
HAL Id: tel-01474599
https://hal.sorbonne-universite.fr/tel-01474599v1

Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hydrodynamics & Elasticity with Interfaces
Arnaud Antkowiak

To cite this version:
Arnaud Antkowiak. Hydrodynamics & Elasticity with Interfaces. Fluid mechanics [physics.class-ph].
Université Paris 6 (UPMC), 2016. �tel-01474599�

https://hal.sorbonne-universite.fr/tel-01474599v1
https://hal.archives-ouvertes.fr


Hydrodynamics &
Elasticity
with Interfaces
Arnaud Antkowiak

Institut Jean le Rond d’Alembert
UNIVERSITÉ PIERRE ET MARIE CURIE

Mémoire présenté pour l’obtention de
l’HABILITATION À DIRIGER LES RECHERCHES

Soutenue publiquement le 29 Novembre
2016 devant le jury composé de :

Étienne Barthel Rapporteur
Yves Bréchet Président
Eric Dufresne Rapporteur
Jacques Magnaudet Rapporteur
Stéphane Popinet Examinateur
Howard Stone Examinateur



ii



iii

Hydrodynamics
&

Elasticity
with Interfaces



iv



v

“Now I shall begin by performing an experiment which you have all probably tried dozens of times without
recognizing that you were making an experiment at all. I have in my hand a common camel’s-hair brush. If you
want to make the hairs cling together and come to a point, you wet it, and then you say the hairs cling together
because the brush is wet. Now let us try the experiment; but, as you cannot see this brush across the room, I hold
it in the lantern, and you can see it enlarged upon the screen (Fig. 1, left hand). Now it is dry, and the hairs are
separately visible. I am now dipping it in the water, as you can see, and, on taking it out, the hairs, as we expected,
cling together (Fig. 1, right hand), because they are wet, as we are in the habit of saying. I shall now hold the brush
in the water, but there it is evident that the hairs do not cling at all (Fig. 1, middle), and yet they surely are wet now,
being actually in the water. It would appear then that the reason which we always give is not exactly correct. This
experiment, which requires nothing more than a brush and a glass of water, then, shows that the hairs of a brush
cling together not only because they are wet, but for some other reason as well which we do not yet know.”

Charles Vernon Boys, excerpt from the first lecture (“The elas-
tic skin of liquids”) of a series of three delivered in the theatre
of the London institution on the afternoons of Dec. 30, 1889,
Jan. 1 and 3, 1890, before a juvenile audience. (Boys, 1890).
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Introduction

I have had the chance to perform my PhD thesis in Toulouse under the supervision of Pierre
Brancher. The core idea of the thesis was then to investigate how a vortex reacts when
disturbed. From the understanding of the vortex’ behavioural properties, we wanted to
design smart perturbations that would destroy (or, more realistically, bother significantly)
the vortex. Although the tools we used for this investigation were quite technical, I
remember from these years that we kept on focusing on the physics underpinning the
phenomena at play – physics which can be somewhat dimmed behind technicalities. And
this is probably the foremost learning that I retain from these last student years: a tropism
to understand the physics underlying vortices, and flows in general. After all, this is what
it is all about: fluid mechanics, and more broadly mechanics, is physics at the human
scale.
With this is mind, I then moved to Marseille where I did a postdoc with Emmanuel
Villermaux and Stéphane Le Dizès on the formation of stretched liquid jets, a topic that
I later continued to work on (see chapter 1). There I changed the object of study and the
tools, but not the general approach. I also made my first steps as an experimentalist (who
“confronts with realness”) in Marseille and I am indebted to Emmanuel for this, because
these first years preluded and shaped the way I conduct research since then.
I came to Paris in 2007 to live the last months of the LMM (Laboratoire de Modélisation
en Mécanique) and be part of the newly formed Institut d’Alembert. This lab, whose
trademark was theory and numerical analysis, was by the time welcoming an experimen-
tal touch. Aided by the university and CNRS, and also by the Ville de Paris and an ANR
grant I was lucky to get, I therefore set up a small experimental lab within the institute:
la salle Savart. This small experimental facility allowed me to take further the study of
liquid jets resulting from the relaxation of bubbles (postdoc Thomas Séon) or cavities
(PhD thesis Élisabeth Ghabache) but also to follow new tracks. Among these, I have to
quote particularly the broad field of elastic deformation of thin structures imparted by cap-
illarity, which we have investigated with Christophe Josserand, Basile Audoly, Sébastien
Neukirch and several PhD students (Marco Rivetti, Hervé Elettro, Aurélie Fargette and
Paul Grandgeorge). At this point I have to stress how important a role have colleagues
and students played in my scientific life. I have been most lucky to meet nice and skilful
researchers since I arrived in this lab, especially of different horizons. In particular I have
launched into the field of elastocapillarity thanks to colloboration with next-door elasticity
experts, and Sébastien Neukirch especially. PhD students have obviously played a central
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Introduction 2

role since my arrival and I am most thankful to each of them for sharing a three-years
research adventure (Marco, Elisabeth, Hervé, Julien, Aurélie, Paul) – clearly most of the
work presented in this document could not have been done without them.
We have now come a long way since the first experiments in Jussieu, and there has been so
to speak a constant accretion of experimentalists onto the salle Savart through the years
– which signs the success of the experiments implant in Jussieu. I truly believe this added
facet makes d’Alembert a most unique site, mixing skills and expertise, devoted to this
physics at the human scale.
In the following, I trace an account of my scientific trajectory so far, at the interface
between liquids and solids.



1 Transient Jets

Among the variety of liquid jets developing over scales ranging from microscopic up to
astronomical (Eggers and Villermaux, 2008), transient jets or squirts bear a particular
importance for they often are a signature of a rapid relaxation event: capillary levelling

FIG. 1.1 –Acollection of transient liquid jets. a) Cavitation jet developing inside a collapsing
bubble (Brujan et al., 2001; Popinet, 2000), b) Time-resolved chronophotography of a sin-
gle drop produced in an inkjet setup (van der Bos et al., 2014), c) Liquid metal jet traveling
at 9.2 km/s produced by a shaped-charge weapon (snapshot taken 31.5µs after detonation,
Shaw et al., 1994), d) Spore-carrying liquid squirts produced by fungi (Yafetto et al., 2008).

3



1.1 A link between hydrodynamics and geometry 4

of an interface after the bursting of a bubble, pressure reduction following an impact, a
detonation, the piezoelectric compression of an ink chamber etc. As these jets develop
they exhaust their source. As a result of this decaying feeding, these jets feature a marked
stretching. In turn, this stretching affect the way capillary wavepackets ride over the jet
surface (Frankel and Weihs, 1985) and select the final fragments, therefore determining
the size distribution of e.g. spray aerosols.

In the following, we focus on the dynamics of such discharge jets, from their early
formation up to their late development – prior to their disintegration.

1.1 A link between hydrodynamics and geometry
The overpressure initiating discharge jets may arise from quite different origins, as already
illustrated in Fig. 1.1. But regardless of the nature of this pressure drive, the initial
geometry of the free surface systematically plays a crucial role in the jet dynamics starting
from its formation. We elucidate in the following this link for a few typical drivers.

1.1.1 Regular jet formation
Impact- or gravity-driven jets are typically rooted in a pressure field having the extent of
the initial cavity or ripple deforming the free surface. Such jets have therefore a typical
transverse size scaling with the initial cavity, i.e. are regular – as opposed to singular jets
that develop following the self-similar focusing of cavity, see §1.1.2.

▷ Impact-driven jets. Liquid impacts are often associated with
thin and violent ejecta near the region where the liquid hits a sur-
face: wave impact on dams (Peregrine, 2003), drop impact on ground
(Josserand and Thoroddsen, 2016)… But impacts can also set free sur-
face liquids into motion at a distance from the walls, provided the
interface is curved. Probably the most elementary illustration of this
fact is proposed with the experiment of Prof. Pokrovski

Note: We have not been able
to find the original article of
Pokrovski. But for complete-
ness, let’s note that this exper-
iment is also presented in the
PhD thesis of Tony Maxworthy
(Maxworthy, 1960) and also in
Milgram, (1969).

that con-
sists in impacting a test tube filled with a wetting liquid displaying
a curved interface (sketch alongside excerpted from Lavrentiev and
Chabat, 1980). Just after impact a fast and focused jet develops axi-
ally from the tube centre. While Pokrovski and collaborators initially
thought that jet formation was the result of (acoustic) compressive
waves focusing by the curved bottom, it soon became clear that it
was not the case, for the same jet kept on developing in flat- and
even concave-bottomed tubes. The key ingredient in jet formation is
revealed with the experiments reported figure 1.2: free surface geom-
etry. There, it can be seen that a tube filled with a wetting liquid,
which has its interface quickly sculpted into an hemispherical meniscus
during free fall, gives rise to a strong jet just after impact. Conversely
a liquid contained in a tube chemically treated so that the contact angle is close to 90° sees
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FIG. 1.2 – Pokrovski’s experiment. Top: a tube filled with a wetting liquid freely falls axially.
Upon impact on a rigid substrate, the interface curvature reverses violently and gives birth
to an intense and concentrated jet (Antkowiak et al., 2007a). Bottom: Similar experiment
but with a silanized-glass tube displaying ca 90° contact angle with the carried fluid, mak-
ing the interface flat during free-fall. Upon impact, the liquid now rebounds as a whole.

its interface kept flat during free fall. Upon impact the liquid rebounds with the container
in a solid-body motion, without any deformation nor jet.

The critical role of interface geometry in jet formation can be wit-
nessed by varying the surface shape. For example if the free surface is
still in the process of relaxing to hemispherical shape when the tube
hits the ground (because the liquid is too viscous, or the tube too
large) the free surface imprints its shape to the jet, which now be-
comes annular (see inset). Other types of free surface corrugations –
chiefly bubbles or foams – each produce a jet upon impact, with the
jet typical radial length scaling with the cavity radius (Antkowiak et
al., 2007b). To shed light on the link between jet hydrodynamics and

surface geometry, it is worth noting that over the impact duration, the velocity of the
boundaries changes abruptly. This sudden velocity change is imparted in turn to the fluid
particles by means of an intense pressure field, warrantying incompressibility through-
out impact. Formally, the balance between these dominant terms of the Navier-Stokes
equations reads:

∂u

∂t
= −1

ρ
∇p. (1.1)

As classic in water impact theory (Batchelor, 1967, §6.10; Cooker and Peregrine, 1995),
we integrate this equation over the impact duration τ to get:

u(τ)− u(0) = −1

ρ
∇P, (1.2)
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where P is the pressure impulse defined as:

P =

∫ τ

0
p dt. (1.3)

The significance and importance of pressure impulse for liquid impact problems was re-
vealed by Bagnold, (1939) who recorded experimentally the instantaneous pressures ex-
erted by a breaking wave impacting a wall. Bagnold found that the data were highly
scattered, presumably because of the ever varying precise interface shape and also of the
multiple reflections of acoustic waves radiated from the boundaries. He also noted that
the impact duration τ (based on the rise and fall of the pressure) was typically much
larger (by a factor ten at least) than the acoustic timescale. But behind this apparent

FIG. 1.3 – Pressure impulse structure. Top: Pressure impulse fields developed upon impact
for different free surface geometries. a) For a flat free surface the pressure impulse field
resembles a hydrostatic pressure field. b) When the free surface is dimpled, by a bubble for
example, the spatial distribution of the pressure field is altered and a clustering of isobars
under the cavity is observed. The resulting enhanced impulse pressure gradient preludes
jet formation (Antkowiak et al., 2007a). Bottom: Elementary solutions to Laplace equation.
c) A classic spherical dipolar scalar field satisfies Laplace equation and the antisymmetry
condition at z = 0 but fails to meet the homogeneous Neumann condition on the wall. d)
Adding the correct amount of cylindrical elementary solutions to the previous solution
forms a modified dipole having the desired properties on the wall.

irreproducibility the time integral of the pressure – the pressure impulse P – was found
to be constant for given conditions. Actually there is no paradox here: while the global
momentum transferred from a wave to the wall (the pressure impulse) is constant for given
conditions, this momentum is built with a complex acoustic wavefield (the instantaneous
pressure) that depend on the fine details of the setup. In such liquid impact problems,
there is no need to grasp these intricate details to predict the velocity field post-impact,
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as a global momentum balance already provides it, just as in the problem of billiard ball
collision where there is no need to solve the elastic field to determine the direction of the
balls.
To determine the pressure impulse setting off jet formation, we make use of equation (1.2).
Incompressibility requires P to be an harmonic function:

∆P = 0 (1.4)

associated with the impact boundary condition ∂P/∂z = −ρU0 at the deep bottom, anti-
symmetry conditions on the plane z = 0, homogeneous Neumann conditions ∂P/∂r = 0
at the walls and an homogeneous Dirichlet condition P = 0 at the free surface. Here we
have noted U0 the velocity change of the boundaries imparted by impact. If the free sur-
face is flat and lies in the plane z = 0, the pressure impulse is the trivial hydrostatic-like
field Pflat = −ρU0z. From equation (1.2) we see that such a field imparts homogeneously
the velocity U0 to each of the fluid particle: this is the solid-body rebound observed in
Fig. 1.2. If the free surface is now dimpled by a meniscus or a bubble then there is a
mismatch between the impact-induced pressure field Pflat and the free surface geometry.
If the free surface deformation is spherical, we might calculate a correction to the homoge-
neous impulse pressure field Pflat involving the dipolar field ϕ(r, θ) = −∂r−1/∂z = cos θ/r2

and higher multipoles. The problem with such elementary solutions to Laplace equation
in spherical co-ordinates is that the homogeneous Neumann condition is lost upon their
addition. Knight, (1936) faced a similar problem when trying to derive the electrostatic
potential surrounding a non-uniformly charged dielectric sphere placed inside a conductive
cylinder. To cope with these different geometries, Knight devised a strategy consisting
in performing a surgery to the dipole by adding to it the right amount of cylindrical el-
ementary solutions to Laplace equation (i.e. Bessel functions) – so as not to break the
conductive wall boundary conditions. We transpose this strategy to our problem and
design a modified dipole F0 by adding to ϕ(r, θ) the function:

φ(ξ, z) =

∫ ∞

0
f(m) sin(mz)I0(mξ) dm, (1.5)

where the weight function f(m) is such that the normal derivatives of the singular (dipo-
lar) and regular part balance each other along the wall, see Fig. 1.3. Let’s remark that
upon differentiating twice along z this solution, we obtain another elementary solution
F2 still complying with the boundary conditions, i.e. a higher-order modified multipole.
Repeating this procedure we get an entire family of modified multipoles F2s, and the im-
pulse pressure P of our problem can be expressed as a weighted sum of these elementary
functions:

P (r, θ)/ρU0R = −
( r
R

)
P1(cos θ) +

∞∑
s=0

A2sF2s. (1.6)

The precise weight sequence {A2s} is then determined by the imposition of the last bound-
ary condition (P = 0) along the free surface. The corresponding theoretical prediction for
the impact-induced motion is confronted Fig. 1.4 with time-resolved PIV measurements
performed on a single experiment just after impact.
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FIG. 1.4 – Pressure impulse prediction vs PIV measurements. Comparison between the ve-
locity field predicted with impulse pressure theory and time-resolved PIV on a single ex-
periment where a 3 cm diameter-tube containing a wetting liquid impacts the ground at
U0 = 6 m/s. Left: radial (plain line/filled symbols) and axial (dashed/open) components of
velocity taken along an horizontal radius tangenting the free surface. Right: same compar-
ison along the symmetry axis (Antkowiak et al., 2007a).

Interestingly the only role of surface tension
here is to prepare the initial free surface con-
dition by shaping its geometry, but it plays no
further role in the – purely inertial – jet forma-
tion. This link between jet formation and in-
terface geometry is actually reminiscent of the
so-called “hollow-charge principle”. This old
mining principle dating back from the xviiith
century states that charges detonated can con-
centrate their action and perforate a nearby object if the explosive has been hollowed out
prior to ignition. Munroe, (1888) documented this phenomenon and demonstrated that
an engraved guncotton charge detonated near an iron plate transfers its inscription onto
the metal block: the portion of metal facing the hollowed-out explosive is gouged out as
well upon detonation (see inset). This effect was not exploited outside the mining area
until World War II where it has been militarized and industrialized with the design of
shaped-charge weapons such as the US Army bazooka, the german Panzerfaust or the
japanese suicide lunge mine. These weapons consisted in confining the explosive in the
head by means of a metal cone, or liner. Upon explosion, the stresses developed by the
deflagration made the metal flow and concentrate into a thin and rapid metal jet traveling
at up to 8 km/s. This powerful jet could then pierce heavily armoured vehicles, making it
possible for single infantrymen to defeat tanks (Birkhoff et al., 1948). After the war, peace-
time applications were developed, in particular for oil well completion (i.e. for perforating
the bottom of oil wells and start production, see Poulter and Caldwell, 1957). Note that
this type of shaped-charge jet has a velocity scaling with the detonation wave celerity (i.e.
O(km/s)) whereas the impact-induced jets presented above rather scale with the impact
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velocity, hence betraying a slightly different jet formation mechanism (viz. compressible
vs incompressible). Another application, still in the explosive area, but having an even
closer connection to Pokrovski’s experiment, is the spontaneous ignition of nitroglycer-
ine upon shocks. This explosive, notoriously known for its instability, should theoretically
need shock pressures of O(100 kbar) for compressive heating to reach the threshold needed
to trigger explosive chemical reactions. However it is a fact that even moderate shocks
developing pressures 10 to 20 times lower can ignite nitroglycerine. Actually nitroglycer-
ine contains dispersed micro-bubbles which, upon impact, develop tiny jets in each of the
bubbles. The point where this concentrated jet collides with the surrounding liquid walls
is coined a hot spot, for pressures developed in the jet impact region can be sufficient to
initiate the reaction and therefore form the seed for nitroglycerine detonation (Bowden
and McOnie, 1965; Dear et al., 1988).

FIG. 1.5 – Impact-driven-like jets. Left: impact-driven jets in granular media. Top: a tube
filled with sand has its interface sculpted into a meniscus-like cavity prior to impact. Just
after impact, a strong granular jet, reminiscent of impact-induced liquid jets, is produced.
Bottom: when the interface is left flat, no jet is produced (Antkowiak et al., 2007a). Right:
when a laser is focused inside a 50 µm wide capillary containing a wetting liquid, a cavita-
tion bubble may appear. Shortly thereafter, a thin liquid jet traveling at 490 m/s is ejected
from the capillary (Tagawa et al., 2012).

Finally let’s note that the kind of impact-driven jets presented here can develop in a
broad context, largely exceeding the impact of slightly viscous liquids, or even the impact
of liquids. Fig. 1.5 illustrates such a wide variety of applications with the formation of jets
in a granular medium, where it is probable that the stress field built upon impact follows
the same rules as the one outlined for inviscid liquid impacts, and also with the formation
of supersonic thin liquid jets that could serve as a basis to design needleless syringes.

▷ Gravity-driven jets in open and sealed cavities. Jets can be produced from
cavities even in absence of impact: the gravity relaxation of an hollow often goes together
with jet formation. The essence of such gravity-driven jet formation is perhaps best
illustrated with the elegant experiment designed by Élise Lorenceau during her PhD thesis
(Fig. 1.6). It consists in plunging a tube closed at its upper extremity in a liquid bath. At
initial time, the lid is removed and the liquid invades the tube. Interestingly, the motion
of the liquid column does not stop once it is level with the free surface. Rather, the
column keeps on ascending, and then falls down before ascending again. This oscillatory
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FIG. 1.6 – Model experiment for gravity-driven jet formation. An initially sealed tube is
immersed in a liquid bath thereby creating a confined cavity. Upon lid release, a liquid
column starts rising and oscillating around the equilibrium level (Lorenceau et al., 2002).

motion can be sustained for several tens of periods before finally being damped. This
gravity-driven liquid oscillation is reminiscent of a pendulum’s oscillations, where there is
a ceaseless transfer between gravity potential and kinetic energies. Accordingly there is an
analogous transfer of energy in these liquid column oscillations. To describe this motion, we
start by introducing the generalized coordinates Z and Ż and by noting Ekin = 1

2ρπR
2ZŻ2

the kinetic energy of the column. The column is subject to an hydrostatic pressure force

F = ρgπR2(H − Z)

acting on its bottom. This force derives from the potential

Epot = −
∫ Z

0
F dz = ρgπR2

(
1

2
Z2 − ZH

)
.

Note that Epot is also exactly the excess gravity potential energy
∫ Z
0 ρg (z −H) dz. Fol-

lowing Lorenceau et al., (2002) we might be tempted by disregarding at first dissipative
phenomena and write the constancy of the mechanical energy Ekin +Epot, but this is too
much of an approximation. Indeed, in such open systems care must be taken in examining
the flowing in (or out) of matter and amending either Newton’s law (Sommerfeld, 1952,
chap. I, §4) or the work-energy theorem (Copeland, 1982) with appropriate source or sink
terms: matter intake also means momentum/energy intake. Specifically, two improve-
ments have to be considered. First, reckoning the energy influx, the work-energy theorem
can be rewritten as:

Ekin + Epot −
1

2
ρπR2

∫ Z

0
Ż2 dz = const. (1.7)

Second, the force exerted by the bottom is equal to the hydrostatic load only at the very
beginning. A crude approximation of the pressure modification imparted by dynamics
consists in modifying F with the Bernoulli contribution −1

2ρπR
2Ż2. Noteworthy enough,

the corresponding defect work exactly compensates the energy influx of equation (1.7), so
that the naive relation Ekin +Epot = const indeed holds in this particular case. From the
initial state the constant is easily seen to be 0. From this relation we can now infer that
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the value of the column velocity when it erupts at Z = H is simply
√
gH, a fact confirmed

experimentally (Bergmann et al., 2008; Lorenceau et al., 2002). In other words the Froude
number at eruption Fr = Żerupt/

√
gH is systematically equal to 1 whatever the geometry

of the tube. Note in particular that the tube radius R (or the aspect ratio of the initial
cavity) has not any influence on the column velocity.

Does the condition Fr = 1 also holds for jets resulting from the collapse of real hollows at
a free surface? Not exactly. During the PhD thesis of Élisabeth Ghabache we investigated
specifically the formation of such gravity-driven jets. The cavities were sculpted by means
of a short air pulse directed towards a free surface. Driven by gravity, the transient cavity
then quickly relaxed and formed a rapid liquid jet

Note: Stuhlman, (1932) ment-
ioned in his paper a similar ex-
perimentperformedbyProf. Foulk
in the thirties, butFoulkactually
only alluded to this experiment
as a model for capillary bubble
bursting jet, which is probably
a misleading analogy as will be
seen in §1.1.2 (Foulk, 1932).

, see Fig. 1.7. Quite surprisingly, the

FIG. 1.7 – Gravity-driven jets. A cavity is formed at a free surface by gently blowing a pulse
of pressurized air. As the air blow stops, the cavity relaxes and forms a liquid jet. The
top time sequence corresponds to the formation of a cavity in water (µ = 1 mPa·s). The
cavity has a maximum depth of H = 4.6 cm and a width L = 6.3 cm. The resulting jet has
a velocity Vtip = 3.59 m·s-1. The bottom sequence reports a similar experiment performed
in a water-glycerol mixture with µ = 833 mPa·s. There, the cavity geometrical parameters
are H = 6 cm, L = 10 cm and Vtip = 1.85 m·s-1 (Ghabache et al., 2014b).

Froude numbers of the resulting jets are no more constant and now depend on the cavity
aspect ratio H/L, as reported Fig. 1.8. Upon carefully examining the experimental data
we found in Ghabache et al., (2014b) the following dependence for the jet velocities Vtip
to hold over the whole range of explored parameters:

Vtip = α
√
gH

H

L
− β

µ

ρL
, (1.8)

with α and β being nondimensional constants (α = 6.59;β = 104). Equivalently this
relation may be written as:

Re = α
H

L
Ar− β, (1.9)

where Re and Ar stand respectively for the jet Reynolds number Re = ρVtipL/µ and
Archimedes number Ar = ρ

√
gHL/µ. Relation (1.9) allows the data to collapse onto a
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single line in the (Ar H/L, Re + β) space, see Fig. 1.8. Although a full theoretical picture
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FIG. 1.8 – Universal scaling law for gravity-driven jet velocities. Left: the Froude numbers
associated with jets produced in different liquids each exhibit a marked dependence with
the cavity initial aspect ratio H/L. Right: all the experimental data gather onto a universal
curve when represented in the (Ar H/L, Re + β) space. The top left inset shows that sub-
sets of fixed aspect ratio H/L exhibit a linear dependence between Re and Ar, albeit with
a slope γ depending on the aspect ratio H/L. Note that each curve exhibits a constant y-
intercept -β, hardly visible on the graph. Bottom right inset: the slopeγ is actually linearly
dependent on H/L: γ =α H/L (Ghabache et al., 2014b).

of jet formation is still lacking, considerable insight into the physics of jet formation can
be gained from the analysis of the scaling law (1.8). First, the nice collapse of the jet
velocities onto a single master curve over almost 4 decades in Archimedes number might
seem surprising when looking at the initial cavities’ shapes Fig. 1.7 – which are quite
irregular as a result of the method of formation. This agreement is telling, and emphasizes
the fact that only the global geometry of the cavity matters for jet formation, and not the
overprinted corrugations. In this regard gravity-driven jet formation is utterly different
from impact-driven one, where even tiny free surface defects are transferred into the jet
(see e.g. the ring jet page 5). This is because the pressure impulse field P is set at initial
time and can be thought of an instantaneous photograph of the free surface, whereas the
gravitational pressure field, although resulting from a much less intense acceleration, is
applied continuously as the free surface deforms – and is therefore less sensitive to the
precise shape of the cavity at a precise time. Second, (1.8) is informative about the
dissipative phenomena at play in jet formation. As detailed in Ghabache et al., (2014b),
viscosity clearly alters the velocity of the jet tip, but this slowing action is limited to
events preceding jet eruption (the jet essentially following a ballistic trajectory). This
spatial localization of the dissipation D =

∫∫∫
2µD :D dV , presumably just underneath

the jet root where the velocity gradients are important, probably explains why viscosity
does not appear in a prefactor but rather in an offset

Note: there is no need to invoke
the generation of vorticity to ex-
plain thisenergy loss, forviscous
potential flows do dissipate en-
ergy (e.g. as in theRayleigh-Ples-
set oscillations of a bubble or in
theattenuationofagravitywave,
see Boussinesq, 1877; Joseph,
2006; Lamb, 1932; Plesset and
Prosperetti, 1977; Stokes, 1851)

. Interestingly when Tagawa et al.,
(2012) produced fast and tiny jets by focusing a laser pulse of energy E in a capillary, they
observed an analogous energy loss Eheat that was attributed to the heating of the liquid.
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Gravity-driven jets can also develop in the quite differ-
ent context of sealed cavities. Indeed, large gas bubbles
are known to evolve spontaneously into beautiful spheri-
cal cap bubbles, commonly produced by divers for example
(see inset – photograph by Melissa Fiene). These bubbles,
studied in great details by Davies and Taylor, (1950), are
interesting soft objects that deform in response to the sur-
rounding hydrodynamics, thereby modifying their drag co-
efficient and the flow around the bubble, which in turn affect the shape of the bubble etc.
When equilibrium is reached, the ascending velocity of the bubble can be inferred directly
from its shape : U = 2

3

√
gR, with R the curvature radius of the bubble. Note that though

at equilibrium the energy fed per unit time by buoyancy is exactly dissipated by viscosity,
the velocity does not depend on it – which is reminiscent of aerodynamics problems and
more generally of inertia-dominated flows.
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FIQURE 2. Evolution of an incompressible initially spherical bubble by buoyancy forces. (a) 
S = 0.005, final f = 5.51; ( b )  S = 0.025, final f = 5.16; (c) S = 0.05, final f =  4.87; (d) 6' = 0.1, final 
r=  4.28; (e) S = 0.125. 

6. Computations of vortex ring bubbles 
In this section we describe computations of the evolution of vortex ring bubbles 

by the method described in $4. We have used 61 nodal points and a time step of 0.005. 
The computations are started from a toroidal configuration with a circular core and 
several values of the radius ratio Rla. The initial value of J1 (in (4.7)) is taken to be 
zero. Therefore the initial dipole distribution p is zero, and the initial velocity 
induced by this dipole distribution is also zero. The initial velocity of the bubble 
surface is therefore determined from the concentrated vortex at the centre of the 
circular core. This is approximately the same as the hollow vortex velocity given by 
(2.1), but it is not quite constant over the circle (it would be constant if R/a+ co). 
The initial conditions are therefore not quite identical to those adopted for the model 
equation of $2. 

For the first series we have taken Rla = 5 initially, a fairly large value in order to 
7-2 

Bubbles are rarely directly produced in this spherical cap shape, but
they rather evolve from a given initial condition, say spherical, to
this shape. Walters and Davidson, (1963) examined this relaxation
dynamics and showed that it involved the formation of a tongue of
liquid. According to the initial condition and physical parameters, this
tongue can even touch the bubble front and induce the reconnection
into a vortex ring bubble (see e.g. Bonometti and Magnaudet, 2006;
Lundgren and Mansour, 1991, and the inset extracted from their work).
As as in the previous example of open cavity recoil, the relaxation
dynamics of a bubble is much dependent on its initial geometry. And

if the liquid is sufficiently viscous, bubbles produced from a typical bubbling setup can be
initially markedly prolate. During the postdoc of Thomas Séon and within the framework
of a collaboration with glass-maker Saint-Gobain, we examined the intense relaxation
dynamics of such highly elongated bubbles, illustrated Fig. 1.9. There we see that just
after bubble pinch-off (first image of the time sequence), an intense liquid jet develops
upwards. Pinch-off events are known to be catastrophic events that can give rise to two
thin and very rapid opposite jets (Worthington, 1908). In the recent years, this pinch-
off has been showed to be associated with a true hydrodynamical universal singularity
(Fontelos et al., 2011; Gekle and Gordillo, 2010). So is the jet observed in our experiments
a mere signature of this pinch-off singularity? Probably not. Actually in our experiments
we have been unable to witness the formation of the downwards jet (acknowledging that the
proximity of the nozzle makes the observation difficult). Second, the jet does not appear
to be universal and the tip velocity exhibits a sharp dependence with the bubble height
H, reminding of the gravity-powered jets seen earlier. Figure 1.10 reports the dependence
of the jet velocity Vtip with H. Even if there is a clear increasing trend, the scatter is
disappointing, for quite different bubbles (e.g. the ones pictured in inset) can give rise
to jets with the same velocity. Upon closer observation, it also appears that, for a given
jet velocity, the taller bubbles also display the most curved fronts, resulting also in more
pressurized bubbles. In absence of surface tension, H could roughly be seen as a measure

https://www.flickr.com/photos/33332218@N05/
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FIG. 1.9 – A fast liquid jet develops inside a relaxing bubble. Right after detachment in a
surrounding liquid of viscosityµ = 420 mPa·s, the bubble has an initial heightH = 4.22 cm.
The bubble top rises at a steady velocityVfront = 0.67 m·s-1 and the jet velocity is hereVjet =
2.69 m·s-1. The airflow rate isQ = 4.4 ℓ·min-1 and the nozzle diameter isR0 = 900µm (Séon
and Antkowiak, 2012).

of the hydrostatic pressure difference ρgH between the liquid underneath the bubble and
the inner bubble gas. Now reckoning the overpressure 2γ/Rfront induced by capillarity,
we see that surface tension has actually a quenching action tending to lessen the pressure
difference. This correction can appropriately been taken into account by introducing a
corrected height H⋆ = H − 2γ/ρgRfront. And indeed, when plotting the jet tip velocities
as a function of H⋆, the scatter is significantly reduced (Fig. 1.10), therefore comforting
the capillary quenching scenario specific to sealed cavities, and also to a large extent the
gravity-driven nature of jet formation. With this correction we are now essentially facing
a problem very close to that of jet formation from air-blown cavities. This connection is
even made clearer since using the gravity-driven jet scaling law (1.9) appearing in open
cavity relaxation also allows to gather all the experimental result onto a universal curve,
see Fig. 1.10 (albeit with different numerical values for the parameters α and β and the
nozzle radius being taken as the horizontal scale).

The robustness of this scaling relation across experiments of very different nature
points to a universal mechanism linking jet formation to cavity geometry. But the extent
of validity of this law is unclear at the moment, and a deeper theoretical modelling is
certainly needed to unravel the physics of jet formation in the broad context of interface
gravity relaxation.

1.1.2 Singular jets and the detrimental action of capillary waves

We now turn briefly to cavities having a much smaller size than previously. In this limit,
cavity recoil is again violent and leads to a jet – but now for a different reason, for capillarity
drives this time the relaxation process. Figure 1.11 illustrates a typical jetting event
following the bursting of a small bubble. There we see that the cavity promptly reverses
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FIG. 1.10 – Left: jet tip velocities Vtip represented as a function of the bubble height H and
of corrected height H⋆ for a collection of experiments. Right: all experimental data follow
the scaling law (1.9) valid for open cavity relaxation jets, with α = 0.33, β = 13 and L≡ R0

the nozzle radius. (Séon and Antkowiak, 2012)

and forms a jet that further ruptures, leaving small droplets in free flight. Woodcock et
al., (1953) were the first to document this phenomenon and to recognize the role of these
droplets propelled from bursting ocean bubbles in the formation of cloud condensation
nuclei (see also Blanchard, 1967).
Actually the events preluding capillary-driven jet formation ut-
terly differ from the impact- or gravity-driven jets examined ear-
lier. Rather than gently everting, the cavity now shrinks and col-
lapses virtually up to a point: an hydrodynamic singularity ap-
pears and jet formation follows from this singularity. This route
to singularity relies only on capillarity and inertia and follows a

self-similar evolution where all lengths shrink as
(
γ
ρ

) 1
3
(t⋆ − t)

2
3 ,

with t⋆ being the singularity time (Keller and Miksis, 1983).
This self-similar evolution is universal and generic, i.e. it can be
detected in quite different settings, such as overdriven Faraday
waves (see inset with raw and rescaled cavity profiles in self-
similar space by Zeff et al., 2000) or collapsing bubbles (Duchemin et al., 2002). During
the PhD thesis of Elisabeth Ghabache, we paid a close attention to jets sparking from
small bursting bubbles, and found an unexpected role played by viscosity in their dynam-
ics. Actually bubbles made in more viscous liquids squirt thinner and faster jets,
as demonstrated Fig. 1.12. Viscosity is known to promote instabilities when a large kinetic
energy reservoir is present (e.g. Tollmien-Schlichting waves) but there is no such reservoir
here, making this result all the more startling. What is the mechanism for jet enhance-
ment then? The answer is provided Fig. 1.12, where we see that the smallest cavity width
reached is viscosity dependent. Actually, the cavity may be thought as a combination of
a crunching cavity and of capillary waves riding on it. If the damping action of viscosity
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FIG. 1.11 – Jet forming from a bursting bubble. Top: bubble bursting event, as seen from
above the free surface. Bottom: cavity dynamics as seen from under the free surface, ex-
hibiting the collapse of the cavity and ripples riding onto its surface. This sequence takes
place between the two first images of the top one (Ghabache et al., 2014a).

is not sufficient, these waves will interfere destructively with the self-similar collapse and
make it stop at a typical size Lmin. When viscosity is larger, these waves are damped and
the self-similar collapse proceeds up to its limit (presumably the visco-capillary length).
This interplay between self-similarity and (detrimental) capillary waves is intriguing and
suggests that the jet properties (e.g. tip velocity) critically depend on the cavity geome-
try (Ghabache et al., 2014a) – properties that could be finely controlled by imprinting a
desired pattern on the bubble surface by e.g. acoustic means.

1.2 Feeding flow and flow focusing

So far, we have observed experimentally a strong link between the jet velocity and the
initial cavity geometry for a variety of situations. But there is still large dimmed areas
in the fluid dynamics of jet formation; Could we describe and fully grasp the chronology
of the hydrodynamical events presiding jet formation, development up to fragmentation?
One of the most important missing link in this story so far is the flow pattern feeding
the jet, for it governs the jet geometry and hydrodynamics, and also because most of the
dissipation presumably happen at the jet root level. Obviously unsteadiness and nonlinear
free surface deformation are strong impediments to this feat, and disregarding those by
e.g. just transporting vertically (or radially) the free surface from the knowledge of the
velocity at initial time would be a bad idea, leading to absurd results such as finite time
geometrical singularities (see e.g. Dear et al., 1988). Rather, we might be tempted to use
the approach of Davies and Taylor, (1950) or Bisighini et al., (2010) to determine the flow
beneath the surface, where the authors consider a simple elementary harmonic potential
interacting with either a steady surface or a simple and reasonable approximation of it.
The problem in our situation is that the free surface is far from trivial and there is just no
simple ansatz for its description. Layzer, (1955) was facing in the fifties a similar situation
in an astrophysical context, and proposed to consider the free surface as an unknown of
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FIG. 1.12 – More viscous but faster. Left: bubble jet velocities measured as We
√
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√
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viscosity measured here with the Morton number Mo = gµ4/ργ3 . A velocity peak clearly
appears for a specific value ofMo. Right: cavity dynamics corresponding to the jets labeled
1, 2 and 3 on the leftmost graph, and their rescaled contours in the self-similar space. For
the less viscous case, capillary waves riding on the cavity prevents the collapse to proceed
up to its limit. Bottom and rightmost: the smallest width of the cavity Lmin decreases with
the viscosity (Ghabache et al., 2014a).

the problem as well. Transposing his approach to Pokrovski’s problem, we approximate
the velocity potential at any time with:

ϕ(r, z, t) = Uz + F (t)ezJ0(r). (1.10)

Figure 1.13 displays the flow pattern associated with this potential and we readily see,
from mere kinematical arguments, that the feeding flow is concentrated just beneath the
free surface. Upon injecting this ansatz into Bernoulli equation, it can unfortunately be
seen that this dynamical equation cannot be satisfied over the entire surface. Nonetheless
it is possible to verify this equation in a small neighbourhood of the apex. Lengthy but
straightforward calculations allow to recast this condition into a single nonlinear differen-
tial equation for F (t) which can be solved numerically, and to deduce the flow hydrody-
namics and free surface evolution. Following our example of impulsive jet formation, we
represent Fig. 1.13 the free surface eversion and jet formation as described by this small
model. Interestingly, we here remark that key features such as flow focusing are already
captured within this simple approximation.

1.3 Jet development: hints of universality
The trouble with Layzer’s theory (also coined single-mode approximation in the Rayleigh-
Taylor community) resides in its poor ability to capture fine features – which would require
higher-order modes. Unfortunately, the jet shape itself falls into this category, and it seems
quite tedious a task to include a collection of higher harmonics in this approximation.
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FIG. 1.13 – Layzer’s theory for Pokrovski’s jet. Left: cut-out view of the initial geometry
(here a fluid bounded with a spherical cap meniscus with a wetting angle of 18°), revealing
the streamlines underneath the free surface, in the tube reference frame. Note that this
flow pattern is steady through time. Right: corresponding evolution of the free surface
just after impact within the framework of Layzer’s theory (or single-mode approximation).

Yet experimentally several strikingly simple facts about transient jets emerge
from direct observation. First, the structure of the velocity field within the
jet seems to be attracted by the simple expansion wave profile z/t. This
behaviour was already noted by DiPersio et al., (1960) in the context of
shaped charge jets. DiPersio et al. analysed with the help of triple-flash
radiographs the velocity of jets fragments (see inset) and found a close-to-
perfect linear velocity profile within the shaped-charge jet (see Fig. 1.14).
During the PhD thesis of Élisabeth Ghabache we also investigated by means
of PIV the velocity field within transient jets for a variety of setups, each
characterised with a different injection law for the jet, and found that the
velocity profiles were invariably attracted by the linear profile. To understand
why this particularly velocity profile is so stable, we may first reckon that the
evolution of the velocity within the jet is pressureless and does not rely on
capillarity in the inertial limit:

∂u

∂t
+ u

∂u

∂z
= 0. (1.11)

Looking for monomial solutions zαtβ we readily see that the equation selects
the single exponents pair (α, β) = (1,−1) which is precisely the relaxation
wave profile z/t. Now posing η = z/t as the self-similar variable, we look
for the behaviour of solutions u(η, τ) close to the self-similar profile (Eggers
and Fontelos, 2009). Note that we have explicitly kept the time variable, now
expressed via its logarithm τ = ln t, to estimate departures or convergence to
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the self-similar profile. Bürgers equation (1.11) is then recast into:

∂u

∂τ
= (η − u)

∂u

∂η
. (1.12)

Solutions close to the self-similar profile may be written as u(η, τ) = η +
ϵu1(η, τ). Linearising the equation around the self-similar state we end up
with:

∂u1
∂τ

= −u1, (1.13)

which admits an exponentially decaying solution in the logarithmic variable τ .
We conclude that the relaxation wave profile is a stable fixed point of equation,
and is therefore an inertial attractor for the jet dynamics (Ghabache et al.,
2014b).
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Fig. 4. Velocity gradient of jets for three scaled charges. 
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FIG. 1.14 – Transient jet geometry and hydrodynamics. Left: transient jets, such as shaped-
charge jets, naturally evolve so as to exhibit a linear velocity profile (DiPersio et al., 1960).
Right: geometry of transient jets. (a) Experimental jet profiles obtained in gravity relax-
ation experiments (here originating from a cavity such that H = 4.9 cm, L = 9.6 cm) in a
liquid of viscosity µ = 763 mPa·s. The velocity of the jet is Vtip = 1.41 m·s-1. The interval
between two profiles is 5 ms and it appears that the jet widens linearly with time. (b) Same
jet profiles after rescaling of the x coordinate by

√
t+t0. The dashed line red curve follows

the equation z = C x-1 - z0

Having examined the structure of the velocity field we now turn to the shape of inertial
jets. Mass conservation reads, in the same 1D approximation as earlier:

∂r

∂t
+ u

∂r

∂z
= −1

2
r
∂u

∂ z
, (1.14)

noting r(z, t) the local jet radius and u(z, t) the local velocity in a fluid slice.
As previously we may enquire about jet shape similarity, by looking for solutions r(z, t)
of the mass conservation equation (1.14) in the form of monomials zatb. A one-parameter
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family of solutions such that a = −(2b + 1)/2 is readily obtained. It is impossible to
go further on purely heuristic grounds, but experimentally it appears that transient jets
appear to widen linearly versus time, at least in all our gravity relaxation-induced jets.
This observation allows us to infer that the particular exponent pair (a, b) = (−1,12) is
selected:

rjet(z, t) = C

√
t+ t0
z + z0

, (1.15)

where C is a constant prefactor.
Figure 1.14 reports typical profiles observed in gravity relaxation experiments. These jets
are representative of transient jets formed in a variety of configurations. Representing
the same profiles now as a function of the self-similar variable r/

√
t+ t0 reveals that the

jet actually develops in a self-similar sheath (see Fig. 1.14). It is noteworthy that the
jet flanks adopt a perfect hyperbolic shape, consistent with the purely inertial predic-
tion (1.15). The experimental observations reported Fig. 1.14 therefore demonstrate not
only the shape similarity of the evolving jet (square-root of time spreading of the radius
and hyperbolic shape), but also the validity of the assumptions made for obtaining (1.11)
and (1.15). Interestingly Stuhlman, (1932), performing an a posteriori analysis of prior
experimental photographs obtained by Worthington, also evidenced an hyperbolic shape
for jets following a drop impact on a liquid surface.

This example emphasizes the fact that an accurate description of jets does not neces-
sarily rely on deploying an intricate strategy with high-order harmonics. Conversely, some
links between the different steps of the jet chronology still need to be elucidated, such as
the shape selection just seen. To establish, with first principles, the chain of events running
from jet formation up to fragmentation into droplets is more than ever an direct prospect
of the here presented study and will be the subject of future investigations.



2 Drop Impact

The impact of a droplet, whether on a rigid ground or on a liquid surface, has fascinated
scientists for more than a century. This is partly due to the instant complexity arising from
the collision : a single drop with a single radius R and velocity U is suddenly deformed,
torn apart up to rupture into myriads of fragments of various sizes and velocities. Impact
foremost is a source of heterogeneity. Second, these phenomena are fast. The typical dura-
tion of an impact R/U or the characteristic oscillation period of a droplet, i.e. the capillary
timescale

√
ρR3/γ, are both of the order of the millisecond for millimetric droplets, cer-

tainly explaining why we only catch a glimpse of capillary events, however commonplace
they are. If complexity and swiftness drives the scientist curiosity, they also restrain him
from a full understanding – if a complex experiment is difficult to apprehend, a complex
experiment you cannot see is probably even more difficult. This is presumably why the
first scientific investigations on drop impact coincide with the advent of photography, see
the pioneering studies of Worthington, (1908). Half a century later, the emergence of fast
cameras in a military context (Engel, 1955) (and then of course with their popularization
in the late 90s) allowed for a deeper analysis of the rapid sequence of events characterizing
drop impact : spreading or splashing (Stow and Hadfield, 1981), interface tearing (Viller-
maux and Bossa, 2011) and ultimate fragmentation (Stow and Stainer, 1977). We do not
intend here to review all the different forms of drop impact (of e.g. newtonian, viscoplastic
liquids onto e.g. liquid, dry, yielding, corrugated substrates) nor the consequences of drop
impact for soil erosion, plant disease dissemination, aerospace industry etc. and refer the
interested reader to relevant review papers (Josserand and Thoroddsen, 2016; Rein, 1993).
Let’s rather mention that if a large number of studies have investigated the many facets of
drop impact, the literature on the early stages of impact is however scarce in comparison.
Probably one of the first depiction of the very first instants of drop impact dates back
to Engel, (1955) precisely. Interestingly, she noted the unvarying shape of the drop apex
during the earliest moments of impact. To explain this observation, Engel put forward
at the time the possible roles of inertia, viscosity or surface tension. This behaviour was
later confirmed with detailed experimental data depicting the instants following impact
in the work of Rioboo et al., (2002), who evidenced a “kinematic phase” where the drop
merely resembles a truncated sphere and spreads as the square-root of time. This phase
precedes the apparition of the liquid lamella.

A common feature of these experimental observations is the fact that they present
shapes and not forces, so to speak. A force measurement represents a real technical chal-
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FIG. 2.1 – Pressure field in an impacting drop. Close-ups of increasing magnitude on the
pressure field developing inside an impacting drop in the inertial limit. The pressure field
is extracted from Navier-Stokes Gerris computations of a drop impacting a solid surface at
early times (note that the surrounding gas dynamics is computed as well, but not repre-
sented here). Noticeably the motion is essentially pressureless (and therefore corresponds
to a free fall) except in a concentrated region in the contact zone. The successive close-ups
onpressure field structure in the contact region reveal a pressure peaknear the contact line
(the physical parameters are here Re = 5000, We = 250, t U / R = 4×10-4. The total size of
the numerical axisymmetric domain is 2R× 2R, and the adaptive mesh has locally a mesh
density corresponding to 32768×32768 grid points; Philippi et al., 2016).

lenge and, without such a direct information, it proves quite difficult to extract the pressure
field from the knowledge of the interface geometry only. On the other hand, numerical
simulations would offer the possibility to compute all these fields at once, but typically the
large spatial scale separation and the density/viscosity ratios strongly hinder the practical
realization of these simulations. Fortunately, we have benefited in the laboratory from the
Gerris code (Navier-Stokes solver, volume of fluid, adaptive mesh), developed by Stéphane
Popinet, that incorporates the latest state-of-the-art numerical techniques allowing to over-
come these difficulties (Popinet, 2003; 2009). During the PhD thesis of Julien Philippi, we
made an extensive use of such numerical simulations to unravel the short-time dynamics
of drop impact. Figure 2.1 represents a typical illustration of these simulations. There,
the numerically computed pressure field within an impacting drop is represented shortly
after impact (details to follow). It is readily seen that the structure of the pressure field is
extremely concentrated near the contact zone, as in Hertz’ classic elastic contact problem.
Conversely the outer region is essentially pressureless. This strong inhomegeneity in the
pressure distribution therefore sheds light over Engel’s observation and explains why, in
the absence of any pressure hindrance, the upper part of the drop freely falls even after
impact while remaining undeformed.

This sets the scene for this chapter, which central motivation is to revisit the prob-
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lem of a single spherical drop impacting a solid surface at early times. More precisely,
the goal will be to unfold the peculiar structure of the pressure field perceived Fig. 2.1.
By confronting and cross-testing systematically theoretical predictions with detailed and
accurate numerical simulations, the whole hydrodynamics and geometry of an impacting
droplet will prove to be self-similar, and furthermore to have connections with three classic
problems of fluid mechanics, as explained next.

2.1 Short-time self-similarity, and three analogies
The pressure field structure illustrated Fig. 2.1 is actually reminiscent of the pressure
fields developed during the water entry of a solid object. Furthermore, as already noted
by Cointe, (1989), drop impact may be viewed as water entry’s opposite, for here a liquid
object impacts a rigid flat surface at a given velocity (see Fig. 2.2). This remark is key
and will feed our line of thought for the remaining of this part, as well as drive us to
use the analytical techniques developed since the thirties to describe with great precision
the flow generated with the impact of an object, and proven to be in close agreement
with experimental data. This analogy with the water entry problem will actually spring
two further analogies allowing to understand the main flow features of impact and also
the structure of the boundary layer. But let’s start by examining further the connection
between drop impact and water entry.

FIG. 2.2 –Drop impact as the dual problemofwater entry. Sketch of the drop before contact
(left), and shortly after impact (middle). The shape the drop would assume in absence of
wall is outlined with a dashed line, and the contact line position is marked with red dots.
This problem may be viewed as the dual of the classic water entry of a solid object (right).

2.1.1 Wagner’s water entry and Lamb’s flow around a disk
The modern understanding of the liquid motion and forces generated by an impacting
object in water originates in the pioneering work of Wagner in the early thirties (Wagner,
1932). The primary motivation of Wagner was to provide a detailed characterization of
the impulsive forces generated with impact – already known to be of sufficient amplitude
to induce bouncing (ricochet), and even possibly structural failure of alighting seaplanes
or slammed ships (Nethercote et al., 1986). The foremost issue in this problem evidently
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stems from its highly unsteady and nonlinear nature. The central idea of Wagner was to
model the flow induced by the impact of a float or a keel by the one induced by a flat
“plate”, propelling the fluid particles downwards at the float or keel velocity, and having
an extent growing with time as the waterline length. The corresponding flow (“gleiche
Tragflügelbewegung” – equivalent aerofoil motion) is typically found to wind around the
plate and therefore to promote jetting or splashing. The knowledge of this flow field
then allows to determine the motion of the free surface, and finally provides the needed
condition in the determination of the wet length d(t). To summarize, Wagner’s idea
therefore consists in three steps sequence:

1. Forget about the precise object shape, and seek for the flow induced by a growing
plate of extent d(t) (corresponding to the waterline length, unknown for the moment)
that would propel the fluid downwards at velocity U . The free surface motion is not
considered here and the fluids fills a half-plane.

2. Deduce from the knowledge of the velocity field the displacement of the free surface
corresponding to any d(t).

3. Finally, by remembering the object shape and writing the condition that a free
surface fluid particule initially at the position d(τ) touches the object exactly at
t = τ , the law d(t) is uncovered thereby solving for the last unknown in the problem.

This last condition is now referred to as Wagner’s condition in the literature. This resolu-
tion scheme calls for a few remarks. First, it is sequential, or in other words, this scheme
provides a way to uncouple an otherwise fully intricated problem. Second, it might seem
surprising at first that the flow established at step one does not depend on history (of
the flow itself, and of d(t)). Such dependence on history would indeed appear if vorticity
or deformation of the free surface were taken into account. But there is more. Even in
absence of these effects, potential flows may exhibit transients (i.e. history effects) if the
motion is set with forces (boundary stresses or body forces). Conversely, in a rigid-loading
problem where velocity is imposed on the boundaries there is no such dependence. This
is because in the first case Newton’s laws of motion have to be considered: the liquid
mass is accelerated with forces and this takes time. In the second case there is no need
to have recourse to the laws of motion because the knowledge of the boundary velocity
and of the incompressible potential character of fluid motion sets everything; the first step
of Wagner’s idea is therefore definitely kinematical. Finally, let’s note that the geometry
and equations used in Wagner’ scheme of resolution can be fully justified with asymptotic
arguments (see e.g. Howison et al., 1991; Oliver, 2002).
Now if we get back to the drop impact problem,
we already noted the similitudes between the pres-
sure field developed in water entry problems and the
one observed in accurate simulations of drop impact.
But these similitudes also appear in other flow fea-
tures. More particularly, a winding motion around
the contact line can clearly be seen from the simulations (see the flow streamlines in the
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falling drop reference frame in inset). Such a motion is again a trademark of water entry
problem where the liquid winds around the edge of the growing plate of extent d(t). This
means that the free surface of the drop on the verge of touching the substrate falls faster
than the drop itself, which is rather unexpected. We also remark that this particular
bypass of the contact line also implies that the wet area does not increase as a result of a
sweeping, but rather of a tank-treading motion near the contact line. In other words, the
kinematics of horizontal extension for the wet radius is controlled by the vertical motion
of the free surface. All these observations advocate for the use of a water entry-analogue

FIG. 2.3 – Lamb disk analogy. In the reference frame of the falling drop, the flow induced
by impact may be seen as the one induced by a flat rising disk. The winding motion is here
represented with orange arrows, and the radial expansion of the disk with the wet area is
indicated with purple arrows. The motion of the disk itself is given by the red arrow.

description of impact, but also for picturing drop impact another way. Indeed we now
put forward a ‘Lamb analogy’ mirroring the flow within the impacting drop with the one
induced by a flat expanding disk in normal incidence, see Fig. 2.3 – the extent of the disk
being set by the wet area. Following this vision of drop impact as a dual version of the
water entry problem, we adopt from now on the corresponding formalism to describe the
fluid mechanics of impact.

2.1.2 Liquid impact equations and self-similar solutions

The motion inside an impacting drop may be described, if we neglect for now the de-
velopment of viscous rotational boundary layers, with the help of the harmonic poten-
tial ϕ̄(r̄, z̄, t̄) such that the velocity field ū(r̄, z̄, t̄) = ∇̄ϕ̄(r̄, z̄, t̄), where bars indicate a
proper nondimensionalization with the liquid density ρ, the free flight velocity U and the
drop radius R. Note also that axisymmetry is implicitely supposed here. The problem is
therefore governed by the harmonicity of ϕ̄, Bernoulli’s equation over the free surface and
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appropriate boundary conditions which read:

1

r̄

∂

∂r̄

(
r̄
∂ϕ̄

∂r̄

)
+
∂2ϕ̄

∂z̄2
= 0 in the liquid, (2.1a)

∂ϕ̄

∂t̄
+

1

2
|∇̄ϕ̄|2 + p̄ =

1

2
in the liquid, (2.1b)

∂ϕ̄

∂z̄
(r̄, z̄ = 0, t̄) = 0 over the wet area r̄ < d̄(t̄), (2.1c)

p̄ = 0 on the free surface, (2.1d)

dS̄
dt̄

= 0 on the free surface. (2.1e)

Here S̄(r̄, z̄, t̄) is a function vanishing on the free surface. We could also add an extra-
equation describing the far-field behaviour of the solution, and which will prove useful
later:

ϕ̄→ −z̄ far from the contact region. (2.1f)

As posited, the problem entirely depends on the wet area extent d̄(t̄), whose dynamics has
still to be determined.

FIG. 2.4 – Scalings in the contact zone. At the earliest times only a very small portion (of
orderε) of thedrop touches thewall. Thefluid sets intomotionwith impact is in a regionof
extent ε in every direction. The airwedge confinedbetween thewall and the droppresents
an angle of order ε as well.

▷ Leading-order description. Interested in the early-time behaviour of the impact-
induced flow, we set out by examining time-dependent solutions of system (2.1a–2.1e) in
the vicinity of the contact zone. To this end, we introduce ε as a measure of the wet
region: d(t)/R = O(ε) (see Fig. 2.4). This ε is the fundamental small parameter of our
problem. As typical in two-phase phenomena, the lengthscales for the dynamical fields
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r̄ = ε r,

z̄ = ε z,

t̄ = ε2 t,

p̄ = ε−1 p,

ϕ̄ = −z̄ + ε ϕ,

(ū, v̄) = (u, v).

TABLE 2.1 – Asymptotic scales for the drop impact problem.

and for the geometry of the free surface differ in this problem. Starting by considering
the space variables r̄ and z̄ on which depend the dynamical fields (such as the velocity
potential ϕ̄ or the pressure p̄), we introduce the following rescaling: r̄ = εrr and z̄ = εzz,
where r and z are O(1) quantities and εr and εz are gauge functions. From the structure
of Laplace operator, we expect the dynamical fields to display identical length scales in
each direction, so that εr = εz = ε.
Insights into the relevant lengthscales for the description of the free surface geometry can
be gained by decomposing the position of the surface into that of a translating sphere
z̄S(r̄, t̄) plus a surface disturbance h̄(r̄, t̄) (see Fig. 2.2b). Assuming the drop falls with
constant velocity, the shape of the unperturbed translating sphere obeys r̄2 + (z̄S − (1 −
t̄))2 = 1. Sufficiently close to the contact area, we introduce gauge functions for the
vertical position of the moving sphere z̄S and the time t̄: z̄S = εzSzS and t̄ = εtt. The
equation for the sphere surface can be approximated by εzSzS = 1

2ε
2r2−εtt. As previously

the determination of these scaling functions is obtained by dominant balance arguments:
εzS = εt = ε2. We remark that as in the original study of Wagner, a scale separation
between z̄S and z̄ exists (small deadrise angle hypothesis, see e.g. Oliver, 2002). This scale
separation arises because the drop typical radius of curvature O(1) is very large in front
of the other lengthscales of the problem, see Fig. 2.4. Similarly working out the other
equations of the problem, we naturally introduce a translation of the velocity potential
so as to work with ϕ̄ + z̄ and find all the asymptotic scales, which are summarized in
table 2.1. Plugging these scales into the governing equations allows to rewrite them in a
simpler, leading-order setting. For example, inserting these different scaled variables into
Bernoulli’s equation, we obtain:

1

ε
p+

1

ε

∂ϕ

∂t
+

1

2

[(
∂ϕ

∂r

)2

+

(
−1 +

∂ϕ

∂z

)2
]
=

1

2
in the liquid. (2.2)

The scale of the pressure 1/ε is here seen to be as large as the contact zone is small – as
expected in an impact problem. At leading order, Bernoulli’s equation is therefore reduced
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to:
p = −∂ϕ

∂t
in the liquid. (2.3)

This is in stark contrast with the classic steady version of Bernoulli where the pressure
is as small as the kinetic energy is large p + 1

2ρU
2 = cte. Here, unsteadiness drives the

pressure, and this results in counterintuitive effects, such as the peak pressure near the
contact line.
Finally, the geometry of the problem as well can be simplified at leading order; as classic
in water wave theory, we exploit the shallowness of the gap between the free surface and
the plane to transfer the boundary condition at the free surface onto the plane (see e.g.
Van Dyke, 1975, §3.8).
Summarizing, this near-field model problem takes the following form:

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂z2
= 0 in the liquid, (2.4)

p = −∂ϕ
∂t

in the liquid, (2.5)

the locus d(t) of the contact line is determined with the Wagner condition:

h(r, t) =
1

2
r2 − t for r = d(t), (2.6)

so that the boundary conditions at z = 0 read:

ϕ = 0 for r > d(t), (2.7)
∂h

∂t
= −∂ϕ

∂z
for r > d(t), (2.8)

∂ϕ

∂z
= 1 for r < d(t), (2.9)

and the far-field behaviour is given by:

ϕ→ 0 as r, z → ∞ (2.10)
h→ 0 as r → ∞. (2.11)

Finally the corresponding model geometry is sketched Fig. 2.5. We remark that the
previous set of equations resembles to that of the classic water entry problem, and can be
solved using the methodology described in e.g. Oliver, (2002), though we will now present
an alternate derivation based on self-similar solutions.

▷ Self-similarity. To reveal the self-similar nature of our problem, we classically look
in the following for scale invariance (Darrozès and François, 1982). We start by expressing
the fact that any variable q in (r, z, t, ϕ, h, d, p) can be rewritten as q = λqQ, where Q
is a rescaled variable and λq a numerical stretching coefficient embodying the change of
scale. Inserting these variables into the governing equations, it is straightforward to see
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FIG. 2.5 – Leading order outer problem for times of order ε2.

that invariance of Laplace equation through this stretching requires λr = λz. Similarly,
expressing the invariance of Wagner condition yields λh = λt, λr =

√
λt and λd =

√
λt.

The same operation performed on the additional boundary conditions finally imposes
λϕ =

√
λt and λp = 1/

√
λt. Note that λt remains here as the sole stretching parameter.

The pressure field can be written as an implicit function of time and space as fol-
lows: F(p, r, z, t) = 0. Upon using the previous scale invariance arguments, this re-
lation may be rewritten as F(P/

√
λt,

√
λtR,

√
λtZ, λtT ) = 0. A simple algebraic ma-

nipulation allows to remove the λt dependence for all but one variables, so that finally
G(

√
T P,R/

√
T ,Z/

√
T , λtT ) = 0, for any λt. Remarking that for a given T , this function

has to cancel whatever the choice of the scale λt, it readily appears that the last variable
is superfluous. In other words, a relation linking

√
TP to R/

√
T and Z/

√
T only must

exist.
The pressure field may therefore be rewritten explicitly as:

p =
1√
t
P
(
r√
t
,
z√
t

)
. (2.12)

With a similar reasoning, and upon introducing the self-similar variables ξ = r/
√
t and

η = z/
√
t, we readily obtain :

ϕ(r, z, t) =
√
t Φ(ξ, η), h(r, t) = t H(ξ) and d(x, t) =

√
t δ, (2.13)

where Φ and H are unknown functions of the self-similar variables and δ a constant repre-
senting the (fixed) position of the contact line in self-similar space.
Rewriting again the governing equations but now in the self-similar space, we get:

1

ξ

∂

∂ξ

(
ξ
∂Φ

∂ξ

)
+
∂2Φ

∂η2
= 0 in the liquid, (2.14)

P(ξ, η) =
1

2

(
−Φ(ξ, η) + ξ

∂Φ

∂ξ
+ η

∂Φ

∂η

)
in the liquid, (2.15)
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the boundary conditions at η = 0 take the following form:

H− 1

2
ξ
∂H
∂ξ

= −∂Φ
∂η

for ξ > δ, (2.16)

∂Φ

∂η
= 1 for ξ < δ, (2.17)

Φ = 0 for ξ > δ, (2.18)

the far-field behaviour is:

Φ → 0 as ξ, η → ∞ (2.19)
H → 0 as ξ → ∞, (2.20)

and the self-similar version of Wagner condition is finally given by:

H(ξ) =
1

2
ξ2 − 1 for ξ = δ. (2.21)

This problem can now be solved in several steps.

▷ Resolution. We look for an harmonic solution for the potential of the form:

Φ(ξ, η) =

∫ ∞

0
C(k)J0(kξ)e−kη dk. (2.22)

The weight function C(k) is determined with boundary conditions (2.17) and (2.18), leading
to the following pair of dual integral equations:

∫ ∞

0
kC(k)J0(kξ) dk = −1 for ξ < δ, (2.23a)∫ ∞

0
C(k)J0(kξ) dk = 0 for ξ > δ. (2.23b)

Solving these dual integral equations using the technique described in Sneddon, (1960),
we obtain a closed-form expression for the weight function:

C(k) = 2

π

δk cos(kδ)− sin(kδ)

k2
=

2

π

d

dk

(
sin(kδ)

k

)
. (2.24)

Anticipating the description of the contact line dynamics, we now derive ∂Φ/∂η at the
substrate level η = 0:

∂Φ

∂η
= − 2

π

∫ ∞

0

kδ cos(kδ)− sin(kδ)

k2
J0(kξ)k dk, (2.25)

where we recognize the sum of two Hankel transforms (see e.g. Sneddon, 1995, table IV,
page 528). This allows us to obtain the following explicit expression for ∂Φ/∂η for η = 0:

∂Φ

∂η
= 1 for ξ < δ and ∂Φ

∂η
= − 2

π

(
δ√

ξ2 − δ2
− arcsin

(
δ

ξ

))
for ξ > δ. (2.26)
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This result was originally obtained by Schmieden, (1953) in the water entry framework.
With the help of the vertical velocity expression in the near wall region just derived, we
can rewrite the kinematic boundary condition (2.16) as:

H(ξ)− 1

2
ξ
∂H
∂ξ

(ξ) =
2

π

(
δ√

ξ2 − δ2
− arcsin

(
δ

ξ

))
for ξ > δ. (2.27)

This inhomogeneous differential equation can be solved using variation of parameters, i.e.
looking for a solution of the form H(ξ) = ξ2f(ξ). This gives:[

f(ξ)

]+∞

δ

= − 2

π

∫ ∞

δ

2

ξ3

(
δ√

ξ2 − δ2
− arcsin

(
δ

ξ

))
dξ. (2.28)

Upon using the far-field decaying behaviour of H (see equation (2.20)), this last equation
reduces to f(δ) = 1

2δ
−2 so that at the contact line the drop deformation is:

H(δ) = δ2f(δ) =
1

2
. (2.29)

In the self-similar space, the Wagner condition therefore takes the following remarkably
simple form:

1

2
=

1

2
δ2 − 1, (2.30)

from which we finally derive the position of the contact line:

δ =
√
3. (2.31)

▷ Lamb’s analogy and the flow around a disk. In §2.1.1 we proposed to visualize
the flow in an impacting drop as the one induced by a flat rising disk expanding radially
as the wet area (see also Fig. 2.3). We are now in a position to formally justify this
water-entry analogy. The axisymmetric flow induced by ‘the motion of a thin circular disk
with velocity U normal to its plane, in a infinite mass of liquid’ is for example analysed in
Lamb’s classic textbook §101 (Lamb, 1932). After deriving some elementary axisymmetric
solutions of Laplace equation of the form exp(±kz)J0(kr) in §100, Lamb examined a
variety of axisymmetric potential flows. Among those was the one (later connected to
the flow around a flat circular disk in normal incidence) where at the symmetry plane
z = 0 the potential takes the value ϕ = C

√
a2 − r2 for r < a and ϕ = 0 for r > a, with

a the disk radius. The solution for this problem was stated under the following integral
representation:

ϕ(r, z) = −C
∫ ∞

0
e−kzJ0(kr)

d

dk

(
sin ka

k

)
dk. (2.32)

And from ‘a known theorem in Electrostatics’, Lamb obtained the expression for the
vertical velocity in the symmetry plane:

−
(
∂ϕ

∂z

)
z=0

=


1

2
πC for r < a, (2.33a)

C

(
arcsin

(a
r

)
− a√

r2 − a2

)
for r > a. (2.33b)



2.1 Short-time self-similarity, and three analogies 32

This corresponds precisely to the flow within the impacting drop, after posing C = −2/π
and a = δ, thereby justifying formally our initial analogy between the impact-induced
flow with the one associated with a flat rising disk rapidly expanding with the wet area.
Figure 2.6 offers a comparison between the streamlines of this Lamb analogy (see Philippi

FIG. 2.6 – Instantaneous streamlines in Lamb’s problem and in simulations. Comparison
between the flow pattern within an impacting drop (left) and around a rapidly expanding
disk (Lambanalogy, right) in the self-similar space. In both cases, the streamlines are repre-
sented in the moving frame. The red dots represent the theoretical position of the contact
line ξ =

√
3. The numerical streamlines represented on the left are derived from the ve-

locity field computed with Gerris at short times. The theoretical streamlines are shown on
the right (note the correspondence with Lamb’s figure page 145).

et al., 2016, for details) and the ones computed with Gerris for the drop impact problem in
the self-similar space. A good overall agreement between the analytical and the numerical
streamlines is manifest, comforting the expanding disk analogy followed here. Interestingly
the winding motion around the contact line, as well as the falling velocity overshoot near
this region, are both captured with this analogy and can be correlated with the peculiarities
of the winding flow near the edge of a rising disk.

Similarly the pressure can be derived as the time derivative of the potential. In the
self-similar space, the pressure field is given by equation (2.15). Figure 2.7 proposes a
comparison between the structure of the self-similar pressure extracted from numerical
computations performed with Gerris and the theoretical prediction. There it can be seen
that the overall structure of the pressure field developing in the impacting drop, and in
particular the pressure peak in the vicinity of the contact line already pinpointed out in
Fig. 2.1, nicely matches with the theory. Interestingly, the structure just described is at
variance with the pressure distribution around a flat disk rising steadily (Lamb’s original
problem). Indeed in such a configuration the pressure is expected to be maximal in the
stagnation point area, whereas in our model problem the pressure peaks near the contact
line/disk edge. This is a consequence of the motion unsteadiness: the pressure is here
dominated by the ∂ϕ/∂t contribution rather than the steady 1

2∇ϕ
2 term.
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FIG. 2.7 – Pressure field in the model and in the numerics. Comparison between the pres-
sure field developing inside an impacting drop (left) and around a rapidly expanding disk
(Lamb analogy, right). The pressure field represented on the left is extracted from Gerris

computations and represented in the self-similar space (isovalues: 0.12, 0.24, 0.36, 0.48,
0.6, 0.72, 0.84). The self-similar theoretical pressure field represented on the right is given
by equation (2.15) (isovalues: 0.13, 0.28, 0.445, 0.57, 0.73, 0.9, 1.2). Though isovalues have
been slightly changed between the two panels, theoretical and numerical results are in a
good overall agreement.

2.1.3 Mirels’ analogy, and the particular boundary layer of drop impact

The inertial limit (large Reynolds number) investigated thus far has allowed for a self-
similar potential description of the impact-induced flow in nice agreement with the numer-
ical results, both qualitatively and quantitatively (see e.g. Figs. 2.7 and 2.6 and Philippi
et al., 2016). Viscous effects are here dominating only in very thin boundary layers de-
veloping along the web substrate. And indeed, a careful examination of the numerical
results reveals the presence of these thin layers in the very vicinity of the solid wall. Even
if spatially confined, these boundary layers nonetheless play a key role when comes e.g.
the question of the erosion potential of an impacting drop.
It appears that a classical boundary layer analysis (neglecting nonlinear terms and the
pressure gradient) leads to a paradoxical cancelling of shear stresses at the wall. This
unreasonable result stems from the fact that the sharp longitudinal variations associated
with the contact line motion have here been disregarded. Specifically non linear terms
do balance unsteady terms, at least near the contact line location r =

√
3t. As a result,

the boundary layer actually grows from this moving point both in space and time. While
a comprehensive analysis of this problem demands a careful balance of each term likely
resulting in a non linear boundary layer problem, beyond the scope of the present study, we
nonetheless propose in the following an approximation based on an analogy with boundary
layers developing behind shockwaves.
First remembering the tank-treading movement in the vicinity of the contact line, we
point out the violent change in radial velocity when passing through the contact line. In
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FIG. 2.8 – An analogy with shock-induced boundary layers. Left: Sketch of the contact line
during its motion and of the growing boundary layer in its trail, analogous to that develop-
ing behind a shockwave. Right: Shockwave-induced boundary layer, reproduced from the
german edition of Schlichting textbook (Schlichting, 1968). Notations are fromSchlichting,
with a correspondence between x and r. Note that in the shockwave case, U∞ and Us are
both constant.

other words, the contact line embodies a neat discontinuity where the slip velocity sees
its value suddenly change from 0 to ue. Building on this observation, we consider in the
following the contact line as a kind of shock wave sweeping the substrate, and seeding a
boundary layer in its trail (see figure 2.8). This problem is classic in compressible flows
and was solved by Mirels, (1955) in the context of a shock tube (see Schlichting, 1968, for
more details). In this study, a fluid initially at rest is swept by a shockwave travelling
at celerity Us in the direction x and instantly acquires an impulse of velocity U∞ in the
process. Behind the normal shockwave is left a growing viscous boundary layer.

The Ansatz for Mirel’s solution is to introduce ηm = z/
√
t− x/Us as the self-similar

variable. This variable not only takes into account time variations but also longitudinal
effects from the shock backwards in x. Disregarding any pressure gradient but considering
both unsteady and nonlinear effects, the momentum equation may be rewritten in terms
of ηm and of the velocity U∞f

′(ηm):

f ′′′(ηm) +
1

2
(ηm − U∞

Us
f(ηm))f ′′(ηm) = 0, with f(0) = f ′(0) = 0, and f ′(∞) = 1. (2.34)

Two limiting cases clearly emerge from the picture. For large U∞/Us (and after a rescaling
and a change of sign due to the choice of origin), the velocity profile tends to a Blasius
profile. Conversely, for small values of the velocity ratio, the velocity rather adopts an error
function profile. Note that profiles corresponding to intermediate values of this ratio can
be found in Schlichting’s textbook. From this sound result we may by analogy transpose
this approach to the drop impact problem (see Fig. 2.8). Obviously the outer solution
for the drop impact problem is quite more complex for neither Us nor U∞ are constant.
The core idea consists in drawing a parallel between the shock (at position Ust) and the
contact line (at position

√
3t) on the one hand, and between the steady slip velocity U∞
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and ue(r, t) on the other hand. Following this simple analogy the longitudinal velocity is
approximated with:

Ur(r, z, t) =
2r

π
√
3t− r2

f ′

(
z

2
√
t− r2/3

√
Re
)

=
2

π

ξ√
3− ξ2

f ′

(
η
√
Re

2
√

1− ξ2/3

)
(2.35)

where f ′ is solution of an equation which is analogous to Eq. (2.34). The so-called
composite solution (Van Dyke, 1975), which is an expansion valid in the ideal fluid and in
the boundary layer, then follows:

ũcomp
r =− 2

π

∫ ∞

0

√
3k cos(

√
3k)− sin(

√
3k)

k
e−kηJ1(kξ) dk

+
2

π

ξ√
3− ξ2

(
f ′

(
η

2
√

1− ξ2/3

√
Re
)

− 1

)
.

(2.36)

In practice we approximated f ′ with erf function.
The inset shows a comparison between numerical
velocity profiles extracted from Gerris computations
at different times and space corresponding to ξ =
1.5 and the present theoretical approximation (red
dashed line), which proves to provide a fairly good
description for the flow. The collapse of the differ-
ent numerical profiles onto a single curve in the self-
similar space is noticeable, and the agreement with
the boundary layer prediction is remarkable. Note-
worthy enough, the self-similar variables entering in
the description of the boundary layer are the exact same self-similar variables used in
impact-induced flow problem. This allows for a seamless representation of the velocity
field in Eq. 2.36 encompassing both impact and viscous effects.

▷ A note on the impact forces. From our theoretical predictions we can infer the
value of the normal force exerted on impact at short times from the pressure knowledge:

F (t) =
1√
t

∫∫
S
P(ξ, η = 0) dS. (2.37)

But interestingly, note that F (t) can also been inferred directly from energy arguments,
with no knowledge of the pressure distribution. Indeed, writing the global kinetic energy
conservation for the upper semi-infinite space, we have:

d

dt
T = −

∮
pu · ndS, where T =

(∫∫∫
ρu2

2
dV

)
. (2.38)

In the context of a flat rising disk, the kinetic energy reduces to Tdisk = 4
3ρa

3U2 (Lamb
§102). This expression can immediately be transposed to the impacting drop problem
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so that T = 4
√
3ρU7/2R3/2t3/2. The power of pressure forces then follows as d

dtT =

6
√
3ρU3R2

(
Ut
R

)1/2. Dividing this power by U , we obtain the (dimensional) net normal
total force.

F (t) = 6
√
3ρU5/2R3/2

√
t. (2.39)

This alternate derivation of the normal force provides with yet an other illustration of the
relevance of Lamb’s analogy for the drop impact problem.
From the structure of boundary layer we may also estimate the integrated shear stress
(which can be viewed as the erosion potential)

D(t) =

∫ 2π

0

∫ √
3t

0
τ(t) r dr dθ, (2.40)

where τ is the wall shear stress. As is, this expression diverges. Most presumably, a
physical cut-off regularizes this expression but this requires to describe the solution at
higher order. Actually, it appears from the numerical simulations that the integrand
saturates at a fixed distance from the contact line in the self-similar space. We do not
want to elaborate on this point here and refer the interested reader to Philippi et al., (2016)
for further details. Let’s simply note as a conclusion that the (dimensional) integrated
shear stress is closely approximated by:

D(t) ≃ 10.7µ
1
2 ρ

1
2U2R

√
t. (2.41)

2.2 Drop impact on a soft substrate
Following the impact of a liquid droplet onto a solid surface, a splash may be triggered.
This splash may be a desirable feature if one wants to coat a given surface, but it may
also represent a nuisance in inkjet printing or splash-induced disease dissemination in
plants. Many parameters influence splash formation and the current research still tries
to disentangle the root of this phenomenon. For example, about a decade ago only, a
team from the James Frank Institute in Chicago demonstrated the critical role of air
pressure, long thought to be secondary, in triggering the splash process (Xu et al., 2005).
In this last section we outline a starting colloboration with Rob Style at ETH Zürich, Al-
fonso Castrejón-Pita at the Mechanical Engineering Dept in Oxford and Sam Howison and
James Oliver at the Mathematical Institute of Oxford as well. Within the framework of
this collaboration, we got interested in the possibility of controlling the splash appearance
with the stiffness of the substrate, see Fig. 2.9. To shed light over the role of substrate de-
formation into splash suppression, we performed some numerical simulations with Basilisk
(the successor of Gerris, also written by Stéphane Popinet, see http://basilisk.fr). In
these simulations, dynamic contact angle effects were not implemented and a constant
value of π – corresponding to the high-velocity limit – was chosen for the wetting angle.
The soft substrate was modeled as a simple Kelvin-Voigt solid deforming in reaction to
the applied pressure with the following constitutive law:

k
ẏ

U
+ η

y

R
=

p

ρU2
on the substrate surface, (2.42)

http://basilisk.fr
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Acrylic (3GPa) Silicone (430 kPa) Silicone (330 kPa) Silicone (165 kPa)

Silicone (80 kPa) Silicone (45 kPa) Silicone (5.5 kPa)

5mm

Thin silicone (80 kPa)

FIG. 2.9 – Soft impact. Examples of ethanol droplet impacts on flat substrates with a range
of stiffnesses. All droplets have a radius of 0.88±0.02 mm and impact speed of 2.61±0.02
m/s. Images shownare taken approximately 350µs after impact. All silicone substrates are
10 mm thick, except the bottom left image which is 3 µm thick. The scale bar is the same
for all eight images. (Experiments by Rob Style and Alfonso Castrejón-Pita)

y corresponding to the wall deformation. Making use of the fact that the substrate dis-
placements were small, we flattened this boundary condition, i.e. we linearised it so that
it is applied at the initial position of the substrate throughout the droplet motion. The
numerical implementation of the soft substrate therefore amounted to the following:

1. At each time step, compute the entire pressure field with the Navier-Stokes solver,

2. From the knowledge of the pressure on the fluid-solid interface, deduce the substrate
instantaneous velocity from equation (2.42),

3. Feed this velocity into an inhomogeneous Dirichlet condition for the fluid normal
velocity at the wall.

The modification of the boundary velocity then reflects into the evaluation of the fluid pres-
sure at the next timestep, therefore allowing to efficiently couple the subtrate deformation
with the drop dynamics.

These simulations allow to reveal the pressure as the key control for splash formation.
Figure 2.10 illustrates the typical evolution of the maximum pressure measured over the
substrate, with a rise as the drop approaches and touches the substrate, followed by
an algebraic decline following sheet ejection. Remarkably the pressure fall-off in neat
agreement with the second-order Wagner theory pmax = 3ρRU/8(t − ti) with ti the time
of impact in absence of air cushioning, an expression which follows from Wagner theory’s
asymptotic results that pmax = ρȧ2/2 (Howison et al., 1991). The simulations also allow
us to understand why ppeak is lower (and thus splashing is less likely) on softer substrates.
We find that a reduction in ppeak is associated with downwards substrate motion, as this
reduces liquid deceleration on the substrate. Significant substrate motion does not occur
until when ppeak exceeds the substrate’s modulus, E. Thus splash reduction by a soft
substrate can only occur when

prpeak =
ρRU

(trej − tri )
≳ E. (2.43)
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FIG. 2.10 –Fall-off of peak pressure on soft substrates. Simulations give themaximumpres-
sure p’max ≡ pmax/ρU2 exerted on a substrate as a function of time t’≡(t-ti)U/R. The insets
illustrate how the pressure distribution evolves in an impacting droplet (here impacting a
rigid substrate). p’max reaches a peak at the point of sheet ejection before decaying follow-
ing Wagner theory’s prediction p’max=3/8 t’ (dashed curve).

Here superscript r’s refer to impact on a rigid substrate. This result agrees with our
experimental results. Using the typical data experiments, we take R = 1.5mm, Uc =
2.36m/s, trej − tri = 30µs and ρ = 789kg/m3, to find Ec = 93kPa. This is consistent with
substrate stiffnesses where we start to observe significant reductions in splashing.

This outline of a current work provides an illustration of the impact of elasticity on
drop dynamics. It also preludes the next chapter where we now turn to the study of drop
interacting with soft and, this time, thin elastic substrates.



3 Elasticitywith Interfaces

When we think of how a fluid could deform a solid body, we probably picture a flapping
flag, algae or cables fluttering with waves or vibrating vocal chords. In these examples,
the fluid structure interaction is mediated with fluid inertia. But at small scales, inertia
and body forces can become subdominant with respect to surface forces if interfaces are
present, as for example in the context of droplet sitting on a soft object. Specifically the
ratio of surface over volume becomes increasingly larger at small scales, thereby promoting
the emergence of surface tension as a leading force in this limit. This particular type of
fluid-structure interaction, where surface tension deforms and shapes elastic surroundings
has been coined elastocapillarity in the recent literature. These phenomena are quite
counter-intuitive at the human scale, but can have tremendous effects in broad areas,
such as neonatal pulmonary collapse, clumping of wet hairs, splash suppression as we just
saw in the last chapter or even play a crucial role in spider silk mechanics as we will
see in chapter 4 (see Roman and Bico, 2010, for a review). The statics and dynamics
of elastocapillarity involving slender structures along with the identification of the key
physical parameters governing these effects form the main matter of the present chapter.

3.1 Elastocapillarity statics

3.1.1 A simple model
Let’s start by introducing a worked out example illustrating the energetics of elastocapil-
larity in a 2D setting. We first consider a long rigid plate of length L. The surface energy
of the plate would then be γsvL, where γsv is the surface energy of the plate per unit area
(remember that in our 2D setting, all results have to be understood per unit length in
the transverse direction). But for simplicity we choose to subtract this quantity in our
definition of energy E, so that the dry plate has the reference energy E = 0.
We now consider three situations involving a liquid drop:

i) In the first situation, we introduce a drop of radius R and surface tension with the
surrounding vapour γℓv. The drop does not interact with the substrate and lies at
a distance from it. In absence of gravity, the drop reaches a circular shape and
the total energy of the system is E0 = 2πRγℓv, see Fig. 3.1. To put figures, if we
are dealing with a millimeter-sized water droplet in this 2D world, we would have
R = 1 mm, γℓv = 72 mJ·m−2 and E0 = 4.52× 10−4 J/m.

39
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ii) Now we make the drop contact the solid. If we know the interaction energies between
the substances, can we predict the shape of the droplet on the substrate? Of course
we can, because we know Young-Dupré equation relating the contact angle of the
circular cap with the energies. But actually we could calculate this angle without
having recourse to this additional relation; simply stating that the total energy of
the system E is minimal is sufficient to determine it. For the purpose of this example,
we work out in the following this minimization.
The total energy of the system is here E ≡ E(Rcap, θ,D), with:

E(Rcap, θ,D) = 2θRcapγℓv + 2D∆γ, (3.1)

where θ is the contact angle, D the wet half-length, and ∆γ = γsℓ − γsv the energy
difference between the wet and the dry solid (positive is solid is hydrophobic, and
negative if it is hydrophilic). Further recalling that the volume of the drop cannot
change during the minimization process and that D must be related to Rcap and θ,
we end up with the following constrained minimization problem:

Search (Rcap, θ,D) minimizing E(Rcap, θ,D) subject to the constraints of:
▷ constant drop volume: V = θR2

cap −DRcap cos θ − V = 0,

▷ geometrical dependence: G = D −Rcap sin θ = 0.

(3.2)

This constrained minimization problem can conveniently be rewritten as an uncon-
strained minimization problem by introducing the following Lagrange functional:

L(Rcap, θ,D, λ, µ) = E(Rcap, θ,D)− λV − µG. (3.3)

Here λ and µ are Lagrange multipliers enforcing the constraints directly into the
functional. This variational problem can be solved by looking for an extremal point
of the functional, that is, a 5-tuplet (Rcap, θ,D, λ, µ) satisfying:

∂L
∂Rcap

= 2θγℓv − 2λθRcap + λD cos θ + µ sin θ = 0,

∂L
∂θ

= 2Rcapγℓv − λR2
cap − λDRcap sin θ + µRcap cos θ = 0,

∂L
∂D

= 2∆γ + λRcap cos θ − µ = 0,

(3.4a)

(3.4b)

(3.4c)

and the constraints V and G. Combining (3.4a)Rcap cos θ with (3.4b)(− sin θ) allows
to reveal λ, the volume constraint Lagrange multiplier, as the drop pressure:

λ =
γℓv
Rcap

. (3.5)
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100% 9.4 % 1 %

FIG. 3.1 – A 2D energetical view on elastocapillarity. We start by considering a rigid ground
(reference energy level). i) A droplet is introduced and adopts a circular shape. The energy
of this configuration is E0 = 2πRγℓv. ii) If the drop touches the substrate, the total energy
is lowered to 9.4% E0 for the parameters used in the model (see text). Note that the ex-
posed free surface is extended, but that the energy gained by wetting the surface largely
compensates for this additional cost. If the wet footprint was larger, the cap would have
a too large area and the energy would be higher. If the footprint was smaller, the energy
gain by wetting would not be maximal. The better trade-off therefore corresponds to this
situation where the contact angle of 20° is given by Young-Dupré wetting relation. iii) If
the surface is made flexible, the elastic energy cost of bending is again largely recovered by
the less exposed free surface allowed by this folded configuration. The energy is here 1%
E0.

Young-Dupré’s wetting relation then naturally arises from this set of equations. In-
deed, writing (3.4b) + (3.4c)Rcap cos θ gives:

γℓv cos θ +∆γ = 0. (3.6)

From this relation the contact angle θ follows.
Carrying on with our previous example, if we suppose that the substrate is wetting
with ∆γ = −67.66 mJ·m−2, we find a contact angle of the spherical cap of 20° (see
Fig. 3.1). The total energy of the system is then E = 4.25 × 10−5 J/m, which is
9.4 % of the initial energy budget: so there is a large pay-off achieved by wetting
the substrate. But it is interesting to look at how this energy E is distributed. The
liquid-air cap surface energy is now 5.36 ×10−4 J/m, or 119 % E0! But the energy
gained by wetting the substrate (-4.25 × 10−5 J/m) largely outweighs this additional
energy cost. Energy minimization is a global process, and does not mean that each
contribution in energy component have to be a minimum – this example illustrates
quite the opposite.

iii) Suppose now that the substrate is a thin elastic lamella. This lamella can be dis-
torted by the pulling action of surface tension, but can we make an estimate of this
deformation, and of the resulting energy gain? To start with, let’s neglect the action
of gravity and approximate the shape of the elastic strip under the drop by a circu-
lar arc of radius θbend subtended by the angle 2θbend. Similarly we note Rcap and
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θcap the corresponding radius and angle for the liquid cap. This model, probably
oversimplified (e.g. exhibiting curvature discontinuities), is nonetheless sufficient for
the present illustration.
The Lagrange functional for this problem now reads:

L(Rbend, θbend, Rcap, θcap, D, λ, µ, ξ) =E(Rbend, θbend, Rcap, θcap, D)

− λV − µG1 − ξG2,
(3.7)

where the energy is now:

E(Rbend, θbend, Rcap, θcap, D) = 2θcapRcapγℓv + 2θbendRbend∆γ +
EIθbend
Rbend

, (3.8)

the last term corresponds to the bending elastic energy 1
2

∫
EIκ2ds involving the

bending stiffness EI of the strip and the curvature κ ≡ 1/Rbend (Audoly and Pomeau,
2010). The volume and geometrical constraints here read:

V = R2
bendθbend −Rbend cos θbendD +R2

capθcap −RcapRcapD − V = 0

G1 = Rcap sin θcap −D = 0

G2 = Rbend sin θbend −D = 0

(3.9)

The minimization proceeds then as previously, with straightforward (albeit lengthy)
calculations. Even in this simple configuration, there is unfortunately no full analyt-
ical solution but the equations can still be solved numerically with a continuation
procedure. Several messages can be learnt from these numerical resolutions. First,
when the bending stiffness EI tends to infinity, the curvature of the strip falls suffi-
ciently rapidly to 0 so that 1

2

∫
EIκ2ds → 0 in the rigid limit, as expected. Second,

as previously we observe a trade-off between the different contributions in energies as
minimization proceeds. More particularly, strip bending, undesirable at first sight
because costly, can promote a reduction of exposed liquid surface, as illustrated
Fig. 3.1. Whenever this energy gain exceeds the cost of bending, elastocapillary
folding occurs.
If we pursue our numerical example, we can now suppose that the strip on which
the drop sits has a bending stiffness EI = 1.14 × 10−7 J. The minimum energy
configuration corresponds to a markedly deformed strip, see Fig. 3.1. The total
energy of this setting is 4.53× 10−6 J·m−1, or 1 % E0. Folding the strip has allowed
to gain a factor 10 in energy in comparison with the rigid case. Note that in this
configuration, the elastic energy stored in the folded strip corresponds to 12.5 %
E0 and the net surface energy is -11.5 % E0, so that there is here almost an anti-
equipartition of energy: each of the term can be quite important but almost exactly
balance the other. This is not a general result, for following equilibria leads to
negative energy states.
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results are consistent with a linear relationship between
Lcrit and LEC as expected from dimensional analysis [see
discussion with Eq. (1)]. Based on this, a linear regression
of the data leads to Lcrit ! 7:0LEC for squares and Lcrit !
11:9LEC for triangles (Fig. 3).

Recovering the value of the critical length theoretically
would require a full 3D description of the coupled thin
plate and drop system. Here, we limit ourselves to a 2D
model, which provides an understanding of the transition
between the folding and reopening processes. Consider an
elastic inextensible rod of length L bent by pressure and
surface tension forces at its ends (inset in Fig. 4).
Equation (2) still holds but the vectorial tension R is not
constant anymore due to the pressure forces; it follows

 

dR
ds

" pn ! 0; (3)

where n#s$ is the unit vector normal to the rod. By neglect-
ing gravity, the pressure p in the drop is uniform and the
2D shape of the liquid-air interface is a circular arc of
radius r ! !=p.

Equations (2) and (3), with appropriate boundary con-
ditions, are solved numerically and the distance " between
the rod tips is calculated as a function of drop section area
S for different rod lengths L, as shown in Fig. 4. Two trivial
flat states ("=L ! 1) exist in all cases for an infinitely large
drop (A and A0) or when no liquid is present (B or B0).
However, the evolution between these states is qualita-
tively different depending on L=LEC.

For L=LEC slightly below the critical value [Fig. 4(a)],
these two states are connected by a continuous family of
solutions from A to B: the drying of a large drop leads to
transient limited bending but eventually to reopening as it
is experimentally observed (Mov3 in EPAPS [17] ). Closed
states C do exist in a restricted domain of the phase space,
as the stable segment of a solution loop, while the unstable
part of this loop corresponds to a drop which has depinned
from the edges D. This bistability is also observed in the
experiments: while small sheets never close spontaneously,

they can be forced into a closed state if the liquid is pulled
out with a syringe.

Above the critical ratio L=LEC, the drying of a large drop
A0 leads continuously to complete wrapping C0 in agree-
ment with experimental observations (Fig. 1 and Mov1 in
EPAPS [17] ). Another branch links the open state B0 to
unstable solutions D0. However, this branch is difficult to
observe experimentally because it requires the spreading of
a thin film of water on the flat membrane.

The 2D numerical simulation thus qualitatively repro-
duces the experimentally observed regimes and explains
the closing-reopening transition. However, the crossing
from diagrams (a) to (b) was found at Lcrit ! 3:54LEC,
which is of the same order but below the value experimen-
tally obtained for the square membranes. An improved
model should include gravity and 3D effects.

Indeed, the drops considered in Fig. 3 are slightly flat-
tened by gravity, since they are larger than the capillary
length (Lc !

!!!!!!!!!!!!
!=#g

p
, where # is the density of the liquid

and g the acceleration of gravity). More importantly, the
early stages are always 3D as seen in the initial folding of
the corners of a square sheet. Only a full description of thin
plate elasticity in 3D would account for the localization of
the curvature around edges, which is reminiscent of the
crumpling of thin sheets.

More generally, 3D wrapping of a droplet leads to a
geometrical incompatibility described by Gauss’s theo-

 

FIG. 3. Critical length for folding vs elasto-capillary length:
black squares: square sheets, black triangles: triangular sheets,
lines: linear regressions expected from dimensional analysis.

 

FIG. 4. Distance between the rod tips vs drop volume for
different values of the rod length L: (a) L ! 3:4LEC reopening
of the rod as S decreases; (b) L ! 4LEC complete wrapping of
the rod around the drop. The inset shows a sketch of a 2D drop
deposited on a flexible sheet.
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This elementary example already contains all the ingredients
composing the elastocapillary interactions that will be reviewed
in the remaining of this chapter. Interestingly, a more thorough
analysis of the last example combining bending with capillary ef-
fects reveals a rich bifurcation diagram exhibiting fold (or limit)
points for example. This type of bifurcation, and the possible
coexistence of multiple stable equilibria, is commonplace in elas-
tocapillary systems – and, as a matter of fact, in slender elastic
objects. Such a bistability was first exemplified by Py et al.,
(2007) who showed that a 2D drop drying on a strip could result
on very different outcomes according to the value of the elas-
tocapillary length

√
EI/γ. Below a critical threshold the strip

would end up open, while above this threshold complete folding
would occur, see inset. Noteworthy enough, open and closed
states coexist for every elastocapillary lengths, but sometimes there is a path smoothly
connecting these states, and sometimes not. This bistability will for a large part be at the
origin of phenomena such as snap-through buckling or selective folding presented in what
follows.

3.1.2 Capillary forces exerted on a soft object
An important concept in the study of elastocapillary phenomena is the one of force. Buck-
ling, folding, packing of soft structures by liquid surfaces can all be thought to be mediated
by forces of capillary origin. Recently there has been some debate on the nature of the
force developed by liquid-gas interfaces contacting solid objects. The structure of this force
– classically thought to be of intensity γℓv and lying along the interface (e.g. Adamson and
Gast, 1997; de Gennes et al., 2003) – has been challenged by some groups (Marchand
et al., 2012; 2011; Seveno et al., 2013). The question raised here is an important one and
deserves some attention, not only as far as elastocapillarity is concerned, but for wetting
phenomena in general. Part of the reason why such a question can be raised today is
that most of the experimental studies on wetting have focused on the shapes of interfaces,
and not on the forces developed by those because of the obvious technical challenges to
overcome for such a measurement (see however Guo et al., 2013). Another might be that
forces cannot be observed; only the effect (i.e. imparted deformation) of these forces can
be witnessed.
An analysis of the forces at play near the contact line is a delicate matter, and subtle
questions about the subsystems on/from which forces apply inevitably arise. On the other
hand, there is a consensus about the energies involved, and conclusions reached following a
energetical (i.e. variational) approach are clear-cut. In Neukirch et al., (2013), we therefore
followed such a variational approach and found the minimal energy state for a (2D) drop
sitting on an inextensible Elastica (i.e. flexible filament). Interestingly, the equations
describing this equilibrium state turned out to correspond exactly to the equations of an
Elastica withstanding the Laplace drop pressure along the wet area and point forces of
intensity γℓv oriented along the interface at each meniscus – that is, the classic
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description of surface tension forces acting on solids. This sound result, obtained without
any prior assumption on the forces at play, certainly substantiates the use of surface
tension forces oriented along interfaces. Aside from this result the variational approach also
evidenced the validity of Young-Dupré’s wetting relation on flexible substrates (Neukirch
et al., 2013). Let’s note however that for very soft objects of Young’s modulus E (typically
O(kPa)) or very small droplets of radius R such R ≲ γ/E there can be significant distortion
at the contact line and the last Young-Dupré’s wetting relation ceases to hold and evolves
towards a fluid-like Neumann construction (Style et al., 2013).

▷ A note on the constitutive relation of
soft slender objects. We just saw how a
liquid interface pulls on a contacting object,
but how this object deforms in reaction? Obvi-
ously within the framework of an inextensible
Elastica no deformation (apart from bending)
can be expected. But if we take into account
the stretchiness of the fibre, then we expect
Hooke’s law N = EAε to hold, with N a longitudinal deformation, EA the stretching
modulus and ε the deformation of the fibre. But does this constitutive relation stands true
if we consider surface effects? To answer this question we considered in Neukirch et al.,
(2014) the soft stretchable beam depicted in inset and bearing a tension force T . The
equilibrium state of this rod can be found using the same variational approach introduced
earlier. Specifically, the arc-length x(s) and local extension e(s) of such a rod minimize
the following Lagrange functional:

L(x(s), e(s)) = Ve + Vs +WT +

∫ L

0
ν(s) [x′(s)− (1 + e(s))]ds, (3.10)

where Ve = 1
2

∫ L
0 EAe2(s) ds is the stretching energy, Vs = γP

∫ L
0 [1 + e(s)] ds is the rod

surface energy (P being the perimeter and γ the rod’ surface energy), WT = −T
∫ L
0 x′(s) ds

is the work done by the external load and the continuous Lagrange multiplier ν(s) allows
to enforce the definition of the strain x′(s) = 1 + e(s). Introducing perturbations of the
form x→ x+ εx̄, e→ e+ εē we expand L as follows:

L(x+ εx̄, e+ εē) = L(x, e) + ε
dL
dε

∣∣∣∣
ε=0

+ . . . (3.11)

Cancelling the first variation then implies:

dL
dε

∣∣∣∣
ε=0

=

∫ L

0
(EAe+ Pγ − ν) ē(s)−

∫ L

0
ν ′(s) x̄(s)−

[
(T − ν)x̄

]L
0

(3.12)

Requiring (3.12) to vanish for all (x̄(s), ē(s)) brings a set of equations and natural boundary
conditions allowing to interpret the Lagrange multiplier ν(s) as the beam internal tension
N(s), which appears to be governed by the following constitutive relation:

N(s) = EAe(s) + Pγ. (3.13)
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This equation shows that Hooke’s law should not be used directly for problems exhibiting
surface stresses, but instead must include an offset accounting for the beam self-contraction
under surface tension. This is actually analogous to Hooke’s law in thermoelasticity where
local stress is created by both strain and temperature change. The deformation due to
interface energy is then analogous to the classic deformation observed when heating a
beam away from its fabrication temperature, the surface energy γ playing the role of a
negative thermal expansion coefficient (Landau and Lifshitz, 1959).

3.2 Capillary adhesion on soft objects
We just saw how many aspects of classic wetting and elasticity could be altered when
dealing with soft objects. Adhesion is another trademark of capillarity: removing an
object floating on a liquid surface requires more than to simply lift the weight of the
object, because liquid surfaces stick. Actually the added force corresponds to the weight
of the liquid column drawn behind the object, which could seem surprising at first glance
for capillarity is the root cause of this adhesion. There is in fact no paradox because the
liquid column is sculpted by surface tension, and therefore adhesion ultimately depends
on capillarity. Laplace was to first to address this problem in his founding monograph
on capillarity. Further, on his request Gay-Lussac undertook careful experiments on the
traction of glass disks adhering to a liquid surface, and they obtained a beautiful agreement
between experiments and this first-ever theory of capillarity (Laplace, 1805).

FIG. 3.2 – Capillary adhesion. a) The Laplace/Gay-Lussac problem. A flat and rigid object
floats on a liquid surface. Uponpulling on theobject, a liquid column, shapedby capillarity,
is drawn behind it. The force needed to lift the object is therefore increased by the weight
of the liquid column. Above a critical height, the meniscus spontaneously ruptures and
the object is released. b) If the object is now made soft, we can expect the liquid drawn
behind the column to change. Would that increase or lower capillary adhesion?

In view of the previous considerations, we might wonder: Do soft objects stick more –
or less – to a liquid surface than their rigid counterpart? (see Fig. 3.2). To address this
question, we designed during the PhD thesis of Marco Rivetti an Hele-Shaw cell containing
a liquid and a clamped elastic strip. At initial time, we made the strip float onto the bath
and we then slowly drained the cell, as illustrated Fig. 3.3. There we see how the strip



3.2 Capillary adhesion on soft objects 46

deforms under the combined action of hydrostatic pressure and capillary forces, forming
an elasto-capillary meniscus. Above a critical depth, the liquid column suddenly ruptures,
thereby releasing the soft object (Rivetti and Antkowiak, 2013).

1 cm

1 cm

(a)

(b)

FIG. 3.3 – Elastocapillary meniscus. Left: experimental setup used to investigate soft cap-
illary adhesion, consisting in a Hele-Shaw cell partly filled with liquid. A flexible strip is
clamped within the cell and adheres to the liquid. Right: different configurations achieved
by this elasto-capillary meniscus as the cell is drained or the stiffness of the strip changed.
(a) Equilibrium configurations for a Mylar strip floating on water. The length of the strip
here is L = 21 mm. From left to right, the meniscus height is respectively H= 5.0, 7.2, 8.9
and 12.5 mm. (b) Same snapshot sequence for a PVS strip resting on water. The length of
the strip is L = 15.8 mm. From left to right, the meniscus height is respectivelyH= 10.7, 13.6,
16.1 and 16.6 mm.

A considerable insight into this problem can be gained by expliciting the equations govern-
ing the coupled shapes of the strip and of the fluid surface. If we start by introducing the
notations of Fig. 3.4, we can write the equation describing the shape of the fluid meniscus
as:

ψ′′(S) =
1

L2
gc

sinψ(S), (3.14)

where Lgc = (γ/ρg)1/2 is the gravity-capillary length. In the limit where the meniscus
vanishes far from the contact zone ψ(S → ∞) → 0, equation (3.14) has the following
closed-form solution (Landau and Lifshitz, 1959):

ψ(S) = 4 arctan

(
tan

ψ0

4
exp

(
− S

Lgc

))
. (3.15)

Here ψ0 is a constant whose value is in general linked to the contact angle at the end strip.
If we now turn to the solid side, the equations governing the shape of the Elastica un-
der distributed hydrostatic loading and end meniscus point force can be recast into the
following compact form:

EI θ′′′(S) +
EI

2
θ′(S)3 + γθ′(S) cosφ+ ρg(Y (S) +H) = 0, (3.16a)

X ′(S) = cos θ(S), (3.16b)

Y ′(S) = sin θ(S), (3.16c)
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with associated boundary conditions:
X(0) = 0 ; Y (0) = 0 ; θ(0) = 0

θ′(L) = 0 ; EI θ′′(L) = γ sinφ
. (3.17)

These two problems are matched with the geometrical constraint expressing the anchoring
of the meniscus at the strip edge:

Ystrip(L) = Ymeniscus(L). (3.18)

Figure 3.4 shows some (numerical) solutions of this coupled set of equations compared
with experimental realizations.

FIG. 3.4 – Notations and comparison between theory and experiments. Top: notations
used to describe the elasto-capillary meniscus. Bottom: comparison between the theo-
retical profile and its experimental realization. Left: ℓ = 1.83, ℓgc = 0.24 and h = 1.09. Right:
ℓ = 2.44, ℓgc = 0.48 and h = 2.06.

We may now wish to track these equilibria as the strip length L, the imposed depth
H, the gravity-capillary length Lgc and the stiffness of the strip are varied. A conve-
nient measure of the strip stiffness is actually another length: the elasto-gravity length
Leh = (EI/ρg)1/4, first introduced by Hertz, (1884) and Föppl, (1897) because naturally
appearing in the buckling of a fluid supported slender structure. It is therefore conve-
nient to non dimensionalize all lengths with Leh, so that the problem depends on three
parameters : ℓ = L/Leh, h = H/Leh and ℓgc = Lgc/Leh. In Fig. 3.5 we represent the
path followed by the edge angle φ as the non-dimensional depth h is varied for various ℓ
(keeping ℓgc = 0.24 constant). When ℓ is close to 0 (black curve), the strip is very stiff,
and the edge angle φ goes smoothly from π to 0 as the liquid depth increases. When
φ = 0, the lamella snaps off and detaches suddenly from the liquid bath. This event oc-
curs when h = 0.48 = 2ℓgc, corresponding exactly to the Laplace/Gay-Lussac limit. When
the lamella gets softer (coloured curves), significant distortion can take place, allowing to
reach much larger depths.
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FIG. 3.5 – Equilibrium limit. Equilibria paths tracked by continuation in the (h,φ) plane.
The curves correspond to increasing values of the nondimensional strip length ℓ, starting
with a near zero value for the black curve (from bottom to top ℓ = 0.01, 1, 1.5, 1.8, 2, 2.2, 2.4,
2.6, 2.8, 2.9, 3, 3.2 respectively). Note the appearance of limit (or fold) points. The dashed
blue line trace these limit points as ℓ is varied.

Noteworthy enough, most of the equilibrium branches exhibit a limit
point. In other words, this means that for a given value of h two
equilibria coexist – presumably one stable and the other unstable. But
at the critical value, these two equilibria coalesce and then disappear
: no equilibrium state exist past the limit point. This saddle-node (or
fold) bifurcation is quite commonplace and akin e.g. to the catenoid
(soap film held between two rings) problem. Past the limit point, the
catenoid just bursts into droplets. In our case, the elasto-capillary
meniscus ruptures and adhesion stops: the lamella is released.
If we were to predict the maximal depth reached by the elasto-capillary
meniscus as the lamella length ℓ changes, we’d just have to connect
the fold points and plot the corresponding path in the (ℓ, hmax) plane.
We have tested this theoretical prediction with experiments and found a good agreement
between prediction and observation, except when the edge angle φ was very small. In
this limit, pinning becomes faulty and contact line slipping occurs, making the prediction
inaccurate. Such slipping can also be included in the theoretical prediction, and an hybrid
pin-slip boundary condition prove to fully capture the experimental observations (see
inset and Rivetti and Antkowiak, 2013). Comforted by this agreement, we are now in
a position to address the central question asked at the beginning: Do soft objects stick
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FIG. 3.6 – Extraction force versus Leh. Relation between the dimensional extraction force
per unit width Fext (in N/m) and the rigidity of a fixed-length strip, here measured in terms
of the elasto-hydrostatic length Leh (mm). The length of the strip taken here is 27 mm and
the gravito-capillary length Lgc has been set to 2.7 mm. The figure clearly displays an adhe-
sion peak for a specific value of Leh around 0.5 L. Representative snapshots of the elasto-
capillary meniscus at the moment of extraction are disposed along the curve. These snap-
shots correspond to different régimes; From left to right: capillary limit, elasto-hydrostatic
régime, optimal adhesion, rigid limit. In the inset, a rudimentary model where the strip is
approximatedwith a linearly varying curvature rod and themeniscuswith a vertical liquid
wall proves to capture the main features of the main graph, both qualitatively and quanti-
tatively.

more or less than their rigid counterpart? To answer this question we represent Fig. 3.6
the dimensional extraction force (which corresponds to the maximal force force reached in
the extraction process, which does not correspond necessarily to the force at the maximal
depth) versus the rigidity of a fixed-length lamella, measured with Leh. For plotting
purposes, the fixed length of the lamella and gravity-capillary length were chosen so as to
match our experiment: L = 27 mm and Lgc = 2.7 mm, but the features presented appear
to be generic. In the limit where Leh is very large, the extraction force reaches a plateau
corresponding to the rigid Laplace/Gay-Lussac limit. In the other extreme limit where
Leh tends to 0, the strip is so soft that it deforms with virtually no resistance. In this limit
of vanishing elasticity, the whole shape of the elasto-capillary meniscus is that of a classic
meniscus, entirely relying on capillarity and gravity, and the extraction force tends to 0.
When Leh is slightly larger, but still such that Leh ≪ L, it is the only relevant length as
far as the strip deformation is concerned. This corresponds to a self-similar regime where
F ∼ ρgL2

eh. For still higher values of Leh an adhesion peak clearly enters into the picture.
This peak, occurring for L ∼ 0.5Leh, signs the end of the self-similar regime imposed by
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end effects, and points to a configuration where a soft object does stick more than its
rigid counterpart. Note however that there is no simple answer to the original question
we asked, as demonstrated Fig. 3.6.

To conclude this part, it is known that elasticity increases the energetic costs in ad-
hesion phenomena, and to induce hysteric cycles with different deformations back and
forth. For example, the long polymer chains in elastomers can store all the more elastic
energy that the chain is long. This energy is lost when the chains rupture and that cracks
initiate (Lake and Thomas, 1967). This feature is reproduced here, but a key point of the
present analysis is also to highlight the existence of optimal strip stiffness corresponding
to a maximal extraction force (conversely, this force can be as low as the material is soft).
This could be exploited for example to improve the design of soft micro-manipulators or
MEMS such as elastopipettes (Reis et al., 2010).

Let’s finally note that capillary adhesion, even in this elastocapillary version, is ul-
timately controlled by the capillary failure of the fluid meniscus – which at some point
starts slipping, thereby promoting air invasion beneath the strip and finally the release
of the stuck object. In the next two sections we now review two different elastocapillary
dynamics which this time markedly depend on the elastic properties of the drop/strip
compound.

3.3 Elastocapillary snapping, a capillary-induced elastic in-
stability

When an arch or a buckled beam is loaded (see inset
from Timoshenko, 1935), the structure may fail not
necessarily as a result of yield or crack formation
but because of an elastic instability. Snapping – or
snap-through buckling – refers to this phenomenon.
While such an instability is certainly detrimental for
bridges, it may also be harnessed and promoted for
the design of bistable switches and actuators, and most notably of thermo-bimetallic strips
able to snap on and off the electrical circuit of a boiler or a fridge according to the
surrounding temperature (Timoshenko, 1935). Achieving a neat function and easily built,
bistable elastic structure have since then popped up in our environment and are even used
as toys (jumping poppers, see Lapp, 2008). Nowadays, if mechanical bistable switches
tend to be replaced in various devices by electronic switches, snapping is perceived as a
means to design responsive surfaces with applications to on-demand drug delivery, optical
surface properties modification, or on-command frictional changes (Holmes and Crosby,
2007). Recently, it has also been increasingly realized that this elastic elastibility was
also exploited in Nature in the most surprising contexts. Plants for example, though
not known for their rapidity, can exploit snapping instabilities to defeat the physiological
barrier on their movement duration. This is how the Venus flytrap can catch a fly in a
tenth of a second (Forterre et al., 2005). Other examples include the fast suction of small
underwater plants (Vincent et al., 2011) or the snapping of malaria infected red blood
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cells propelling parasites in the body (Abkarian et al., 2011). All these examples differ
in their triggering mechanisms, but they all involve a snapping instability including fast
movements and curvature reversals that are a consequence of the sudden release of stored
elastic energy and its transfer into kinetic energy.

1 mm

FIG. 3.7 – Snapping against gravity. Using a PTFE coated needle, a drop is gently deposited
under a downward buckled PDMS strip. Within a few milliseconds, capillary forces induce
a snap-through elastic instability of the strip which jumps to the upward buckled state.
Note that in this setup surface tension overcomes both elastic forces and gravity. The time
interval between each snapshot is 5 ms (Fargette et al., 2014).

With Aurélie Fargette and Sébastien Neukirch we got interested into this problem and
wanted to know if (and how) capillary forces could induce snap-through instabilities. For
so, we designed an experiment where a drop deposited onto (or hung below) a buckled
elastomeric strip could trigger the strip snapping. This is illustrated Fig. 3.7, where a drop
is released from a hydrophobic needle onto the lower side of a PDMS strip. Within a few
milliseconds, elastocapillary snapping occurs: capillary forces overcome elastic forces and,
as a byproduct, gravity as well thereby clearing the weight of the drop as the root cause
for this phenomenon. So as to accustom with the mechanics of snapping, we started by
investigating a dry version of the setup. By means of minute force measurements performed
with a sensor using capacitive deflection measurement (Femtotools FT-S270, see Sun et al.,
2005) and a nano-positioner (SmarAct SLC-1730) we monitored the force-deflection curve
during a point-loading experiment on a PDMS strip, see Fig. 3.8. Initially the sensor exerts
no force, but there is already a deflection because of the buckled shape of the strip. While
the sensor tip pushes down the arch, the exerted force increases up to F ⋆, at which point
a negative stiffness regime appears: as the deformation gets larger the force reduces, up to
the tipping point of snapping. Note that in this regime, the observed states are no more
symmetric. Negative stiffness is quite common in structural mechanics (Thompson, 1982),
but we can shed some further light over the whole behaviour of the system by computing
the paths followed by equilibria of an Elastica subject to the same forces and constraints as
in the experiments. These computations, also presented Fig. 3.8, reveal a set of bifurcation
branches corresponding to symmetric and asymmetric states. Interestingly, it appears
that the symmetric path followed initially suddenly becomes unstable at a point where
an asymmetric branch emerges. In our displacement controlled experiment, the latter is a
stable path that corresponds to the negative-stiffness part observed earlier. Note that it is
not necessarily a good idea to apply the indentation right at the middle point of the beam
if one wishes to induce snapping at minimal cost. Indeed, there is a sharp dependence of
the critical force F ∗ with the horizontal position of the point load, as illustrated in inset.
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FIG. 3.8 – Dry snapping experiment. An elastic strip, clamped at both ends with fixed com-
pression ∆ = 0.95 L is indented vertically at x/∆ = 1/2. The bifurcation diagram (theory:
blue curve, experiments: filled circles) is made up of a symmetric and an asymmetric
branch connecting at F = F⋆ (experimentally measured F⋆ = 55 µN). Inset: Evolution of
the snapping threshold F⋆ as a function of the indentation position x, evidencing two pref-
erential positions where the threshold is minimal: x/∆ ≃ 0.37 and 0.63.

Another important point to emphasize is that at the verge of instability, the force felt by
the sensor vanishes. This means that no additional external force is required to observe
the actual shape of the Elastica, which is therefore an (admittedly unstable) equilibrium
state. In other words, at the point of instability, the shape of the Elastica is
exactly that of the second mode of buckling.

Now back to elastocapillary snapping, we performed a series of experiments with a
drop hanging under a downwards-buckled PDMS strip, see Fig. 3.9(c). The parameters
of the experiment are the total weight F of the drop and the abscissa xM of the middle
point of the wet region of the beam. The experiments reveal that snapping only occurs
for specific values of F and xM , as summarized in the phase diagram of Fig. 3.9(b). For
small enough drops (i.e. small F ), capillary forces exceed self-weight (a drop deposited
under a rigid surface is stable if small enough) but are not powerful enough to overcome
elastic forces. Why? Actually the combined action of Laplace and meniscus forces can
be seen as two opposite effective bending moments. In the case of small drops, the lever
arm of these effective bending moments is simply not large enough. In other words,
this points to the wet length as a key factor determining the behavior of elastocapillary
systems (see also §3.4). Consequently the system stays in the downward configuration. For
moderate drops (with larger wet lengths) we see in Fig. 3.9(b) that provided the location
of the drop is carefully chosen (that is, not perfectly centered) snapping occurs, resulting
in a final state where the strip is bent upward: in this case capillary forces overcome
both weight and elastic forces. For large drops capillarity still defeats elasticity but self-
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FIG. 3.9 – Phase diagram for elastocapillary snapping. A drop is hung under a strip and the
conditions for snapping to occur are investigated. (a) Possible final states of the system. (b)
Experimental phase diagram plotted in the (xM,F) plane. Triangles (respectively ⋆) corre-
spond to experimentswhere the drop is deposited on an initially downward (resp. upward)
buckled strip. (c) Model notations. (d) Theoretical phase diagram showing bistable A and
monostable B and C regions. Note that here FL2/EI corresponds to 12ρAg/Eh3. (e) Evolu-
tion of the theoretical phase diagram as the surface tension used in the model γmodel takes
the values 0.38 γ, 0.67 γ, and 0.96 γ (from left to right).

weight is this time too large and the system stays in the downward configuration. To
understand the different regions of the (xM , F ) phase diagram we numerically computed
the equilibrium and stability of the drop/strip system using the methods presented earlier
and the notations of Fig. 3.9. More specifically, we started by denoting the bending energy
of the strip and gravity potential energy of the drop as:

Ebend + Ehydro =
Eh3

24

∫ L

0

[
θ′s(s)

]2
ds+ ρg

∫∫
A
y dA, (3.19)

where A =
∫ ℓ
0 yi(σ)x

′
i(σ) dσ −

∫ sB
sA

ys(s)x
′
s(s) ds is the area between the strip and the

liquid-air interface. The energy per unit area of solid-liquid (respectively solid-air, and
liquid-air) interface is noted γℓs (resp. γsv and γ). The total interface energy is then:

Esurf = (sB − sA)γℓs + [L− (sB − sA)] γsv + γ ℓ (3.20)

We minimize the total potential energy U = Ebend+Ehydro+Esurf under the constraints of
inextensibility r′s(s) = ts (where ts is the unit tangent and rs(s) = (xs(s), ys(s))), constant
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area A, and matching conditions rs(sA) = ri(0) and rs(sB) = ri(ℓ), with ri(σ) parametriz-
ing the interface. This constrained minimization problem is solved by considering the
following Lagrangian functional:

L [rs(s), θs(s), sA, sB, ri(σ), θi(σ), ℓ] = U − µ ·ψ (3.21)

where the vector ψ includes all the constraints and µ is the vector of associated Lagrange
multipliers. Classical minimization and continuation techniques are then used to track
equilibrium states along branches in bifurcation diagrams, and the stability is assessed
by computing the linearized dynamics about the equilibrium solution. The corresponding
results are shown in Fig. 3.9(d). There, a continuous curve, later referred to as the
instability curve, corresponds to loss of the stability of an equilibrium configuration. By
contrast the dashed curve corresponds to a smooth transition from downward buckled
states (yM < 0) to upward buckled states (yM > 0). These two curves divide the (xM , F )
plane in three regions. In region A, which lies below the instability curve, downward
and upward buckled configurations are both found to be stable. As the crossing of the
instability curve is associated with the loss of stability of one of the configurations, in the
two regions above the instability curve there is only one stable configuration: upward for
region B, below the dashed curve, and downward for region C, above the dashed curve.
Note that the shape of the instability curve and hence the topology of the phase diagram is
altered by changes in the value of surface tension, as shown in Fig. 3.9(e). These numerical
results shed light on experimental findings: in the bistable region A, a drop deposited under
a downward buckled strip leads to a downward final state unless the perturbation created
during the deposition is too large and the system jumps to an upward final state, whereas
in the monostable region B the final state is always an upward configuration. As a cross-
check we have experimentally hung drops under upward buckled strips and found that
in regions A and B the system stays in the upward configuration, thereby confirming the
bi-stability of region A, see markers ⋆ in Fig. 3.9(b).

FIG. 3.10 – Condensation-induced snapping. The experiment approximately lasts three
minutes.

Elastocapillary snapping opens interesting perspectives, with for example the possi-
bility for its remote triggering. Indeed, when an elastomeric strip with a hydrophilic
coating on one side is placed in a steam flow, water droplets start nucleating on this hy-
drophilic side. Past nucleation, coalescence events occur and eventually induce snapping,
see Fig. 3.10. This phenomenon could be used to build moisture sensors that would snap
once ambient humidity has reached a given threshold.
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FIG. 3.11 – Snapping dynamics. Typical time τsnap for snapping in different setups. The
dashed line is the theoretical prediction for ‘dry’ snapping τsnap=(L2/24)

√
λ/EI.

Now that the conditions for snapping have been outlined, we may wonder about the
time needed to switch from one state to another: How fast is a snap? Curiously this
question has hardly been asked in the literature, though dimensionwise there are not
much alternatives and the duration should scale with T = L2

√
λ/EI, λ being the lineic

mass of the beam. To verify this we recorded experimentally the shape of the beam as it
leaves the unstable equilibrium. We found that the vertical position of the beam mid-point
was well captured with the law ys(L/2, t) = y0 + y1e

µt, where µ is the growth rate of the
instability. From this growth rate µ we defined a snapping time τsnap = 1/µ and plotted
τsnap as a function of the length L of the beam. Interestingly, as said earlier the shape of
the beam as it starts to snap is the second mode of buckling of an Elastica. The growth
rate µ should therefore be the growth rate of this mode. We verified this and computed
numerically µ for different ∆. The dependence on the confinement ∆ is quite weak so that
the approximate theoretical prediction τsnap = T/24 holds for the range of confinements
investigated here. Experiments performed with various materials and confinements, e.g.
‘dry’ setups involving L = 0.7 m metal beams, showed that, apart from a deviation at small
lengths attributed to viscous effects in the strip, theory agrees nicely with experiments,
see Fig. 3.11. Additional experiments with thin PDMS strips, but also with soap bubbles
actuating L = 0.25 m metal foil strips, confirmed that the snapping time appears to be
the same for ‘dry’ and ‘wet’ snapping.

As in adhesive film separation (Gay and Leibler, 1999) or in the pull-out of a soft object
from a liquid bath (section §3.2, Rivetti and Antkowiak, 2013), the elastic energy stored in
the system before the instability is suddenly released in the form of kinetic energy and is
mainly lost, though part of it can allows to switch to another stable state and potentially
lift the liquid drop. Note that here the elastocapillary dynamics is mainly driven by elastic
forces and that fluid forces and fluid inertia only play a minor role: capillarity is driving
the system towards instability but elasticity is ruling the subsequent dynamics. Finally,
the typical scalings of surface forces makes elastocapillary snapping a good candidate to
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miniaturization and its use as a micro-actuator might be envisaged.

3.4 Elastocapillary dynamics: instant fabrication of 3D struc-
tures

In the previous examples, the strip geometry, forces at play and resulting deforma-
tion/dynamics were essentially two-dimensional. We now turn to the complex 3D de-
formations imparted to a thin plate by an impacting drop, see Fig. 3.12. There, we

-7.5 ms 2.5 ms 12.5 ms 22.5 ms 32.5 ms

FIG. 3.12 – Instant capillary origami, obtainedwith awater droplet of radiusR = 1.55mm im-
pacting a thin triangular polymer sheet with thickness h = 55µm at velocity U = 0.53 m·s-1.
This time sequence reveals that encapsulation results from the interplay between the mo-
tion of fluid interface by capillary forces, and the large, dynamic deformations of the film
(Antkowiak et al., 2011).

observe a drop impacting at its center a triangular target of width 7 mm with velocity
U = 0.53 m · s−1. Just after impact, the drop spreads out over the target up to a maximal
extent where inertia is balanced by the restoring action of capillarity. Next, surface ten-
sion drives a flow towards the center of the drop. This causes the rebound of the drop, and
of the elastic film that sticks to it. While in free fall above the ground, the elastic sheet
quickly wraps the drop. An elasto-capillary bundle with a tetrahedral shape is formed,
and falls down to the ground. The whole sequence takes place in 40 ms, which is the
typical duration of an hydrophobic rebound (Richard et al., 2002). Such surface-tension-
driven origami formation has actually a long history, rooted in the microfabrication of 3D
hinged structures. Indeed, lithography techniques typically allow to manufacture planar
objects but fail to produce 3D structures. Since the 90s however, it has been realised
that surface tension (typically of a solder first electrodeposited, and then reheated) could
help lift the parts of a planar articulated object to build various fans, lenses, Fabry-Pérot
etalons, inductors etc. (see e.g. Gracias et al., 2002; Syms et al., 2003). Under the thrust
of José Bico and Benoît Roman at ESPCI, this type of phenomena have been translated
into the interaction between elastic sheets and liquid surfaces to form the broad field
of elastocapillarity, with its iconic capillary origami (Py et al., 2007). Such a capillary
origami results from the interaction of a single flexible sheet and a liquid drop sitting
on it. The hinges are now replaced by folds developing on the thin sheet. Upon drop
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evaporation, the structure self-closes, i.e. full encapsulation occurs.

2 mm

(a)

(b)

FIG. 3.13 – Shape selection. A flower-shaped target reveals the possibility of pattern selec-
tion based on impact velocity U. Radius of the drop is R = 1.55 mm in both experiments,
target width is L = 10 mm and Ub > Ua. (a) For low impact velocity, Ua = 0.68 m·s-1, a cylin-
drical bundle is formed, having two-fold symmetry. (b) At higher velocity, Ub = 0.92 m·s-1,
the drop spreads more widely and almost wets the entire surface of the film; a pyramidal
wrap is formed, having four-fold symmetry.

Interestingly the use of drop impact, more than just speeding up elastocapillary wrap-
ping (over 5 decades – for wrapping time now scales with drop rebound rather than drop
evaporation), also allows for final shape control. A typical illustration of this shape se-
lection mechanism is presented in Fig. 3.13. In this experiment, a drop impacts a small
flower-shaped film at its center. For a fixed drop radius, different folding scenarios can
be observed depending on the impact velocity. At low impact speed, spreading of the
drop is limited, and the final pattern is the cylindrical folding of figure 3.13a. At higher
speeds, the drop quickly embraces the entire surface of the sheet, and upon retraction
a pyramidal wrap is obtained, see figure 3.13b. Different instant origamis can thus be
obtained by simply tuning the velocity of impact.
The phenomenon of dynamic elasto-capillary encapsulation can be understood with a sim-
pler, 2D geometry where bistability of the final shape now arises thanks to a gravitational
barrier rather than complicated folds, creases and geometric frustration effects proper to
plate elasticity. We therefore carried out a series of systematic experiments using as a
target a long and narrow rectangular strip of width w = 2 mm, length L = 5 cm and
such that L/ℓeg = 14.3, with the elasto-gravity length ℓeg = (B/(µ g))1/3 ≃ 3.5 mm above
which gravity bends a cantilever beam has been introduced earlier (see §3.2). The 2D
setting is sketched in figure 3.14a. Remarkably, shape selection can still be observed in
2D: the phase diagram in figure 3.14b reveals a competition between wrapped and non-
wrapped final configurations. This diagram was obtained by systematically varying the
distance x from the point of impact to the end of the strip, and the impact velocity U .
For the purpose of plotting, the position of impact x was measured in units of ℓeg, and
U in units of the capillary velocity (γ/ρR)1/2: the resulting dimensionless velocity is the
square root of the Weber number We = ρU2R/γ. In our experiments, the Weber number
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varies from 0.21 to 15, which is the typical value at which the inkjet technology operates.
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FIG. 3.14 – Comparison between experiments and model on 2D encapsulation. Compari-
son of experiments (a,b) and simulations (c,d) in a 2D geometry. (a) In these experiments,
a drop impacts a long, thin polymer strip laying down on a substrate, at a variable distance
x from its end, and with variable impact velocity U. Strip dimensions are L = 5 cm and w
= 2 mm, and drop radius is R = 1.55 mm. (b) Phase diagram showing the outcome of the
experiment: non-encapsulated drop (open circles), encapsulated drop (filled dots), or en-
capsulated drop with the help of a secondary drop obtained by pinch-off (stars). (c) Nu-
merical model of a 2D dynamic Elastica coupled with a quasi-static, incompressible fluid
with surface tension. (d) Phase diagram for theElasticamodel. In (b,d), typical final shapes
are shown in inset. During the simulation run labelled D in (d), the impact parameters are
changed to account for the capture of a secondary drop, as shown by the light blue arrow.

Qualitatively, the process of encapsulation requires passing a gravitational energy barrier
with the aid of the initial kinetic energy. The outcome of a particular experiment reflects
the efficiency of this energy transfer. Indeed, since both L and R are larger than ℓec (with
ℓec = (B/γ)1/2 ≃ 0.55 mm being the elastocapillary length above which capillary forces
can make slender objects buckle), the strip is flexible enough to bend around the drop
and the energy is always minimum in the encapsulated state. However, for drops that
are too slow, or impact too far from the edge, the barrier associated with lifting up the
strip prevents the system from reaching this global minimum. When the drop is deposited
near the end (small x), encapsulation involves lifting a short segment of the strip, making
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the barrier lower. For small enough values of x, encapsulation can even be observed after
nearly quasi-static deposition of the drop. For larger values of x, however, the barrier is
higher and some amount of kinetic energy is required. This explains the existence of a
threshold for the velocity U allowing encapsulation, and the increase of this threshold with
x. This qualitative reasoning is consistent with the orientation of the boundary obtained
in the experimental diagram, see figure 3.14b.
Before turning to the model, let’s note that during the fast initial spreading of the drop,
part of the incident kinetic energy is quickly and irreversibly transferred into surface energy.
Irreversibility is here a consequence of contact line pinning: due to the roughness of the
substrate, the contact line never recedes. It remains anchored to its maximal extent in all
our experiments. This maximal extent, denoted ∆, is directly set by the impact parameters.
It is a key mechanical quantity that determines how the capillary forces are distributed,
and how efficiently they bend the film during the subsequent folding. ∆ was measured
in a separate series of experiments using the same film. We found that, in our range of
parameters, spreading is well described by the empirical law ∆(U)−∆0

2R = 0.32We1/2. The
parameter ∆0 = ∆(U = 0) represents the amount of spreading for quasi-static deposition,
as we are in partial wetting conditions. Note that the exponent 1/2 is consistent with a
conversion of kinetic energy ∼ ρU2R3 into surface energy ∼ γ∆2.
With the aim to predict encapsulation, we consider a mechanical model for the slow folding
dynamics of the strip following the initial drop spreading. In this model, the two contact
lines are anchored and separated by a prescribed curvilinear distance ∆. The value of ∆
captures the initial transfer of kinetic into surface energy, and the rest of the motion is
driven solely by capillary forces. The dynamics of the strip is governed by the following
potential energy:

U =

∫ L

0

[B
2
|x′′(S, t)|2 + µ g x(S, t) · ez

]
dS + γ λ(x(·, t), A, x,∆) (3.22)

and kinetic energy:

T =
1

2

∫ L

0
µ |ẋ(S, t)|2 dS, (3.23)

Our numerical code integrates in time the equations of motion obtained by applying La-
grangian mechanics to our Lagrangian L = T − U . In deriving these equations, we also
consider the inextensibility constraint |x′| = 1 and the presence of an impenetrable ground
x ·ez ≥ 0. Fluid incompressibility is used during the reconstruction of the drop perimenter
λ(x(·, t), A, x,∆). The resulting equations of motion are the classical equations for the dy-
namics of a 2D Elastica subjected to gravity forces, to frictionless reaction from the ground
in the event of contact, and to capillary forces. The capillary forces tend to make the po-
tential energy U lower. They do so by bending the strip around the drop, thereby reducing
the interfacial length λ while preserving the imposed area A. Note that in the expression
for the kinetic energy only the elastic part has been considered ; fluid motions such as
capillary waves are neglected in the model, and the drop is really a dummy drop; just a
circular shell exerting Laplace pressure and point meniscus forces but unable to sustain
motion (see Antkowiak et al., 2011, for further details).
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The numerical phase diagram in figure 3.14d has been obtained by varying the impact
parameters systematically in a series of simulation runs. For the purpose of comparison
with the experiments, the impact parameter ∆ is then converted into an equivalent Weber
number using our empirical law We

1/2
∆ := (∆(U)−∆0) /(0.64R) capturing the fast initial

spreading of the drop. As revealed by the phase diagram in figure 3.14d, the model suc-
cessfully explains the selection of the final shape by the impact parameters. The essential
features of the experimental diagram are reproduced. Any value of the position of the cen-
ter of impact x is associated with a critical value of the Weber number. This corresponds
to a minimal value of the velocity U (or the spreading ∆) for encapsulation to occur. In
addition, this critical value of the Weber number is an increasing function of x. Note that
though the numerical model is based on simplifying approximations such as neglecting the
weight and inertia of the drop, as well as three dimensional effects, capillary waves and
depinning of the contact line, there is a close agreement on the boundaries between the
encapsulated and non-encapsulated regions. The simulation parameters are set directly
from their experimental values and there is no adjustable parameter.
The model not only predicts the final shape of the strip but also all the details of the
dynamic sequence leading to encapsulation are captured with remarkable accuracy. For a
small subset of the experiments however, confined to a limited region of the experimental
phase diagram and labelled by stars in figure 3.14b, encapsulation takes a special route. In
this region, the final state is not always reproducible even for fixed impact parameters. In
addition, encapsulation can be observed for anomalously large values of x: the two stars
to the right of the point D in figure 3.14b clearly stand out to the right of the boundary.
This surprising behaviour can be explained by looking at the time sequence in figure 3.15a.
Shortly after the initial spreading, a vertical jet is formed and a secondary drop detaches.
Under the action of gravity, it accelerates downwards, catches up with the falling capil-
lary bundle, and coalesces. In some experiments, such as that labelled D in the figure, the
bouncing drop lands on the edge of the main drop and coalesces, thereby increasing the wet
length ∆. This induces a redistribution of the capillary forces that substantially modifies
the subsequent folding dynamics. Since the ejection of a secondary drop is ruled by the
Weber number, this view is consistent with the observation that anomalous encapsulation
events are all observed when the Weber number is close to a particular value, We1/2 ≈ 2.8.
When the simulation is run as earlier, ignoring the secondary drop, encapsulation is not
correctly predicted, as shown in figure 3.15c. The role of the secondary drop is captured
by a simple extension of the model. From the experimental movies, we measure the time
of ejection of the secondary drop and the position of the contact line after coalescence.
This yields virtual impact parameters, labelled D′ in figure 3.14d, which are indeed well
inside the region of encapsulation. We run again the simulation, now updating the po-
sition of the contact line at the time of coalescence. As shown in figure 3.15b, the key
role of the secondary drop on the final pattern is accurately captured. Encapsulation is
correctly predicted and comparison with the experiments reveals an excellent, frame by
frame agreement.

To conclude, let’s remark that as in the case of elastocapillary snapping considered ear-
lier in §3.3, the outcome of the dynamical origami essentially relies on the strip bistability.
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FIG. 3.15 – Encapsulation aided by a topology change of the drop. (a) In the experiments a
secondary drop appears transiently by pinch-off and coalescence when We

1
2 ≈ 2.8. This

detachment leads to encapsulation in a region where it would otherwise not be possible:
the impact parameters for this experiment are denoted by the star labelled D, located to
the right of the boundary in the phase diagram of figure 3.14b. (b) This transient topol-
ogy change is accounted for by extending the footprint∆ of the drop in the middle of the
simulation (inset D’), by an amount measured from the experimental frames. As a result,
simulation correctly predicts encapsulation, and matches the experimental movie frame
by frame. (c) When this footprint∆ is left unchanged, simulation fails to predict encapsu-
lation.

Further, the thin sheet dynamics is here critical in the selection of the final folded state.
The importance of kinetic energy in this problem is interesting. Indeed, at small scales,
viscosity and capillarity are often considered as dominant, and inertia negligible. The
impact of a drop is an exception to this rule: kinetic energy, when initially stored in the
form of a rigid-body mode of translation, cannot be dissipated by viscosity. This energy
ends up in selecting the final shape among competing equilibria. Note also that in the 2D
setting considered, multistability arises from gravity. The dynamical shape selection un-
covered here nonetheless works also at smaller scales, where gravity becomes unimportant.
Indeed, there are other sources of multistability, such as nonlinear elasticity of thin films
or the follower character of capillary forces. As a matter of fact, numerical experiments
confirmed the persistence of shape selection in the absence of gravity. The robustness of
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the selection mechanism opens up the perspective of scaling down the experiment to the
size of an inkjet drop.



4 Capillary Spools

In this last chapter we introduce a new type of material inspired from the spider capture silk
and displaying a very strange behaviour: while it behaves as a regular solid in extension, its
mechanical response totally switches in compression to become liquid-like. In what follows,
we disentangle the physics underpinning this very particular mechanical response and
trace back its origin to the formation of elastocapillary spools within the (glue) droplets
decorating the fibre.

4.1 The spider capture silk

 Spider Webs 159

prey vibrations). The elastic capture thread is an adaptation to struggling prey; 
the impact and movements of an insect cause little damage because the kinetic 
energy is largely absorbed by the yielding catching spiral and turned into heat 
(Denny, 1976; Lin et al., 1995). Even the radial threads have a remarkable extensi-
bility (40 %) and thus also function as shock absorbers when prey fl ies into the web 
(Köhler and Vollrath, 1995).

The hub usually consists of irregularly interconnected threads. In some orb 
weavers (such as Tetragnatha) the hub is removed after its construction, and the web 
then appears with a large hole in the center (an “open hub”); in other genera (such 
as Argiope) the hub may be covered with a fi ne sheet of silk. Immediately surround-
ing the hub is the so-called strengthening zone, but this part of the web cannot always 
be determined as separate from the hub itself. 

More important is the next part, the free zone, which is crossed only by the 
radial threads ( fi g. 5.23 ). Here the spider can easily change from one face of the web 
to the other. The actual catching area is that part of the web covered by the sticky 
spiral.

Figure 5.23 
Structure of an orb web. Drawing was traced from a photograph of a web of Araneus
diadematus.

Back in 2012 we got interested with Sébastien
Neukirch on the possible occurrences and outcomes
of elastocapillary phenomena in the realm of biol-
ogy. We stumbled on a 25 years old paper report-
ing on the appearance of balling of core thread fibre
into the glue droplets decorating spider capture silk
(Vollrath and Edmonds, 1989). Intrigued by this
observation, we contacted Prof. Fritz Vollrath from
the Oxford Silk Group at the Department of Zoology
in Oxford University and have started a continuous
and fruitful collaboration since then.

▷ Spider web and spider silks. Spiders are
many, and so are their web architectures: regu-
lar, aerial, three-dimensional, horizontal, funnel-like,
dry or wet, etc. The object of our study is a par-
ticular fibre found in the orb web spun by spiders
like the garden spider Araneus Diadematus or the
large (and impressive) Nephila Edulis living in New
Guinea, and pictured in inset (Foelix, 2010). A typ-
ical web consists in a neatly arranged set of fibres,
some forming the frame, some radiating from the centre, some other spiraling around the
whole web. It appears that each of these distinctive architectural elements has different
mechanical properties, and for good reasons: each type of fibre is spun by a different gland.

63



4.1 The spider capture silk 64

Modern spiders can have up to 7 different silk glands, each producing a silk designed for
a proper function: the major ampullate gland produces a thick and stiff silk that will
form the backbone of the web (radial spokes and frame), the flagelliform gland gives the
core fibres of the capture spiral, others provide dedicated silks for cementing joints, or
building the egg sac, and so on (Vollrath, 1992). The capture thread is the sticky thread
spiraling over the web, and is obviously an essential element in the trap. The core fibre
of this spiraling capture silk is non sticky by itself; spiders have evolved a specific gland
producing an aqueous glue

Note: Orb-weaving spiders in-
clude modern ecribellate spi-
ders and ancestral cribellate
spiders. A key distinction be-
tween these species is the tech-
nology of capture silk. While
ecribellate (discussed here) spin
smooth fibres decorated with
glue droplets, the cribellate’s
capture silk is totally dry and
presentspuffy structures consti-
tuted of thousands of nanofib-
rils, which provide a van der
Waals type adhesion (Black-
ledge et al., 2009). Note that fog
or humidity are detrimental for
the latter, and induce a dramatic
loss of adhesion (Elettro et al.,
2015a)

(a liquid silk really) sheating the core thread and endowing
the fibre – and hence the web – with adhesion. Note here that capture silk is in essence a
hybrid material composed of liquid (glue droplets) and solid (core thread).
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FIG. 4.1 – Silk mechanics. Left: sketch of a typical strain-stress response of silk, with key
features (Young’s modulus or stiffness, strength or breaking stress, and toughness) high-
lighted. Right: mechanical response of dragline silk (produced by the Major Ampullate
gland, or MA) and of the capture (or viscid) silk. Both silks are neither particularly stiff
nor extensible, but exhibit large toughnesses ofO(150 MJ/m3) (from Omenetto and Kaplan,
2010).

▷ Silk mechanical response. Orb-webs are particularly efficient aerial traps able to
glue, cushion and secure insects weighing more than the whole web, and this impressive
feat can be appreciated through its mechanical response. If neither the strength nor the
maximal elongation are particularly remarkable with respect to those of man made fibres
(see Fig. 4.1 and e.g. Denny, 1976; Omenetto and Kaplan, 2010), the combination of the
two yields a truly massive toughness outperforming Kevlar or steel fibres. The substantial
energy needed to rupture the threads prevents insects – even large – flying at full throttle
to tear the web. Added to the fact that it can dissipate substantial amounts of energy with
little volume (and hence prevent the trampoline fashion rebound of the incipient prey),
the silk fibre therefore appears as a unique material to make deadly traps with.

Note: The mechanical proper-
tiesof spider silkand its intrinsic
biocompatibility makes it a ma-
terial of choice for sutures and
reconstructive surgery, for it can
serve as a scaffold for bone and
ligament repair. The optical clar-
ity of the material also makes it
a good candidate for the design
of optical fibres with new func-
tional features (Omenetto and
Kaplan, 2010).
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Relaxed
Extended

All the particular extensional properties of spider silk, and of
capture silk especially, can be understood from processes at the
molecular level. Becker et al., (2003) have for example revealed
that the flagelliform protein has a spring-like conformation and
can be greatly extended (i.e. uncoiled) during stretching events
(see inset). Capture silk, as a material made from such coils

should therefore inherit the elasticity of its molecular constituents. Further, looking closely
at force spectroscopy measurements it appears that rupture peaks routinely occur during
the stretching of a flagelliform silk sample. These rupture peaks (sudden decrease in the
mechanical response) are in fact attributed to sporadic tears of sacrificial bonds, which
in turn contribute to the high fibre toughness. Similarly the supercontraction of radial
silk in a highly humid environment (Work, 1977) can equally be understood on molecular
grounds. Conversely, while the compressional behaviour of the capture silk is also very
surprising, it stems from a really different – mesoscopic – origin, as we show next.

4.2 A liquid-like fibre

T     T
P

1 mm
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II
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T

III T < T
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T > T
P

FIG. 4.2 – A liquid-like fibre. Whether stretched or relaxed, the typical capture silk thread
of an araneid orb spider (here Nephila edulis) remains taut. Force monitoring reveals that
when subjected to large tension T the fibre behaves like a spring (I). As T is decreased, a
force plateau T ≃ TP is reached, along which the thread adopts a wide range of lengths,
just as soap films do (II). At lower tensions, T< TP, the thread is totally contracted (III).

While the extensional properties of capture silk have been analysed and mapped for years,
far less studies have investigated its behaviour in compression, though truly unusual it
is. Figure 4.2 reports on the singular response of capture silk in compression: unlike any
solid/elastic fibre that would sag or buckle (and leave its original axis), capture silk remains
taut and self-adapts to compression, as if it was telescopic. It is not uncommon in the
experiments to make capture silk contract to up to 95% of its original web length without
any noticeable sagging. This behaviour is actually much reminiscent of the response of
liquid films to compression events. Indeed, liquid films do not buckle upon squeezing, but
rather self-adapt. Of course this shape adaptation for liquids is made possible by the
presence of a constant tension at the liquid surface (Boys, 1890; Maxwell, 1876). Forms
and forces are intimately linked, and the liquid-like nature of capture silk in compression
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already perceived in the photographs of Fig. 4.2 will be borne out by accurate force
measurements in the following.

4.3 Geometry and mechanics
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FIG.4.3 –Shape-induced functionalization. Quasi-static forcemeasurementsonspider cap-
ture threads combined with microscopic observations reveal that the core filament coils
into the droplets (∼ 250-300 µm wide) along a force plateau T∼ TP (liquid-like response).
For larger forces T> TP, the fibre straightens and a solid-like behaviour is recovered. The
particular shape of this force-extension curve can be attributed to a shape-induced func-
tionalization of the fibre by the glue droplets.

During the PhD thesis of Hervé Elettro, we looked in detail at the physics underpinning
this liquid wire, and found that the behaviour of this hybrid material made of solid and
liquid was rooted in geometry and mechanics (Elettro et al., 2016). Actually, the spec-
tacular macroscopic properties of hybrids often originate in a physical effect that occurs
at the micro-structural level (which needs not be molecular, see e.g. the buckling of the
walls of a unit cell in a cellular solid – Bertoldi et al., 2010; Gibson and Ashby, 1997).
To investigate the physics of the mechanical hybrid character of spider capture thread, we
performed mechanical tests on a single thread alongside microscopic observations of its
microstructure. Figure 4.3 shows the relaxation of a freshly harvested biological sample.
Starting from a stretched state (region I), the force-elongation curve shows that the thread
behaves as a regular elastic solid undergoing relaxation: the monitored tension decreases
almost linearly with the imposed displacement. In this regime, the capture thread adopts
a classic drop-on-straight filament conformation, evocative of unduloidal-shaped drops sit-
ting astride textile fibres (Adam, 1937), glass filaments (Quéré, 1999), mammalian hairs
(Carroll, 1989), or feathers (Duprat et al., 2012). But as relaxation proceeds further, the
mechanical behaviour of the capture thread switches from solid to liquid. This sudden
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change can be read directly from the mechanical testing: in region II, the recorded tension
becomes virtually independent of the imposed displacement. This plateau tension is the
typical signature of the response of liquid or soap films to tensile or compressive sollic-
itations. Strikingly, this behavioural change coincides with a sharp modification of the
micro-structure: while the overall composite remains taut, the core filament now buckles
within each glue droplet (see close-ups Fig. 4.3). At even higher compressions, spools of
slack filament form within the drops and keep on accumulating until eventually the overall
tension falls (region III). Such spools have previously been observed in samples of post-
mortem capture threads, but the physics underlying their formation, and in particular
the potential roles of the filament molecular structure or of the glue viscoelasticity in this
formation, has remained unclear so far (Foelix, 2010).
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FIG. 4.4 – Spooling activation. In-drop spooling can also be achieved by synthetic fibres
wet bydroplets of various newtonian liquids. Thephase diagramsummarizes experiments
performed with different materials and liquids in a quasi-static displacement-controlled
setting. Each experiment consists in releasing the external tension on an initially taut sys-
tem. Spooledor straightfilament conformationare thenobservedwithin thedroplets (blue
or purple points respectively). These data demonstrate that the spooling threshold corre-
sponds to a capillarity-induced buckling condition: spooling spontaneously occurs as soon
as the capillary force exerted by the dropFγ exceeds theEuler buckling load of thefilament
FB. Note that, contrary to classic buckling, this spooling continues to proceed as long as
the previous force condition is fulfilled, which suggests a subcritical nature for this elasto-
capillary instability. The composite overall mechanical response (sketched in insets) also
sharply changes past the threshold to exhibit a liquid-like plateau force.

▷ Local in-drop buckling, global mechanical change. The coincidence between
the change in the mechanical responses of the capture thread at the global scale and the
change in the conformations of the core filament at the drop scale is intriguing and requires
further investigation. For so, let us consider a composite system consisting of a synthetic
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core filament and of a liquid droplet, and examine the link between the global mechanical
response of the system and the local filament geometry. Specifically we investigate the
possibility of a buckling-induced activation of the composite. Surface tension is known to
promote buckling (Neukirch et al., 2007; Roman and Bico, 2010), snapping (see chapter 3
and Fargette et al., 2014), or wrinkling (Huang et al., 2007) of thin lamellar structures. In
the drop-filament composite, and in absence of any external load, local buckling is initiated
when the capillary force developed near each meniscus of a single drop Fγ = 2πhγ cos θ
exceeds the Euler buckling load FB = kEI/D2, where h, γ, θ, EI, D, and k denote
respectively the filament radius, the liquid-air surface tension, the contact angle of the
liquid on the filament, the bending stiffness of the core filament, the wet length, and the
Euler buckling factor. The h4 scaling of the filament’s bending stiffness constitutes however
a strong restriction for capillarity-induced buckling, typically limiting the manifestation
of this phenomenon in filaments in the nm-µm range – thereby supporting the observed
in-drop buckling of micronic spider capture threads, while explaining why hairs of 80 µm
diameter do not buckle when wet, but rather simply clump (Bico et al., 2004). This fully
mechanical scenario, involving capillarity and elasticity as only ingredients, suggests that
any drop sitting astride any filament could make it buckle, provided the force condition
Fγ > FB is satisfied. To test this hypothesis, we conducted extensive experiments with
various Newtonian liquid drops surrounding synthetic (i.e. non-biological) filaments of
different diameters and made of diverse materials. Upon release of external tension, we
found in-drop elastocapillary buckling to be indeed activated as soon as the capillary force
overcomes the Euler buckling load, irrespective of the materials involved, see Fig. 4.4.
Note that we have here used the value k = π2 for the Euler buckling factor, expressing
the fact that the fibre can freely rotate at the meniscii (simply supported buckling), see
Elettro et al., (2015b) for further details.
Before proceeding further, let’s note that the geometry of slender elastic objects is known
to control their mechanical response; a spring made of a thin metal wire has a markedly
different mechanical response from the same wire having a straight conformation, and we
could think of many manifestations of this link between geometry and mechanics (Audoly
and Pomeau, 2010; Lazarus et al., 2012). The composite under study here is no exception
and we explain in the following how the in-drop filament geometry leads the thread to
inherit the solid core filament mechanical properties when stretched, but the liquid drop
properties when compressed.

4.4 Spooling and subcriticality
Contrary to conventional buckling, past the elastic instability threshold the core filament
is not gently deformed but literally spooled and packed within the droplets, although
the applied capillary force is constant. This behaviour, along with the localization of
the bending deformation, are typical signatures of a subcritical instability. Furthermore,
the global mechanical response of the composite changes instantly as soon as buckling is
initiated at the drop scale: under large stretching, the composite behaviour is that of the
core filament, but switches to that of a liquid film when compressed past the threshold.
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Thus the droplets have the double role of storing the excess thread and putting the whole
composite in a state of tension. This behaviour is all the more arresting because real
liquid cylinders instantaneously disintegrate due to Rayleigh-Plateau instability, making
the liquid-like response of the composite truly unusual.

SOFTSOFTRIGIDRIGID

FIG. 4.5 – Why is there a tension? Left: a drop can slide over a rigid fibre at no energetical
cost, δE = 0. The tension in the fibre is therefore zero, as expected from the cancelling
of the facing meniscus forces. Right: if some slack fibre is spooled inside the droplet, an
energy is required to pull out the fibre from the droplet: the fibre is under tension.

▷ Why is there a tension? We mentioned (and experimentally observed) that capillary
spooling implied fibre tension. But how does it work? After all, a single drop sitting astride
a straight fibre exerts no net force on it: the two meniscus forces just cancel each other.
Figure 4.5 left recasts this observation in terms of energy. Take a drop on a rigid fibre and
impose a differential motion between the drop and the fibre so that the drop is displaced
from a distance δℓ. The cost of wetting the small fibre is 2πh∆γδℓ but this displacement
also implies that a segment of length δℓ is dewetted, corresponding to an energetical cost
of −2πh∆γδℓ : the drop can be displaced at no cost δE = 0, and the capillary tension in
the fibre δE/δℓ is equally nil. Now consider the situation depicted Fig. 4.5 right: a drop
sitting on a fibre contains some slack. A differential motion between the fibre and the drop
does not imply any more the same balance between wetting and dewetting as before. It
is notably possible to unwind the fibre and extract a portion δℓ from the drop without a
dewetting event. The energy difference between the two configurations therefore amounts
to
(
−2πh∆γ − 1

2EIκ
2
)
δℓ, with κ the fibre curvature in the drop. Suppose further that

a external force T assists the unrolling process. The work done by this force is naturally
−Tδℓ. The equilibrium condition requires these energies to cancel out, hence the force T
to be non zero. In other words, the fibre is now under tension with T = −2πh∆γ− 1

2EIκ
2.

▷ A phase transition process. To shed further light on the connection between the
micro-structure and the global mechanical response, we continue to consider the simple
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model pictured Fig. 4.5 but take into account the stretching properties of the thread and
also the external force T introduced earlier. Elastocapillary spooling activation can be
described as a phase transition between a wet and coiled phase – where the filament is
entirely packed within the liquid drop – and a dry and extended phase – where the fila-
ment runs straight outside the drop. The extended phase is characterized by a stretching
modulus EA and a rest length ℓe. Under an applied tension, its extension is xe = (1+ϵe)ℓe,
where ϵe is the extensional strain. The strain energy of the phase is then 1

2 ℓeEAϵe
2, to

which we add the solid-air interface energy 2πhγsvℓe. The coiled phase is made up of
the drop and the spooled filament inside the drop. The spools certainly adopt a com-
plicated shape and the bending energy of the filament is 1

2EI
∫ ℓc
0 κ(s)2 ds where κ is the

curvature of the filament and I = πh4/4. Approximating the drop as spherical and the
spools as arcs of circle, we write κ = 2/D where D is the diameter of the drop. The
bending energy is then 2 ℓcEI/D

2. We note that in this approximation the extension
of the phase xc = D is constant. We add the solid-liquid interface energy 2πhγslℓc (the
liquid-air interface energy, a constant, is not included) to obtain the total energy of the
system V =

(
1
2 EAϵe

2 + 2πhγsv
)
ℓe +

(
2EI/D2 + 2πhγsl

)
ℓc. We replace ℓc and, discard-

ing constant terms, re-write the total energy as V =
(
1
2 EAϵe

2 − 2EI/D2 + 2πhγ cos θ
)
ℓe.

Note that we have used Young-Dupré wetting relation γsv − γsl = γ cos θ, where θ is the
liquid contact angle on the filament and γ the liquid-air interface energy per area. We
note that the latent energy cost per unit length ϵ0 = 2πhγ cos θ − πEh4/2D2 (already
identified in the small introductory model) involved in the transformation from the coiled
to the extended phase is a typical signature of a first-order phase transition problem. From
this expression we readily obtain a condition for spooling to be sustained. Indeed, for the
coiled phase to be stable at small forces ϵ0 has to be positive (equivalently, the tension T
has to be positive). This condition can be recast into a condition for the radius, where we
recover the fact that only thin filaments exhibit in-drop spooling:

h < (4γ cos θ)1/3 E−1/3D2/3 (4.1)

Introducing the ratio ρ = ℓe/ℓ, we minimize V under the constraints of fixed extension
x = xc + xe, and bounded ratio 0 ≤ ρ ≤ 1. In the limit where D ≪ ℓ and ϵ0 ≪ EA,
we find that the system can be entirely in the coiled phase (ρ = 0; filament fully packed
in the drop) with tension 0 < T < ϵ0, or entirely in the extended phase (ρ = 1) with
tension T = EA(x/ℓ − 1) > ϵ0. A third interesting possibility consists in a mixture of
phases 0 < ρ < 1. In this latter case, part of the filament is packed in the drop while the
outer part is taut, consistent with our observations. As ρ is changed, the tension remains
constant to a plateau value T = TP = ϵ0, with

TP = 2πhγ cos θ − πE h4/2D2 (4.2)

To further explore the mechanical response of the composite system, we also performed
detailed numerical computations of equilibrium of an inextensible and flexible elastic fil-
ament (Antkowiak et al., 2011; Audoly and Pomeau, 2010; Elettro et al., 2015b). The
filament, held at both extremities with imposed distance x, is subjected to attracting
meniscus forces Fγ at entrance and exit of a confining sphere. The loading (x, T ) diagram,
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FIG. 4.6 – Structural phase transition and detailed mechanical response. Compari-
son between nano-Newton-resolved measurements on a composite polyurethane fila-
ment/silicone oil thread (red line), detailed simulations of an Elastica interacting with a
droplet (orange line) and the first-order phase transition model (dashed grey line, full be-
havior also sketched in inset). Experiments were performed with a drop of wet length
D = 62± 2 µm and a filament of radius h = 1± 0.2 µm and Young modulus E = 17± 3 MPa.
Numerical equilibria are here followed with a continuation procedure, with Fγ = 35 EI /D2

and L = 20 D. The plateau tension TP given by the phase transition model (4.2) is here
115 nN. Beyond the nice overall agreement, the results reveal a difference between the
buckling threshold and the plateau tension. This difference points to the subcritical na-
ture of elastocapillary buckling, also evidenced by the sudden localisation of the filament
visible in the insets. The numerical simulations allow to capture the fine details in the
micro-mechanical response observed in the experiments, resulting in inhomogeneities in
the Maxwell plateau. Sensor drift forced us to adjust the reference level for the experimen-
talmeasurements, but the level differencebetweenbuckling threshold andplateau tension
is well recovered.

shown in Fig. 4.6, reveals inhomogeneities in the Maxwell line (Maxwell, 1875). These
inhomogeneities are due to fine details in the micro-mechanical response of the system.
Setting Fγ = 2πhγ cos θ, we plot in Fig. 4.6 the phase transition prediction given by
Eq. (4.2), and we observe a nice agreement not only with the numerical computations, but
also with nano-Newton-resolved mechanical testing of synthetic composites (here made of
polyurethane filament and silicone oil droplet). We also note that both experiments and
numerical simulations exhibit a kink between the two regimes that reveals a difference
between the buckling threshold and the plateau tension, as already anticipated by our
simple models and by the subcritical nature of the spooling (Fig. 4.4).

▷ Post-buckling behaviour and subcriticality. Capillary spooling is particularly
striking because it is subcritical: the fibre remains straight up to the threshold, and then
keeps on spooling just above. This binary behaviour is fully linked to the neat change
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observed in the mechanical response of the fibre. But why is buckling in this configuration
subcritical? From the simple models elaborated earlier we have already witnessed that
the force needed to keep the spool packed was lower that the force needed to make it
buckle. This behaviour was also apparent in the full numerical solutions (subcriticality
being embodied with the kink in Fig. 4.6). But these elements, although consistent with
subcriticality, do not explain its origin. In standard buckling, the force needed to deform
the Elastica keeps on increasing past the buckling threshold, according to:

PL2

EI
= 4π2

(
1 +

∆

2L

)
, (4.3)

where ∆ is the imposed shortening (note that in this example we make use of clamped-
clamped boundary conditions, but this is not important for the purpose of the argument,
see Bažant and Cedolin, 2010, §1.9). This postbuckling behaviour is supercritical, or,
equivalently, the system exhibits a positive stiffness past the threshold. Now, in spider
capture silk, the situation is a bit different; the forces are exerted near the contact line (or
more generally in a region where a surface energy gradient exists) but the contact line
is not attached to the fibre. This means that the fibre can slide and enter the droplet
while the force is still exerted at the drop boundary. This fundamental difference is at the
root of subcriticality. Indeed, replacing in the previous equation the fibre length L with
D+∆ – the length of the straight fibre traveling across the drop plus some slack – we can
rewrite at first order equation (4.3) as:

PD2

EI
= 4π2

(
1− 3

2

∆

D

)
. (4.4)

The change of sign in equation (4.4) has dramatic consequences, for now the system
exhibits a negative stiffness: past the threshold, buckling, coiling and spooling can proceed
without limit (until all the thread is gobbled or other phenomena such as e.g. steric
effects show up). Buckling is now subcritical. Interestingly Bigoni and collaborators have
designed a (macroscopic) experiment having similar ingredients: an Elastica is allowed
to grow between fixed endpoints and suddenly snaps to a teardrop shape (see Fig. 4.7).
Though the applied force is no more constant, there are similitudes with the fact that the
forces are not following the Elastica tip, making the system subcritical.

▷ A note on hybrid materials. Hybrids made of different materials often display
effective properties far exceeding those of their components (Ashby and Bréchet, 2003):
zinc-coated steel is both strong and corrosion-resistant, metal foams (hybrids of metal and
air) are stiff, light and crushable at the same time, making them perfect candidates to
absorb energy in a car crash. Nature also provides many exquisite examples of hybrid
design such as the seashell nacre, both stiff and tough thanks to its inner ‘brick-and-
mortar’ structure composed of rigid, though brittle, inclusions surrounded by a crack
arresting soft organic matrix, or the bamboo stem with its hollow core and honeycomb-
shaped cells that maximize the ratio of bending rigidity over weight. Spider capture silk
constitutes yet another example of such an hybrid material, here composed of liquid and
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FIG. 4.7 – Elastica dripping. Bottom: an Elastica of variable length grows between end-
points having a fixed separation distance. Past the buckling, the Elastica deforms up to
self-contact where it adopts a teardrop shape. Top: for reference, the shape adopted by a
falling drop (Bosi et al., 2015).

solid, sometimes inheriting the properties of the solid, and sometimes those of the liquid.
Note that, as in hybrids or in metamaterials, a classic effect acting at the micro-scale
(sub-wavelength resonance or, as in here, in-drop buckling) reflects into a most striking
and unusual phenomenon at the macro-scale.

▷ Capillary spooling without spiders. To con-
clude this chapter, let’s remark that capillary spools,
although forming naturally in spider webs, are not
exclusive to spider (note by the way that the bio-
logical function of this spooling mechanism – if any
– is still somewhat unclear. It could play a role in
the web retension but this is an hypothesis). We
demonstrated that this effect could be reproduced
and exploited with synthetic materials, provided the
fibre is sufficiently soft and/or thin. Note that this
condition should particularly be met in soft biolog-
ical objects, with e.g. the packing of DNA or RNA
in viral capsids for example. We could also mention an hypothetical model for the mor-
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phology of elastin initially developed by Weis-Fogh and Andersen also involved a spooling
mechanism at the protein level (pictured in inset – see Gordon, 1978, for an account). At
the microscopic scale, other examples should abound if we know where to look. Figure 4.8
represents an amoeba gobbling a blue alga, which is gently packed and spooled within the
amoeba. But at some point the alga violently springs out and explodes the amoeba (which
then self-repairs). All these examples could be studied through the prism of the capillary
spooling of thread in a single droplet. This micro-laboratory could help to understand
and identify the different modes of packing and e.g. the fibre pressure exerted and the
soft container.

FIG. 4.8 – Amoeba vs alga. An amoeba ingests a blue alga. In the process, the blue alga
is spooled within the amoeba, but the amoeba cannot bear the alga pressure (resulting
from the stored elastic energy), and the plant suddenly springs out and uncoils, tearing
the amoeba apart in the process (from the TV documentary “L’aventure des plantes” by
Jean-Marie Pelt and Jean-Pierre Cuny, 1986).



Perspectives

To end this manuscript I shall briefly outline three axes that will form the core of my
research for the upcoming years. These axes arise from important questions/appealing
prospects identified in former studies and also from opportunities, interactions with skilful
and curious researchers and serenpidity. The three tracks will consist in extending and
deepening our research on capillary spools, investigating the link between fast interfacial
hydrodynamics and acoustics and finally studying the hydrodynamics of liquid films made
of different chemical components.

▷ Liquid wires. The discovery we made during
the PhD thesis of Hervé Elettro has prompted us to
deepen our understanding of these liquid wires and
also design new types of materials benefiting from
these new mechanical functions. This is the purpose
of an ANR grant we obtained recently and, within
this framework, of the PhD thesis of Paul Grand-
george (2015-2018). With Paul we investigate how
our liquid wires could convey information, and be
a vehicle for electricity or light. Among interesting possibilities, the capillary spooling
mechanism allows for a fibre to exert a tension, and possibly on-demand. This is reminis-
cent of the functioning of sarcomeres in muscles and opens interesting perspectives in the
area of artificial muscle fibres. Other tracks, including the extension to smart fabrics with
novel properties are investigated as well. As these different research tracks require really
different skills, we have started new and exciting collaborations with a chemistry lab (Nat-
acha Krins, Laboratoire de Chimie de la Matière Condensée de Paris) and an optics lab
in Lausanne (Kenny Hey Tow, Group For Fiber Optics, EPSL). Meanwhile our fruitful
collaboration with the Oxford Silk Group and Fritz Vollrath continues in particular to
unravel the biological function of the capillary spools.

▷ Interfacial acoustics. Bursting soap films (de Gennes, 1996), impacting raindrops
or capillary jets forming from rupturing bubbles all exhibiting a fast dynamics, but still
with velocities significantly lower than the sound speed, warrantying the accuracy of an
incompressible description. Typically the Mach numbers (built with the celerity of sound
in the air) of these fast interfacial dynamics can be of the order of 0.1, marking the

75
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inception of weak compressible effects. During the postdoc of Adrien Bussonnière we
analysed the acoustic
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signature of such rapid capillary events in the con-
text of a bursting soap bubble. Most interestingly
we have been able to decipher the acoustic signals
and measure the position of the bursting point, the
bubble radius and even the film thickness profile,
which noteworthy enough, is largely subwavelength.
This exciting project, opening the way to measure
not only forms but forces in fast interfacial hydro-
dynamics will be investigated with Régis Wunen-
burger, François Ollivier and Juliette Pierre from
Institut d’Alembert.

▷ Heterogeneous liquid films hydrodynamics.
Part of my current research is performed in the
Saint-Gobain/CNRS joint laboratory and focuses
on the dynamics of heterogeneous thin liquid films,
with application to the liquid coating of plane sub-
strates. In the framework of this project, we pay
particular attention to the way an heterogeneity in
composition (typically a binary mixture composed
of a solvent and an other liquid) can drive thin film rupture or, conversely, smoothing
of inhomogeneities through Marangoni forces. Recently there has been an upsurge of
interest for the dynamics of evaporating binary droplets in the academic community. In-
deed, though the thermodynamics of mixture and the forces resulting from surface tension
contrasts are well known, the fluid dynamics of evolving mixtures exhibits phenomena
previously unidentified. With this timely resonance between academic and industrial in-
terests, a PhD thesis should start by the end of 2016. This project is in collaboration with
Jérémie Teisseire, Alban Sauret and Pierre Jop from Saint-Gobain.
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