeling and simulation
	Contributions
	Outline

	State of the art
	Introduction
	MEMS system-level design
	Electrostatic transducers
	Component-based modeling
	Simulation strategies

	HDL-based reduced models
	Model order reduction principles
	Implementation in HDLs

	SystemC, a system-level design language
	Basic concepts
	AMS extensions
	Other extensions
	Signal conditioning

	Summary

	ESL-based MEMS modeling
	Introduction
	Modeling methodologies
	Equivalent-circuit representations
	Energy-based methodologies
	Transfer function and state-space system

	MEMS macromodels
	Accelerometers
	Gyroscopes

	Conclusion

	System-level simulation API
	Introduction
	Motivating example
	Model definition
	Use case
	Results

	API Implementation
	Device
	Test bench
	Add-ons

	API use case
	Test-bench configuration
	Simulation results
	Simulation performance

	Conclusion

	Case study
	Introduction
	Methods & Material
	Device under test
	Modeling procedure
	Test-bench definition

	Experiment
	Results
	Modeling accuracy
	Simulation performance

	Conclusion

	Conclusions
	Contributions
	Future work
	Closing thoughts

	Bibliography
	Appendices
	Functionals of coupled electromechanical systems
	MEMS+ model definition
	Modeling procedures
	Source code - Gyroscope
	Source code - Accelerometer ST LIS332AR
	Source code - Accelerometer ST SEM

