.. Définition-des-problèmes-de-cellules, 135 6.2.2 Construction de l'espace d'approximation grossier sur les mailles agglomérées, p.135

. Nous-montrons and . Dans-ce-chapitre, chapitre 5, peut être mise en oeuvre pour résoudre l'équation de convection-diffusion du système (3.1) Nous commencerons par décrire deux algorithmes implémentés pour générer le maillage grossier, l'un produisant un maillage cartésien, l'autre un maillage non structuré fait d'agglomérats de mailles fines. Nous rappellerons ensuite la méthode proposée dans [BBC + 12] qui permet de construire une base de polynômes orthonormée sur des mailles grossières de forme quelconque. Ceci nous permettra d'introduire les éléments finis multi-échelles et nous verrons à cette occasion

F. [. Arnold, B. Brezzi, L. D. Cockburn, and . Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.39, issue.5, pp.1749-1779, 2002.
DOI : 10.1137/S0036142901384162

G. Allaire, R. Brizzi, A. Mikeli?, and A. L. Piatnitski, Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media, Analyse numérique et optimisation : Une introduction à la modélisation mathématique et à la simulation numérique. Editions Ecole Polytechnique, pp.2292-2300589, 2005.
DOI : 10.1016/j.ces.2009.09.010

URL : https://hal.archives-ouvertes.fr/hal-00784057

G. Allaire, I. Pankratova, A. Piatnitskiar07-]-g, A. L. Allaire, ]. N. Raphaelarb00 et al., Homogenization of a convection-diffusion model with reaction in a porous medium Numerical subgrid upscaling of two-phase flow in porous media An interior penalty finite element method with discontinuous elements [Bab73] I. Babu?ka. The finite element method with penalty, Numerical Treatment of Multiphase Flows in Porous Media : Proceedings of the International Workshop Held at Beijing, ChinaBak77] G. A. Baker. Finite element methods for elliptic equations using nonconforming elements, pp.300-330523, 1973.

. Bbc-+-12-]-f, L. Bassi, A. Botti, D. A. Colombo, P. Di-pietro et al., On the flexibility of agglomeration based physical space discontinuous galerkin discretizations Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations, www.dealii.org. [BJP03] A. Bourgeat, M. Jurak, and A.L. Piatnitski. Averaging a transport equation with small diffusion and oscillating velocity, pp.45-65199, 1982.

C. L. Bris, F. Legoll, and F. Madiot, A numerical comparison of some multiscale finite element approaches for convection-dominated problems in heterogeneous media. arXiv preprint, 2015.

A. Bensoussan, J. Lions, G. [. Papanicolaou, S. Bassi, and . Rebay, Asymptotic analysis for periodic structures A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier?stokes equations, Bre03] S. C. Brenner. Poincaré?friedrichs inequalities for piecewise h 1 functions. SIAM J. Numer. Anal, pp.267-279306, 1978.

]. H. Bre10 and . Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2010.

R. [. Brenner and . Scott, The mathematical theory of finite element methods, 2007.

M. [. Babu?ka and . Zlámal, Nonconforming Elements in the Finite Element Method with Penalty, SIAM Journal on Numerical Analysis, vol.10, issue.5, pp.863-875, 1973.
DOI : 10.1137/0710071

B. [. Chavent and . Cockburn, The local projection p0p1-discontinuous-galerkin-finite element method for scalar conservation laws, 1987.

M. [. Chen, T. Y. Cui, X. Savchuk, and . Yu, The Multiscale Finite Element Method with Nonconforming Elements for Elliptic Homogenization Problems, Multiscale Modeling & Simulation, vol.7, issue.2, pp.517-538, 2008.
DOI : 10.1137/070691917

T. [. Chen and . Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Mathematics of Computation, vol.72, issue.242, pp.541-576, 2002.
DOI : 10.1090/S0025-5718-02-01441-2

]. P. Cia91, . G. Ciarlet-[-cr72-]-p, P. A. Ciarlet, and . Raviart, Handbook of numerical analysis, Finite element methods (Part I) North-Holland Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Eng, vol.1, issue.2, pp.217-249, 1972.

]. P. Ct90a, R. Caussignac, and . Touzan, Solution of three-dimensional boundary layer equations by a discontinuous finite element method, part i : Numerical analysis of a linear model problem, Comput. Methods Appl. Mech. Eng, vol.78, issue.3, pp.249-271, 1990.

]. P. Ct90b, R. Caussignac, and . Touzani, Solution of three-dimensional boundary layer equations by a discontinuous finite element method, part ii : Implementation and numerical results, Comput. Methods Appl. Mech. Eng, vol.79, issue.1, pp.1-20, 1990.

T. [. Douglas and . Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Computing methods in applied sciences, pp.207-216, 1976.
DOI : 10.1007/BFb0120591

J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS, Mathematical Models and Methods in Applied Sciences, vol.17, issue.02, p.20, 2010.
DOI : 10.1007/s10596-004-3771-1

URL : https://hal.archives-ouvertes.fr/hal-00346077

J. [. Dautray and . Lions, Evolution problems i, 2000.

A. [. Donato and . Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms. Multi Scale Problems and Asymptotic Analysis, GAKUTO Internat. Ser. Math. Sci. Appl, vol.24, pp.153-165, 2005.

]. M. Dry03 and . Dryja, On discontinuous galerkin methods for elliptic problems with discontinuous coefficients, Computational Methods in Applied Mathematics Comput. Methods Appl. Math, vol.3, issue.1, pp.76-85, 2003.

T. [. Efendiev and . Hou, Multiscale finite element methods : theory and applications, 2009.

Y. R. Efendiev, T. Hou, and X. Wu, Convergence of a Nonconforming Multiscale Finite Element Method, SIAM Journal on Numerical Analysis, vol.37, issue.3, pp.888-910, 2000.
DOI : 10.1137/S0036142997330329

]. D. Elf15 and . Elfverson, A discontinuous galerkin multiscale method for convection-diffusion problems, 2015.

A. [. Ern, P. Stephansen, and . Zunino, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA Journal of Numerical Analysis, vol.29, issue.2, 2008.
DOI : 10.1093/imanum/drm050

H. [. Fries and . Matthies, A review of petrov?galerkin stabilization approaches and an extension to meshfree methods, 2004.

B. [. Grospellier and . Lelandais, The arcane development frameworkHigh-Performance Object-Oriented Scientific Computing, page 4 Finite element methods for Navier-Stokes equations : theory and algorithms, Proceedings of the 8th workshop on Parallel, 2009.

E. H. Georgoulis and E. Süli, hp?version interior penalty discontinuous galerkin finite element methods on anisotropic meshes, Int. J. Numer. Anal. Model, vol.3, issue.1, pp.52-79, 2006.
DOI : 10.1093/imanum/dri038

URL : http://eprints.maths.ox.ac.uk/1141/1/NA-05-12.pdf

T. J. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.73, issue.2, pp.173-189, 1989.
DOI : 10.1016/0045-7825(89)90111-4

L. [. Hughes, M. Franca, and . Mallet, A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Computer Methods in Applied Mechanics and Engineering, vol.63, issue.1, pp.97-112, 1987.
DOI : 10.1016/0045-7825(87)90125-3

. Y. Th, D. Hou, and . Liang, Multiscale analysis for convection dominated transport equations, DCDS, vol.23, issue.12, pp.281-298, 2009.

M. [. Henning and . Ohlberger, The heterogeneous multiscale finite element method for advectiondiffusion problems with rapidly oscillating coefficients and large expected drift, Netw. Heterog. Media, vol.5, issue.4, pp.711-744, 2010.

E. [. Houston and . Süli, A note on the design of hp-adaptive finite element methods for elliptic partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.2-5, pp.229-243, 2005.
DOI : 10.1016/j.cma.2004.04.009

. Y. Th, X. H. Hou, and . Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys, vol.134, pp.169-189, 1997.

P. [. John and . Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection???diffusion equations: Part I ??? A review, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.17-20, pp.2197-2215, 2007.
DOI : 10.1016/j.cma.2006.11.013

P. Jenny, S. H. Lee, and H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, vol.187, issue.1, pp.47-67, 2003.
DOI : 10.1016/S0021-9991(03)00075-5

P. Jenny, H. Lee, and . Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, vol.187, issue.1, pp.47-67, 2003.
DOI : 10.1016/S0021-9991(03)00075-5

[. Jenny, H. Lee, and . Tchelepi, Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media, Multiscale Modeling & Simulation, vol.3, issue.1, pp.50-64, 2005.
DOI : 10.1137/030600795

]. S. Kln-+-09, K. A. Krogstad, H. Lie, J. Nilsen, B. Natvig et al., A multiscale mixed finite element solver for three phase black oil flow, SPE Reservoir Simulation Symposium, 2009.

]. S. Lem13 and . Lemaire, Discrétisations non-conformes d'un modèle poromécanique sur maillages généraux, 2013.

]. P. Les73 and . Lesaint, Finite element methods for symmetric hyperbolic equations, Numer. Math, vol.21, issue.3, pp.244-255, 1973.

]. P. Les76 and . Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis, pp.76-2190, 1976.

]. J. Li15 and . Li, High order discontinuous galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity, 2015.

[. Lions and E. Magenes, Non-homogeneous boundary value problems, and applications
DOI : 10.1007/978-3-642-65161-8

P. [. Lesaint and . Raviart, On a finite element method for solving the neutron transport equation Mathematical aspects of finite elements in partial differential equations High order discontinuous galerkin method for simulating miscible flooding in porous media, Comput. Geosci, vol.33, issue.196, pp.89-1231251, 1974.

]. F. Mad16 and . Madiot, Multiscale finite element methods for advection diffusion problems, 2016.

]. V. Maz09 and . Maz-'ya, Boundedness of the gradient of a solution to the neumann?laplace problem in a convex domain, Comptes Rendus Mathematique, vol.347, issue.9, pp.517-520, 2009.

A. M. Matache, I. Babu?ka, and C. Schwab, Generalized p-FEM in homogenization, Numerische Mathematik, vol.86, issue.2, pp.319-375, 2000.
DOI : 10.1007/PL00005409

W. C. Mclean, Strongly elliptic systems and boundary integral equations, 2000.

M. A. Christie and M. J. Blunt, Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques, SPE Reservoir Evaluation & Engineering, vol.4, issue.04, pp.308-317, 2001.
DOI : 10.2118/72469-PA

]. J. Nit72 and . Nitsche, On dirichlet problems using subspaces with nearly zero boundary conditions. The mathematical foundations of the finite element method with applications to partial differential equations, pp.603-627, 1972.

[. Nguyen and J. Peraire, Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics, Journal of Computational Physics, vol.231, issue.18, pp.5955-5988, 2012.
DOI : 10.1016/j.jcp.2012.02.033

G. [. Ouaki, S. Allaire, G. Desroziers, and . Enchéry, A priori error estimate of a multiscale finite element method for transport modeling, SeMA Journal, vol.10, issue.4, pp.1-37, 2015.
DOI : 10.1137/0710062

URL : https://hal.archives-ouvertes.fr/hal-01071637

]. F. Oua13 and . Ouaki, Etude de schémas multi-échelles pour la simulation de réservoir, Thèse de doctorat de l'Ecole Polytechnique, 2013.

H. [. Payne and . Weinberger, An optimal poincaré inequality for convex domains Archive for Rational Mechanics and Analysis, pp.286-292, 1960.

T. [. Reed and . Hill, Triangularmesh methodsfor the neutrontransportequation, 1973.

]. B. Riv08 and . Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations : theory and implementation, 2008.

. [. Sanchez-palencia, Non-homogeneous media and vibration theory, 1980.

M. [. Sun and . Wheeler, Discontinuous Galerkin methods for coupled flow and reactive transport problems, Applied Numerical Mathematics, vol.52, issue.2-3, pp.273-298, 2005.
DOI : 10.1016/j.apnum.2004.08.035

]. T. Tez91 and . Tezduyar, Stabilized finite element formulations for incompressible flow computations Advances in applied mechanics, pp.1-44, 1991.

B. [. Weinan and . Engquist, The heterogeneous multiscale methods, Comm. Math. Sci, vol.1, issue.1, pp.87-132, 2003.

M. F. Wheeler, An Elliptic Collocation-Finite Element Method with Interior Penalties, SIAM Journal on Numerical Analysis, vol.15, issue.1, pp.152-161, 1978.
DOI : 10.1137/0715010

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.453.5927

]. J. Wlo and . Wloka, Partial differential equations, 1987.

V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and integral functionals, 1994.