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Mme. Francesca Chillà ENS Lyon Rapporteuse
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Convection turbulente dans les cellules de Rayleigh-Bénard

avec des conditions limites modifiées

Résumé :

Le présent document est consacré à l’étude des écoulements à grande échelle dans la

convection turbulente de Rayleigh-Bénard, et de l’influence exercée par différents facteurs

sur leur structure et leur évolution temporelle. Ce travail se compose de trois parties.

Dans la première partie, nous étudions la structure et l’évolution temporelle des écoulements

à grande échelle à l’intérieur d’une cellule carré (2D) de type Rayleigh-Bénard. La

caractérisation proposée mélange une approche statistique avec une approche physique

en s’appuyant sur l’évolution du moment cinétique angulaire ainsi que sur l’évolution

des énergies cinétiques et potentiel disponibles, pour mettre en évidence les mécanismes

physiques sous-jacents. Nous essayons par la suite de relier ces mécanismes aux structures

pérsirtentes observées et à leur évolution temporelle.

Dans la deuxième partie, nous nous concentrons sur les changements dans la circulation à

grande échelle résultant de l’imposition d’une condition de surface libre dans une cellule

carré (2D) de type Rayleigh-Bénard, ainsi brisant la symétrie haut/bas. Cette configu-

ration présente une température moyenne plus faible, un flux de chaleur amélioré et des

fluctuations accrues par rapport au cas classique.

Dans la dernière partie, nous nous concentrons sur les changements dans la circulation à

grande échelle, cette fois résultant de l’imposition d’un fort degré de confinement latéral

dans une cellular rectangulaire mince (3D) de type Rayleigh-Bénard. Cette configuration

présente la formation des grandes structures cohérentes dans la direction verticale, connues

sous le nom des canaux turbulents, au lieu d’une circulation à l’échelle du système. Le

confinement présente également une forte influence sur différentes quantités globales, tels

que les numéros de Nusselt et Reynolds. Afin d’aider à l’exploration du régime sévèrement

confiné, nous développons et validons un modèle de dimensionnalité réduit avec correc-

tions inertielles. En utilisant ce modèle, nous sommes en mesure d’explorer l’espace des

paramètres et effectuer des observations dans la limite d’un fort confinement.

Mots clés: Turbulence, Chaleur - Convection, Convection de Rayleigh-Bénard
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Turbulent convection in Rayleigh-Bénard cells

with modified boundary conditions

Abstract:

The present document is dedicated to the study of the large-scale flow patterns in turbulent

Rayleigh-Bénard convection, and of the influence exerted by different factors on the flow

structures and on their temporal evolution. This work is composed of three parts.

In the first part, we study the structure and the temporal evolution of the large-scale

flow inside a square (2D) Rayleigh-Bénard cell. The proposed characterization combines

a statistical analysis with a physical approach relying on the angular momentum as well

as the kinetic and potential energies to highlight the underlying physical mechanisms.

We subsequently attempt to tie these mechanisms together to each of the distinctive flow

patterns observed and to their temporal evolution.

In the second part, we focus on the changes in the large-scale flow resulting from imposing

a stress-free surface on a square (2D) Rayleigh-Bénard cell, thus breaking the top/bottom

symmetry. This configuration exhibits a lower bulk temperature, enhanced heat-flux and

increased fluctuations with respect to the classical case.

In the last part, we focus on the changes in the large-scale flow resulting from imposing a

strong degree of lateral confinement on a slim rectangular (3D) Rayleigh-Bénard cell. This

configuration exhibits the formation of large coherent structures in the vertical direction,

or turbulent channels, instead of a system-wide circulation. Confinement also exhibits a

strong influence on several global quantities such as the Nusselt and Reynolds numbers. In

order to assist in the exploration of the severely confined regime, we develop and validate

a reduced dimensionality model with inertial corrections. Using this model, we are able to

explore the parameter space and provide further insight in the limit of strong confinement.

Keywords : Turbulent convection, convection in cavities, Bénard convection
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Chapter 1

Introduction

The term natural convection indicates the motion of fluid due to density variations. Ther-

mal convection, in which density variations are induced by local temperature differences, is

present inside stars and planets, in the atmosphere and the ocean, but also in engineering

and in day to day life. The universal nature of thermal convection and its relevance to

different fields is reflected by the abundance of publications on the subject.

1.1 Context

Consider an object such as a hot air balloon (or “Montgolfiere”) placidly hovering in mid-

air as displayed on figure 1.1a. The balloon has a density such that, there is a balance

between the weight of the balloon and the buoyancy force, i.e. the force exerted by the

displaced fluid. If we dispose of some heat source aboard, the air contained inside the

balloon will increase its temperature, decreasing its density with respect to surrounding

air and driving the hot air balloon upwards until a new equilibrium is reached. In this

sense, it is the density variation due to local temperature differences that drives motion.

This represents the basic principle of thermal convection.

Examples of thermally-driven flows are abundant in nature. The grainy appearance of

the solar surface (see figure 1.1b) is generated by convection currents inside the Sun - hot,

bright rising ‘granules’ of order 1 Mm surrounded by cooler, darker intergranular lanes

(Leighton, 1963). Convection of the Earth mantle drives the generation of plate tectonics,

volcanism, earthquakes and mountain building (Bercovici, 2003). The general circulation

of the atmosphere is composed of thermal cells created by uneven heating of the Earth’s

surface by solar radiation coupled with rotation. At “smaller-scales”, the sea-breeze, and

major weather events (hurricanes, flash-floods, electrical storms, and tornadoes) are also

driven by thermal convection (B. Stevens, 2005). In the ocean, the thermohaline circu-

lation is powered by the effect of thermohaline forcing (thermo- referring to temperature

and haline- to the concentration of salt) and turbulent mixing (winds and tides) (Rahm-

storf, 2003). Engineering applications for thermal convection are equally abundant. It is

found nearly everywhere, from heat exchangers, industrial cooling equipment, and natural

ventilation systems like solar chimneys, to domestic appliances and consumer electronic

devices and even in our day to day life.
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(a) (b)

(c)

Figure 1.1: (a) A picture of a “Montgolfiere” (Wikimedia commons, 2011). (b) Granular
structure of the photosphere (NASA / JAXA, 2015). (c) Convection in a “soap” bubble
(Seychelles et al., 2008).

Most of these examples involve thermal convection in complex geometries or combined

with other physical processes, such as magnetic forcing, radiative transfer, phase changes,

chemical reactions or biological processes. The study of such complex systems requires

the use of large material resources which may not be necessarily available at the time.

Because of this, most fundamental studies are centered on simplified systems such as

thermal convection between two horizontal plates, convection between concentric spheres

(Egbers et al., 2003; Travnikov et al., 2003), convection in ‘soap’ films (see figure 1.1c,

Adami, 2014; Seychelles et al., 2008), and a differentially heated cavity (De Vahl Davis,

1983; Le Quéré and Behnia, 1998).

For this work, we focus on the Rayleigh-Bénard convection which involves a horizontal

fluid layer of height H, which is heated uniformly from below and cooled uniformly from

above in the presence of gravity. By convention the gravity force g = {0,−g, 0} is opposed

to the unit vector in the y-direction.

T = Tbot at y = 0 (1.1a)

T = Ttop = Tbot − ∆T at y = H (1.1b)

Ideally the fluid layer extends over an infinite plane, but in practice, one must also consider

the fluid container, usually a cylinder or a square box. The latter type is defined by a

width W (see figure 1.2a) and for the 3-D case, a depth d. In the following, we assume

side-walls to be adiabatic.

Additionally, we assume the boundaries to be rigid no-slip boundaries, except for one case

4
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Figure 1.2: (a) Schematic representation of the Rayleigh-Bénard problem and (b) a shad-
owgraph of rising and falling plumes in a clockwise circulation (Shang et al., 2003).

where the top boundary is assumed to be a free surface.

u = 0 on rigid boundaries (no-slip condition) (1.2a)

v = ∂yu = ∂yw = 0 on a free surface (stress-free condition) (1.2b)

Above a critical temperature difference ∆Tc, the buoyancy force overcomes the viscous

damping force driving the warm fluid upwards (resp. cold fluid downwards) thus creating

a convective current. At the onset of convection flow appears as steady two-dimensional

or three-dimensional rolls. For temperature differences larger than ∆Tc, the flow exhibits

a systematic transition to turbulence via periodic and chaotic solutions. For this work, we

are concerned with the (weakly-)turbulent convection regime.

In order to introduce some of the distinctive features of turbulent Rayleigh-Bénard con-

vection, let us consider the schematic representation displayed in figure 1.2. A kinetic

boundary layer develops in the vicinity of the plates and side-walls, where viscous effects

are dominant and most of the frictional drag is concentrated. Similarly, a thermal boundary

layer develops in proximity to the top and bottom plates where most of the temperature

gradient is concentrated. The fluid contained outside of the viscous and thermal boundary

layers is referred to as the bulk.

One important feature of turbulent Rayleigh-Bénard convection is the spontaneous de-

velopment of spatially ordered coherent structures. Thermal plumes are mushroom-like

coherent structures that detach from the boundary layers (see figure 1.2b) and are re-

sponsible for the transport of most of the heat across the domain (hot plumes rise from

the bottom boundary layer, cold plumes fall from the top boundary layer.) The interac-

tion between plumes and walls is responsible for the formation of a large-scale circulation

(LSC), also called ‘the wind of turbulence’ (Niemela et al., 2001). The LSC in turn deforms

the plumes and deflects their trajectory creating a complex dynamics (for instance, the

roll-like structure on figure 1.2b). The characterization of the spatial structure and the

long-term evolution of the LSC, and their sensitivity to different parameters has become

a major research subject in recent years.

5



1.2 Key system parameters and response

Rayleigh-Bénard convection is characterized by competing physical mechanisms: heat

conduction, momentum dissipation, and the buoyancy force. For each mechanism we may

define a characteristic velocity scale

Ucond =
κ

H
Uvisc =

ν

H
Ubuoy =

√
|∆ρ|
ρ

gH (1.3)

where H is the characteristic length of the system, κ (resp. ν) the thermal (resp. momen-

tum) diffusivity coefficient. The buoyancy velocity scale Ubuoy is that of a fluid parcel,

lighter than its surroundings with a density difference ∆ρ = −ρβ∆T, with β = −1
ρ

(
dρ
dT

)
p

being the volumetric thermal expansion coefficient.

The characteristic velocities may be combined to form a non-dimensional parameter known

as the Rayleigh number

Ra ≡ Buoyancy

Diffusivity
=

U2
buoy

Ucond Uvisc
=
β∆TgH3

κν
(1.4)

which quantifies the competition of buoyancy forces compared to thermal and viscous

diffusion. The Rayleigh number is a control parameter, much like the Reynolds number

which depends on the fluid and on the flow regime. Typical values of Ra range from

Ra ∼ 103 − 104 near the onset of convective motion, up to Ra ∼ 1024 − 1027 (!) for

deep oceanic convection (Chillà and Schumacher, 2012). In contrast, direct numerical

simulations are currently limited to Ra ∼ 1012 − 1013 in simple geometries (R. Stevens,

Lohse, et al., 2011; Verzicco et al., 2015).

A second important parameter is the Prandtl number, which measures the relative impor-

tance of momentum (viscous) diffusivity to heat conduction by molecular dissipation.

Pr ≡ Viscous diffusivity

Thermal diffusivity
=

Uvisc

Ucond
=
ν

κ
(1.5)

The Prandtl number depends only of the fluid properties. Typical values of Pr are around

0.7 − 1.0 for air and other gases, from 1.0 − 10.0 for water, and around 1023 for the mantle

of the Earth.

The geometry of the container is represented by one or more dimensionless aspect ratios.

For a rectangular container we define the longitudinal and transversal aspect ratios

Γx ≡ W

H
Γz ≡ d

H
(1.6)

where W is the width and d is the depth of the container.

The central elements of the Rayleigh-Bénard problem are summarized by (Ahlers, Gross-

mann, et al., 2009) as follows: for a given fluid in a closed container heated from below

and cooled from above, how effective is the transfer of heat and momentum, and which are

the main features of the flow inside the container. In this sense, one of the main responses

of the system are the Nusselt and Reynolds numbers. The Nusselt number represents the

6



Figure 1.3: Left: Phase diagram in Ra-Pr plane indicating the different turbulent regimes
of the Grossmann-Lohse scaling theory in a cylindrical cell of aspect ratio Γ = 1, Right:
Comparison between simulations, experiments, and the prediction of the Grossmann-Lohse
theory (R. Stevens, Poel, et al., 2013).

ratio between the overall heat transfer with respect to the heat transfer by conduction

Nu ≡ 〈vT〉xz − κ∂y〈T〉xz

κ∆T/H
(1.7)

where v is the vertical velocity and 〈 · 〉xz indicates the average over time and over a

plane xz at constant y. We also define a Reynolds number based on the height H and a

characteristic velocity U

Re ≡ UH

ν
(1.8)

where U may be a characteristic velocity of the large-scale circulation, or a root mean

squared velocity.

1.3 Scaling theories for the Nusselt number

It is easy to understand why so many theoretical, numerical, and experimental studies

have focused over the years on explaining the evolution of the system responses, Nu and

Re, in terms of the input parameters: Ra, Pr, and the aspect ratios. Most of the earlier

theories predict general scaling laws

Nu ∼ RaβNuPrγNu Re ∼ RaβRePrγRe (1.9)

where examples include the βNu = 1
3 regime by (Malkus, 1954) which assumes the heat-

flux to be independent of the height of the cavity, and the hard turbulence regime with

βNu = 2
7 and βRe = 1

2 by (Castaing et al., 1989). The latter theory assumes the existence

of a mixing zone where plumes are detached from the boundary layers and accelerate to

match the velocities of the central region. A model unifying the different scaling regimes

was developed by (Grossmann and Lohse, 2000) based on the exact relations between the

Nusselt number and the viscous and thermal dissipation rates (Shraiman and Siggia, 1990).

The main idea is to decompose the viscous and thermal dissipation rates into contributions

from the bulk flow and from the boundary layers, then use dimensional analysis to estimate

7



(a)

(c)

(b)

(d)

Figure 1.4: Long-term evolution of the LSC inside a cylinder: (a) Azimuthal meandering of
the LSC plane (Funfschilling and Ahlers, 2004); (b) Reversal of the LSC inside a cylindrical
cell (Xi and Xia, 2008); (c) Torsional oscillations of the LSC plane (Funfschilling, Brown,
et al., 2008); and (d) off-center oscillations of the LSC plane (Zhou et al., 2009).

these separate contributions in terms of Ra and Pr. This theory identifies different scaling

regimes and makes use of crossover functions to combine scalings in a way which would not

be possible with simpler power laws, see figure 1.3. A detailed discussion of the historical

aspects of the scaling theories can be found in (Ahlers, Grossmann, et al., 2009).

1.4 Re-orientations of the large-scale circulation

Despite its apparent simplicity, the Rayleigh-Bénard convection exhibits some incredibly

rich and complex dynamics of the large-scale flow. Generally, the ‘wind’ breaks one or more

of the natural symmetries of the system. For a cylindrical cell, the ‘wind’ takes the form of

roll-like structures. Over time, the ‘wind’ may go through a series of transformations and

re-orientations which help restore the (statistical) symmetry of the system. The first type

of re-orientation is known as the azimuthal meandering is displayed on figure 1.4a. The

plane of the roll-like structure exhibits spontaneous and erratic reorientations through

azimuthal displacements. A complete rotation of the entire structure may be observed

without major changes in the flow speed (Funfschilling and Ahlers, 2004). The second

type of re-orientation is through a cessation of the roll-like structure, before restarting

in a different direction, see figure 1.4b. Both kinds of reversals are often superposed

to other events, such as torsional oscillations of the LSC plane displayed in figure 1.4c

(Funfschilling, Brown, et al., 2008) and off-center oscillations of the LSC plane displayed

in figure 1.4d (Zhou et al., 2009). The precise nature of these transformations is not fully

understood.

One approach commonly used in the study of cessation-led reversals, is to constrain the

8



(a) (b)

Figure 1.5: Configurations used in the study of flow reversals: (a) numerical studies on
a pure 2-D geometry (image from Chandra and Verma, 2011), and (b) experimental and
numerical studies on a slim rectangular geometry (image from Vasiliev and Frick, 2011).

large scale circulation to a plane by restricting the fluid domain to a pure 2-D geometry

(Sugiyama, Ni, et al., 2010; Chandra and Verma, 2011; Podvin and Sergent, 2015) or to a

slim rectangular geometry of small aspect ratio in the transversal direction (Vasiliev and

Frick, 2011; Ni et al., 2015), see figure 1.5. Sugiyama, Ni, et al., 2010 identified a region

in the (Ra,Pr) space in which reversals of the large-scale flow are observed numerically

in a (2-D) square and experimentally inside a rectangular geometry with Γx = 1 and

Γz = 0.3. In such configurations, the flow is composed of a large diagonal roll and two

counter-rotating corner-rolls. Flow reversals has been observed experimentally by Ni et

al., 2015 for 0.84 ≤ Γx ≤ 1.10 and 0.33 ≤ Γz ≤ 0.25, and by Vasiliev and Frick, 2011 for

Γx = 1 and 0.06 ≤ Γz ≤ 0.2 for different values of Ra and Pr. However, given some of the

differences between pure 2-D and (quasi-)2-D turbulent convection, it is not entirely clear if

the reversals observed in each case correspond to the same phenomenon. A more complete

characterization of the reversal dynamics is required to help addressing this question.

1.5 Motivation and objectives

The present document is dedicated to the study of the large-scale flow patterns in turbulent

Rayleigh-Bénard convection, and of the influence exerted by different factors on the flow

structures and on their temporal evolution. The proposed characterization combines a

statistical analysis with a physical approach relying on the angular momentum as well

as the kinetic and potential energies to highlight the underlying physical mechanisms.

We subsequently attempt to tie these mechanisms together to each of the distinctive

flow patterns observed and to their evolution. Investigating the nature of these coherent

structures may be useful in modeling and controlling turbulent flows, as well as to improve

our understanding of the large-scale dynamics.

The contents of this work are organized as follows. Part I (chapters §2 to §3) is focused on

the numerical computation and outlines the methodology used in the characterization of

large-scale flow patterns in turbulent convection. Part II (chapters §4 and §5) is dedicated

to the study of spontaneous re-organization of the large-scale flow inside square (2-D)

9



cells. Part III (chapter §6) deals with the effects on the large-scale flow of imposing a free

surface on a square cell. The last part of this work (chapters §7 and §8) deals with the

influence of lateral confinement on a slim rectangular geometry.
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Chapter 2

Governing equations and

statistical characterization tools

In the first part of this chapter we define the classic statement of the Rayleigh-Bénard

problem in the framework of the Boussinesq approximation. Additionally, we detail the

two main configurations studied throughout this work: a square (2-D) geometry with

a rigid or a stress-free surface, and a slim rectangular (3-D) geometry. In the second

part we introduce some quantities useful in the subsequent analyses. Sections §2.2 and

§2.3 deal with different global quantities used to characterize the flow from energetic and

hydrodynamic viewpoints. Sections §2.4 to §2.6 focused on the spatial structure of the

flow and the separation of large- and small-scale flow patterns.

2.1 Problem description

2.1.1 Governing equations

For thermal convection it is necessary to write governing equations for the temperature,

velocity and pressure fields, couple with equations of state. In buoyancy driven flows,

if the density field does not deviate too much from an average value, the Boussinesq

approximation is used to obtain a simpler set of governing equations, called the Oberbeck-

Boussinesq equations or Boussinesq equations.

Navier-Stokes equations for compressible fluids

The starting point are the compressible Navier-Stokes equations in the following form

∂tρ+ ∂j(ρuj) = 0 (2.1)

∂t(ρui) + ∂j(ρujui) = ρgi + ∂jτij (2.2)
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with ρ being the density, and τij the stress tensor. For a Newtonian fluid the stress tensor

τij is modeled as

τij = −pδij + 2µ

(
Sij − 1

3
∂kukδij

)
(2.3)

with p being the thermodynamic pressure, µ the dynamic viscosity, δij the Kronecker delta

and Sij the rate of strain tensor

Sij ≡ 1

2
(∂jui + ∂iuj) (2.4)

Equations for mechanical energy in compressible fluids

If we multiply equation (2.2) by u one obtains an expression for the kinetic energy,

D

Dt
(ρek) = ρuigi + p∂iui + ∂j(uiτij) − φ (2.5)

where D
Dt indicates the material derivative, ek ≡ 1

2uiui the specific, i.e. per unit mass,

kinetic energy, and φ the rate of viscous dissipation

φ ≡ 2µ(Sij − 1

3
∂kukδij)(Sij − 1

3
∂kukδij) (2.6)

The change in specific potential energy ep ≡ gixi, reads as

D

Dt
(ρep) = −ρuigi (2.7)

Combining the above expression with (2.5) yields the following expression for the total

mechanical energy

D

Dt
(ρ(ek + ep)) = p∂iui + ∂j(uiτij) − φ (2.8)

Equation for internal energy in compressible fluids

Now consider eint as the specific internal energy. Using the first law of thermodynamics

on the material volume Ω gives

D

Dt

∫

Ω
ρ(eint + ek + ep)dΩ =

∮

∂Ω
(τijuinj − qini)dS (2.9)

where q is the heat-flux, dS the surface element and n the outward normal unit vector.

The above implies

D

Dt
[ρ(eint + ek + ep)] = ∂j(uiτij) − ∂iqi (2.10)
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Taking the difference between equations (2.8) and (2.10) yields an equation for the internal

energy eint

D

Dt
(ρeint) = φ− ∂iqi − p∂iui (2.11)

Equation (2.11) is implicitly coupled with (2.1) and (2.2) through a phenomenological

equation for the heat-flux, the equation of state eint = eint(T,p) and the fluid properties

ρ = ρ(T,p), µ = µ(T,p), and so on.

2.1.2 The Oberbeck-Boussinesq approximation

Under the Boussinesq approximation, variations of density are neglected everywhere except

in the buoyancy term. Additionally, we assume the density to depend linearly on the

temperature only,

ρ(T) = ρref (1 − β[T − Tref ]) (2.12)

where β is the coefficient of thermal expansion at the reference state (Tref ,pref). In our

case, the reference temperature is taken as Tref = (Tbot + Ttop)/2. All the properties of

the fluid are considered as constants and are evaluated at this reference state.

This hypothesis is valid for most fluids if we consider that: a) the compressibility effects

are negligible, b) the vertical scale is small enough so that density variations due to the

hydrostatic pressure variations are negligible, and c) temperature variations in the flow

are small. For most liquid configurations these conditions are generally satisfied, whereas

for gases the following conditions must be verified

gβH

r
[1 + β (T − Tref)] ≪ 1 (2.13a)

β (T − Tref) ≪ 1 (2.13b)

where r is the specific gas constant measured in SI units, i.e. [J kg−1 K−1] (see for instance

Tritton, 2012; Hinch et al., 2012).

The internal energy equation is simplified under the Boussinesq approximation. (Getling,

1998; Kundu and Cohen, 2012). In that approximation, we suppose the heat flux follows

Fourier law qi = −k∂iT, the heating due to viscous dissipation of energy is negligible
φ
ρCv

≈ 0, and the internal energy follows the Ideal gas’s law eint = CvT, one obtains a

partial differential equation for T

D

Dt
T =

1

ρCv
[∂j(k∂jT) − p(∂iui)] (2.14)

with Cv being the specific heat at constant volume, and k being the thermal conductivity.

The volume expansion term −p(∂iui) may be written as

−p(∂iui) = −ρ(Cp − Cv)
D

Dt
T (2.15)

with Cp being the specific heat at constant pressure. This leads to the following expression
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for the temperature field

D

Dt
T = ∂j(κ∂jT) (2.16)

where the thermal diffusivity κ is defined as κ = k
ρCp

.

We introduce p∗(x, t) as the difference between the thermodynamic pressure and the hy-

drostatic pressure, commonly referred as driven pressure,

− ∂ip
∗ = −∂ip + giρref (2.17)

to obtain the Oberbeck-Boussinesq equations

∂iui = 0

∂tui + ∂j(ujui) = − 1

ρref
∂ip

∗ + νref∂j∂jui − β(T − Tref)gi

∂tT + ∂j(ujT) = κref∂j∂jT

(2.18)

where νref = µref/ρref is the kinematic viscosity of the fluid. Since fluid properties are

always evaluated at the reference state, in the following we drop the subscript everywhere

except for the reference temperature Tref .

2.1.3 Dimensionless parameters

Fluid flow problems without electro-magnetic forcing or chemical reactions involve only

mechanical and thermal variables, can be expressed in terms of four basic quantities:

a length, a time, a mass and a temperature. We define the characteristic mass [M ],

length [L], temperature [Θ], and velocity [U ] scales as follows. The relevant length scale

corresponds to the height of the fluid layer H, while the temperature scale is fixed by the

temperature difference ∆T between the top and bottom plates. A characteristic velocity

scale is obtained from dimensional analysis by a balance between the friction and buoyancy

forces (Bejan, 2013, Sec. 4.3., Scale analysis) which corresponds to the free-fall velocity

Ubuoy divided by Pr0.5

[M ] = ρH3, [L] = H, [Θ] = ∆T, [U ] =
κ

H

√
gβ∆TH3

κν
(2.19)

We proceed to define a set of non-dimensional variables

x̃ =
x

[L]
ũ =

u

[U ]
t̃ =

t

[L]/[U ]
p̃ =

p∗

ρ[U ]2
(2.20)

and a reduced temperature θ

θ =
T − Tref

[Θ]
(2.21)

From this point on, quantities are written in dimensionless form only and tildes

(˜) are omitted.
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Figure 2.1: Configurations considered for this work: (a) a 2-D square with top and bot-
tom no-slip conditions; (b) a 2-D square with top stress-free surface and bottom no-slip
condition; and (c) a slim rectangular geometry of aspect ratio Γx = 1 and Γz < 1.

The Oberbeck-Boussinesq equations may be written in dimensionless form as

∂iui = 0

∂tui + ∂j(ujui) = −∂ip + PrRa−0.5∂j∂jui + Prθδi2

∂tθ + ∂j(ujθ) = Ra−0.5∂j∂jθ

(2.22)

In addition, we impose the thermal boundary conditions

θ = −1/2 at the top plate (y = 1/2) (2.23a)

θ = 1/2 at the bottom plate (y = −1/2) (2.23b)

∂nθ = 0 on the sidewalls (2.23c)

and the mechanical boundary conditions

u = 0 on rigid boundaries (no-slip condition) (2.24a)

v = ∂yu = ∂yw = 0 on a free surface (stress-free condition) (2.24b)

and the geometry of the domain. Three main configurations are considered in this work.

Chapters §4 to §5 are dedicated to the study of square (2-D) cell with rigid boundaries

(figure 2.1a), chapter §6 deals with square (2-D) cells with top stress-free surface and

bottom no-slip condition (figure 2.1b)

x ∈
[
−1

2
,
1

2

]
×
[
−1

2
,
1

2

]
with x ∈ R2

whereas chapters §7 and §8 deal with a slim rectangular (3-D) geometry with rigid adia-

batic walls under various degrees of lateral confinement, with Γz being the aspect ratio in

the transversal direction (figure 2.1c).

x ∈
[
−1

2
,
1

2

]
×
[
−1

2
,
1

2

]
×
[
−Γz

2
,
Γz

2

]
with x ∈ R3
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2.2 Analysis of global quantities related to the mechanical

energy, the temperature variance, and Nusselt number

2.2.1 Definition of statistical quantities

In this section, we detail some of quantities used in the description of energy exchanges

in convective turbulence. It is convenient to introduce the following notation convention

regarding temporal and spatial averages, and other meaningful quantities.

Temporal fluctuations

Consider φ(x, t) to be a given field which may be decomposed as follows

φ′(x, t) ≡ φ(x, t) − φ(x) φ(x) ≡
∫ tf
to φ(x, t) dt

(tf − to)
(2.25)

where φ(x) is the mean field or time-averaged field evaluated in the interval [to, tf ] and

φ′(x, t) is the fluctuating field. One introduces as well the variance Var φ, the standard

deviation σ(φ), and the skewness coefficient Skew(φ) as

Var φ(x) ≡ φ′φ′ σ(φ)(x) ≡ (φ′φ′)1/2 Skew(φ)(x) ≡ φ′φ′φ′

(Var φ)3/2
(2.26)

Spatial fluctuations

A similar decomposition may be performed in space rather than in time. For instance

〈φ〉xyz is the average over a volume V , 〈φ〉xz the average value over a plane Axz, and 〈φ〉x

the average value over a line Lx in the x-direction. This introduces the following spatial

decomposition

{φ}xyz(x, t) ≡ φ(x, t) − 〈φ〉xyz(t) 〈φ〉xyz(t) ≡
t

φ(x, y, z, t) dxdydz

V
(2.27a)

{φ}xz(x, t) ≡ φ(x, t) − 〈φ〉xz(y, t) 〈φ〉xz(y, t) ≡
s
φ(x, y, z, t) dxdz

Axz
(2.27b)

{φ}x(x, t) ≡ φ(x, t) − 〈φ〉x(y, z, t) 〈φ〉x(y, z, t) ≡
∫
φ(x, y, z, t) dx

Lx
(2.27c)

For any such spatial averages, we define a spatial variance 〈φ〉Var and root mean square

〈φ〉rms. For instance 〈φ〉Var
yz and 〈φ〉rms

yz (x, t) corresponds to the spatial variance and the

root mean squared value evaluated over y and z-directions.

〈φ〉Var
yz (x, t) ≡ 〈{φ}yz{φ}yz〉yz 〈φ〉rms

yz (x, t) ≡
(
〈φ〉Var

yz

)1/2
(2.28)

Note that, any of these definitions can be trivially extended to other directions.
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Spatio-temporal fluctuations

Additionally, we may use a spatial and temporal average, i.e. 〈φ〉 and introduce the

spatio-temporal root mean square 〈φ〉rms

〈φ〉rms ≡
√

〈(φ− 〈φ〉)2〉 =
√

〈φφ〉 − 〈φ〉〈φ〉 (2.29)

where the following property of the averaging operator 〈〈φ〉φ〉 = 〈φ〉〈φ〉, is implied. Again

this is valid to any spatial average, the direction of which is indicated by the subscript.

2.2.2 Instantaneous Nusselt numbers

One of the main responses of the system under convection is the Nusselt number which

quantifies the dimensionless heat-flux across the fluid layer

Nuy(y, t) ≡ Ra0.5〈vθ〉xz − 〈∂yθ〉xz (2.30)

We define the instantaneous Nusselt numbers evaluated at the bottom and top plates,

Nubot and Nutop, and a volume-averaged Nusselt number Nuvol as

Nubot(t) ≡ Nuy(y = −0.5, t) (2.31a)

Nutop(t) ≡ Nuy(y = 0.5, t) (2.31b)

Nuvol(t) ≡ 〈Nuy〉y (2.31c)

Other global quantities are useful to characterize at each time the instantaneous state of

the system and can be shown to have a direct relation to the Nusselt number.

2.2.3 Mechanical energy: global kinetic and total potential energies

Consider the instantaneous global kinetic and total potential energies

Ek(t) ≡ 1

2
〈uiui〉xyz

Ep(t) ≡ −Pr〈yθ〉xyz

This latter quantifies the amount of energy that is required to bring all fluid parcels

against gravity from their position at time t to the reference level y = 0. However, one can

introduce a more pertinent instantaneous quantity, namely the available potential energy

(see for instance Winters et al., 1995; Sutherland, 2010) and the notion of a background

state of minimal potential energy.

2.2.4 Available and background potential energies

Given a state at time t, the background state associated refers to the temperature field

obtained by rearranging inside the fluid domain, the fluid particles in order to decrease

as much as possible the global potential energy Ep(t). It is easy to understand that
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Figure 2.2: Temperature field θ(x, y, t), corresponding temperature field θr(y, t) at the
reference state and height yr(x, y, t) for a square RB cell. Reference state is obtained by
rearranging the fluid into a stable stratified configuration, see text.

the background state has no horizontal dependency and that its density decreases (i.e.

temperature increases) monotonically with height. For a given time t, a fluid particle

located in (x, y, z) is rearranged into the background state at yr(x, y, z, t). It is safe

to assume that if the temperature field is continuous and differentiable, there exist a

corresponding field yr(x, t) that is also continuous and differentiable. Since rearranging

occurs through virtual adiabatic processes, temperature distribution of the background

state is identical to the one of the instantaneous state.

Using the above remarks, it is straightforward to get the temperature distribution θr(y, t)

of the background state from the statistical distribution of temperature at time t. If we

consider Pθ(θ̃) as the probability density function for the instantaneous temperature field

and θ̃ ∈ [θmin, θmax], then yr(θ) is evaluated as the cumulative density function.

yr(θ) − ybot =

∫ θ

θmin

Pθ(θ̃) dθ̃ (2.32)

Its inverse function corresponds to the temperature distribution of the background state

denoted by θr(yr). The quantity yr(x, y, z, t) is obtained using the identity θr(yr, t) =

θ(x, y, z, t) (see Tseng and Ferziger, (2001)). The reference height field yr(x, t) illustrates

the spatial dependence of the temperature field (figure 2.2).

The background potential energy Eb is defined as the potential energy of the background

reference state

Eb(t) ≡ −Pr〈yrθ〉xyz

while the change in potential energy between the instantaneous state Ep and its back-

ground companion Eb is defined as the available potential energy Ea

Ea(t) ≡ Ep(t) − Eb(t) = −Pr〈(y − yr)θ〉xyz

which represents the part of the potential energy which can be effectively transformed into

motion (Lorenz, 1955; Winters et al., 1995).
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2.2.5 Energy pathways or energy conversion rates

The energy exchange process may be better grasped by considering the evolution of the

mechanical energy and the available potential energy through the following exact relations

(see Winters et al., (1995) and Hughes et al., (2013)).

Conversion rates for the global kinetic energy

If we multiply by u the momentum equation and average over the fluid volume V , we

obtain the following relation for the conversion rate of Ek

d

dt
Ek = PrRa−0.5

[
Ra0.5〈θuy〉xyz︸ ︷︷ ︸

Φy

− 2 〈SijSij〉xyz︸ ︷︷ ︸
ǫ

+V −1
∮
ui∂nui dS

︸ ︷︷ ︸
Φτ

]
(2.33)

where the first bulk term corresponds to the convective vertical heat-flux Φy, the second

bulk term corresponds to the energy conversion rate due to viscous dissipation ǫ, while

the last term is a boundary term that quantifies the input of mechanical energy due to

external forcing Φτ . If one considers the mechanical boundary conditions, from (2.33) it is

straightforward to show that Φτ = 0 for both no-slip and stress-free boundary conditions.

The viscous dissipation ǫ, is written in this general form to allow for the use of a stress-

free condition in §8, expressed in terms of the velocity gradient and the vorticity field

ωk = εkji∂jui (εkji being the Levi-Civita symbol),

ǫ(t) ≡ 2 〈SijSij〉xyz = 2 〈∂jui∂jui〉xyz − 〈ωkωk〉xyz (2.34)

= 〈∂jui∂jui〉xyz − 〈∂jui∂iuj〉xyz

= 〈∂jui∂jui〉xyz − V −1
∮
ui∂iun dS

From (2.34) it is possible to show for no-slip boundary conditions

ǫ(t) = 〈∂jui∂jui〉xyz (2.35)

From equation (2.31c) it is easily found that Nuvol = (Φy + 1). In this way, it is possible

to write d
dtEk in terms of the instantaneous volume Nusselt number Nuvol as

d

dt
Ek = PrRa−0.5 (Nuvol − (ǫ+ 1)) (2.36)

Conversion rates for the total potential energy

If we multiply by y the temperature equation and average over the fluid volume, we obtain

the following relation for the conversion rate of Ep

d

dt
Ep = −PrRa−0.5

[
Ra0.5〈θuy〉xyz − 〈∂yθ〉xyz︸ ︷︷ ︸

Nuvol=Φy+1

+V −1
∮
y∂nθ dS

︸ ︷︷ ︸
−Φb1

]
(2.37)
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which contains the volume averaged Nusselt Nuvol, and a boundary term Φb1 which quan-

tifies the energy conversion rate from external sources to Ep. For the present geom-

etry and considering adiabatic side-walls, from equation (2.30) one easily verifies that

Φb1 = 1
2(Nubot + Nutop) and obtain a relation between Nubot, Nutop, and Nuvol

d

dt
Ep = PrRa−0.5

[
−Nuvol +

1

2
(Nubot + Nutop)

]
(2.38)

Conversion rates for the background potential energy

If we multiply by yr the temperature equation and average over the fluid volume, we obtain

the following relation for the conversion rate of Eb

d

dt
Eb = −Pr〈yr∂tθ〉xyz − Pr〈θ∂tyr〉xyz (2.39)

Where the second term in the right hand side vanishes when integrated over the fluid do-

main (see corresponding demonstration on the appendix D.1). Introducing the dynamical

equation for the temperature (2.22) leaves

d

dt
Eb = Pr〈yr∂j(ujθ)〉xyz − PrRa−0.5〈yr∂j∂jθ〉xyz (2.40)

Based on the spatial dependence of yr on θ(x, t), Winters et al., 1995 defines an auxiliary

function Ψ such that ∂jΨ = yr∂jθ. Introducing this expression and making use of Green’s

first identity on the second term in equation (2.40) gives

d

dt
Eb = V −1Pr

∮

S
unΨ dS + PrRa−0.5〈∂jyr∂jθ − ∂j(yr∂jθ)〉xyz (2.41)

For a closed system, i.e. un = 0 on all boundaries, leaves the following expression

d

dt
Eb = PrRa−0.5

[
〈∂jyr∂jθ〉xyz︸ ︷︷ ︸

Φd

−V −1
∮

(yr∂nθ) dS
︸ ︷︷ ︸

Φb2

]
(2.42)

where the bulk term Φd quantifies the energy conversion rate due to diapycnal mixing and

Φb2 measures the conversion rate from external sources to Eb. Since iso-thermal conditions

are imposed on the top and bottom walls, yr(x,−0.5, z, t) = 0.5 and yr(x, 0.5, z, t) = −0.5,

and due to the adiabaticity of side-walls, one obtains that Φb1 = Φb2 = 1
2(Nubot + Nutop).

The diapycnal mixing can also be written as

Φd ≡ 〈
∂yr
∂θ

∂jθ∂jθ〉xyz (2.43)

Since by definition ∂yr

∂θ > 0, the mixing term Φd is bound to be positive.
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Conversion rates for the available potential energy

Finally, by substracting equation (2.38) by equation (2.42) one gets

d

dt
Ea = PrRa−0.5(Φb1 + Φb2 − Nuvol − Φd) (2.44)

Since iso-thermal conditions are imposed on the top and bottom walls, one may prefer to

write d
dtEa as function of the instantaneous Nusselt numbers instead.

d

dt
Ea = PrRa−0.5(Nutop + Nutop − Nuvol − Φd) (2.45)

2.2.6 Global Temperature fluctuations

Consider the dimensionless form of the global temperature fluctuations around the reduced

temperature θ = 0,

Eθ(t) ≡ 1

2
〈θ2〉xyz (2.46)

The temperature fluctuation Eθ is not an energy per se. However, we have decided to show

it here since we follow the same process and resulting terms are alike to those obtained

for the potential energy.

If we multiply the temperature equation by θ and integrate over the fluid volume, the rate

of change d
dtEθ is shown to verify the following relation,

d

dt
Eθ = −Ra−0.5

[
〈∂jθ∂jθ〉xyz︸ ︷︷ ︸

ǫθ

−V −1
∮
θ∂nθ dS

︸ ︷︷ ︸
Φb3

]
(2.47)

where the bulk term ǫθ > 0 corresponds to the global thermal dissipation rate and a

boundary term Φb3 provides the conversion rate from external sources to Eθ. Since iso-

thermal conditions are imposed on the top and bottom walls, θ(x, 0.5, z, t) = −0.5 and

θ(x,−0.5, z, t) = 0.5, and due to the adiabaticity of side-walls, it becomes clear that

Φb1 = Φb2 = Φb3 = 1
2(Nubot + Nutop).

2.2.7 Exact relations to the Nusselt number

We evaluate the time-averaged Nusselt numbers from equation (2.30) and (2.31c)

Nuy(y) = Ra0.5〈vθ〉xz − 〈∂yθ〉xz (2.48)

Nuvol = Ra0.5〈vθ〉xyz − 〈∂yθ〉xyz (2.49)

For a system with adiabatic side-walls, Nuy has no dependence on the vertical direction

y. As such one expects Nu = Nuvol = Nubot = Nutop.
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Since temperature and velocity remain bounded, the time-averaged values of conversion

rates for Ek, Ep, Eb, and Ea must be zero (Hughes et al., 2013). This is also true for the

rate of change for Eθ. Averaging equations 2.36, 2.42, and 2.47, one has

from
d

dt
Ek = 0 : Nu = Nuǫ where Nuǫ ≡ (ǫ+ 1) (2.50)

from
d

dt
Eb = 0 : Nu = Nud where Nud ≡ Φd (2.51)

from
d

dt
Eθ = 0 : Nu = Nuθ where Nuθ ≡ ǫθ (2.52)

All these quantities should be equal as shown by Shraiman and Siggia, 1990 and Hughes

et al., 2013. These relations are valid for all of the configurations considered in this work.

2.3 Analysis of global quantities related to vorticity in 2-D

For the study of two-dimensional flows, the flow structure is characterized in term of

different global functions of the vorticity. For a two-dimensional configuration x ∈ R2,

vorticity has only one component perpendicular to the plane (xy), ω = ωez. The first

global quantity is the mean vorticity

C ≡ 〈ω〉xy (2.53)

which is always zero for no-slip boundary conditions, but is non vanishing for the free-

surface.

A second quantity is the global angular impulse L2D

L2D ≡ −1

2
〈|x|2ω〉xy (2.54)

This quantity provides a measure of the organized motion around the center of a cavity.

The flow dynamics and the time evolution of L2D, may be better understood through some

exact relations developed in the study of self-organization in 2-D turbulent flows (Molenaar

et al., 2004; Van Heijst et al., 2006). The rate-of-change for L2D may be written as follows

d

dt
L2D = PrRa−0.5I +

1

Γx
II + PrM (2.55a)

with I, II, and M given as

I =

∮
(rnω − 1

2
rkrk∂nω) ds − 2C (2.55b)

II =

∮
1

2
(uiui)(nxy − nyx) ds (2.55c)

M = −1

2
〈rkrk∂xθ〉vol (2.55d)

with ds being an infinitesimal element of the boundary and the loop integral is counter-

clockwise. The derivation process of (2.55a) is presented on the appendix E. Observe,

that imposing no-slip boundary conditions gives in return the same expressions from
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Molenaar et al., 2004. The bulk term M (boundary term resp. II) corresponds to the

contributions from the external thermal (resp. mechanical) forcing to L2D, and can be

seen as a form of external torque. However, it is difficult to provide an interpretation for

I, other than being a viscous response of the system to the external torque.

2.4 Analysis of spatial structure of the flow: thermal and

kinetic boundary layers

The thermal and kinetic boundary layers have a primordial role on the efficiency of heat

transport and on different statistical properties. Near the top and bottom plates we define

thermal (resp. kinetic) boundary layers of thickness δθ (resp. δp). A kinetic boundary

layer of thickness δw may be also defined along the side-walls. In this section we present

different estimates of the boundary layer thicknesses.

2.4.1 Thickness of the thermal boundary layers

i.) Based on the Nusselt number. We suppose that the temperature gradient is con-

centrated at the top and bottom boundary layers of constant thickness δθ, and the center

region, called the bulk of almost constant temperature 1
2(θtop + θbot). As a consequence

δθ ≈ 1/(2Nu) (2.56)

provides an estimate of the boundary layer thickness by supposing a top-bottom symmetry.

ii.) Based on the root mean squared temperature profile. One alternative con-

siders the fluctuations of the temperature field to characterize the average thickness of the

thermal boundary layer. A local thickness may be derived from the temperature temporal

fluctuations σ(θ(x, t)), as done for instance in (Wang, J. and Xia, K.-Q., 2003). Another

estimate of the average thickness is obtained from the distance of the closest peak in the

spatio-temporal fluctuations 〈θ〉rms
xz to the top and bottom plates, as done for instance in

(Kerr, 1996; S. Wagner, and Shishkina, 2013). We use the latter estimate except when

specified otherwise.

iii.) Based on the thermal dissipation profile. The use of thermal dissipation

layer based on the spatial distribution of the thermal dissipation rate has been proposed

(Petschel, Stellmach, et al., 2013). The boundary layer thickness is estimated by the closest

distance from the top and bottom plates to the vertical position where 〈(∂jθ)(∂jθ)〉xz(y) =

Nu.

2.4.2 Thickness of the kinetic boundary layers at bottom and top plates

i.) Based on the root mean squared horizontal velocity profile. One alterna-

tive considers the spatio-temporal fluctuations of the horizontal velocity component to

characterize the kinetic boundary layer at the plates, for instance see (Kerr, 1996). The
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average thickness is estimated from the closest distance from the top and bottom plates to

the peak in 〈u〉rms
xz . However, this definition supposes to the presence of a rigid boundary

surface. In the following, we use this estimate except when specified otherwise.

ii.) Based on the viscous dissipation profile. The spatial distribution of the vis-

cous dissipation rate has been proposed (Petschel, Stellmach, et al., 2013) as an alterna-

tive to the fluctuation profiles. In this case, the boundary layer thickness is estimated

by the closest distance from the top and bottom plates to the vertical position where

〈∂jui∂jui〉xz(y) = Nu − 1.

In the 3-D cases, we prefer to use a slightly different definition: instead of the transversal

average, we use a definition based on the median plane z = 0, i.e. the thickness is based

on the closest distance between the position where 〈∂jui∂jui〉x(z = 0) = (Nu − 1) to the

top and bottom plates. The median plane z = 0 is chosen in order to avoid as much as

possible the influence of the side-walls.

In the 2-D cases, in chapters §4 to §6 we use 〈∂jui∂jui〉x(y) = Nu − 1.

2.5 Analysis of spatial structure of the flow: Half-range

Fourier decomposition

A simplified representation of the large-scale flow by projecting into Fourier modes has

been used extensively in configurations such as 2-D cells (Chandra and Verma, 2011)

and cylindrical cells (Xi and Xia, 2008). Ideally, the basis for such projection should

verify the boundary conditions and respect the natural symmetries of the targeted system.

Furthermore, selecting the relevant modes requires a great deal of knowledge of system.

For simplicity, let us consider a square (2-D) cell with isothermal top and bottom walls.

If we consider the cell to be centered around (x = 0, y = 0), the following symmetries are

identified (Podvin and Sergent, 2015):

i. A reflexion symmetry with respect to the vertical axis, Sx



u

v

θ


 (x, y) →




−u
v

θ


 (−x, y) (2.57)

ii. A reflexion symmetry with respect to the horizontal axis, Sy



u

v

θ


 (x, y) →




u

−v
−θ


 (x,−y) (2.58)

iii. A rotation of origin of the cell center, Rπ = Sx ⊙ Sy

In order to observe the spatial dependence of the temperature and velocity field, (Das et

al., 2000) proposed fields to be projected into modes describing rolls. This decomposition
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p=1,q=1 p=1,q=2 p=2,q=1 p=2,q=2

Figure 2.3: Schematic representation of the first modal forms in the plane xy presented
by (Das et al., 2000).

was initially proposed in the context of stress-free isothermal boundaries and periodic side-

walls. This projection has been used extensively by (Chandra and Verma, 2011; Chandra

and Verma, 2013) in the study reversals in a 2-D Rayleigh-Bénard cell. The primitive

fields are expressed as a half-Fourier series in the plane (x, y)

u(x, y, t) =
∑

p,q≥1

ũpq(t) sin(pπx) cos(qπy) (2.59a)

v(x, y, t) =
∑

p,q≥1

ṽpq(t) cos(pπx) sin(qπy) (2.59b)

Θ(x, y, t) =
∑

p,q≥1

Θ̃pq(t) cos(pπx) sin(qπy) (2.59c)

where Θ(x, y, t) ≡ θ(x, y, t) + y is the (dimensionless) temperature deviation from the

conduction state such that Θ = 0 on the top and bottom plates. The series coefficients are

obtained using the discrete sine and discrete cosine transform as required. A schematic

representation of the first couple modes in both directions is shown in figure 2.3. While

this decomposition verifies the symmetries of the system, but does not satisfy the no-slip

boundary conditions.

Chandra and Verma, 2011; Chandra and Verma, 2013 sought to explore the relation

between selected Fourier modes inside a regime of consecutive reversals for Pr = 1 by

exploring the natural symmetries of 2-D Rayleigh-Bénard cells. Each Fourier mode belongs

to one of four possible groups: even-even (E), odd-odd (O), even-odd (Meo), and odd-even

(Moe). The quadratic non-linear interaction between two such modes results on a mode

with a particular symmetry. More precisely, they respect the following rules:

⊗ O E Meo Moe

O E O Moe Meo

E E Meo Moe

Meo E O
Moe E

Table 2.1: Symmetric matrix summarizing the quadratic non-linear interaction between
even-even (E), odd-odd (O), even-odd (Meo), and odd-even (Moe) modes.

For instance O⊗O = E means that non-linear interaction between two odd modes results

in an even mode.

25



Because of the above, the following symmetry operators

i) E → E, O → −O, Meo → Meo, Moe → −Moe

ii) E → E, O → −O, Meo → −Meo, Moe → Moe

iii) E → E, O → O, Meo → −Meo, Moe → −Moe

leave the Boussinesq equations in the Fourier space invariant (Chandra and Verma, 2013;

Verma et al., 2015). As a result, if a set of modes {E,O,Meo,Moe} is a solution of the

Boussinesq equations, then {E,−O,Meo,−Moe}, {E,−O,−Meo,Moe}, and {E,O,−Meo,−Moe}
are also a solution of these equations. Additional symmetry operators may be defined by

considering fluctuating modes with zero mean (Verma et al., 2015).

In this sense, if we have a configuration that exhibits a flow reversal. Then, the flow

structure observed after the reversal, is similar to the one obtained if one applies these

symmetry operators to the structure observed before the reversal. This line of reasoning

becomes particularly useful to identify the modes that play an active role during the

re-organization and reorientations of the large-scale flows.

2.6 Analysis of spatial structure of the flow: Proper orthog-

onal decomposition (POD)

The proper orthogonal decomposition (POD) is a procedure for extracting an optimal basis

of decomposition from a data set ψ(x, t) (see for instance Berkooz et al., 1993; Podvin,

2001; Holmes et al., 2012). A given field ψ(x, t) is expanded in a set of orthonormal

functions φk which satisfy the boundary conditions. We define a coherent structure by a

function φ that maximizes the energy content

〈φ|ψ〉2/〈φ|φ〉 (2.60)

where the operator 〈·|·〉 corresponds to the complex inner product operator, defined in R2

(resp. R3) as 〈a|b〉 =
∫

(a∗b)dxdy (resp. 〈a|b〉 =
∫

(a∗b)dxdydz) where a∗ indicates the

complex conjugate of a. It is shown, that this implies that φ is an eigenfunction of the

symmetric two-point correlation tensor R(x,y) = ψ(x, t)ψ(y, t)

∫
R(x,y)φ(y)dy = λφ(x) (2.61)

The Hilbert-Schmidt theory implies there exists not one, but a denumerable infinity

of solutions, or empirical eigenfunctions φk, which compose an orthonormal basis, i.e.

〈φj |φk〉 = δjk.

The modal decomposition of ψ(x, t) into the empirical base functions φk reads as

ψ(x, t) =
∞∑

k=1

αk(t)φk(x) (2.62)
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where the corresponding modal coefficients αk

αk(t) = 〈ψ(x, t)|φk(x)〉 (2.63)

are uncorrelated to each other

α∗
jαk = δjkλk (2.64)

The eigenvalue λk can be seen as the mean energy of the system projected on the φk-axis

in the function space.

λk = |〈ψ|φk〉|2 (2.65)

This implies that the energy of the flow is such that

〈ψ(x, t)|ψ(x, t)〉 =
∞∑

k=1

αkαk 〈ψ(x, t)|ψ(x, t)〉 =
∞∑

k=1

λk (2.66)

2.6.1 The snapshot method

If we consider a discretized domain of size Nx by Ny in 2D (resp. Nx by Ny by Nz in 3D),

the discretized correlation tensor Rij(x,x
′) is of size 4NxNy for measurements in 2D (resp.

9NxNyNz for measurements in 3D). Because of this large size, it is often not possible to

obtain a direct solution of equation (2.61). An alternative may be found in the snapshot

method proposed by Sirovich, 1987. This method relies on the ergodicity hypothesis to

approximate the correlation tensor as follows

R(x,y) =
M∑

m=1

ψ(x, tm)ψ(y, tm) with tm = m∆t (2.67)

for large M . The time ∆t between snapshots is assumed to be sufficiently large for snap-

shots to be uncorrelated. Introducing hypothesis (2.67) into equation (2.61) results in a

degenerate integral equation and solutions can be expressed as a linear combination of the

fields ψ(x, tm).

φk(x) =
M∑

m=1

αkmψ(x, tm) (2.68)

where the coefficients αkm verify the following equation

Kmnαkn = λkαkm (2.69)

with the matrix Kmn defined as

Kmn =
1

M
〈ψ(x, tm)|ψ(x, tn)〉 (2.70)

leaving one eigenvalue problem of size M2 instead of 4NxNy in 2D (resp. 9NxNyNz in

3D).
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2.6.2 Different formulations of the POD for convective flows

For thermal convection, different alternative formulations of the POD can be defined.

Velocity and temperature fields may be treated separately or jointly. And one may apply

the POD to the complete or the fluctuating fields. Consider the following options for

two-dimensional problems

ψ(x, t) =





θ (A) Temperature formulation

(u, v) (B) Velocity formulation

(au, av, bθ) (C) Joint Temperature-Velocity formulation

(2.71)

All of which are admissible. The latter is formulated with the intent of capturing the

velocity/temperature coupling and commonly is used in natural convection, see for instance

(Podvin and Le Quéré, 2001; Bailon-Cuba et al., 2010; Podvin and Sergent, 2015). Since

both fields represent different physical quantities, for the joint-formulation we require to

introduce arbitrary scale factors a and b. In our case, we use a = b = 1. Given the

difficulty to obtain proper time-averaged fields that respect the natural symmetries of the

system, we perform the POD on the complete fields.

For each case, we assemble a matrix Kmn

Kmn =





1
M

∫
θmθndx for formulation (A)

1
M

∫
(umun + vmvn)dx for formulation (B)

1
M

∫
(umun + vmvn + θmθn)dx for formulation (C)

(2.72)

and solve an eigenvalue problem (2.69) providing λk and αkm. One may then proceed to

assemble our orthonormal functions φk(x) for each formulations. For the formulation (C),

the POD analysis provides both temperature and velocity fields.

(φ
(u)
k , φ

(v)
k , φ

(θ)
k )(x) =

M∑

m=1

αk(tm) ψ(x, tm) for formulation (C) (2.73)

For formulation (A), only modes corresponding to the temperature field are obtained, i.e.

φ
(θ)
k (x) =

∑M
m=1 αk(tm) θ(x, tm). Thereafter, the educed POD modes for the velocity field

may be computed to ensure the same modal coefficient (Borée, 2003)

(φ
(u)
k , φ

(v)
k )(x) =

M∑

m=1

αk(tm) u(x, tm) for formulation (A) (2.74)

For the velocity formulation (B), one obtains first (φ
(u)
k , φ

(v)
k ) =

∑M
m=1 αk(tm) u(x, tm),

and then the educed temperature field,

φ
(θ)
k (x) =

M∑

m=1

αk(tm) θ(x, tm) for formulation (B) (2.75)

to ensure the same modal coefficient. In formulations (A) and (B), it is important to

observe that orthogonality is not preserved for the educed modes.
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In the following chapters, we perform the POD analysis on a relatively large dataset using

an implementation of the snapshot method written in modern FORTRAN, based on an

existing and freely available F77 routine (Pierce, 2003).
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Chapter 3

Direct numerical simulations

(DNS) of the Boussinesq equations

In this chapter, we present the numerical methodology used for the investigation of natural

convection. In the first part, we provide a minimal description of the numerical method

and the most distinctive features of the two numerical codes we used. In the second part,

we present details of the validation process of both codes. The first test case corresponds

to a differentially heated cavity (Tric et al., 2000) and allows to validate the incompressible

flow solver with the buoyancy effect using no-slip conditions, adiabatic and iso-thermal

boundary conditions. The second test case corresponds to a rectangular (3-D) Rayleigh-

Bénard cell (S. Wagner, and Shishkina, 2013). It is mostly focused on reproducing the

onset of unsteady motion as function of the aspect ratio inside a rectangular cell. We

conclude with a series of performance tests, demonstrating that the Basilisk code can be

run efficiently and without modification in distributed memory parallel machines.

3.1 Presentation of the numerical codes: Fusion and Basilisk

The first computing code Fusion is written in modern Fortran and was developed over the

past two decades within the LIMSI. This code is specific to natural convection and solves

the 3D Navier-Stokes equations under the Boussinesq approximation on Cartesian grids

using a second-order accuracy scheme. The code was modified to support shared-memory

parallelism through OpenMP directives. The second computing code uses an extension of

the C programming language known as Basilisk C. A number of pre-defined solver blocks

can be put together to solve partial differential equations on adaptive Cartesian meshes.

At the time of this writing, Basilisk C supports both the shared-memory (OpenMP) and

the distributed-memory (MPI) parallelism models.

By the time we began this work, Basilisk was in early development at the Institut ∂’Alembert

with the intention to become the successor of Gerris (Popinet, 2003). Results from Basilisk

were cross-validated against Fusion during every stage of the development process to en-

sure the integrity of the numerical simulations. Additional work included developing a

series of post-processing tools and a parallel I/O implementation of the XDMF format

(Clarke and Namburu, 2002; Clarke and Mark, 2007; XDMF Standard, 2016) which is
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designed to store and organize large amounts of data, briefly introduced in at the end of

this chapter.

3.1.1 Code FUSION

FUSION is a finite volume code written in FORTRAN tailored for natural convection

problems under the Boussinesq approximation. Numerical solutions are obtained using a

finite volume method with second-order accuracy in space and in time. The Boussinesq

equations are discretized in space using a central difference approximation on a staggered

grid and in time using the second-order backward Euler method. To ensure the numerical

stability, the viscous terms are considered implicitly, whereas the convective terms are

evaluated explicitly and approximated using an second-order Adams-Bashforth scheme.

Due to the incompressibility condition and the pressure gradient involved, the velocity-

pressure coupling is more complex. We use a rotational incremental-pressure correction

scheme (see for instance Chorin, 1969; Guermond et al., 2006). In this scheme, the

pressure term is treated explicitly to obtain a provisional velocity field u∗ which may

not be divergence-free. We introduce a pressure potential Π

∂2
i Π =

3

2∆t
∂iui

∗ with ∂nΠ = 0 on the boundaries

from which a correction to velocity and pressure fields may be evaluated.

The discretized equations have the following form

∂iui
n+1 = 0

(3ui
∗ − 4ui

n + ui
n−1)

2∆t
+ ∂j(2uj

nui
n − uj

n−1ui
n−1) = −∂ipn + PrRa−0.5∂2

j ui
∗ + Prθn+1δi2

(3θn+1 − 4θn + θn−1)

2∆t
+ ∂j(2uj

nθn − uj
n−1θn−1) = Ra−0.5∂2

j θ
n+1

In this way, the problem is reduced to the solution of one 3D Helmholtz-Poisson problem for

each primitive variable (u,v,w, and θ) and one Poisson problem for the pressure correction

term Π.

For each of the 3-D Helmholtz-Poisson problems we use the Douglas-Rachford Alternating

Direction Implicit (ADI) method to separate the operators into one-dimensional compo-

nents and split the scheme into one sub-step for each coordinate. Consider the following

model equation of the form (
1 −D∂2

j

)
φn+1 = Q (3.2)

Here φ represents the primitive variables φ = {u, θ}, D the corresponding diffusion coef-

ficients D = {2∆t
3 PrRa−0.5, 2∆t

3 Ra−0.5}, and Q the corresponding source terms. The main

component the ADI method is the factorization of the right-hand side of our model equa-

tion as the product of one-dimensional operators in the following form (Ferziger and Perić,

2002).

(
1 −D∂2

j

)
φn+1 =

(
1 −D∂2

x

) (
1 −D∂2

y

) (
1 −D∂2

z

)
φn+1

−D2(∂2
x∂

2
y + ∂2

x∂
2
z + ∂2

y∂
2
z )φn+1 +D3∂2

x∂
2
y∂

2
zφ

n+1
(3.3)
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By dropping O(∆t2), i.e. D2 and D3 terms, we obtain the following simplified expression

(
1 −D∂2

x

) (
1 −D∂2

y

) (
1 −D∂2

z

)
φn+1 = Q

Using a multi-step approach leaves a 1-D Helmholtz problem for each ADI sub-step

(
1 −D∂2

x

)
φn+ 1

3 = Q w/ BC on ex(
1 −D∂2

y

)
φn+ 2

3 = φn+ 1
3 w/ BC on ey(

1 −D∂2
z

)
φn+1 = φn+ 2

3 w/ BC on ez

We use an staggered grid arrangement (Harlow and Welch, 1965) with a central differen-

tiation scheme (CDS) and linear interpolation for an overall second-order precision. For

this arrangement one defines different type of grids. A cell centered grid for the scalar

quantities, such as the temperature, pressure and density fields, and one additional grid for

each velocity component. In this way, each ADI sub-step takes the form of a tridiagonal

system that can be solved directly using the Thomas algorithm. The bidiagonalization

algorithm is used for the Poisson problem, sometimes referred to as a fast Poisson solver

(Golub et al., 1998; Strang, 2007; Shishkina, Shishkin, et al., 2009). The time step is fixed

to ensure that CFL=0.5 is verified
(
u

∆x
+

v

∆y
+
w

∆z

)
∆t ≤ CFL (3.4)

where ∆x, ∆y, and ∆y correspond to the dimensions of the control volume along the x, y,

and z directions, respectively. A detailed explanation of the numerical method used in

FUSION is given in the annex A.

3.1.2 Code BASILISK

Basilisk is an ensemble of solver-blocks written using an extension to the C program-

ming language, called Basilisk C, useful to write discretization schemes in Cartesian grids

(Stéphane Popinet, 2016). Instead of writing an entirely new code, existing blocks of

code were combined to solve Boussinesq equations. The formulation of the Boussinesq

equations uses the fractional-step method using a staggered in time discretization of the

velocity and the scalar fields (see Popinet, 2003; Popinet, 2009): one supposes the velocity

field to be known at time n and the scalar fields (pressure, temperature, density) to be

known at time n−1/2, and one computes velocity at time n+1 and scalars at time n+1/2.

We use a pressure correction scheme (see for instance Chorin, 1969; Guermond et al., 2006)

for the velocity-pressure coupling. In this scheme, the pressure term is treated explicitly

to obtain a provisional velocity field u∗ which may not be divergence-free. A correction

term is obtained by projecting the provisional velocity into a divergence-free space, similar
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to Fusion. The discretized equations would have the following form

∂iui
n+1 = 0 (3.5a)

ui
∗ − ui

n

∆t
+ ∂j(ujui)

n+ 1
2 = PrRa−0.5∂j(∂jui

∗ + ∂jui
n)

2
− Prθn+ 1

2 δi2 (3.5b)

ui
n+1 = ui

∗ − ∆t
(
∂ip

n+ 1
2

)
(3.5c)

θn+ 1
2 − θn− 1

2

∆t
+ ∂j(ujθ)

n = ∂j(Ra−0.5∂jθ)
n+ 1

2 (3.5d)

Space is discretized using a Cartesian (multi-level or tree-based) grid where the variables

are located at the center of each control volume (a square in 2-D, a cube in 3-D) and at

the center of each control surface.

The velocity advection term ∂j(ujui)
n+ 1

2 and the temperature advection term ∂j(ujθ)
n are

estimated by means of the Bell–Colella–Glaz second-order unsplit upwind scheme (Bell

et al., 1989; Popinet, 2003). In this way, the problem is reduced to the solution of a 3D

Helmholtz-Poisson problem for each primitive variable (u∗, v∗, w∗, θ) and a Poisson prob-

lem for the pressure correction terms. Both the Helmholtz-Poisson and Poisson problems

are solved using an efficient multilevel Poisson solver described in (Popinet, 2003). Basilisk

uses a variable time-step to ensure the CFL condition (3.4) is verified. Observe that (3.4)

is a necessary condition, but does not automatically ensures the stability of the numerical

method. Additional restrictions on the time-step may be required. Additional details on

the numerical method used in Basilisk are given in the annex B.

3.1.3 Implementation of a parallel Input/Output (I/O) model

I would like to present some of the work done for retrieving and storing the large amount of

data generated from direct numerical simulations. This work was motivated by a healthy

need to store and organize large sets of data which greatly facilitates the post-processing

and by a growing trend to implement standard data formats in scientific computing.

To this end, we implemented the eXtensible Data Model and Format (see Clarke and

Namburu, 2002; Clarke and Mark, 2007) for outputs produced in both Fusion and Basilisk.

It is worth noting that other formats, like netCDF, are also widely used. Each one has

its own set of strengths and weaknesses. We choose to use the XDMF format since the

libraries required are usually available in large computing centers. The XDMF format

has a low entry barrier and supports the use of hierarchical structures inside the data

files. Additional features include support for a large number of objects, file compression,

a parallel I/O implementation through the MPI-IO or MPI POSIX drivers. A software

library that provides a high-level API with interfaces to both C and Fortran, can be usually

found already installed in a large number of computing centers.

The amount of I/O operations in large scale simulations may consume an important part

of the execution time. One of the most common approaches consists in sending data to a

single MPI task, which is responsible of writing data into the disk. This approach is not

scalable. Another option consist in writing one file per MPI task, but this implies handling

large numbers of files. Our implementation of parallel I/O uses PHDF5 (Parallel HDF5)

and is divided in three parts. First, the MPI tasks collectively create/open a single parallel
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(a) Differentially heated cavity (b) Rayleigh-Bénard cell
(a)

(d)
Figure 3.1: Iso-contours of the temperature field corresponding to each of the test cases
selected. (a) Differentially heated cavity for Ra = 105 and Pr = 0.71 to be compared
against (Tric et al., 2000). (b) Rectangular Rayleigh-Bénard cell with aspect ratio Γz =
1/10 for Ra = 106 and Pr = 0.786 to be compared against (S. Wagner, and Shishkina,
2013).

HDF5 file and create/open groups, sub-groups and so on. Second, each MPI task is set to

write a part or a chunk of the data into each dataset independently. Once each task has

finished writing into the file, the MPI tasks collectively close the datasets, before closing

the file. This strategy has been implemented on the Ada and Turing parallel computing

clusters (IDRIS, 2016a; IDRIS, 2016b).

3.2 Validation of the numerical codes: case studies

In order to validate the two numerical codes we compare their results against benchmark

results for two different configurations within the Boussinesq approximation.

3.2.1 Case study 1: Differentially heated cavity

The first test case is a classical problem and has become a very popular to compare

the different numerical algorithms available for incompressible flows. For this test case,

commonly known as a differentially heated cavity, we will study both 2-D and 3-D cavities.

The fluid domain is a 2-D square (resp. 3-D square box) cavity of size 1, centered around

(0, 0) (resp. (0, 0, 0)), see figure 3.1a. We consider no-slip boundary conditions in all

borders, imposed temperature in the left and right walls, θ(±0.5, y) = ±0.5 in 2-D (resp.

θ(±0.5, y, z) = ±0.5 in 3-D). Adiabatic boundary conditions are imposed on all other

boundaries.

The fluid is initially at rest and a linear temperature gradient is imposed in the horizontal

direction. We start the simulation on a very coarse regular Cartesian grid and run until a

steady-state condition is met, i.e. the maximum change in the x-velocity component over

two consecutive time steps is lower than 10−8. This final state is then used as an initial
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Figure 3.2: 2-D Cavity: Streamlines superposed to θ(x, t) obtained using Basilisk for
Pr = 0.71 at the steady-state. Position of ψmax is indicated using a × symbol and compared
to the position given in the reference results (Le Quéré, 1991), displayed here as ◦.

condition for a finer grid size and it is run until a new steady-state is obtained. This

process is repeated until convergence is reached.

The benchmark solutions used for the validation of the two-dimensional differentially

heated square cavity are (De Vahl Davis, 1983; Le Quéré, 1991; Tric et al., 2000), while

solutions for the three-dimensional cavity are taken from (Tric et al., 2000).

Differentially heated 2-D square cavity

Numerical results used for validation inside a square cavity can be of several kinds: dif-

ferent global quantities, profiles measured along a vertical or horizontal line, or local

measurements. Figure 3.2 displays ψ iso-lines superposed to the temperature field θ(x, t)

evaluated at the steady state. These results are in agreement with figure 4 (Ra = 107)

and figure 6 (Ra = 108) from (Le Quéré, 1991). In addition, one may compare the peak

value of the stream-function ψmax and its position. The placement of ψmax is indicated in

figure 3.2. We measure the relative error of ψmax

eψmax =
ψ

(N)
max − ψmax,ref

ψmax,ref
× 100 (3.6)

The evolution of eψmax as function of the grid spacing is displayed on figure 3.3a for

Ra = 107 and Ra = 108. Results converge towards reference values from (Le Quéré, 1991)

as we increase the grid resolution. In addition, we compare a global quantity, such as Nu.

More precisely, the relative error of Nu

eNu =
Nu(N) − Nuref

Nuref
× 100 (3.7)
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Figure 3.3: 2-D Cavity: Convergence of ψmax and Nu obtained using Basilisk compared
with respect to (Le Quéré, 1991) as a function of grid spacing. Dashed line correspond to
ideal slope for second order scheme.

is computed as function of the grid spacing for Ra = 107 and Ra = 108 (see figure 3.3b).

Again, results are consistent with a global second order accuracy.

Other quantities used in benchmark results include the components of velocity field eval-

uated along a vertical or horizontal centerline (figures 3.4a,d and 3.4b,e), or the local

heat-flux evaluated in one of the iso-thermal walls (figure 3.4c,f). Figure 3.4 displays the

numerical results obtained using Basilisk (figures 3.4a to 3.4c) and Fusion (figures 3.4d

to 3.4f), and as well as the benchmark results from (Tric et al., 2000). Both codes are in

good agreement with previous studies and with each other.
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Figure 3.4: 2-D Cavity: Profiles measured at the steady state for Pr = 0.71. Lines
correspond to different Ra: Ra = 103 , Ra = 104 , Ra = 105 , Ra = 106

, Ra = 107 , Ra = 108 . Marks correspond to results from (Tric et al., 2000).
Figures (a,b,c) correspond to results from Basilisk. Figures (d,e,f) correspond to results
from Fusion.
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Figure 3.5: 3D Cavity (Basilisk): Convergence of Nu3D and Nump compared with respect
to (Tric et al., 2000) as a function of the grid spacing. Dashed line correspond to ideal
slope for a second order scheme.

Differentially heated 3-D cubic cavity

3D calculations with Fusion and Basilisk have been performed for four values Ra < 106

using different grids up to 5123, see table 3.1c. All converge into a steady-state flow, see

for instance figure 3.1a. To test the convergence of Basilisk we use the following Nusselt

numbers

Nu(z) ≡
∫ 0.5

−0.5
qx(−0.5, y, z)dy (3.8)

Nu3D ≡
∫ 0.5

−0.5
Nu(z)dz (3.9)

Nump ≡ Nu(z) with z = 0 (3.10)

Values of Nu3D and Nump display a monotonic convergence towards the reference values

consistent with a second order method (figure 3.5). We are also interested in comparing

the departure from bi-dimensionality of the steady-state for the different codes. More

precisely, we evaluate the relative difference between these terms (Nu2D − Nu3D)/Nu2D,

(Nu2D − Nump)/Nu2D, and (Nu3D − Nump)/Nu3D (figure 3.6), where Nu2D is the Nusselt

number obtained for a 2D square cavity. In addition to the convergence of Nu3D and Nump,

one may also consider the evolution of Nu(z) displayed on figure 3.7a. Another possibility

consists in following the maximum amplitude of the velocity components measured over the

vertical and horizontal centerlines: max (u(0, y, 0)) and max (w(x, 0, 0)). Let us consider

the vertical (resp. horizontal) velocity profiles measured over the horizontal (resp. vertical)

centerlines (figures 3.7b and 3.7c). This is confirmed in table 3.2, where the values of

max (u(x, y, z)), max (v(x, y, z)), max (w(x, y, z)) are found.

Results from both codes are in good agreement with benchmark results and with each

other. In most cases, results obtained from Basilisk were found to be more accurate than

Fusion for an equivalent number of grid points.
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Figure 3.6: Relative heat transfer rates as a function of Ra for Pr = 0.71. Reference
results from (Tric et al., 2000) shown in ⋄ marks, results from Fusion shown in � marks
and results from Basilisk in • marks. Nu3D and Nump as defined in equation (3.8), while
Nu2D corresponds to the Nusselt number obtained for the 2D differentially heated cavity.
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Figure 3.7: Profiles measured at the steady state for Pr = 0.71. Solid lines indicates
results obtained using Basilisk, × marks indicate results obtained using Fusion and �

marks correspond to reference results from (Tric et al., 2000).
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(a) Γz = 1/10 (b) Γz = 1/3 (c) Γz = 1/3

Figure 3.8: Flow structure for (Ra = 106,Pr = 0.786) with Γz = 1/10 and Γz = 1/3
using Basilik. Figures (a,b) display a slice at the vertical mid-plane of the instantaneous
temperature field with velocity vectors. Figure (c) displays iso-thermal contours.

3.2.2 Case study 2: Rectangular Rayleigh-Bénard cells

The second test-case focuses on a rectangular Rayleigh-Bénard cell near the onset of

convection1. The fluid domain is a box with equal height and width, while the depth is

defined by the aspect ratio Γz = d/H and ranges from 1/10 to 1/3, see figure 3.1b. We

consider no-slip boundary conditions in all borders, adiabatic conditions on the side-walls

and imposed temperature on the top and bottom walls θ(x,±0.5, z) = ∓0.5.

The fluid is initially at rest and a linear temperature gradient is imposed in the vertical

direction. To avoid waiting for the transient to end, we speed up the process as follows:

we start the simulation on a very coarse regular Cartesian grid and run until statistical

convergence is met (in practice, this corresponds to several hundred convective time units).

The final state is then used as an initial condition for a finer grid size and it is run again

with the same criteria. This process is repeated until convergence is reached, see table 3.2.

In the following, we focus only on comparing results produced using Basilik and benchmark

results. The same test case was performed using Fusion, but is not presented for simplicity

since there are no notable differences between the results. The benchmark solutions used

for the validation are results obtained using a fourth order accurate finite volume method

by (S. Wagner, and Shishkina, 2013) inside rectangular Rayleigh-Bénard cells for for (Ra =

106,Pr = 0.786) and three different aspect ratios: Γz = 1/10, Γz = 1/4, and Γz = 1/3.

For these values of (Ra,Pr) the influence of the aspect ratio on the flow dynamics and on

the Nusselt was found to be quite strong: a steady state solution is observed for Γz = 1/4,

whereas Γz = 1/10 and Γz = 1/3, result in a unsteady flow: for Γz = 1/10 one obtains a

type of oscillatory solution, whereas for Γz = 1/3 the solution is oscillatory and periodic

(S. Wagner, and Shishkina, 2013).

Figures 3.8a and 3.8b display a slice taken at the vertical mid-plane of the instantaneous

temperature field with the velocity vector field for Γz = 1/10 and Γz = 1/3 corresponding

to unsteady-state solutions. For Γz = 1/10, a (quasi-)two-dimensional flow is observed.

This configuration is characterized by the presence of large thermal plumes along the

side-walls, and compares well with figure 11a in (S. Wagner, and Shishkina, 2013). For

Γz = 1/3, one observes a single-roll similar to figure 11b in (S. Wagner, and Shishkina,

1 We will revisit this configuration in the turbulent flow regime in chapters §7 and §8
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Figure 3.9: Rayleigh-Bénard convection using Basilisk for (Ra = 106,Pr = 0.786) and
different aspect ratios. Top row corresponds to Γz = 1/10, bottom row to Γz = 1/3. Fig-
ures (a,c) display a time series for Nubot and Nutop, while (b,d) display the corresponding
time-frequency spectra.

2013). In addition, a 3-D plot (figure 3.8c) illustrates the roll axis is located in the

horizontal plane but twisted from the z axis. This is also consistent with (S. Wagner, and

Shishkina, 2013).

A time series is displayed along with the time-frequency spectra of Nutop and Nubot in

figures 3.9a to 3.9d. On the one hand, for Γz = 1/10, the values of Nutop and Nubot oscillate

out-of-phase with each other but display the same dominant frequency f = 0.1026 ± 0.004

compared to f = 0.107 reported by (S. Wagner, and Shishkina, 2013), see figure 3.9b.

On the other hand, for Γz = 1/3 the values of Nutop and Nubot oscillate in-phase with a

single characteristic frequency f = 0.0482 ± 0.004 compared to f = 0.0500 reported by

(S. Wagner, and Shishkina, 2013), see figures 3.9c and 3.9d.

An alternative validation of Basilisk consists in verifying numerically the exact time-

dependent relations between the rate-of-change of the kinetic energy d
dtEk, of the potential

energy d
dtEp, of the available potential energy d

dtEa, and the corresponding energy transfer

rates (see §2)

Ra0.5Pr−1 d
dtEk = Nuvol − (ǫ+ 1)

Ra0.5Pr−1 d
dtEp = 1

2(Nubot + Nubot) − Nuvol

Ra0.5Pr−1 d
dtEa = Nubot + Nubot − Nuvol − Φd

Ra0.5 d
dtEθ = 1

2(Nubot + Nubot) − ǫθ

(3.11)

The left hand sides of equations 3.11 is approximated using a second-order finite differences

approximation, see figure 3.10 for Γz = 1/10 and Γz = 1/3. Evaluating the time derivatives

introduces an error function of the sampling frequency. The corresponding right hand side

is evaluated using the instantaneous Nusselt numbers and the energy transfer rates and

matches the left hand side satisfactorily. This agreement is useful to evaluate the adequacy

of the spatial resolution. This check is similar to one proposed by R. Stevens, Verzicco,
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Figure 3.10: Rayleigh-Bénard convection using Basilisk for (Ra = 106,Pr = 0.786) and
two different aspect ratios: (a) Γz = 1/10, and (b) Γz = 1/3. From top to bottom: Time
derivatives d

dtEk, d
dtEp, and d

dtEa. Left hand sides of equations (3.11) are evaluated using
finite differences (continuous lines), whereas the right hand sides are displayed in ◦ marks.

et al., 2010 but is based on instantaneous global quantities, not on the time-averaged ones.

We conclude the validation of both numerical codes. Both codes are consistent with a

global second order method and the reference literature. In the following, we discuss a more

practical aspect of the numerical simulations, regarding the time and computing resources

required to perform direct numerical simulations at Ra ∼ 107 − 109. In the following we

focus on the code Basilisk which is better suited for large parallel computations.

3.3 Parallel performance of the numerical codes

There are two important reasons for using a parallel computer : to have access to more

memory or to obtain higher performance (Eijkhout, 2011). While the available memory is

the sum of the individual memory of the machines, the performance gains or speed-up in a

parallel execution are more difficult to measure due to the additional overhead (redundant,

idle, and extra computation and time spent in communications). Two metrics are used

to quantify the performance of the code: a strong scaling and a weak scaling. On the

one hand, the strong scaling is defined by the evolution of the restitution time as function

of the number of processors for a fixed overall problem size. Ideally, the restitution time

should decrease as a linear function of the number of processors. However, distributing a

sequential problem over many threads may give a distorted picture since each processor

may end up with very little data. On the other hand, the weak scaling is defined by the

evolution of the restitution time as a function of the number of processors for a fixed size

per processor. Ideally, if the number of grid points and the number of processors increase

proportionally, the restitution time should remain constant.
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Figure 3.11: Strong scaling: Speed-up factor Sp as a function of the number of processors
p for a constant grid size. Measurements correspond to a 2D (resp. 3D) RB cell for a grid
of size nxny with ny = nx on the left panel (resp. nxnynz with ny = nz = nx on the right
panel). Ideally, both curves should increase linearly.

Weak scaling tests were carried on two computing clusters: Ada (IDRIS, 2016a) Turing

(IDRIS, 2016b), while strong scaling test were only performed on Ada. Ada has 332

compute nodes, each of four 8-cores cadenced at 2.7 GHz (Intel Sandy Bridge E5-4650

processors). Its theoretical peak processing power is 233 TFLOPS. Each node has 128 GB

of memory and nodes are interconnected by a high-speed InfiniBand network. In practice,

the resources are accessible for up to 2,048 execution cores. Turing (IDRIS, 2016b) has 6

racks, each containing 1,024 compute nodes of 16-core processors cadenced at 1.6GHz (IMB

Power BQC 16C). Its theoretical peak processing power is 1,258 TFLOPS. In practice,

resources are accessible for up to 65,536 execution cores.

The test simulation used corresponds to a 2-D square (or 3-D cubic) Rayleigh-Bénard cell

from the unstable conductive state with a random perturbation. Each simulation lasts 5

convective time units, i.e. hundreds of time steps. The cpu time per time step is then

obtained by averaging over the number of time steps.

Strong scaling

For the strong scaling, the two configurations, 2-D and 3-D were tested: a square Rayleigh-

Bénard cell from 1282 up to 10242 grid points and a cubic Rayleigh-Bénard cell from 322

up to 2562 grid points. Both configurations were chosen based on the type of simulations to

be performed in this thesis. We define a speed-up factor Sp, which compares the restitution

time on a single processor u.tmono and on a parallel machine with p processors u.t(p) and

a parallel efficiency E as

Sp =
u.tmono
u.t(p)

E =
Sp

p
(3.12)
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Figure 3.12: Weak scaling: (a) restitution time for a single time-step as function of the
number of processors for two values of (nxnynz/p); (b) restitution time for a single time-
step as function of the number BlueGene compute nodes bg for two values of (nxnynz/bg).
Ideally, both curves should remain constant.

This approach works as long as the available memory on a single processor is large enough

to solve the reference problem. The optimal value of Sp is bounded by the value of p. The

speed-up factor for 2D simulations peaks at Sp = 70 for 128 MPI processes, i.e. E = 0.54

for a 10242 mesh, whereas for a 3D simulation one obtains a peak value Sp = 278, i.e.

E = 0.54 for a 2563 mesh when using 512 MPI processes, see figure 3.11.

Weak scaling

For the weak scaling, only the cubic Rayleigh-Bénard cells were tested. However, mea-

surements were performed on both computing clusters, Ada and Turing. In Ada we tested

different domain sizes up to 5123 grid points and using from 1 up to 512 cores. The ar-

chitecture of Turing allowed to test domain sizes up to 10243 grid points and using from

1 up to 2,048 BlueGene compute nodes (or alternatively from 64 up to 32,768 cores). A

good overall weak scaling is achieved in both machines as seen on figure 3.12.

Additional metrics, such as the user time per time-step per grid point, u.t/nxnynz are also

commonly used for estimating the compute and restitution times for a given simulation -

values range from 10−5 s/step/point for sequential execution up to 4 · 10−8 s/step/point

for parallel runs on Ada (5123 points and 512 processors) and up to 3 · 10−9 s/step/point

for parallel runs on Turing (10243 points and 2,048 nodes).

These results are used to define the range of Ra values that can be explored through

direct numerical simulations with the available resources and how to use efficiently said

resources. The numerical simulations presented in the following chapters were performed

using the HPC resources of LIMSI and GENCI-IDRIS under generous allocations made

by GENCI.
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Complementary material: Simulation parameters and numerical convergence

(a) Differentially-heated square cavity (2D)

Ra Pr Grid α min ∆x max ∆x

De Vahl Davis, 1983 103 − 104 0.71 40 - 0.025

105 − 106 0.71 80 - 0.0125

Le Quéré, 1991 106 0.71 N = 73 - 9.5 · 10−4 2.1 · 10−2

107 0.71 N = 81 - 4.6 · 10−4 1.9 · 10−2

Tric et al., 2000 103 − 107 0.71 N = 51 - 3.8 · 10−4 3.1 · 10−2

Fusion 103 − 108 0.71 1282 - 7.9 · 10−3

2562 - 3.9 · 10−3

5122 - 2 · 10−3

108 7682 - 1.3 · 10−3

Basilisk 103 − 108 0.71 1282 - 7.8 · 10−3

2562 - 3.9 · 10−3

5122 - 2 · 10−3

10242 - 9.8 · 10−4

(b) Differentially-heated cubic cavity (3D)

Ra Pr Grid α min ∆x max ∆x

Tric et al., 2000 103 − 106 0.71 N = 81 - 2.31 · 10−3 3.92 · 10−2

Fusion (OpenMP) 103 − 106 0.71 643 1.5 1.1 · 10−2 1.9 · 10−2

1283 1.5 5.5 · 10−3 9.3 · 10−3

1923 1.5 3.7 · 10−3 6.2 · 10−3

2563 1.5 2.7 · 10−3 4.6 · 10−3

Basilisk (MPI) 103 − 106 0.71 323 - 3.1 · 10−2

643 - 1.6 · 10−2

1283 - 7.8 · 10−3

2563 - 3.9 · 10−3

5123 - 2 · 10−3

(c) Rayleigh-Bénard cells (3D) for Pr = 0.786

Ra Γz Grid γ min ∆x max ∆x

Wagner and Shishkina, 2013 105 1/10–1/3 642 × 32 - - -

106 1/10–1/3 962 × 32 - - -

Fusion (OpenMP) 105–106 1/10–1/3 642 × 32 1.5 1.1 · 10−2 1.9 · 10−2

1282 × 64 1.5 5.5 · 10−3 9.3 · 10−3

1922 × 96 1.5 3.7 · 10−3 6.2 · 10−3

Basilisk (MPI) 105–106 1/10 1602 × 16 - 6.3 · 10−3

3202 × 32 - 3.1 · 10−3

6402 × 64 - 1.6 · 10−3

1/4 642 × 16 - 1.6 · 10−2

1282 × 32 - 7.8 · 10−3

2562 × 64 - 3.9 · 10−3

5122 × 128 - 2 · 10−3

1/3 482 × 16 - 2.1 · 10−2

962 × 32 - 1 · 10−2

1922 × 64 - 5.2 · 10−3

2882 × 96 - 3.5 · 10−3

Table 3.1: Simulation parameters used for the different test cases. Here N indicates the
number of spectra elements used in the benchmark results. The parameter γ corresponds
to the stretching coefficient along the vertical direction, see appendix A.
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(a) Fusion

Ra Grid Nu3D Nump max(u) max(v) max(w)

1 · 103 64 1.071 1.088 1.123 · 10−1 1.121 · 10−1 5.444 · 10−3

1 · 103 128 1.071 1.087 1.121 · 10−1 1.121 · 10−1 5.434 · 10−3

1 · 103 192 1.071 1.087 1.121 · 10−1 1.121 · 10−1 5.432 · 10−3

1 · 103 256 1.071 1.087 1.120 · 10−1 1.121 · 10−1 5.432 · 10−3

1 · 103 Ref. 1.070 1.087 1.120 · 10−1 1.121 · 10−1 5.471 · 10−3

1 · 104 64 2.069 2.266 1.678 · 10−1 1.901 · 10−1 2.171 · 10−2

1 · 104 128 2.058 2.254 1.675 · 10−1 1.900 · 10−1 2.160 · 10−2

1 · 104 192 2.056 2.251 1.675 · 10−1 1.901 · 10−1 2.159 · 10−2

1 · 104 256 2.056 2.250 1.675 · 10−1 1.901 · 10−1 2.157 · 10−2

1 · 104 Ref. 2.054 2.250 1.672 · 10−1 1.898 · 10−1 2.156 · 10−2

1 · 105 64 4.440 4.724 1.398 · 10−1 2.246 · 10−1 3.100 · 10−2

1 · 105 128 4.364 4.642 1.394 · 10−1 2.247 · 10−1 3.080 · 10−2

1 · 105 192 4.349 4.626 1.392 · 10−1 2.248 · 10−1 3.075 · 10−2

1 · 105 256 4.344 4.620 1.391 · 10−1 2.248 · 10−1 3.073 · 10−2

1 · 105 Ref. 4.337 4.612 1.388 · 10−1 2.247 · 10−1 3.064 · 10−2

1 · 106 64 9.193 9.439 1.285 · 10−1 2.386 · 10−1 2.645 · 10−2

1 · 106 128 8.808 9.048 1.279 · 10−1 2.372 · 10−1 2.593 · 10−2

1 · 106 192 8.719 8.956 1.276 · 10−1 2.371 · 10−1 2.576 · 10−2

1 · 106 256 8.685 8.922 1.274 · 10−1 2.368 · 10−1 2.569 · 10−2

1 · 106 Ref. 8.640 8.877 1.270 · 10−1 2.367 · 10−1 2.556 · 10−2

(b) Basilisk

Ra Grid Nu3D Nump max(u) max(v) max(w)

1 · 103 32 1.077 1.096 1.112 · 10−1 1.113 · 10−1 5.757 · 10−3

1 · 103 64 1.074 1.092 1.116 · 10−1 1.116 · 10−1 5.637 · 10−3

1 · 103 128 1.072 1.090 1.118 · 10−1 1.118 · 10−1 5.552 · 10−3

1 · 103 256 1.072 1.089 1.118 · 10−1 1.119 · 10−1 5.506 · 10−3

1 · 103 512 1.071 1.089 1.119 · 10−1 1.119 · 10−1 5.482 · 10−3

1 · 103 Ref. 1.070 1.087 1.120 · 10−1 1.121 · 10−1 5.471 · 10−3

1 · 104 32 2.070 2.266 1.679 · 10−1 1.887 · 10−1 2.105 · 10−2

1 · 104 64 2.058 2.254 1.674 · 10−1 1.893 · 10−1 2.134 · 10−2

1 · 104 128 2.055 2.251 1.673 · 10−1 1.895 · 10−1 2.147 · 10−2

1 · 104 256 2.055 2.251 1.673 · 10−1 1.897 · 10−1 2.153 · 10−2

1 · 104 512 2.055 2.251 1.672 · 10−1 1.898 · 10−1 2.155 · 10−2

1 · 104 Ref. 2.054 2.250 1.672 · 10−1 1.898 · 10−1 2.156 · 10−2

1 · 105 32 4.453 4.732 1.427 · 10−1 2.207 · 10−1 3.015 · 10−2

1 · 105 64 4.361 4.638 1.404 · 10−1 2.240 · 10−1 3.043 · 10−2

1 · 105 128 4.340 4.616 1.396 · 10−1 2.242 · 10−1 3.058 · 10−2

1 · 105 256 4.336 4.612 1.392 · 10−1 2.246 · 10−1 3.061 · 10−2

1 · 105 512 4.336 4.612 1.390 · 10−1 2.247 · 10−1 3.065 · 10−2

1 · 105 Ref. 4.337 4.612 1.388 · 10−1 2.247 · 10−1 3.064 · 10−2

1 · 106 32 9.383 9.619 1.331 · 10−1 2.287 · 10−1 2.635 · 10−2

1 · 106 64 8.840 9.076 1.301 · 10−1 2.370 · 10−1 2.561 · 10−2

1 · 106 128 8.685 8.921 1.285 · 10−1 2.355 · 10−1 2.563 · 10−2

1 · 106 256 8.648 8.884 1.277 · 10−1 2.364 · 10−1 2.561 · 10−2

1 · 106 512 8.640 8.877 1.274 · 10−1 2.366 · 10−1 2.559 · 10−2

1 · 106 Ref. 8.640 8.877 1.270 · 10−1 2.367 · 10−1 2.556 · 10−2

Table 3.2: Numerical convergence of characteristic values for Pr = 0.71 obtained using (a)
Fusion and (b) Basilisk. Nusselt numbers Nu3D and Nump defined in equation (3.8), and
maximum velocity components: max (u(x, y, z)), max (v(x, y, z)), max (w(x, y, z)).
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Part II

Large-scale flow dynamics inside a

square Rayleigh-Bénard cell
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Chapter 4

Reversal cycle in square

Rayleigh-Bénard cells in turbulent

regime

In the next two chapters we are interested in characterizing the large-scale flow dynam-

ics inside two-dimensional (2-D) square Rayleigh-Bénard cells in the (weakly-) turbulent

regime. For the range of Rayleigh numbers and Prandtl numbers considered, two types

of flow regimes are observed intermittently: a regime consisting of consecutive flow rever-

sals, when the large-scale circulation (LSC) switches sign; and a regime consisting of an

extended cessation of the LSC.

In the present chapter, a statistical characterization of the regime of consecutive flow

reversals is portrayed in terms of different global quantities. This work led to the prepara-

tion of an article (Castillo-Castellanos et al., 2016), which is reproduced verbatim in this

chapter. The presence of a generic reversal cycle is evidenced by means of a time re-scaling

procedure. This cycle is composed of three successive phases: acceleration, accumulation

and release including a rebound event. Reversals are then viewed in terms of available

potential energy and global kinetic energy, and their corresponding energy transfer rates.

A decomposition of the rate-of-change of the global angular impulse reveals a delicate bal-

ance between thermal and viscous forces. Based on this analysis, we identify two points

of interest signaling a transition of flow regime before the flow reversal takes place during

the accumulation phase.

In chapter 5 we continue the analysis of the reversal regime by performing a proper or-

thogonal decomposition (POD) analysis (Podvin and Sergent, 2015; Podvin and Sergent,

2017) combined to the statistical approach to the modal coefficients.

4.1 Paper: Reversal cycle in square Rayleigh-Bénard cells
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Reversal cycle in square Rayleigh–Bénard
cells in turbulent regime
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We consider long-term data from direct numerical simulations of turbulent Rayleigh–
Bénard convection inside 2D square cells. For the range of Rayleigh numbers Ra =
107 − 108 and Prandtl numbers Pr = 3.0 − 4.3, two types of flow regimes are observed:
a regime consisting of consecutive reversals, when the global rotation switches signs;
and a regime consisting of an extended cessation, when global rotation is absent. A
filtering method discriminates these two regimes and allows to identify two characteristic
time-scales for the former regime. A time re-scaling is then used to tune our records
to a common duration thus putting into evidence a generic reversal cycle. This cycle is
composed of three successive phases: acceleration, accumulation, and release including a
rebound event. We complement this view in terms of global angular impulse, available
mechanical energy, global kinetic energy, and their corresponding transfer rates. For a
particular realisation of a reversal, each phase is described in terms of the flow patterns
(large diagonal roll, counter-rotating corner-flows and thermal plumes) and tied to the
corresponding energy processes. We conclude by performing linear as well as nonlinear
stability studies to account for the triggering mechanism of the release.

1. Introduction

Decaying or stochastically forced two-dimensional turbulence in the presence of rigid
boundaries is characterised by self-organised coherent structures. For a square domain
(Clercx et al. 1998; Molenaar et al. 2004), a spontaneous spin-up is observed which leads
to the formation of a single vortex structure. This structure can persist for very long
periods of time, before suddenly breaking and re-organising itself, in some cases with a
reversed rotation sense. A similar process occurs in the geomagnetic field under the form
of polarity switches (Wicht et al. 2009; Valet et al. 2012). In turbulent Rayleigh-Bénard
(RB) convection experiments, this phenomenon is also observed: a large scale circulation
(LSC), commonly referred to as the wind, changes sign intermittently. Several models
have been proposed to describe this process in RB convection through either stochastic
differential equations (Sreenivasan et al. 2002; Benzi 2005; Brown & Ahlers 2007; Podvin
& Sergent 2015) or phenomenological and physically motivated assumptions (Araujo
et al. 2005; Resagk et al. 2006; Brown & Ahlers 2007).

The LSC structure, its global properties and the transition between dominant flow
structures are found to be dependent on the cavity shape (Grossmann & Lohse 2003; Xi
& Xia 2008b; van der Poel et al. 2011). Inside cylindrical cells, a change of sign of the

† Email address for correspondence: anne.sergent@limsi.fr
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LSC occurs either by a rotation-led reversal through an azimuthal rotation of the near-
vertical circulation plane known as azimuthal meandering, or by a cessation-led reversal
through the breakdown of the existing LSC before re-organising in a different spatial
direction (see, for instance Niemela et al. (2001); Sreenivasan et al. (2002); Brown &
Ahlers (2007); Funfschilling et al. (2008); Xi & Xia (2008a,b)). One approach to separate
rotation-led from cessation-led reversal events consists in restricting the experimental
study to a square box of small aspect ratio in the transversal direction (Xia et al. 2003;
Sugiyama et al. 2010; Wagner & Shishkina 2013; Ni et al. 2015). Another viewpoint uses
two-dimensional direct numerical simulations (Sugiyama et al. 2010; Petschel et al. 2011;
Chandra & Verma 2011; Verma et al. 2015; Podvin & Sergent 2015) since rotation-led
reversals are not possible in such a configuration. However, it is not entirely clear whether
2D reversals and cessation-led reversals correspond to the same phenomenon. Sugiyama
et al. (2010) have identified a region in the (Ra, Pr) space in which reversal events
are observed experimentally inside quasi-two-dimensional cells as well as numerically in
two-dimensional simulations. For this range of (Ra,Pr), the flow inside a square cell is
mainly composed of a large diagonal roll and two counter-rotating corner-rolls. (Chandra
& Verma 2013; Sugiyama et al. 2010) pointed out the feeding of corner-rolls by plumes
detached from horizontal boundary layers. Both papers proposed that the growth of
corner-rolls ended by a sudden LSC transition.

The presence of such coherent structures has been investigated by computing the first
Fourier modes (Chandra & Verma 2011; Verma et al. 2015), or by obtaining these modes
from a proper orthogonal decomposition (Bailon-Cuba et al. 2010; Podvin & Sergent
2015). Coherent structures are actually associated with a sum of various such modes:
a large-scale monopole, a quadrupole and a vertically or horizontally stacked dipole. A
study of the transition sequences between these first Fourier modes indicated the presence
of a reversal path (Petschel et al. 2011). To analyse such a process, one could adopt the
perspective used in geomagnetic fields combining a careful selection of reversal records
as well as a time rescaling (Valet et al. 2012; Lhuillier et al. 2013). In geomagnetism, this
method led to the definition of three successive phases: a precursory event, a polarity
switch and a rebound.

Another viewpoint is based on energetical considerations. For instance available po-
tential energy is key to understand how mechanical energy is transported, stored, and
dissipated in RB convection (Winters et al. 1995; Hughes et al. 2013). This approach
could make more precise the idea of an avalanche mechanism (mentioned in Sreenivasan
et al. (2002)), due to a localised accumulation of energy, which increases local gradients
until a certain threshold is reached and energy is expelled as a single burst.

In the present paper, we propose for RB convection, a formulation similar to the
one proposed in geomagnetism (Valet et al. (2012)): the main objective is to establish
the existence of a generic reversal cycle and to identify in this cycle three phases
(release, accumulation, and acceleration). This analysis combines a statistical analysis
with a physical approach relying on the angular momentum as well as kinetic and
potential energy to highlight the underlying physical mechanisms. In addition, we identify
flow patterns corresponding to each phase of the generic cycle by using a conditional
averaging. A threshold state in generic reversal cycles is identified from which the release
is inevitable.

The paper is organised as follows. Section 2 introduces the model equations and
global quantities: global angular impulse, available mechanical energy and corresponding
conversion rates. A brief description of the numerical method and the spatial resolution
is presented in section 3. In section 4, a filtering method is proposed that identifies two
regimes, and then allows to perform a statistical study of reversals. The dynamics of a
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generic reversal mechanism is described as composed by three phases in section 5. These
results are then analysed in terms of coherent flow structures, physical mechanisms in
section 6 for particular realisations. In section 7, a stability analysis is applied on the
generic cycle. Section 8 contains a brief comparison of the present analysis with previous
works. Finally, some prospective works are mentioned in conclusion.

2. Model equations and analysis tools

Consider a fluid contained in a square cell, cooled at the top with constant temperature
Ttop and heated at the bottom with constant temperature Tbot > Ttop. The flow
equations are based on the Boussinesq approximation. The flow regime is defined as
a function of the Rayleigh and Prandtl numbers,

Ra ≡
gH3β (Tbot − Ttop)

κν
, Pr ≡

ν

κ
(2.1)

where g denotes gravity, H the cell height and β, κ, ν are respectively volumetric
thermal expansion, thermal diffusivity and kinematic viscosity coefficients. The values of
(Ra,Pr) used for direct numerical simulations (DNS) correspond to a weakly turbulent
flow regime where reversals have been reported (Sugiyama et al. 2010). As far as
notations are concerned, x (resp. u) and y (resp. v) stand for the horizontal and vertical
directions (resp. velocities). Coordinate vector ~x = (x, y) is equal to (0, 0) at the cavity
centre. One introduces the reduced temperature θ(~x, t) ≡ (T − T0)/(Tbot − Ttop), with
T0 ≡ (Tbot +Ttop)/2 as well as the only vorticity component ω(~x, t) ≡ ∂xv− ∂yu. For a
field a(~x, t), the fields a(~x) and σ(a)(~x) denote the time average and standard deviation
computed using the full long-term time series. In addition, quantity 〈a〉vol(t) stands for
the volume average of a(~x, t).
Based on the cell height H as characteristic length scale and κ

H
Ra0.5 as velocity scale,

the dimensionless velocity ~u = (u, v) and reduced temperature θ satisfy the dimensionless
system of equations







∇ · ~u = 0,
∂t~u+∇ · [~u⊗ ~u] = −∇p+ PrRa−0.5

∇
2~u+ Prθ~ey,

∂tθ +∇ · [~uθ] = Ra−0.5
∇

2θ
(2.2)

No-slip condition for the velocity field is ensured on walls. On top (resp. bottom) walls,
one imposes θ = −0.5 (resp. θ = 0.5) while adiabaticity ∂xθ = 0 is satisfied on side-walls.
From now on, quantities are written in dimensionless form only.

2.1. Global angular impulse

The global angular momentum

L2D(t) ≡ −
1

2

∫

~x2ω(~x, t)dxdy (2.3)

serves as a measure of organised rotation (see for instance Molenaar et al. (2004)).
Figure 1 shows a time series of the normalised angular momentum L2D/|L2D|. Two
different regimes are observed. Blue areas correspond to periods of time where L2D

changes sign spontaneously over time: positive (resp. negative) peaks in L2D alternate
that are associated to a dominant counter-clockwise (resp. clockwise) central vortex.
The blue areas consisting of a sequence of consecutive transitions is hereafter called the
consecutive reversal (CR) regime. Outside this regime, the LSC is no longer well-defined
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Figure 1. Time evolution of L2D(t)/|L2D| shown for (Ra = 5 · 107,Pr = 3). Light blue areas
correspond to a consecutive reversal (CR) regime, while blank areas correspond to an extended
cessation (EC) regime. Some events (darker blue areas) may not be clearly assigned to CR
régime, see text. The two continuous lines correspond to the thresholds used by the filtering

procedure. Value of the normalized standard deviation: σ(|L2D|)/|L2D| = 0.499.

and one observes an extended cessation. Such complementary region is denoted here as
the extended cessation (EC) regime.

In order to differentiate in a precise manner the CR regime from the EC regime, a
filtering algorithm has been devised which is modeled after (Lhuillier et al. 2013; Podvin
& Sergent 2015). We identify the set of consecutive times ri at which L2D changes sign.
The time interval [ri, ri+1] is considered to be inside the CR regime if, during this interval,
the value of |L2D| reaches at least once the threshold value |L2D| + σ(|L2D|) (light blue
area in figure 1). A time interval where such threshold is not reached can be of two kinds
corresponding to the darker blue areas or the white areas in figure 1. The first kind is
sandwiched between two CR intervals and corresponds to a “rogue” reversal, which likely
belongs to the CR regime but has been filtered out by our criterion (the criteria for the
selection of events in the CR regime is rather stringent as seen from the “rogue” events
displayed in figure 1). The second type, displayed in white, corresponds to an extended
cessation.

For any interval [ri, ri+1], its duration τ1,i ≡ ri+1 − ri is also computed. When both
intervals [ri−1, ri] and [ri, ri+1] are inside a CR regime, the duration τd,i of the jump
occurring around time ri between a clockwise and counter-clockwise central vortex or
vice versa can be evaluated. It is computed by identifying the times located just before
and just after time ri such that |L2D| reaches the threshold value |L2D| − σ(|L2D|). τd,i
is simply the time lapse between these two events.

The change of the global angular momentum L2D may be better understood considering
the relation directly obtained from the governing equations (2.2),

dL2D

dt
= M+ Ia − Ib







M(t) ≡ 1
2
Pr

∫

~x2 ∂xθ dxdy
Ia(t) ≡ PrRa−0.5

∮

[~x · ~n] ω dl
Ib(t) ≡

1
2
PrRa−0.5

∮

~x2 ~n ·∇ω dl
(2.4)

where ~n stands for the outwards unit normal vector to the domain boundary and dl for a
contour line differential element. Note that it is assumed that line integrals are performed
in a counterclockwise direction. The angular momentum thus evolves because of a bulk
forcing term M(t) known as the input torque (Molenaar et al. 2004) and two boundary
integrals terms Ia(t) and Ib(t). Ib(t) is close but not identical to the integrated vorticity
flux over the domain boundary. For a square cavity, the boundary term Ia(t) simplifies
to Ia = 1

2
PrRa−0.5

∮

ωdl. Vorticity on the boundary is related to the friction exerted by
the fluid on the walls. This integral Ia(t) is thus quantifying friction along the boundary.
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Figure 2. Temperature field θ(x, y, t) at a given instant t (left), the corresponding background
state θr(y, t) (center) and height yr(x, y, t) (right) for a square RB cell.

2.2. Mechanical energy balance

Other global quantities are useful to characterise at each time the instantaneous
state of the system: the global kinetic energy Ekin(t) ≡ 1

2

∫

~u2dxdy and the global
potential energy Epot(t) ≡ −Pr

∫

yθ dxdy. This latter quantifies the energy amount
required to bring all fluid particles against gravity from their position at time t to
the reference level y = 0. However, one can introduce a more pertinent instantaneous
quantity namely the available potential energy (Sutherland 2010), which is defined here
below. For a given time t, the fluid is characterized by an instantaneous temperature
field θ(x, y, t) with a lower (resp. upper) bound at θmin(resp. θmax). Let us consider a
one-to-one mapping (xr(x, y), yr(x, y)) from the square onto the square. This may be
interpreted as a reordering of fluid particles inside the square cell. Rearranging modifies
the temperature field leading to a new field θr(x, y, t) but this process is an adiabatic
one i.e. θr(xr, yr, t) = θ(x, y, t). As a consequence, the probability distribution function
(PDF) of temperature in the rearranged state is identical to the PDF in the instantaneous
state. The potential energy of the rearranged state can be measured. Among the set of
such mappings, there exists a subset which corresponds to the lowest potential energy.
It is easy to understand that all mappings belonging to this subset have identical
rearranged temperature field θr(y, t) with no x dependency and increasing (i.e. density
decreasing) monotonically with height (figure 2). This field characterizes the background

state. Although yr(x, y, t) is not a simple function of (x, y), the above remark implies that
yr is a one-to one function of θ for a mapping in this subset. In practice (see Tseng &
Ferziger (2001)), the field θr(y, t) is computed by the following procedure. First, the PDF
of the instantaneous temperature at time t which is denoted by P (θ), is directly evaluated
numerically within the interval [θmin, θmax] since θ(x, y, t) is known on the whole square
box. Second, the conservation of temperature PDF with rearrangement imposes that
yr(θ) be evaluated as a cumulative density function

yr(θ)− ybot = yr(θ)− yr(θmin) =

∫ θ

θmin

P (θ) dθ. (2.5)

This relation depends a priori on the domain geometry. For a square box of unit size,
however, the proportionality is factor is reduced to unity. Third, function θr(y, t) is then
obtained by a simple inversion of yr(θ, t).
The background state is characterized by the lowest potential energy that can

be reached by an adiabatic process starting from the instantaneous temperature
field θ(x, y, t). This quantity called the background potential energy is equal to
Ebpot ≡ −Pr

∫

yr(x, y, t)θ(x, y, t) dxdy. By a simple change of variable and using
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adiabaticity θr(xr, yr, t) = θ(x, y, t), one gets

Ebpot = −Pr

∫

yrθr(yr) dxrdyr = −Pr

∫

yrθr(yr)dyr.

The difference Eapot(t) ≡ Epot(t) − Ebpot(t) > 0 in potential energy between the
instantaneous state and its background companion is called the available potential energy

and represents the potential energy which could be effectively transformed from the
instantaneous field θ(x, y, t) into motion (Lorenz 1955; Winters et al. 1995).
In analogy with L2D, the process may be better grasped by considering the evolution

of the energies Ekin, Epot, Eapot, through some exact relations (see Winters et al. (1995);
Hughes et al. (2013)). For the kinetic energy Ekin, the following relation holds (eij denotes
the symmetric velocity gradient tensor)

dEkin

dt
= PrRa−0.5[Φy − ǫ],

{

Φy ≡ Ra0.5〈vθ〉vol
ǫ ≡ 〈∇~u : ∇~u〉vol = 2〈eijeij〉vol

(2.6)

The first bulk term Φy(t) is a convective heat flux. More precisely let us introduce the
volume-averaged Nusselt number Nuvol ≡ Ra0.5〈vθ〉vol − 〈∂yθ〉vol. It is easily found that,
for RB cells, Φy(t) = Nuvol(t)− 1. The second bulk term ǫ(t) > 0 stands for the viscous
dissipation rate. Finally one may write

dEkin

dt
= PrRa−0.5[Nuvol − (ǫ+ 1)] (2.7)

The potential energy Epot verifies instead the relation

dEpot

dt
= PrRa−0.5[−Nuvol + Φb1] (2.8)

which contains the bulk term Nuvol and a boundary term

Φb1(t) ≡ −

∮

y[~n ·∇θ] dl (2.9)

quantifying the conversion rate to Epot from external sources. More precisely, let us
introduce the Nusselt number Nutop(t) ≡ −

∫

∂yθdx evaluated at the top y = 0.5 as
well as the Nusselt number Nubot(t) ≡ −

∫

∂yθdx evaluated at the bottom plates y =
−0.5. For the present square cell, one easily verifies that Φb1 = 1

2
(Nutop + Nubot) and

consequently

dEpot

dt
= PrRa−0.5[−Nuvol +

1

2
(Nutop +Nubot)] (2.10)

Finally, the evolution equation for the available potential energy Ebpot reads as

dEbpot

dt
= PrRa−0.5[Φd − Φb2],

{

Φd ≡ 〈∂yr

∂θ
∇θ ·∇θ〉vol = 〈∇yr ·∇θ〉vol

Φb2 ≡
∮

yr[~n ·∇θ] dl
(2.11)

where the bulk term Φd(t) quantifies the energy conversion rate due to diapycnal mixing.
Since by definition ∂yr

∂θ
> 0, Φd(t) is bound to be positive. The boundary term Φb2

provides the conversion rate from external sources. For the present RB cells, since
yr(x, 1/2, t) = −1/2 and yr(x,−1/2, t) = 1/2 and because adiabaticity of side walls
it is clear that Φb2(t) = Φb1(t). Finally by substracting equation 2.8 by equation 2.11,
one gets

dEapot

dt
= PrRa−0.5[Nubot +Nutop −Nuvol − Φd] (2.12)
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Pr Ra Time Events Nu %Diff
3.0 107 9,600 48 12.5 0.30

3 · 107 9,600 77 17.6 0.53
5 · 107 9,600 83 20.7 0.69
108 12,000 83 25.6 1.44

4.3 3 · 107 19,000 22 18.4 0.24
5 · 107 29,000 161 21.0 0.70
108 19,000 156 25.9 1.38

Table 1. For various Prandtl and Rayleigh numbers, the table provides the simulation length in
convective time units, the number of reversal events, the average Nusselt number and maximum
relative difference between Nuvol, Nutop, Nubot, Nuθ, and Nuǫ.

3. Numerical method

Simulations are carried out using a finite volume code using a semi-implicit scheme
based on Bell-Colella-Glaz advection scheme (Bell et al. 1989), and a pressure-correction
scheme for the velocity-pressure coupling, with a global second order precision. Numerical
implementation is done using BASILISK C, details of which can be found in Popinet
(2016). Simulations listed in table 1 have been performed on a uniform Cartesian grid
with 512 points in each direction, with a variable time-step that verifies the condition
CFL< 0.5. In the most unfavorable case (Ra = 108,Pr = 4.3) the thermal boundary
layers contain 10 points along the vertical direction.
Spatial resolution is verified evaluating numerical convergence of time-averaged Nusselt

numbers obtained by different methods (Stevens et al. 2010). Note that to perform the
averaging, statistical sampling is obtained at regular intervals. We compare Nuvol, Nutop
and Nubot to the Nusselt numbers obtained from the thermal and viscous dissipations

Nuθ ≡ 〈∇θ ·∇θ〉vol, Nuǫ ≡ ǫ+ 1 (3.1)

All these quantities should be equal (Shraiman & Siggia 1990). The value of Nu shown in
table 1 is the average value of Nuvol, Nutop, Nubot, Nuθ, Nuǫ while the maximum relative
difference between any of them is shown as %Diff. These values converge within 2% of
Nu for all (Ra,Pr) presented. We have also verified that our numerical results are well-
converged in a completely different way. This check has been performed by comparing
results of the probability density functions (PDF) of the time interval τ1 obtained by our
code against benchmark results. This computation requires to get long term simulations
and was done for (Ra = 5 · 107,Pr = 4.3) since such parameter values had already
been computed by a spectral code (Podvin & Sergent 2015). The data for this check are
postponed at the end of section 4.

4. Temporal analysis and statistical characterisation

In the present work, we focus on turbulent RB systems for which flow reversals are
observed. For Pr = 3.0, this dynamics is associated with the interval Ra ∈ [5 ·106, 3 ·108].
For Pr = 4.3, it corresponds to the interval Ra ∈ [3 · 107, 4 · 108] (Sugiyama et al. 2010).
Note that, these boundaries are not clearly established. For instance, some transitions
were found for very long runs at (Pr = 4.3,Ra = 107) (not presented here) but it is
difficult to assert whether or not the few cycles observed correspond to an established
statistical steady state or to a transient behaviour. In the following, we consider only
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Pr Ra pcr prr pec
3.0 107 85% 1% 14%

3 ·107 73% 3% 24%
5 ·107 77% 3% 20%
108 96% 4% 0%

Pr Ra pcr prr pec
4.3 - - - -

3 ·107 95% 1% 4%
5 ·107 83% 1% 16%
108 89% 2% 9%

Table 2. Probabilities as a function of Ra and Pr. pcr (resp. pec) denotes the probability that
the system be inside the CR (resp. EC) regime. prr denotes the probability of a “rogue” reversal..

values inside the aforementioned range for which the number of events is large enough (see
table 1): simulations are performed from 9,600 to 29,000 convective time units (see
table 1), which gives from 50 to 160 events (except for Pr = 4.3 and Ra = 3 · 107 which
is situated close to the boundary region where the reversal dynamics is established).
For a given couple (Ra,Pr), one computes the percentage of time or equivalently the

probability that the system be in one of the three states: pcr in the CR regime, pec in
the EC regime and prr inside a “rogue” reversal. The probability prr of rogue events is
always of a few percents (see table 2). For both Pr = 3.0 and Pr = 4.3, in the interval
where the CR regime is observed, pcr first decreases and then increases with increasing
Ra (see table 2).

The PDFs of τ1 and τd are measured based on the full simulation length and shown
on figure 3 (resp. figure 4) for Pr = 4.3 (resp. Pr = 3). Using the filtering method of
section 2.1, we separated the PDF of τ1 into three contributions: one for intervals inside
the CR regime (color blue), one for intervals from the EC regime (color red) and one
corresponding to rogue events (color purple). This PDF shows that the distribution of
τ1 is not peaked inside the CR regime: intervals may have different durations. This is
also valid for the EC regime. For Pr = 4.3, a similar probability distribution of τ1 is
observed for both values of Ra (figure 3) and a characteristic time-scale τc ≈ 60 exists
which separates EC from CR regimes. For Pr = 3.0, a change in the PDFs of τ1 and
τd is observed as we increase the values of Ra (figure 4). For the lowest Ra displayed, a
characteristic time τc cannot be clearly defined. For the highest Ra displayed Ra = 108,
the EC regime completely disappears. For intermediate Ra, reversal events become evenly
distributed over a narrow band of τ1 (see figure 4 center and right) and a clear separation
of time-scales between the EC and CR regimes is observed at τc ≈ 50 which is at least one
order of magnitude larger than the large eddy turn-over time, τE ≡ 4π/|ωc| (ωc denoting
vorticity measured at the cavity center). The PDF of the inter-switch intervals observed
for cylindrical convection cell experiments is an exponential distribution (Sreenivasan
et al. (2002)). It is not seen here (figures 3 and 4) illustrating the fact that rotation-led
reversals are not present here contrary to cylindrical cells.
From the PDF of transition durations τd for CR regime only (see figures 3 and 4

bottom), the peak value tends to increase as Ra is increased for both Pr = 3.0 and
Pr = 4.3. Concerning the numerical check, the average value τ1|cr during the CR regime
and the average duration τd of transition were both found to be in good agreement with
published results for (Ra = 5 · 107,Pr = 4.3): τ1|cr = 146 and τd = 11.5 convective time
units (Podvin & Sergent 2015).

5. Dynamics of the generic reversal

We have shown above that reversals cycles have different durations τ1,i. A simple
time-rescaling, however, can be used to identify features common to all reversal cyles.
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Figure 3. Probability density function (PDF) of τ1 (top) and τd (bottom) for Pr = 4.3, (left
figure) Ra = 5 · 107, (right figure) Ra = 108. The PDF value is represented by ◦ marks. For
τ1 it is the sum of three conditional PDFs: one in ( ) corresponding to the CR regime, a
smaller one in ( ) corresponding to “rogue reversals”, and an additional part in ( )
corresponding to the EC regime.

10−3

10−2

10−1

0 100 200 300 400

τ1

3

2

1

0 100 200 300 400

τ1

3

2

1

0 100 200 300 400

τ1

0.00

0.10

0.20

0.30

0 5 10 15 20 25 30

τd

0.00

0.10

0.20

0.30

0 5 10 15 20 25 30

τd

0.00

0.10

0.20

0.30

0 5 10 15 20 25 30

τd

Figure 4. Probability density function (PDF) for τ1 (top) and τd (bottom) for Pr = 3.0 and
Ra = 107 (left), Ra = 5 · 107 (centre) and Ra = 108 (right). Layout is similar to figure 4.

5.1. Averaging procedure and generic reversal as function of (Ra,Pr)

In order to identify similarities between different intervals in the CR regime, the
following procedure is proposed to treat time-series of global quantities such as L2D,
Ekin, and Eapot. Once the intervals [ri, ri+1] inside the CR regime are properly identified,
all these intervals with L2D > 0 (resp.L2D < 0) are stacked together so that they have
a common origin at ri (resp. ri+1). If the time axis of each interval is re-scaled by τ1,
one obtains figure 5 left. If the time axis of each interval is rescaled by its particular
duration τ1,i, these curves display a consistent dynamical pattern (see figure 5 centre).
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Figure 5. From top to bottom: Normalised global angular impulse L2D/|L2D|, normalised

kinetic energy Ekin/|Ekin|, and normalised available potential energy Eapot/|Ekin| for
(Ra = 5 · 107,Pr = 4.3). Left panel: Each reversal cycle is centred and its time is rescaled
by τ1 (only 10 reversals are displayed and each colour is a different reversal); Centre panel:
Each reversal cycle is centred and its time is rescaled by τ1,i; Right panel: Average value of
rescaled curves obtained from the complete time-series (thick lines) and curves corresponding
to one standard deviation (dashed lines).

Note that, while figure 5 displays only 10 reversals to avoid cluttered graphs, these
events displayed are considered as representative of the entire set. Obviously, all of the
events inside the CR regime are taken into account in our procedure but “rogue reversal”
events are not. This procedure is similar to one used in the study of statistical properties
of magnetic switches in the geodynamo problem (Valet et al. 2012; Lhuillier et al. 2013).
For a sufficiently large number of recorded events, the average over these rescaled curves
is expected to remove the noisy dynamics and to represent a generic reversal cycle (figure
5 right). This averaging technique, once applied to Ekin and Eapot, recovers the evolution
of mechanical energies during the generic reversal cycle.

Figure 6 shows the L2D/|L2D| curves for generic reversal cycle at Pr = 3.0: as we
increase Ra, the reversal cycle becomes more regular and the band representing the stan-
dard deviation narrows. The same averaging procedure can be applied to instantaneous
temperature and velocity fields in order to obtain the evolution of a conditionally averaged
temperature θo(x, y, t) and velocity ~uo(x, y, t) fields during the reversal cycle (e.g. figure 7
for (Ra = 5 · 107,Pr = 3.0)). Despite fluctuations between various realisations, dominant
and persistent structures appear at specific times of the generic cycle.



Reversal cycle in Rayleigh–Bénard cells 11

-2

-1

0

1

2

-1 -0.5 0 0.5 1

L
2

D
/|

L
2

D
|

[t − ri]/τ1,i

-2

-1

0

1

2

-1 -0.5 0 0.5 1

[t − ri]/τ1,i

-2

-1

0

1

2

-1 -0.5 0 0.5 1

[t − ri]/τ1,i

Figure 6. Curves corresponding to reversals for Pr = 3.0 as obtained using the procedure

described in figure 5. The average L2D/|L2D| is shown in thick lines and one standard deviation
in dashed lines. From left to right: a) Ra = 107, b) Ra = 5 · 107, and c) Ra = 108.

+0.5

0.0

−0.5

(i) (ii) (iii) (iv) (v)

+0.5

0.0

−0.5

(vi) (vii) (viii) (ix) (x)

Figure 7. Conditionally averaged fields ~uo(x, y, t) and yr(θ
o(x, y, t)) at different instants during

the generic reversal cycle for (Ra = 5·107,Pr = 3.0). Fields are obtained as the ensemble average
over 83 particular reversal cycles. Streamlines of the velocity field ~uo are superposed over the
color map of field yr(θ

o). Solid and dashed streamlines indicate the two senses of rotation.

5.2. Phases of reversal cycle

In the phase space (L2D/|L2D|,Ekin/|Ekin|,Eapot/|Ekin|), let us consider the generic
reversal cycle (figure 8). Consecutive instants (a)-(b)-(c)-(d)-(e) pinpoints particular
dynamical times: L2D = 0 at instant (a); Ekin reaches a local maximum at instant (b),
Ekin reaches a local minimum at instant (c); Eapot reaches its minimum at instant (d);
|L2D| reaches its maximum at instant (e). Points (a’)-(b’)-(c’)-(d’)-(e’) are similar but
correspond to an opposite rotation sign. Based on these instants, three successive phases
are identified for the generic reversal cycle. They are called accumulation, release and
acceleration.
The accumulation phase is located between points (e’) and (a). It is characterised by

a steady accumulation of Eapot and a progressive decay of |L2D| and Ekin. This phase
ends when Eapot reaches a maximum and Ekin a minimum (figure 8). In terms of generic
velocity field ~uo(x, y, t), a central vortex is present during this phase (see figures 7 i to iii)
until the global rotation switches signs at point (a) i.e. L2D = 0 (figure 7 iv).
The release phase located between points (a) and (d), is defined by a sudden exchange

from Eapot to Ekin. It can be split in three sub-steps. The first step from point (a) to
point (b) contains a rapid increase of Ekin to a maximum value and a rapid decrease of
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are displayed as in figure 8 .
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Eapot. It corresponds to figures 7 v to vii. A second step follows from points (b) to (c)
in which Ekin suddenly decreases and Eapot remains almost constant. This is associated
with figures 7 viii to ix. After these two steps referred to as a rebound, a new increase
of Ekin is observed from points (c) to (d) concomitantly with a decrease of Eapot until it
reaches its minimum value.

Finally, the acceleration phase is located between points (d) and (e) and is characterised
by an increase of |L2D| and Ekin to peak values, whereas Eapot remains almost constant.
During this period, the flow reorganises gradually into a single dominant vortex (figure
7x).
For the (Ra,Pr) considered inside the CR regime, we are able to recover a generic

reversal cycle expressed in terms of the available mechanical energy (figure 9). Similarities
between these curves for different (Ra,Pr) suggest an equivalent underlying mechanism
behind flow reversals, even if the intensity of the rebound decreases with Pr. For (Ra =
5 · 107,Pr = 3.0), the accumulation phase lasts longer (60%), while the release and
acceleration phases have shorter and similar durations (respectively 18% and 22% of the
reversal cycle). For the range of Ra considered these proportions are similar: for instance,
the accumulation, release, and acceleration are observed to last 75%, 13%, and 12% of
the reversal cycle for (Ra = 108,Pr = 3.0).

6. Dynamics of a particular reversal

From now on, we focus on a single value of (Ra,Pr) (Ra = 5 · 107,Pr = 3.0) in order
to explore the nature of the reversal dynamics. To look at the small-scales effects, the
analysis below considers particular realisations of reversal cycles rather than conditionally
averaged fields.

For each particular reversal cycle, we define similarly to the generic curve, consecutive
instants (ap)-(bp)-(cp)-(dp)-(ep) which pinpoints the dynamical times: L2D = 0 at instant
(ap); Ekin reaches a local maximum at instant (bp), Ekin reaches a local minimum at
instant (cp); Eapot reaches its minimum at instant (dp); |L2D| reaches its maximum at
instant (ep).

6.1. Time evolution of the available mechanical energy and flow structures

The spatial distribution of mechanical energy can be linked to flow structures observed
during different phases of a reversal cycle. At the beginning of the accumulation phase
(point (ep’)), a large diagonal vortex with small counter-rotating corner-flows is observed
(top figure 10). On the one hand, it corresponds to a state of maximum kinetic energy
condensed inside the central vortex (bottom figure 10). On the other hand, the integrand
Pr

∫

(yr − y) of Eapot is mostly distributed inside the corner-flows or along thin thermal
boundary layers (top figure 11). The field ∇yr · ∇θ is used to highlight the contour
of thermal plumes (bottom figure 11). This field is related to the spatial distribution
of Φd (see equation 2.11). Small-scale thermal plumes are observed to be detached
from the thermal boundary layers. They are then swept by the central vortex. Plumes
are channelled into the corner-flows, directly or after having been advected along the
side-walls. The progressive growth of corner-flows is illustrated on figures 10 and 11.
This is consistent with previous observations by (Sugiyama et al. 2010) that tied the
time evolution of the corner-flows height. The steady increase in Eapot coincides with a
deceleration of the central vortex and to a build-up of thermal energy inside the corner-
flows. Indeed, let us compute the contributions to Eapot due to the region of thermal
boundary layers (BL) and the bulk. The hot and cold BL are taken to have a constant
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Figure 10. Instantaneous fields for a particular reversal cycle during the accumulation phase
at regular time intervals at (Ra = 5 · 107,Pr = 3.0). The first snapshot follows point (ep’) the
last precedes point (ap). Streamlines are superposed either to vorticity ω (top figures), or to
kinetic energy 1
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uiui (bottom figures).
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Figure 11. Instantaneous fields for a particular reversal cycle during the accumulation phase.
They are identical to those of figure 10 but streamlines are superposed either to the field
Pr(yr − y)θ (top figures) or to the field ∇yr · ∇θ (bottom figures). Snapshots correspond to
the same instants as in figure 10.
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Figure 12. Evolution of Eapot contained within the thermal boundary layers ( ) and
outside ( ) at (Ra = 5 · 107,Pr = 3.0).

thickness δ−1
θ = 2Nu. Contributions inside both BL (figure 12) amount to 30-40% of

Eapot and are fairly constant in time: standard deviation is less than 1%. On the contrary,
contributions to Eapot from outside BL are directly influenced by the reversal cycle: a
steady increase is observed during the accumulation phase until the release phase (figure
12) . This suggests that the energy exchange observed during the release takes place only
inside the bulk, while the boundary layers seem to be largely unaffected by the reversals.
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Figure 13. Instantaneous fields for a particular reversal cycle during the early release phase
(point (ap)-(bp)) at regular time intervals (Ra = 5 · 107,Pr = 3.0). Streamlines are superposed
to the field 1

2
uiui. First snapshot follows point (ap), last precedes point (bp).
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Figure 14. Instantaneous fields for a particular reversal cycle during the release phase at
(Ra = 5 ·107,Pr = 3.0). Snapshots correspond to points (ap) to (dp). Streamlines are superposed
to either the field yr(x, z, t) (top figures), or to field ∇yr · ∇θ (bottom figures).

During the first part of the rebound (points (ap) to (bp)), the opposing corner-flows
have become large and strong enough to deform and finally split the central vortex
(figure 13): opposing corner-flows then connect and form a single vortex (with opposite
rotation with respect to the previous LSC). This allows the thermal energy stored inside
corners to be rapidly released and transformed into kinetic energy. By the end of this
exchange, the amount of thermal energy Eapot stored outside the thermal boundary
layers will be halved (figure 12). The complete rebound period (point (ap)-(cp)) can be
better illustrated by highlighting the role of the thermal plumes and boundary layers.
To do so, one uses yr(x, y, t) which is a bijective function of temperature, and function
∇yr ·∇θ in figure 14. Once the vortex reconnection has taken place, the blobs of hot (resp.
cold) fluid which are now inside the main central vortex, are allowed to travel upwards
(resp. downwards) directly into the bulk. This results in the exchange of potential energy
(contained inside small scale structures) into kinetic energy (contained inside the central
vortex). The newly formed circulation proceeds to rotate and is able to advect thermal
blobs against the action of buoyancy forces (as seen between points (bp) and (cp) figure
14). Simultaneously as the thermals are released into the bulk, the surface separating hot
and cold fluid increases which reinforces the mixing process (bottom figures 14).
The acceleration phase is illustrated on figure 15. Self-organisation of the LSC takes

place, during which the kinetic energy and the angular impulse arrive to peak values.
During that phase, the bulk contains less and less plumes: temperature becomes nearly
homogeneous. By the end of this phase the flow settles to a large diagonal roll with small
corner-flows.
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Figure 15. Instantaneous fields for a particular reversal cycle taken at regular intervals during
the acceleration phase at (Ra = 5 · 107,Pr = 3.0). The first snapshot follows point (dp); the last
corresponds to point (ep). Streamlines are superposed either to vorticity ω (top figures), or to
∇yr · ∇θ (bottom figures).
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Figure 16. Time evolution of the energy transfer rates. From top to bottom: normalised

Nuvol/Nu, (ǫ + 1)/Nu, Φd/Nu, , Φb1/Nu for (Ra = 5 · 107,Pr = 3.0). Figure for L2D/|L2D|
is given as a reference curve. The left figure corresponds the generic reversal: the curve in

corresponds to the average, while the hatched region represent one standard deviation
from this average. The center and right figures correspond to particular reversals displayed in

alongside the standard deviation.

6.2. Mechanical energy transfer rates

Figure 16 displays the evolution of energy transfer rates (given in equations 2.6 to 2.12)
for a generic reversal cycle as well as for two particular reversal cycles. More precisely,
the bulk terms Nuvol = Φy + 1, ǫ + 1, Φd, and boundary term Φb1 = 1

2
(Nutop + Nubot)

normalised by Nu are presented. First, note that, while the time-averaged quantities ǫ+1,
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Figure 17. Instantaneous fields for a particular reversal cycle taken at regular intervals during
the early release phase at (Ra = 5 · 107,Pr = 3.0). The first (resp. last) snapshot follows point
(a′p) (resp. precedes point (b′

p)). Streamlines are superposed to field 2eijeij the value of which
is given by the colour. Corresponding values of ǫ and Φd below each snapshot.

Φd and Φb1 converge to Nu, each corresponding term has a specific behaviour during the
different phases of the reversal cycle. Let us describe each instantaneous transfer rates
in turn.
The vertical heat flux Nuvol which measures the conversion from Eapot to Ekin (see

equations 2.7 and 2.8), is by far the term that is found the most fluctuating, notably
during the release. During the first part of the rebound i.e. the interval between points
(ap) and (bp) (resp. (a) and (b)) for the particular reversal (resp. for the generic curve),
Nuvol reaches peak values which are several times larger than Nu. This is related to the
release of thermal energy Eapot (figure 8) and plumes (figure 14). Between points (b) and
(c), the generic Nuvol abruptly decreases. In terms of a particular realisation, this is due
to the rotation of the bulk acting against buoyancy forces (points (bp) and (cp) in figure
14) and may result in a negative heat transfer as seen in figure 16 for the particular
reversal cycle. This is consistent with results from (Chandra & Verma 2013). During the
acceleration and accumulation phases, Nuvol fluctuates less and slightly decreases.

In addition to Nuvol, the viscous dissipation rate ǫ governs the evolution of Ekin (see
equation 2.7). Viscous dissipation increases briefly during the re-organisation periods:
once during the release phase around point (b), and again during the rotation of the
central vortex between points (c) and (d). A gradual increase in ǫ is observed during the
acceleration phase, between points (d) and (e), followed by a progressive decay during
the accumulation phase. For a particular reversal cycle, contributions to the viscous
dissipation rate ǫ are located (see figure 17) primarily along the vertical side-walls and
along the horizontal plates where ascending (resp. descending) plumes collide.
In addition to Nuvol, Eapot is governed by the mixing term Φd (see equation 2.12). As

seen in fields ∇yr · ∇θ on figures 14 and 15, contributions to Φd are distributed along
thin filaments which trace the contour of thermal plumes. Φd is thus affected by small
scales and fluctuates during all the process.
However, fluctuations are slightly larger during the second part of the release phase

(points (bp) to (dp)). An increase on such mixing fronts during the rotation of the bulk
leads to the corresponding increase of Φd. Note that during the accumulation phase, the
generic curve for Φd slightly decreases. Finally, the forcing boundary term Φb1 does not
fluctuate much on the whole cycle.
To summarize, the dominant mechanisms during the release phase are first the energy

conversion Nuvol followed by the mixing Φd during the rebound. The acceleration phase
is characterized by the increase of the viscous dissipation ǫ. A constant decay of both
dissipation ǫ and mixing Φd processes is conversely observed during the accumulation
phase.
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Figure 18. Time evolution of the angular impulse transfer rates for (Ra = 5 · 107,Pr = 3.0).

From top to bottom: Evolution of M/|M|, (M − Ib)/|M|, and Ia/|M|. Figure for L2D/|L2D| is
given as a reference curve. The left figure corresponds to the generic reversal: the average curve is
displayed in and the hatched region represents one standard deviation from this average.
The center and right figures depict two particular reversal cycles.
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Figure 19. Instantaneous fields for a particular reversal cycle taken at regular intervals during
the accumulation phase at (Ra = 5 · 107,Pr = 3.0). The first (resp. last) snapshot follows point
(ep) (resp. precedes point (ap’)). Streamlines are superposed to field 0.5(~x · ~x)∂xθ (the value is
provided by the color code). Corresponding values of M and Ia are given below each snapshot.

6.3. Angular momentum transfer rates

Since the evolution of L2D is characteristic of flow reversals, it is of interest to examine
the angular impulse transfer rates M, (M − Ib) and Ia of equation 2.4 (figure 18). In
addition to points (a) to (e), we introduce points (f) and (g). These points are located
inside the accumulation phase and coincide for point (f) with a change of sign for M and
for point (g) with a change of sign for Ia.
Time evolution of the input torque M has a maximum value during the rebound,

followed by a local minimum near point (d), a slight increase during the acceleration
phase and a monotonic decrease during the accumulation phase. The bulk term M(t)
and the boundary term Ib(t) are well-correlated and have similar orders of magnitude.
This is why only the M(t)− Ib(t) evolution is plotted.

Before point (e), the difference M(t) − Ib(t) is larger than Ia(t), from (e) to (f) it is
the opposite (dL2D

dt
changes sign). One may discriminate three time periods: from (a)
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to (f), Ia opposes L2D (i.e. the central vortex), contrary to the torque M or (M − Ib);
from (f) to (g), Ia opposes L2D similarly to M or (M − Ib); and finally, from (g) to (a),
Ia contributes to L2D which is opposed by M or (M − Ib). During the accumulation
phase, the integrand 0.5Pr[~x · ~x]∂xθ of the input torque M(t) is spatially distributed as
follows (figure 19): it is negligible inside the bulk, and concentrated in two regions, i.e.
along vertical side-walls associated with the central vortex and inside corners-flows. In
these two regions they are overall of opposite sign. At point (f), M(t) changes sign: the
corner-flows become dominant in the integrand of M(t) and the overall torque is then
opposing the central vortex (figure 18). Similarly, during the accumulation phase, the
integrand of Ia that is vorticity, is distributed in two sectors along the boundaries: one
along the boundaries of the central vortex, and another of opposite sign along the top
and bottom corners (figure 10). From point (g), Ia has changed sign: this is related to
the dominant contribution of the corner-rolls.
As a consequence, it is noteworthy that the input torque M(t) changes sign at point (f)

long before the reversal time (point (a)). The interval from point (f) to point (g) can be
seen as a transition period from a central vortex-dominated to a corner-rolls-dominated
flow.

7. Mechanism of transitions

7.1. Linear stability approach

The significance of instant (g) where Ia changes sign, is tentatively explained by two
complementary approaches. In a first approach, one considers the following hypothesis:
the change occurring in the accumulation phase near point (g), is due to a modification
of the dynamics governing fluctuations around large scale structures. The large scale
structures identified by fields θo(x, y, t) and ~uo(x, y, t) are here obtained by an ensemble
average over many realisations (see section 5.1). A linear stability analysis is thus defined.
The base state at time to is given by fields θo(x, y, to) and ~uo(x, y, to) frozen at this
particular time. The evolution of infinitesimal fluctuations θ′(x, y, t) and ~u′(x, y, t) is
studied around this frozen base state. The linear stability analysis is performed by direct
numerical simulations of the linearised Boussinesq equations,







∇ · ~u′ = 0
∂t~u

′ +∇ · [~u′ ⊗ ~uo + ~uo ⊗ ~u′] = −∇p′ + PrRa−0.5
∇

2~u′ + Prθ′~ey
∂tθ

′ +∇ · [~u′θo + ~uoθ′] = Ra−0.5
∇

2θ′
(7.1)

Each linearized simulation starts with random disturbances of velocity and temper-
ature fields and is computed for several hundred time units. The perturbation kinetic
energy 〈u′

iu
′

i〉vol or the square of the fluctuation temperature 〈θ′θ′〉vol are monitored in
time. In figure 20, each curve is related to a different base state to. Positive values of
growth rate σ are obtained in all cases.

For to before transition point (g), the values of σ are quite small (∼ 10−3 − 10−2) and
the most amplified mode corresponds to a trace of the base state itself (see figure bottom
left 20). This is possibly related to a slow variation in time of the large scale flow. In
contrast, once point (g) is reached, the growth rate σ increases by a factor of 20, while
a different most amplified mode appears. This amplified mode is reminiscent of the flow
features observed in the bottom right corner of figure 10.

7.2. Non-linear approach with adiabatic boundary conditions

We have identified through a linear stability analysis a critical generic state around
point (g). Let us now seek to relate this state to the “avalanche” mechanism: a mechanism
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Figure 20. Linear stability analysis of the generic fields for (Ra = 5·107,Pr = 3.0). (i) Placement
of the different values of to with respect to the generic L2D and Eapot curves. (ii) Evolution of
the energy of the normalised velocity and temperature perturbations for different base states (or
equivalently to). Growth rate σ measured for different values of to: △ σ = 0.009, N σ = 0.005,
� σ = 0.005, � σ = 0.006, ◦ σ = 0.011, • σ = 0.250; (iii) Streamlines corresponding to field
~uo(x, y, to) superposed to base state θo(x, y, to) shown for two values of to: ◦ located between
points (f) and (g) and • located on point (g). (iv) Disturbance field θ′θ′(x, y, t) measured at the
end of the curves corresponding to ◦ and •.

due to a localised accumulation of energy inside the fluid which is followed by a sudden
transition. One could argue that, when localised accumulation is sufficient, a reversal
event takes place even if the external thermal forcing is thereafter suppressed. A second
approach, which is non-linear, is based on this idea and confirms point (g) as a transition
point associated to a threshold state.
First, let us consider the conditionally averaged fields (θo(x, y, to) and ~uo(x, y, to))

obtained at time to for the standard RB problem, see figure 7. Starting from such fields
labeled by time to, we perform a direct numerical simulation of the non-linear Boussinesq
equations changing boundary conditions from isothermal to adiabatic on the top and
bottom plates. This effectively suppresses the external thermal forcing since Φb1 = Φb2 =
0 and limits the amount of thermal energy contained inside the cavity. Note that, different
initial conditions i.e. different to lead to different trajectories for the adiabatic problem.
Evolution of the normalised kinetic energy Ekin/|Ekin| and the normalised angular

impulse L2D/|L2D| can be seen in figure 21, where each curve corresponds to different
to (shown as ◦ marks) inside the accumulation phase. Dashed (resp. solid) lines indicate
negative (positive) values of L2D/|L2D|. For simulations preceding the transition point (g)
a decay in both the angular impulse and the kinetic energy are observed. On the contrary,
from point (g) on, a change from negative to positive values of L2D/|L2D| simultaneously
as peak values in Ekin/|Ekin| are observed, before the ensuing decay. To illustrate this
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Figure 21. Left panel: normalized angular impulse |L2D|/|L2D| (top) and normalized kinetic

energy Ekin/|Ekin| (bottom) for (Ra = 5 · 107,Pr = 3.0) as a function of to characterizing the
base state and time (t − to). Each curve represents different initial conditions i.e. different to,
where solid lines indicate when a flow reversal takes place (see text). Right panel: Evolution of
modal coefficients v̂mn from two initial conditions: before and at point (g).

transition we follow the evolution of Fourier modes v̂mn of the vertical velocity for two
initial conditions before and after point (g) as seen on figure 21. For initial conditions
preceding Ia = 0, an already weakened central vortex is unable to contain the corner-flows
in place but does not break (the mode v̂11 which is related to the monopole decreases but
remains negative). On the contrary, for initial conditions following the transition point
(g), Fourier coefficient v̂11 changes sign and thus indicates a LSC reversal, before the
subsequent decay.

8. Comparison with previous works

The present DNS results and their interpretation in terms of dynamical processes may
be discussed by comparison with previous experimental data and models. Experimental
data (Brown & Ahlers (2006); Xi & Xia (2008a,b)), and models like (Brown & Ahlers
(2007, 2008)) are devoted to the study of cylindrical 3D convection cells, where the
LSC plane oscillates. They are mostly focused on the dynamics of the angle of the
LSC plane which is a different phenomenon from the dynamics studied in this work.
Similarly models like (Sreenivasan et al. (2002); Benzi (2005)) which are based on non-
linear one-dimensional stochastic models, have been compared against experimental data
in cylindrical cells. Mainly they attempt to recover the exponential distribution for the
PDF of the inter-switch intervals. In 2D systems, such distribution is not observed and
again this is probably due to the difference between cessations-driven and rotation-led
reversals. Sreenivasan et al. (2002) states that reversals can be understood in terms
of an imbalance between buoyancy effects and friction, where inertia is playing only a
secondary role. In the present study, reversals do require the accumulation of potential
energy and point (g) is associated to a threshold state pinpointed by the change of sign of
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Ia a quantity related to wall friction. However, the model proposed in Sreenivasan et al.

(2002) is a local one, which follows a single parcel of fluid, while our understanding of
the dynamics depends on the existence of global flow structures. It is also mentioned in
Sreenivasan et al. (2002) the possible role of side-wall thermal conductivity on reversals,
which is excluded here. The model by Araujo et al. (2005) is based on the inertia of a
plume to initiate the reversal. In our case, inertial effects appear during the rebound: as
mentioned in §6.1, the newly formed circulation is able to advect thermal blobs against
the action of buoyancy forces. However, this is a direct consequence of the reversal and
not the triggering factor. Low order models could be based also on POD modes (Podvin &
Sergent (2015, 2016)). This approach allows to rebuild the full dynamics of the velocity
and temperature fields. The model proposed in Podvin & Sergent (2015) that uses 3
leading modes, is able to reproduce large-scale features of our DNS results when noise
is introduced: reversal and cessation dynamics, and growth of corner flows during the
accumulation phase. It is also able to reproduce the characteristic time scales as given
in §4. However, the phases predominantly associated in the present work to small scales,
such as the acceleration and second part of the release, are by construction not recovered
by the model described in Podvin & Sergent (2015). Going back to the threshold state
on point (g), the existence of such a point has also been identified through a large scale
description of reversals by a POD approach (Podvin & Sergent (2016)). The scenario
of the growth of corner flows leading to the release in the case of a square RB cell has
been previously proposed by (Chandra & Verma (2013); Sugiyama et al. (2010)). Both
papers pointed out the feeding of the corner flows by plumes detached from horizontal
boundary layers. Our results agree with these findings. But we present this process in a
more quantitative way through the use of field Pr(yr − y)θ (see figure 11): in this way,
we are able to show that Eapot is stored mainly in the corner flows. Neither of the two
previous papers quantified the energy exchange between kinetic and potential energy
during the release. In the present paper, the energy exchange is clearly demonstrated on
figures 8 and 9. Furthermore, the figure 12 shows that the energy exchange takes place
between the corner flows and the bulk.

9. Concluding remarks

In this paper we used long-term data from two-dimensional DNS in square RB cells
inside the CR regime to perform a statistical characterisation of reversals. Once having
removed the samples not contained in the CR regime, a simple time rescaling allowed us
to identify a generic reversal cycle in terms of the evolution of three global quantities:
the global angular impulse, the global kinetic energy, and available potential energy.
Consistent dynamical features were found for different values of (Ra,Pr), and suggested
the existence of a generic reversal mechanism, composed of three successive phases:
accumulation, release, and acceleration.

The accumulation phase is characterised by a progressive build-up of thermal energy
almost exclusively inside the corners thereby inducing them to grow. During the release
phase, an energy exchange takes place from available potential energy to global kinetic
energy: the opposing corner-flows connect to form a new central vortex and the thermal
energy contained from small-scales is suddenly released into the bulk. A newly formed
vortex may complete several turnovers before the temperature differences inside the bulk
are reduced. Strong fluctuations in both the angular impulse and the kinetic energy are
observed during this process, referred to as a rebound. During the acceleration phase,
the global angular impulse and the kinetic energy increase as a result of spontaneous
self-organisation of the flow into a large diagonal vortex and two small counter-rotating
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corner-flows. During this phase, increased mixing inside the central vortex results in a
very homogeneous bulk temperature and almost constant potential energy. We comple-
ment this view in terms of the evolution of energy transfer rates.

Finally, in order to identify the presence of a transition between accumulation and
release, we propose two approaches. First a linear stability analysis is performed around
generic fields ~uo(x, y, to) and θo(x, y, to) (obtained as the ensemble average over long
term DNS results). A sharp increase in the exponential growth rate σ is shown before
the beginning of the release phase. In a second approach, the same transition zone is
put into evidence by suppressing the external thermal forcing and letting the system
evolve from different initial conditions inside the accumulation phase. The presence of a
reversal-type event is an indication that a sufficient amount of thermal energy already
being stored in the system triggers the reversal.

This work can be easily extended for 2D cells with different geometries or different
boundary conditions. This could provide a complementary view to improve the under-
standing of reversals in 2D convection, in particular to the role of corner flows. In a future
work, we intend to compare more precisely the present findings with results from POD-
based models proposed in Podvin & Sergent (2015, 2016). In RB 3D cells, the energy
budget has already been used but it was considered only in a time-averaged sense. The
instantaneous energy budget used here and the way it is related to flow structures can be
extended to 3D cells. Indeed, this approach is currently being implemented by the authors
in the particular case of a 3D cell which is very much confined in the transversal direction.
Our statistical approach however might be difficult to use in cylindrical convection cells
for two reasons: first, one needs a long time signal containing a sufficient number of events.
This is a difficult thing to achieve in a fully resolved 3D DNS. Second, the situation is
more complex in 3D than 2D since in cessation-led (resp. rotation-led) reversals, the
LSC plane changes in time abruptly (resp. through azimuthal or torsional motions).
This implies to identify or develop a new criteria to follow the evolution of the LSC.
This is a limiting factor for expanding the method to 3D convection case in a cylindrical
domain.
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Podvin, Bérengère & Sergent, Anne 2015 A large-scale investigation of wind reversal in a
square Rayleigh-Bénard cell. Journal of Fluid Mechanics 766, 172–201.
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Figure 4.1: Evolution of the kinetic energy Ek and the available potential energy Ea during
a generic reversal for Ra = 5 · 107 and Pr = 3.

Additional remarks added after publication

Figure 8 of the present paper illustrates a competing behavior between the kinetic Ek

and the total and available potential energies, Ep and Ea respectively. This behavior may

give the impression that the sum of Ek and Ea to be nearly constant during reversals as

expected in the inviscid limit. This is not the case, see figure 4.1. It is convenient to note,

that this difference may be accounted for by fluctuations of the internal energy, and to a

smaller degree to the Boussinesq approximation, which neglects the heating due to viscous

dissipation of energy.
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Chapter 5

Coherent structures during flow

reversals and cessations

For turbulent Rayleigh-Bénard cells, modal analysis can be used to separate the effects

of large- and small-scale flow in order to highlight the spatio-temporal dynamics of the

large-scale circulation. So far two types of modal analyses have been used: Fourier analysis

(Chandra and Verma, 2011; Chandra and Verma, 2013) and proper orthogonal decom-

position (POD) analysis (Verdoold et al., 2009; Bailon-Cuba et al., 2010; Podvin and

Sergent, 2012; Podvin and Sergent, 2015; Podvin and Sergent, 2017). The POD basis is

orthogonal, is derived exclusively from observations and the resulting modes are arranged

‘optimally’ regarding their energetic contents. Unlike the Fourier modes, the POD can be

applied to different geometries and boundary conditions.

We chose the latter approach to provide a low-order description of two-dimensional Rayleigh-

Bénard dynamics inside the regime of consecutive reversals and the regime of extended

cessations in terms of the evolution of the most energetic structures, see §2.6.2. This

chapter was built upon existing works (Podvin and Sergent, 2015; Podvin and Sergent,

2017) and complements the statistical approach presented in §4.

This chapter is divided in five main parts. In the first part we compare different POD

formulations on the reconstruction of primitive fields as presented in (Podvin and Sergent,

2015). Additionally we compare the reconstruction of the mechanical energy during a

generic reversal in order to select the formulation of the POD and the number of modes

for a low-order description. Next, DNS data is divided on two subsets: one subset which

corresponds to the regime of consecutive reversals only, and one subset which excludes this

regime. The second part of the chapter is devoted to the POD analysis of the consecutive

reversals exclusively. This is seen as complementary to the statistical interpretation of the

generic reversals. This approach is extended to regime of cessations in the third part of

the chapter. Then we compare both regimes in the fourth part, by fixing the set of POD

modes. Finally, in the fifth chapter, we follow the energy contents of the different modes

as we increase Ra to provide insight on the evolution of the large-scale dynamics.

79



5.1 Comparison of the different POD formulations for con-

vection problems

The idea behind any decomposition is to be able to represent a given quantity as the sum of

a series of simpler expressions. If all of the terms are retained, one is expected to recover

the original data, regardless of the method used. For a finite number of POD modes,

one formulation might reconstruct more accurately the evolution the quantities we are

interested in. Consider the three different formulations of the POD which were presented

earlier on §2.6.2: formulation (A) based on the temperature field, formulation (B) based

on the velocity vector field, and formulation (C) which combines the temperature and

velocity fields.

For convection problems a mixed formulation is generally preferred (Sirovich, 1987; Park

and Sirovich, 1990). In the study of flow reversals inside square Rayleigh-Bénard cells,

(Podvin and Sergent, 2015) compared different formulations and obtained similar coherent

structures for each one. Based on these observations, three-mode and five-mode models

were proposed (Podvin and Sergent, 2015 and Podvin and Sergent, 2017, respectively)

that reproduce many of the key features of the large-scale flow reversals.

In the following sections, we validate our approach by comparing against reference results

(Podvin and Sergent, 2015; Podvin and Sergent, 2017). Having validated our POD code,

we proceed to compare, for a mixed formulation the influence of the low-order truncation

on the reconstruction of flow structures and global quantities which characterize the rever-

sal process. In addition, we compare the results obtained from a six-mode reconstruction

of the kinetic and potential energies during a generic reversal.

5.1.1 Comparison of POD modes for the different formulations

In order to validate our approach we compare to published results by (Podvin and Sergent,

2015; Podvin and Sergent, 2017). Converged results were obtained for (Ra = 5 · 107,Pr =

4.3)from 1200 snapshots taken every 5 convective time units. Results change very little

when using a larger number of snapshots or a different time interval between snapshots.

These snapshots correspond to the time series displayed in figure 5.1a.

An initial comparison is based on the POD spectra and the eigenvalues λi (see equation

(2.65)) displayed on figure 5.1b for the first 20 modes. For each formulation (A,B,C) the

contributions from mode k = 1 are at least 3 orders of magnitude larger than contributions

from mode k = 20. For formulation (A), apart from the first and second modes, the

energetic content from each mode was found to be quite small and evenly distributed

among the different modes. As a consequence, if we consider the cumulative energy defined

as
∑k
i=1 λi/

∑∞
i=1 λi, the amount of energy contained inside a fixed number of modes is

smaller for formulation (A) than for formulations (B) and (C). For instance, the cumulative

energy inside the first 6 modes in formulation (A) is only of 0.80, whereas this value is

close to 0.90 (resp. 0.88) for formulations (B) (resp. (C)), see figure 5.1c. From this

point of view, formulation (A) is deemed less favorable for a low-order description than

formulations (B) and (C).

The resulting POD modes and corresponding educed modes are displayed on figure 5.2:
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Figure 5.1: (a) Time series of L2D during the sampled interval for (Ra = 5 · 107,Pr = 4.3).
(b) Eigenvalues obtained for the first 20 POD modes; (c) 100

∑k
i=1 λi/

∑∞
i=1 λi. POD

analysis based on temperature formulation (A); on the velocity formulation (B); or the
joint velocity-temperature formulation (C).

the first row corresponds to the temperature mode φ
(θ)
k and the second row corresponds to

the stream-function of the velocity modes, i.e. (φ(u)

k , φ(v)

k ). The bottom row corresponds

to contributions from each mode to the convective heat-flux in the vertical direction, i.e.

φ(v)

k φ(θ)

k . Results in figures 5.2a and 5.2b have been normalized by a factor such that

〈φ(θ)

j φ(θ)

k 〉 + 〈φ(u)

j φ(u)

k 〉 + 〈φ(v)

j φ(v)

k 〉 = cjk, as to facilitate the comparison. For formulation

(C) cjk corresponds to the Kronecker delta δjk. However for formulations (A) and (B),

since the educed modes are not orthogonal cjj = 1 and cjk 6= 0 for j 6= k.

We validate our implementation of the POD by comparing our results with those from

(Podvin and Sergent, 2015): For formulations (B) and (C), we recover the same type of

flow structures and the energetic content of each mode is in good agreement. For the

formulation (A), the two most energetic modes are identical. For modes k ≥ 3, we obtain

a similar set of modes although in a different order. If we consider a POD spectra in

which several modes have a similar energetic content, the order of these modes could be

influenced by the sampled interval. For instance, the third to fifth modes in formulation

(A). As observed by Podvin and Sergent, 2015, all three formulations produce the same

type of coherent structures with only a different distribution of the energy contents and

can be grouped together based on their natural symmetries Sx, Sy, Rπ described in 2.5,

see table 5.1. For consistency, we will use the same notation as (Podvin and Sergent, 2015;

Podvin and Sergent, 2017).

Consider the results obtained using formulation (C). As shown by (Podvin and Sergent,

2015; Podvin and Sergent, 2017), the first (denoted L) and fourth (denoted L∗) most

energetic modes have the same symmetry group: both are antisymmetric with respect to

the Sx and Sy symmetries, and symmetric with respect to Rπ. The mode L corresponds to
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Temperature formulation (A)

k=1 k=2 k=3 k=4 k=5 k=6

k=1 k=2 k=3 k=4 k=5 k=6

k=1 k=2 k=3 k=4 k=5 k=6
(B) Velocity formulationVelocity formulation (B)
Velocity POD modes (B)

Velocity POD modes (B)

Velocity POD modes (B)

Mixed formulation (C)

k=1 k=2 k=3 k=4 k=5 k=6

k=1 k=2 k=3 k=4 k=5 k=6

k=1 k=2 k=3 k=4 k=5 k=6L Q Sy L∗ Sx Q∗

Figure 5.2: Six most energetic POD modes obtained using formulations (A), (B), and
(C) for (Ra = 5 · 107,Pr = 4.3). For each formulation the top row corresponds to the
temperature modes, the middle row to the stream-function of the velocity modes and the
bottom row to the advective heat-flux in the vertical direction, i.e. φ(v)

k φ(θ)

k . Results by a
common factor as to facilitate the comparison, see text.
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Mode-L Mode-Q Mode-Sy Mode-L∗ Mode-Sx Mode-Q∗

Formulation (C) 1 2 3 4 5 6
Formulation (B) 1 3 2 4 5 6
Formulation (A) 2 1 5 3 4

Symmetry Sx AS S AS S S
Symmetry Sy AS S S AS S
Symmetry Rπ S S S S

Table 5.1: Hierarchy of modes in each POD formulation for (Ra = 5 · 107,Pr = 4.3). For
each mode, we indicate if the mode is symmetric (S) or antisymmetric (AS) with respect
to Sx, Sy, Rπ described in 2.5.

a large-scale single-roll mode with small recirculation cells in the corners, whereas mode

L∗ corresponds roughly to three vertically stacked rolls. The second (denoted Q) most

energetic mode is symmetric with respect to Sx and Sy and corresponds to a four-roll

mode. This mode bears a strong resemblance to the mean fields (Podvin and Sergent,

2015). The sixth most energetic mode is similar to Q, but displays a pattern consisting of

eight rolls: four in the center and four in the corners. This mode is characterized by having

blobs of hot (resp. cold) fluid inside the bulk just opposite to the cold (resp. hot) thermal

boundary layers. Since this mode belongs to the same symmetry group as Q, we denote

this mode as Q∗. The third and fifth most energetic modes are symmetric with respect

to either Sx or to Sy. Mode Sy consists on a vertically stacked double roll mode, which

is symmetric with respect to the horizontal axis, hence the name. Conversely, mode Sx
consists on two horizontally stacked rolls, which is symmetric with respect to the vertical

axis. All of these modes have a positive overall contributions to the vertical heat-flux.

However, the modes Sx and Q∗ display zones with important negative heat-flux near the

corners.

We would like to compare how low-order reconstructions using the different formulations

are able to describe the main flow features of the generic reversal and recover the evolution

of different global quantities which characterize the reversal process, namely the global

kinetic, total potential and available potential energies. Before making such comparison,

it is necessary to fix a number of modes for the low-order reconstructions. In the following

section we focus on influence of the low-order truncation on the reconstructed fields and

the global quantities.

5.1.2 Influence of the low-order truncation on the reconstructed fields

using the mixed POD formulation (C)

In order to illustrate the influence of the truncation on a low-order reconstruction, let us

compare the DNS results against reconstructions obtained using the mixed POD modes

for (Ra = 5 · 107,Pr = 4.3). Reconstructed fields are obtained using the three, six, nine,

and twelve most energetic modes: modes k = 1 to k = 6 are displayed on figure 5.2, while

modes k = 7 to k = 12 are displayed on figure 5.3. We are primarily interested in the

evolution of the global kinetic and the total potential energies. First, one reconstructs the

primitive fields (θ̃, ũ, ṽ) using a fixed number of POD modes, then compute Ẽk and Ẽp

from these reconstructed fields. Last, one evaluates the absolute deviation from the DNS
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k=7 k=8 k=9 k=10 k=11 k=12

Figure 5.3: Modes k = 7 to k = 12 obtained using formulation (C) for (Ra = 5 · 107,Pr =
4.3). Continues from figure 5.2.

results

%Error(Ek) = 100
Ẽk − Ek

Ek
%Error(Ep) = 100

Ẽp − Ep

Ep
(5.1)

as function of time. Note that contributions from each mode to Ek are always positive,

whereas the contribution to Ep can be both positive and negative. Furthermore, contri-

butions to Ep from modes antisymmetric with respect to Sx are zero, for instance modes

L and L∗.

Consider the time series of Error(Ek) and Error(Ep) displayed in figure 5.4 during a par-

ticular reversal. A time-series of L2D is displayed for reference. Let us focus on the

three-mode reconstruction. During the first part of the accumulation phase (see plateau

in L2D), there is little difference from the reconstruction of Ek to the DNS. However, by the

end accumulation phase (◦ mark in figure 5.4a), the value of Error(Ek) begins to increase

with respect to the other reconstructions until the end of the acceleration. The picture for

Ep is similar but deviations are accentuated positively or negatively from the end of the

accumulation until the end of the acceleration. A six-mode reconstruction works better

during both phases (compare ◦ and • marks in figures 5.4a and 5.4b) and has a consistent

behavior with the nine- and twelve-mode reconstructions.

The larger deviations during the release and acceleration phases suggest an increased

activity of the smaller scales. To illustrate this we compare four snapshots issued from the

DNS against their respective POD reconstructions (figures 5.5a to 5.5d): the first snapshot

takes place during the accumulation phase; the second one takes place during the release

phase, just before the corner-rolls are merged; the third snapshot is taken during the

rebound; and the last one during the acceleration phase corresponds to the rotation of

the central vortex. For the first and last snapshots, one is able to recover most of the

flow features using a three-mode reconstruction (figures 5.5a and 5.5d). However, during

the release this reconstruction fails to reproduce the merging of the corner flows (figure

5.5b). In addition, during the rebound, the three-mode reconstruction fails to recover
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Figure 5.4: Evolution of the error in the low-order reconstructions of Ek and Ep during a
particular reversal for (Ra = 5 ·107,Pr = 4.3). Color indicates the number of POD modes:
three-modes (red lines), six-modes (blue lines), nine-modes (green lines) and twelve-modes
(purple lines). Inset displays the evolution of L2D for reference. Hollow ◦ (resp. solid •)
marks indicate results to a three-modes (resp. six-modes) reconstruction corresponding
to snapshots displayed on figure 5.5.

the detachment of the central vortex from the upper and lower walls (figure 5.5c). For

all of the snapshots, the small-scale plumes are smoothed out and the blobs of hot/cold

fluid inside the corner-rolls are barely visible. Furthermore, thermal boundary layers are

missing from a three-mode reconstruction during the rebound and during the acceleration

(figures 5.5c and 5.5d).

It is clear that a three-mode reconstruction is insufficient to recover the energetic and some

key features of a particular flow reversal. However, it is more difficult to state how many

modes are actually required. At least six modes are required to prevent unphysical results

such as the vanishing of the boundary layers. Incremental improvements are observed as

one includes additional modes, but it is difficult to extract a general trend. For this reason

it may be interesting to compare the reconstructions of the generic reversal instead of a

particular one. In the following section, we take this approach to compare the different

formulations of the POD using a six-mode reconstruction of the generic reversal.

5.1.3 Comparison of a six-mode reconstruction of the energetics of a

generic reversal for the different formulations of the POD

In order to illustrate the differences between the POD formulations, let us consider the

generic reversal cycles obtained by the DNS results against six-mode reconstructions. We

use the following procedure to build a generic reversal from the reconstructed fields:

1. Project primitive fields and obtain modal coefficients αk(t) for each formulation.

2. Evaluate a six-mode reconstruction of the primitive fields ψ̃ = (θ̃, ũ, ṽ).

3. Evaluate the global kinetic energy Ẽk(t), the potential energy Ẽp(t), and the available

potential energy Ẽa(t), based on the reconstructed fields ψ̃ = (θ̃, ũ, ṽ). For practical

purposes we approximate the reference height as ỹr = yr(θ̃).

4. Apply the conditional average presented in §4 to each quantity based on the ampli-

tude of mode L (by analogy to L2D).
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(a) DNS 3 modes 6 modes 9 modes 12 modes

DNS 3 modes 6 modes 9 modes 12 modes
(b) DNS 3 modes 6 modes 9 modes 12 modes

(c) DNS 3 modes 6 modes 9 modes 12 modes

DNS 3 modes 6 modes 9 modes 12 modes
(d) DNS 3 modes 6 modes 9 modes 12 modes

Figure 5.5: DNS results compared to a reconstruction obtained using POD modes for
(Ra = 5 · 107,Pr = 4.3). Snapshots correspond to instants identified as solid marks in
figure 5.4: (a•) during the accumulation phase ; (b•) during the release phase ; (c•) the
rebound ; and (d•) during the acceleration phase. For each figure, the top row corresponds
to the temperature field and the bottom row to the stream-function.

86



(a)

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

f g

E
k
/

E
k

[t − ri]/τ1,i

(b)

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

f g

E
p
/

E
k

[t − ri]/τ1,i

Figure 5.6: Kinetic and potential energy during a generic reversal: DNS results (black
lines) are compared to the conditional averaged values obtained from the first six POD
modes using different formulations for (Ra = 5 · 107,Pr = 4.3): (A) in red, (B) in blue,
and (C) in purple. Shaded region represents one standard deviation from the DNS results
in three phases: release (orange), acceleration (green), and accumulation (blue). The
transition points, (f) and (g) defined in the previous chapter are shown for reference.

Results obtained using each formulation are displayed in a different color on figure 5.6.

Using formulation (C), one is able to recover the approximate shape and order of mag-

nitude of Ek throughout the cycle, although the reconstruction only contains 91% of Ek.

For Ep the picture is slightly more complicated and two major deviations from the generic

cycle are observed (figure 5.6b). The first deviation is observed during the rebound, where

the value of Ep is underestimated. The second deviation is observed during the accumula-

tion phase: Ep grows linearly but stagnates near the transition points (f) and (g), before

decreasing instead of increasing faster as observed from the DNS. This suggests that, near

the end of the accumulation phase, thermal energy is being stored inside smaller scales,

absent from the six-modes reconstruction.

For formulation (B velocity-based), the reconstruction of Ek is roughly the same as in

formulation (C), whereas for formulation (A temperature-based), the reconstruction of

Ep now follows closely the generic cycle. This improvement is reflected on the amount

of energy contained inside these modes, see table 5.2. The improvement also suggests

that one of the six temperature-based modes from figure 5.2, which is not included in

the first six mixed-modes, becomes the carrier of thermal energy just before the reversal.

Now consider using formulation (A) to evaluate Ek and formulation (B) to evaluate Ep.

The reconstruction of the potential (resp. kinetic) energy using only the velocity (resp.

temperature) based modes, fares much worse than results produced from formulation (C).

Before moving on to the next section, let us consider the case of a reconstruction of the

available potential energy Ea (see figure 5.7a). Observe that Ẽa has the same shape as

the reconstructions of Ep, but underestimates its value by as much a 20% with respect to

the DNS. This deficit is nearly constant all along the cycle and is observed in all three

formulations, even for the temperature-based one. Let us remind that Ep depends on

the probability distribution of the temperature field which is required to compute yr. A

low-order reconstruction does not preserve the bounds nor the probability distribution of

the temperature field (see figure 5.7b), making very difficult to compute Ea accurately.
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Formulation 〈ψ̃2〉/〈ψ〉 Ẽk/Ek Ẽp/Ep Ẽa/Ea

A 80% - 99% 88%
B 90% 91% - -
C 88% 91% 97% 85%

Table 5.2: Comparison of the generic reversal cycle using different formulations of the
POD. Six-mode reconstruction of the combined energy 〈ψ̃2〉/〈ψ2〉 with ψ̃ = (θ̃, ũ, ṽ) (resp.
ψ = (θ, u, v)), and reconstructions of the kinetic, potential, and available potential energies
measured with respect to DNS results.
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Figure 5.7: Left: Available potential energy during a generic reversal compared to the
conditional averaged values obtained from the first six POD modes for (Ra = 5 · 107,Pr =
4.3). Layout is similar to figure 5.6. Right: Probability density and cumulative density
functions of an instantaneous temperature field θ(x, t) corresponding to the release phase
of a particular reversal, compared to a six-mode reconstruction using formulation (A).

Using separate expansions for the temperature and velocity field gives better results but

comes at the expense of losing the coupling between the velocity and temperature fields. If

we opt for a single expansion, then formulation (C) gives better results. This comparison

makes a good case for using a mixed formulation for POD analysis inside Rayleigh-Bénard

cells. This comparison does not change our previous conclusion that six-modes are suffi-

cient to provide a simplified description of the reversal process. In the following we focus

on results obtained using formulation (C).

5.2 Dynamics inside of the ‘regime of consecutive reversals’

using mixed POD modes

Let us separate our data into two sub-sets using the filtering procedure presented in §4.

For (Ra = 5 · 107,Pr = 4.3) the first set is composed of 3150 snapshots taken every 4

convective time units belonging to the ‘regime composed of continuous reversals’ (CR),

while the second one excludes snapshots from this regime. For consistency, we repeat this

procedure for (Ra = 5 · 107,Pr = 3.0) using 1500 snapshots inside the CR regime. In this

section, we focus on the POD analysis performed on the CR subset.
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5.2.1 Leading POD modes in the ‘regime of consecutive reversals’
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Figure 5.8: POD analysis of the filtered subset corresponding to the CR regime for Ra =
5 · 107. (a) Eigenvalues obtained for the first 20 POD modes; (b) 100

∑k
i=1 λi/

∑∞
i=1 λi.

The POD spectra and the eigenvalues λi (see equation (2.65)) are displayed on figure 5.8

for the first 20 modes. Contributions from the most energetic mode are at least 3 orders of

magnitude larger than contributions from mode k = 20, whereas the the cumulative energy

contained inside the first 6 modes is close to 0.90 for both values of (Ra,Pr), compared to

0.88 when using the complete series.

The resulting POD modes are displayed in figure 5.9. In both cases, we recover a similar

set of coherent structures. Since the complete series features prominently the CR regime,

it comes as no surprise that CR modes and modes obtained from the entire set resemble

each other (compare figures 5.2c and 5.9a). The filtered modes are cleaner and more

symmetric. Modes L, Q, L∗ and Q∗ are nearly identical to those from the complete set,

but the two other modes are slightly different from Sy and Sx. In the following we refer to

these modes as S and S∗, since S is antisymmetric (resp. symmetric) with respect to Sx

(resp. Sy) whereas S∗ is antisymmetric (resp. symmetric) with respect to Sy (resp. Sx),

making both modes antisymmetric with respect to Rπ.

In the following sections, we focus on the time evolution of these modes using a six-modes

reconstruction of the generic reversal cycle.

5.2.2 Time evolution of the leading POD modes of the CR subset

We project the modes displayed in figure 5.9 into the temperature and velocity fields to

obtain the modal coefficients αk for the entire set. The evolution of the amplitude of mode

L is nearly identical to L2D (not shown), thus allowing us to apply the filtering procedure

presented in §4 and separate the CR regime, the EC regime, and intermediate flow regimes.

The curves of the modal coefficients during each reversal are stacked together to obtain

conditionally-averaged (or generic) coefficients for each POD mode, see figures 5.10 and

5.11, where each mode is observed to display a characteristic behavior.

Let us consider the time evolution for Pr = 3.0. First, note that L and L∗ are the only

modes that display a reversal at the same time. The mode L mirrors the evolution of L2D

and alternates between a positive and a negative plateau states. The evolution of mode L∗

is tied to the sign of L and to the different phases of a generic reversal (figures 5.10(1) and
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(a)

k=1 k=2 k=3 k=4 k=5 k=6

L Q S L∗ Q∗ S∗

(b)

k=1 k=2 k=3 k=4 k=5 k=6

L Q L∗ S Q∗ S∗

Figure 5.9: POD modes obtained from a filtered subset including only the regime of
‘consecutive reversals’ for (a) (Ra = 5 · 107,Pr = 4.3) and (b) (Ra = 5 · 107,Pr = 3.0).
Layout is identical to that of figure 5.2.

5.10(2)). Consider the case with a positive L. At the beginning of the accumulation L∗ is

negative, effectively aiding the main circulation. During the accumulation, the value of L∗

increases slowly until it becomes positive. As noted by (Podvin and Sergent, 2017), when

L and L∗ have the same sign, the flow is weakened along the upper and lower boundary

layers. Then, mode L∗ continues to increase at a faster rate, which coincides with a more

pronounced decrease in L observed from the transition points (f) and (g). Then, during

the reversal the value of L∗ suddenly drops to negative values and bounces back during the

release phase. Last, modes L and L∗ have opposite signs, consistent with the acceleration

phase of the generic cycle.

The evolution of the fully symmetric modes Q and Q∗ are tied to the phases of a generic

cycle, but not to the sign of mode L. Mode Q is mostly positive and is reminiscent of the

evolution of Ep described in §4: Mode Q increases progressively during the accumulation

phase (figure 5.10(3)), exhibits a sudden drop during the reversal, which is followed by a

rebound. On the contrary, the value of Q∗ is centered around zero, but is highly correlated

to value of Q: the value of Q∗ decreases as Q increases and vice versa. Both Q and Q∗ are

strongly related to the thermal boundary conditions and enforce the global unstable tem-

perature stratification. In this sense, Q∗ serves to compensate for changes in Q. Observe

that Q∗ changes sign during the accumulation around the transition point (g), whereas
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Figure 5.10: Evolution of modal coefficients for (Ra = 5 · 107,Pr = 3.0). Conditional
averages are obtained using the procedure described in §4. Generic curves displayed in
solid lines, shaded region indicates one standard deviation with each phase of the reversal in
color: release (orange), acceleration (green), and accumulation (blue). Marks ◦ correspond
to the fields in figures 5.13(i) to 5.13(x). where (i) is indicated by a • mark.
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Figure 5.11: Same as in figure 5.11 for (Ra = 5 · 107,Pr = 4.3). Marks ◦ corresponds to
the fields in figures 5.14(i) to 5.14(x) where (i) is indicated by a • mark.
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Figure 5.12: Conditional PDF of the modal coefficients αk(t) inside the CR regime dis-
played in color, PDF of the complete series shown in black. (a) (Ra = 5 · 107,Pr = 3.0)
and (b) (Ra = 5 · 107,Pr = 4.3).

the sign switch in L∗ is closer to the transition point (f). After both modes switch signs,

they contribute to the accumulation of thermal energy inside the corner rolls and to the

detachment of the large diagonal vortex.

The horizontally and vertically stacked dipoles (modes S and S∗) play no dominant role

during the generic cycle: their generic curves are essentially zero, but have a larger fluctu-

ations during the release phase. Similar trends in the evolution of the modal coefficients

are observed for Pr = 4.3. However, the placement of the sign switch in modes L∗ and Q∗

relative to the transition points (f) and (g) is less clear (see figure 5.11).

In order to illustrate the variability of the modal coefficients, let us consider their prob-

ability density functions as well. To focus on the behavior of the CR regime, figure 5.12

displays conditional probability density functions (PDF) superimposed to the PDF of the

entire set. Inside the CR regime, the antisymmetric modes (L and L∗) display a bimodal

probability distribution, whereas the symmetric modes (Q and Q∗) have asymmetric dis-

tributions. Additionally, modes S and S∗ are consistent with a double exponential dis-

tribution centered around zero. This suggest their evolution in time to be driven by a

random (stochastic) process, which may explain why the generic curve is flat. This is

consistent with observations for Pr = 1 (Verma et al., 2015).

To verify if the evolution of these six POD modes is representative of the reversal process,

we perform a reconstruction of the generic reversal using the POD modes and the generic

modal coefficients presented here and compare it against the conditionally-averaged fields

presented in §4.
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Figure 5.13: Generic fields (top) compared to reconstructed fields using coefficients from
figure 5.10 (bottom) for (Ra = 5·107,Pr = 3.0). Streamlines are superposed to a color-map
of field yr(x, t). Snapshots correspond to a mark in figure 5.10.
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Figure 5.14: Same as in figure 5.13 for (Ra = 5 · 107,Pr = 4.3). Each snapshot correspond
to a mark in figure 5.11.
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5.2.3 A six-modes reconstruction of the reversal cycle based on the

generic modal coefficients

We use the generic modal coefficients from figure 5.10 and the corresponding POD modes

to obtain a six-mode reconstruction of a generic reversal for (Ra = 5 · 107,Pr = 3.0).

Reconstructed fields are compared to the generic fields obtained in §4, see figure 5.13.

Each field correspond to one of the marks in figure 5.11, where the first snapshot (i) is

indicated with a • mark. A similar exercise is performed for Pr = 4.3 using the generic

modal coefficients from figure 5.11 and the corresponding POD modes.

For both values of Pr, the reconstructed fields reproduce the main features of the accu-

mulation (i to iv) and acceleration (ix to x) phases identified by the conditional averages

of the primitive variables §4: a large diagonal roll squeezed by growing counter-rotating

corner-rolls and large thermal plumes located along the opposite side-walls. However, the

release of thermal energy into the bulk is not recovered with the same level of detail (v to

vi): the breakup of the large-scale circulation and the formation of a new one are clearly

visible, however, the continuous rotation of the newly formed circulation and the temper-

ature field inside the bulk are missing. This was expected, since small-scale plumes are

not recovered by the reconstructed fields by construction. Indeed, the conditional average

of the primitive variables preserves the most representative spatial small-scales, as seen

from the comparison for Pr = 4.3 in figure 5.14.

Both approaches are seen as complementary to each other and give a different perspective

of the same physical process with consistent results.

5.3 Dynamics outside of the ‘regime of consecutive rever-

sals’ using mixed POD modes

In the previous section we separated our data into sub-sets: a first one belonging to the

CR regime, and a second one excluding the CR regime composed of 1900 snapshots taken

every 2 convective time units for (Ra = 5 · 107,Pr = 4.3). In this section, we concentrate

on the POD analysis performed on the second set which contains snapshots taken from

the ‘regime of extended cessations’ (EC) and from an intermediate regime, referred to as
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(a) Pr = 3.0 - Excluding consecutive reversals
Joint Velocity-Temperature POD modes (C) - EC

Joint Velocity-Temperature POD modes (C) - EC

Joint Velocity-Temperature POD modes (C) - EC

(b) Pr = 4.3 - Excluding consecutive reversals
Joint Velocity-Temperature POD modes (C) - EC

Joint Velocity-Temperature POD modes (C) - EC

Joint Velocity-Temperature POD modes (C) - EC

Figure 5.16: Six most energetic POD modes obtained using formulation (C) and a filtered
subset which excludes the regime of ‘consecutive reversals’ for (a) (Ra = 5 · 107,Pr = 3.0)
and (b) (Ra = 5 · 107,Pr = 4.3). From top to bottom: temperature field, stream-function,
and vertical heat-flux. Layout is identical to figure 5.2.
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rogue reversals in §4. The main idea is to determine if there exists a particular type of

flow structure strictly related to cessations, that is hidden or distorted due to the presence

of the CR regime. This is a challenging thing to do for several reasons. For the selected

values of (Ra,Pr) the amount of time spent inside extended cessations is only a small

fraction of the total length. The limited number of snapshots available inside this regime

also makes very difficult to verify the convergence of our POD analysis. In order to validate

our results, we repeated this procedure for (Ra = 5 · 107,Pr = 3.0) using a total of 1600

snapshots. Since cessations are less common for this value of (Ra,Pr) and our observations

are shorter, snapshots in the subset excluding reversals are taken every convective time

unit.

The resulting POD spectra is shown in figure 5.15 for the first 20 modes. Results for both

values of (Ra,Pr) are consistent with each other: cumulative energy contained inside the

first 6 and 20 POD modes of 0.88 and 0.94, respectively, and at least 2 decades of decay

are observed between modes k = 1 and k = 20.

Figure 5.16 displays the corresponding POD modes. A different set of energetic structures

is observed inside and outside the CR regime. Outside the CR regime, the most energetic

mode is a double-roll mode similar to mode Sy. Similarly, the fourth most energetic mode

is similar to Sx. It is reminded that, Sy and Sx correspond to the double-roll patterns

extracted from the complete series (see figure 5.2c). The second most energetic mode

corresponds to a central vortex which is detached from the top and bottom walls. This

mode is a combination of modes L and L∗ as shown in (Podvin and Sergent, 2017). The

third and fifth most energetic modes are distorted versions of the modes Q and Q∗, or

combinations of these modes. The sixth most energetic mode was not shown previously

and it is composed of two central rolls surrounded by six smaller counter-rotating rolls.

This mode is approximatively antisymmetric with respect to Sx and Sy, the same symmetry

group of modes L and L∗. This mode is not present in the first twelve modes displayed in

figures 5.2 and 5.3. Some of the POD modes obtained from the snapshots including and

excluding the CR regime are similar, while others are specific to one regime or the other.

A POD analysis of the complete series is shown to mix these modes.

5.4 Comparison inside and outside the ‘regime of consecu-

tive reversals’

In order to compare the CR and EC regimes we fix a set of modes φk that allows for a

direct comparison. In this case, φk corresponds to the POD modes obtained inside the

CR regime.

5.4.1 Time evolution of the modal coefficients inside the EC regime

using the leading POD modes of the CR regime

Figure 5.17 displays the modal coefficients obtained by projection into the POD modes

displayed in 5.9. Inside the EC regime (shaded region), the mode S becomes dominant

and alternates between positive and negative plateau states. Mode S∗ displays stronger

fluctuations but lacks a well defined behavior. The coefficient for mode L oscillates around
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Figure 5.17: Time series of modal coefficients αk(t) for (a) (Ra = 5 ·107,Pr = 3.0) and (b)
(Ra = 5 · 107,Pr = 4.3). Shaded (resp. white) regions are used to identify an EC (resp.
CR) regime on the time series.
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(a) Regime of consecutive reversals (CR)
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Figure 5.18: Conditional PDF of τ1, τ2, and τ3 for (Ra = 5 · 107,Pr = 3.0), where τ1,
τ2, and τ3 correspond to the inter-switch interval in modes L, S, and S∗, respectively. (a)
belongs to the CR regime, (b) belongs to the EC regime. For τ2 and τ3, a continuous
(resp. dashed) line corresponds to a data fit to a Log-normal (resp. Gamma) distribution.
Coefficients given in text.

zero and occasionally displays shorter and less intense plateau states than inside the CR

regime. The evolution of mode L∗ does not exhibit any clear trend. Modes Q and Q∗

oscillate around the same constant values as in the CR regime but their fluctuations are

less intense.

The time evolution of mode S during the EC regime is reminiscent of the evolution of mode

L in the CR regime. This suggests we can follow the evolution of mode S to characterize

the EC regime. For this reason we compute the inter switch time τ2 of mode S, similarly

as the interval τ1 of mode L presented §4. For the sake of completeness, we extend this

analysis to S∗.

Consider a set of consecutive times si (resp. tj) at which the modal coefficient S (resp. S∗)

changes sign. One evaluates the time interval τ2,i = si+1 − si (resp. τ3,j = tj+1 − tj). The

PDFs of τ1, τ2, and τ3 for (Ra = 5 · 107,Pr = 3.0) are compared on figure 5.18. Inside the

CR regime, one of the main features of τ1 is the absence of short inter-switch timescales,

while this is the opposite in the EC regime. In contrast to τ1, inside the CR regime the

distributions of τ2 and τ3 exhibit short inter-switch times, while inside the EC regime, the

distributions are more dispersed. It appears that the distributions of τ2 and τ3 fit well to

a Log-normal distribution

P (τ) =
1

τ

1

στ
√

2π
exp

(
−(ln τ − µτ )

2

2σ2
τ

)
(5.2)

inside the CR regime. Here µτ (resp. στ ) is the mean (resp. standard deviation) of the

natural logarithm of the variable τ .

One alternative used in the characterization of the reversals of the geo-dynamo involves
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Figure 5.19: Same as in figure 5.18 but for (Ra = 5 · 107,Pr = 4.3).

considering a Gamma distribution (Lhuillier et al., 2013). For such process, the PDF of

the inter-switch interval has the following form

P (τ, k) =

(
k

µ

)k τk−1

Γ(k)
exp

(
−k τ

µ

)
(5.3)

where Γ(k) is the Gamma function of the shape parameter k, and µ the expected mean

value of τ . A Gamma process has a memory of previous events when k 6= 1. A special

case is observed for k = 1 and corresponds to a Poisson process (Parker, 1997).

A data fit of τ1 inside the CR regime returns a shape parameter k(τ1) = 16.35 with an

expected mean value µ(τ1) = 77.05. In contrast, a data fit of τ2 returns a shape parameter

k(τ2) = 0.97 and expected mean value µ(τ2) = 4.78, whereas τ3 yields a shape parameter

k(τ3) = 1.07 and µ(τ3) = 3.78. We repeated this procedure for (Ra = 5·107,Pr = 4.3) seen

on figure 5.19 and obtained the shape parameters k(τ2) = 5.00, k(τ2) = 1.12 and k(τ3) =

1.10, with the expected mean values µ(τ1) = 138.09, µ(τ2) = 4.56 and µ(τ3) = 3.70,

respectively. These observations would suggest that reversals of mode L are influenced by

previous events, whereas the evolution of mode S and mode S∗ follows Poissonian statistics.

This behavior is very different from other systems which display field reversals, such as

the cessation-led reversals inside 3D cells (Brown and Ahlers, 2006) and the reversals of

Earth’s magnetic field (Lhuillier et al., 2013).

In this sense, the ‘regime of consecutive reversals’ contains elements of a deterministic

system (Araujo et al., 2004; Castillo-Castellanos et al., 2016) and noise. The evolution

of certain POD modes (L, Q, L∗, and Q∗) displays a consistent dynamical pattern for

each reversal, while the modes S and S∗ appear to be driven by a random process. It is

through these modes that ‘randomness’ appears to be introduced into the reversal process.

Our observations are consistent with results from (Podvin and Sergent, 2017) in which a

three-mode model using modes L, Q, and L∗, results in periodic reversals.

In §5.2.2 we mentioned the existence of well-defined relations between different modes
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inside the CR regime. Our observations suggest there exists, at least in the average sense,

a particular relation between different pairs of modes: modes L and L∗, Q and Q∗, S and

S∗, and so on. In the following section we focus on how the interaction between different

pairs of modes changes inside and outside of the CR regime.

5.4.2 A note on the coexistence between modes

We use a bivariate histogram to illustrate the relation between different pairs of modes.

In order to highlight the differences between the CR and EC regimes, we have produced

separate histograms for each in figures 5.20 to 5.23. For the CR regime, we also display the

generic curves and identified each of the phases and functional instants which characterize

the reversal cycle.

Inside the CR regime, the accumulation (resp. release) phase corresponds to the upper

(resp. lower) branches in the (L,Q) plane, with the acceleration phase connecting the

upper and lower branches. Two attractive fixed points are observed in the (L,S) and

(L,S∗) planes. Outside of the CR regime, two attractive fixed points are observed in

the (L,Q) and (L,S) planes. These observations are consistent with the phase portraits

in the (L,Q) and (L,S) planes and to the near-heteroclinic cycle identified by (Podvin

and Sergent, 2015). Observations are also consistent with the phase space projections of

Fourier modes by (Petschel, Wilczek, et al., 2011; Verma et al., 2015) in a similar system

using stress-free boundaries and Pr = ∞.

A strong relation between modes L and L∗ is also shown to exist. As noted by (Podvin

and Sergent, 2017), the quadrants LL∗ > 0 are predominantly occupied during the CR

regime. As the intensity of L decreases near the end of the accumulation phase, the mode

L∗ does just the opposite, see figure 5.20(4). During reversals, the inversion of mode L

passes systematically through rapid inversions in mode L∗. During cessations the relation

between both modes changes as both modes are locked in the quadrants LL∗ < 0, see

5.21(4). These attractors would correspond to a clockwise or counter-clockwise central

vortex that is fully detached from the top and bottom walls (Podvin and Sergent, 2017).

This is also consistent with the second most energetic mode obtained from the EC subset

displayed in figure 5.16.

A relation between modes Q and Q∗ is shown to be quite robust and does not appear to

be affected by the change of regime between reversals and cessations, see figures 5.20(6)

and 5.21(6). Inside the CR regime, the generic cycle makes evidence the presence of lower

and upper branches corresponding to the release and accumulation phases, respectively.

Modes S and S∗ belong to the same symmetry group. During the CR both modes oscillate

randomly around zero (figure 5.20(5)), whereas during the EC regime we observe three

attractive points in the (S,S∗) plane.

So far we have established a relation between the intensity of the leading modes and specific

parts of the reversal process. Dominant L and Q modes are related to the accumulation

phase. The intensity of modes L∗ and Q∗ increase during the end of the accumulation

phase and during the transition. On the other hand, modes S and S∗ are predominantly

active during cessations. In this sense, the strength of one mode relative to the others



might provide some insight on the large-scale dynamics. In the following section, we follow

this relative strength as function of Ra.
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Figure 5.23: Bivariate histogram of modal coefficients for (Ra = 5 · 107,Pr = 4.3)
excluding contributions from the CR regime.
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5.5 Evolution of the leading POD modes as function of Ra

(a) Pr = 3.0
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Figure 5.24: Evolution of αkαk as function of Ra and two different Pr. Here αkαk cor-
responds to the mean part of the combined energy projected on the φk-axis, whereas φk

corresponds to the first 6 POD modes obtained from the CR subset for Ra = 5 · 107. The
total combined energy 〈ψ|ψ〉 is displayed in black lines (Tot.). The values of Ra where
flow reversals are observed are enclosed in the hatched area, whereas the combination of
the EC and CR regimes is observed between the red dashed lines.

For each Pr, we fix a set of modes φk(x, t). Here, φk corresponds to the POD modes

obtained from the CR subset for Ra = 5 · 107. For this comparison we perform a phase-

space projection of the instantaneous velocity and temperature fields on the φk-axis

αk(t) = 〈ψ(x, t)|φk(x, t)〉 with ψ = (θ, u, v) (5.4)

where 〈.|.〉 is the inner product operator defined in §2.6. For each value of (Ra,Pr), we com-

pute αkαk, which corresponds to the mean part of the combined energy 〈ψ|ψ〉 contained

inside the mode φk. In general, the selected POD modes are deemed as representative of

the (Ra,Pr) considered here: the amount of combined energy contained inside these six

modes represents between 80% and 95% of 〈ψ|ψ〉 for all Ra.

If we follow the evolution of αkαk as function of Ra, it is possible to identify different

regions based on the relative intensity of the different modes (figure 5.24). Each region is

associated to a particular type of dynamics displayed on figure 5.25.

As both values of Pr display many similarities on their behavior, let us consider the case for

Pr = 3.0. For values below Ra = 3 ·105, mode L is clearly dominant and the corresponding

flow is a steady-state single roll. A second region is observed between Ra = 3 · 105 and

Ra = 3 · 106, where the mode Q becomes slightly dominant over mode L. However, the

value of Q decreases slowly as we increase Ra, while the remaining modes are shown to

increase. Inside this region we observe periodic or chaotic reversals sans the accumulation

phase, i.e. no plateau is visible in L2D. An almost periodic oscillatory solution is observed

for Ra = 3·105. This is exclusively composed of the release phase of the CR regime, similar

to periodic oscillatory solutions of the flywheel mechanism by (Lappa, 2011; Chandra and

Verma, 2013). A third region appears for Ra ≥ 3 · 106, where the mode L becomes clearly

dominant again. Inside this region, we observe intermittent flow reversals containing the

three phases described by the generic cycle. Mode Q is the second most energetic mode.
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Figure 5.25: Time series of the global angular impulse L2D for different Ra and (a) Pr = 3.0
and (b) Pr = 4.3. From top to bottom: periodic reversal without accumulation phase,
chaotic reversals without accumulation phase, reversals with accumulation phase, consec-
utive reversals and extended cessations, consecutive reversals without extended cessations,
long stable plateaus.
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All other modes are smaller by an order of magnitude except in a particular range of

Ra where the mode S becomes comparable to Q. Inside this range, extended cessations

coexists with the consecutive reversals. Above this range, cessations disappear almost

completely as the plateau duration increases progressively, as presented in §4. Above a

certain value of Ra, it becomes increasingly difficult to observe any reversals at all.

It is difficult to compare this sequence of regimes to the description provided by (Chandra

and Verma, 2013) using Fourier modes of the vertical velocity. Several reasons may account

for these differences: different values of Pr are used, a different decomposition, and the

fact that our simulations may be too short to ensure the statistical convergence.

Conclusions of this chapter

In this chapter we used a POD analysis to characterize the reversal regime inside a square

Rayleigh-Bénard cells. A reconstruction of the mechanical energy from three different

formulations was compared against the generic reversal curves. In agreement with the

existing literature, the mixed velocity-temperature formulation was found to provide the

best results. A six-mode representation of flow reversal retains the most important features

of the reversal process and is deemed as a good compromise.

We performed a POD analysis of the CR and EC regimes separately. Inside the CR regime,

we followed the evolution of the six most energetic POD modes during the generic cycle.

Two of these modes exhibit a reversal (L and L∗), two others (Q and Q∗) follow a dynamical

pattern but do not reverse, whereas the other two (S and S∗) oscillate around zero. Both

regimes (EC and CR) are characterized by the same set of coherent structures, except

for one mode present in the EC regime and not observed in the CR regime. This made

possible to perform a direct comparison of the dynamics of the CR and EC regime. Finally,

we followed the energy contents of the different modes as function of Ra to illustrate the

limited range in which consecutive flow reversals are observed and the presence of extended

cessations within this range.
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Complementary material: Simulation Parameters

(a) Pr = 3.0

Ra Grid Length Nubot Nutop Nuvol Nuǫ Nud Nuθ Nu %

1 · 106 512 4,500 6.60 6.60 6.60 6.60 6.59 6.59 6.60 0.2
3 · 106 512 4,500 8.82 8.82 8.84 8.82 8.80 8.81 8.82 0.4
5 · 106 512 4,500 10.11 10.10 10.12 10.10 10.08 10.09 10.10 0.4
8 · 106 512 4,500 11.61 11.62 11.63 11.61 11.55 11.58 11.60 0.7
1 · 107 512 9,600 12.54 12.54 12.52 12.50 12.50 0.3
2 · 107 512 9,600 15.52 15.52 15.49 15.46 15.50 0.4
3 · 107 512 9,600 17.68 17.69 17.64 17.59 17.60 0.5
4 · 107 512 9,600 19.42 19.42 19.36 19.30 19.30 0.6
5 · 107 512 9,600 20.75 20.75 20.68 20.61 20.70 0.7
8 · 107 512 5,000 23.95 23.94 24.00 23.87 23.42 23.57 23.79 2.5
1 · 108 512 20,000 25.65 25.65 25.67 24.98 24.98 25.35 25.38 2.8
3 · 108 1024 4,600 35.19 35.18 35.23 35.13 34.69 34.93 35.06 1.5
5 · 108 1024 4,800 41.01 41.01 41.05 40.93 40.06 40.52 40.76 2.5

(b) Pr = 4.3

Ra Grid Length Nubot Nutop Nuvol Nuǫ Nud Nuθ Nu %

1 · 106 512 4,500 6.83 6.83 6.84 6.84 6.83 6.83 6.83 0.2
3 · 106 512 4,500 9.10 9.09 9.11 9.09 9.07 9.08 9.09 0.4
5 · 106 512 4,500 10.48 10.48 10.50 10.48 10.45 10.46 10.47 0.5
8 · 106 512 3,500 12.16 12.16 12.17 12.15 12.08 12.12 12.14 0.7
1 · 107 512 9,600 13.07 13.07 13.08 13.03 13.05 13.06 0.3
3 · 107 512 19,000 18.37 18.37 18.38 18.31 18.04 18.29 0.2
5 · 107 512 29,000 21.01 21.01 21.03 20.86 20.95 20.97 0.7
8 · 107 512 5,000 24.13 24.11 24.17 24.05 23.56 23.72 23.96 2.6
1 · 108 512 19,000 25.88 25.88 25.90 25.19 25.21 25.58 25.61 2.8
3 · 108 1024 4,600 35.64 35.62 35.68 35.58 35.13 35.35 35.50 1.6
5 · 108 1024 4,800 41.37 41.35 41.40 41.28 40.29 40.82 41.09 2.8

Table 5.3: Convergence of Nusselt number; Rayleigh number, grid size, and lenght of
simulation. Time-averaged values of Nu, averaged Nusselt number Nu and % maximum
relative difference.
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Part III

Influence of boundary conditions:

stress-free surface on a square

Rayleigh-Bénard cell
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Chapter 6

Influence of imposing a stress-free

surface on a square

Rayleigh-Bénard cell

In the study of classic Rayleigh-Bénard cells, one assumes the Oberbeck-Boussinesq (OB)

approximation and considers the same type of boundary conditions imposed on the top

and bottom plates. In a such case, the reflection with respect to the horizontal plane Sy

(see §2.5) is a natural symmetry of the system (Golubitsky et al., 1984). Recent studies

in natural convection have been focused on systems which lack this reflection symmetry

either due to the presence of non-Oberbeck-Boussinesq (NOB) effects (Zhang et al., 1997;

Horn et al., 2013; Ahlers, Brown, et al., 2006; Sugiyama, Calzavarini, et al., 2009; Xia,

Shu-Ning et al., 2016) or trough the use of asymmetric boundary conditions, for instance

due to the use of a bottom rough plate (J. C. Tisserand, et al., 2011; Salort et al., 2014;

Liot et al., 2016) or due to the use of different mechanical conditions on the top and

bottom plates (Van Der Poel et al., 2014). Other physical systems where field reversals

are present, are sensitive to asymmetric boundary conditions. For instance, periodic or

random reversals of the magnetic field generated by a fluid dynamo in the Von Karman

Sodium (VKS) experiment are observed only when different angular rotation velocities are

imposed on the top and bottom lids (Berhanu et al., 2007; Gallet et al., 2012). For the

Rayleigh-Bénard studies, the influence of the asymmetry is centered on the flow structures

and on different global quantities. Deviations from the symmetric case are best observed

on the mean temperature profiles, since the mean temperature at the center is no longer

expected to correspond to the median temperature. For global quantities, the system

response ranges from a modest increase in heat-flux to a transition to a different flow

regime (Van Der Poel et al., 2014). One may also study the influence of asymmetry on

stability. For instance, (Xia, Shu-Ning et al., 2016) focuses on the impact of NOB effects

on the stability of flow structures during flow reversals. As the asymmetry increases, flow

reversals are found to cover a wider range of the parameter space (Ra,Pr) than before.

In this chapter, we consider an asymmetric cell: stress-free (resp. no-slip) mechanical

boundary condition imposed on the top (resp. bottom). This configuration is relevant

for different systems, such as the convective boundary layer in the atmosphere. In the

following the asymmetric cells are denoted as ST cells, whereas classic RB cells are denoted
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as NT cells.

6.1 Model equations and numerical method

The governing equations are again the Boussinesq equations (2.22), with the same bound-

ary conditions as in the previous chapters, except that a free-slip condition is now imposed

on the top plate y = 0.5.

For the 2-D numerical simulations, we consider values of Ra ∈ [104, 5 · 108] with Pr = 3.0

and Pr = 4.3. This range of values covers the onset of convective motion, the apparition

of periodic and oscillatory solutions, and the transition to a (weakly-)turbulent regime.

Simulations have been performed using Basilisk on a regular Cartesian grid, with a variable

time-step that verifies the condition CFL< 0.5. Initial conditions correspond to no-motion

and a linear temperature gradient. Spatial resolution is verified by following the procedure

described in §3.2.2: one checks numerically the exact relations between the instantaneous

rates-of-change (see equation (3.11)) and energy transfer rates. The second check concerns

the statistical convergence of time-averaged Nusselt numbers proposed by (R. Stevens,

Verzicco, et al., 2010). The average values of Nuvol, Nutop, Nubot, Nuǫ, Nuθ, Nud, and Nu

as well as the maximum relative difference %Diff are listed in tables 6.1a and 6.1b (see

§2.2.7 for definitions). These quantities are shown to converge within 2% when averaged

over the entire length of the simulation except for the highest Ra.

In the following, for visualization we use the reference height yr(x, t), instead of the tem-

perature field θ(x, t). Field yr(x, t) is indeed a one-to-one mapping of the temperature

field, which ensures that yr(θ(x, t)) < 0 for ‘cold’ fluid parcels θ(x, t) < 〈θ〉xy and vice

versa, thus composing a good candidate for (visually) separating thermal boundary layers

from the bulk (see figure 6.1).

6.2 Overview of the flow dynamics for 105 < Ra < 108 inside

free-slip (ST) cells

6.2.1 Steady-state solutions (Ra < 105, Pr = 4.3)

Let us consider the results for Pr = 4.3. For this range of Ra, one obtains a single-roll and

double-roll solutions (figure 6.1). The choice between one state or another depends on the

value of Ra: from the same initial condition (no-motion and unstable temperature gradient

with added noise), a single-roll state was obtained for Ra = 104 and Ra = 8 · 104, whereas

double-roll modes were obtained for Ra = 3 · 104 and Ra = 5 · 104. However, the choice

depends as well on the initial conditions: if we start from an initial condition corresponding

to a single-roll and increase Ra, we keep the single-roll structure. The presence of this type

of multi-stable solutions is reflected on the different global quantities. This multi-stability

is commonly observed in classic Rayleigh-Bénard cells (see for instance Mizushima and

Adachi, 1997; Lappa, 2009).

Whenever convective motion is present for this range of Ra, the system reaches after a
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Figure 6.1: Steady-state solutions inside free-slip cells (ST) for Pr = 4.3: (a) Ra = 104

and (b) Ra = 3 · 104: streamlines are superposed over the color map of field θ(x, y) (resp.
yr(x, y)). Fig (c) displays the vertical temperature profile 〈θ〉x for both Ra.

transition period a steady-state1 with a lower mean temperature 〈θ〉xy than the median

temperature (θtop + θbot)/2 (figure 6.1c). This is allowed since the top/bottom symmetry

no longer exists. This effect is further explored in the following sections.

6.2.2 Oscillatory and intermittent flows (105 < Ra ≤ 3 · 105)

The transition towards unsteady flows is observed near Ra = 105. Two types of oscillatory

solutions are identifiable for both Pr = 4.3 and Pr = 3.0: a flow regime composed of a

central vortex and another regime composed of two vertically stacked rolls. The apparent

significance of these solutions will be discussed on the following sections.

Oscillatory one- and four-roll pattern

In the first type of oscillatory solution, a single-roll and four-roll pattern appears cyclically

resulting in a periodic reversal of the large-scale circulation. A close inspection of the

instantaneous fields (top part of figure 6.2) reveals the counter-rotating vortex is larger on

the lower half than on the upper half of the cell. This difference shifts the rotation center

of the central vortex slightly upwards. This type of solution is known to exist in classic

RB cells at similar Ra, see (Mizushima and Adachi, 1997; Shimizu et al., 2015; Lappa,

2011), and is clearly reminiscent of the release phase of a generic flow reversal presented

in chapter 4. To illustrate the difference between the solutions observed inside free-slip

(ST) and no-slip (NT) cells, figure 6.2 displays a time-series of the angular impulse L2D,

the spatially averaged vorticity C and the normalized Nusselt numbers at the top and

bottom plates, Nutop and Nubot, for both cells. The evolution of L2D is similar in both

1 We use the L∞ norm of the change in the horizontal velocity observed during two consecutive con-
vective time units and fix 10−8 as our tolerance criteria to define a steady-state solution.
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Figure 6.2: Oscillatory solutions for (Ra = 3 · 105,Pr = 4.3) for a free-slip (ST) cell. Top:
Streamlines superposed to field yr(x, t) corresponding to the oscillatory one- and four-roll
pattern. Snapshots correspond to marks indicated on the time series below. Middle: Time
series of L2D, C, Nutop and Nubot (see §2.2 and 2.3), and corresponding frequency spectra.
Bottom: Time series and frequency spectra for the NT cell shown for reference.
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Figure 6.3: Same as in figure 6.2 for (Ra = 1 · 105,Pr = 4.3). An equivalent solution was
not found for NT cells for Pr = 4.3, see text.

cells, but the ST cell displays a larger amplitude and shorter period: the characteristic

frequency of L2D being f = 0.081 against f = 0.072 for the NT cell. In addition, for the

modified cells C is non-zero and has the same dominant frequency as L2D (f = 0.072) but

is shifted in time with respect to L2D by 2.8 convective time units. The evolution of Nutop

is different from the NT case, while Nubot is similar. For the ST and NT cells, Nutop and

Nubot have twice the frequency of L2D and similar triangular shapes. However, in the ST

cell the fluctuations of Nutop are twice as large as those of Nubot. Also, Nutop is delayed

0.85 convective time units with respect to Nubot, instead of being in phase as in the NT

case.

Oscillatory double-roll pattern

A second type of oscillatory solution is observed on the ST cells. This solution is charac-

terized by two opposing thermal plumes locked along the right wall and a single ascending

plume along the left wall. This solution does not respect the top/bottom symmetry. The

left/right symmetry is not respected either, but a mirror opposite configuration may be

observed. Dominant flow structures correspond to two vertically stacked rolls, pushing

back and forth one another, with one smaller corner roll which appears every half cycle,

see bottom part of figure 6.3 at t = 25. This solution is not perfectly periodic as indi-

cated by the noise in the spectra. A similar periodic solution is reported to exist in classic

Rayleigh-Bénard cells for (Ra = 107,Pr = 1.0) (Chandra and Verma, 2013, Supplementary
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Figure 6.5: Time series of L2D for (Ra = 3·105,Pr = 3.0) displays both oscillatory solutions
intermittently.

material) but was not observed in our simulations.

The lack of top/bottom symmetry implies the value of L2D might have a positive mean

value (dashed lines on figure 6.3), or a negative one if the rotation sense of the rolls is

inversed. The amplitude of L2D is half of the amplitude of the first oscillatory solution.

Additionally, C remains negative for positive L2D (or vice versa) during the full length of

the cycle, but displays the same dominating frequencies as L2D. Both Nubot and Nutop

have comparable amplitudes and have the same dominant frequency as L2D (f= 0.104).

However, their time evolution is now different: Nutop displays a secondary oscillation for

every cycle, not present in Nubot. A similar solution is obtained for Pr = 3.0.

Intermittency and transition towards turbulence

Both types of oscillatory solutions are observed inside a narrow band from 1.5 · 105 <

Ra < 3 · 105. For Pr = 3.0, continuous reversals were observed for Ra = 1.5 · 105 and

Ra = 2.5 · 105, while the stacked rolls were found for Ra = 2.0 · 105, see figure 6.4. For

Ra = 3 · 105, both oscillatory solutions are observed intermittently: continuous reversals

are seen on the amplitude of L2D (figure 6.5), but also on the characteristic frequencies of

the other quantities.

6.2.3 Weakly turbulent flow regime (3 · 105 < Ra < 5 · 108)

Once a (weakly-)turbulent regime is established, one observes the appearance of dynam-

ical flow patterns which are reminiscent of both oscillatory solutions described earlier.

Resulting flow structures are very similar to those ones previously observed in the NT
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Figure 6.6: Instantaneous streamlines superposed over field yr(x, t) and corresponding
time series of L2D inside ST cells (a) (Ra = 5 · 107,Pr = 4.3), (b) (Ra = 3 · 108,Pr = 4.3)
and (c) (Ra = 5 · 108,Pr = 3.0).
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cells, complete with the presence of flow regimes analogous to the regime of ‘consecutive

reversals’ (CR) and the regime composed of ‘extended cessations’ (EC), see figure 6.6.

The former regime is associated to a dominant central vortex and counter-rotating corner-

rolls, similar to the CR regime presented on the previous chapter. The latter regime is

associated to a dominant double-roll pattern which is sustained for relatively long periods

of time, before spontaneously re-organizing in the opposite direction (figure 6.6a), similar

to the EC regime.

As the value of Ra increases, a series of consecutive reversals are observed with increased

regularity, while the extended cessations become less frequent and eventually disappear

altogether (figure 6.6b). For higher Ra, an increasingly large amount of time is spent inside

the plateau state, making the flow reversals difficult to observe (figure 6.6b). The sequence

of coexistence of the CR and EC regime, followed by a progressive disappearance of the

EC regime, then by an increasingly longer plateau state is consistent with observations

inside NT cells presented in §5.5.

While the dominant structures are very similar in nature, the resulting flow dynamics

are faster and more complex than for NT cells. In order to perform a direct comparison

between the NT and ST cells, a statistical approach is required.

6.3 Statistical characterization: global quantities and spa-

tial distribution

6.3.1 Lower bulk temperature

The modified cells are characterized by having a lower bulk temperature than their no-slip

counterpart. This is observed for all flow regimes (steady, oscillatory, and turbulent). For

instance for (Ra = 5 ·107,Pr = 4.3), bulk temperature is up to 10% lower than the median

temperature (θbot + θtop)/2, see figure 6.7. To quantify this difference, let us define an

asymmetry coefficient

χ =
0.5 − 〈θ〉xy

〈θ〉xy + 0.5
(6.1)

For the modified cells, the asymmetry coefficient χ > 1 for all of the values of Ra considered

(figure 6.7). Three slopes are observed in this figure each associated to the temporal

dynamics (steady-state, periodic oscillatory and turbulent flow regime respectively). In

each case, the value of χ appears to increase with Ra. This asymmetry was also inside

a periodic box with asymmetric (no-slip/free-slip) conditions and Pr = 1 (Van Der Poel

et al., 2014). It seems to us that the asymmetry is stronger for our configuration. In the

case of an asymmetric cell due to a rough bottom plate and smooth top plates, a similar

effect was also observed, but for much higher Ra.
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as function of Ra and (right) compensated Nu and Re.

6.3.2 Increased heat-flux and turbulent motion

Going from NT to ST, the average Nusselt number Nu increases from 20% to 40%, whereas

the average Reynolds number Re based on the mean velocity increases from 15% to 20%

(figure 6.8). For both quantities, this increase is reflected on the dependence on Ra on the

multiplicative coefficient rather than on the scaling exponents, see comparison between

NT and ST in figure 6.8. Note that scaling exponents βNu = 0.30 and βRe = 0.60 for

Pr = 4.3, were obtained by performing a power law fit of the NT cells.

Let us now consider the temporal fluctuations of the Nusselt around the mean, more

precisely the probability density functions of the instantaneous Nusselt integrated along

the fluid domain Nuvol and the Nusselt numbers evaluated at the bottom and top plates,

Nubot and Nutop, (figure 6.9). Values are normalized by Nu to facilitate the comparison

between the NT and ST cells. For the modified cell, the PDFs of Nuvol and Nubot have

the same overall shape with slightly longer tails. For Nutop, both configurations display a
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Figure 6.10: Normalized local heat flux qy evaluated at the top and bottom plates for
(Ra = 5 · 107,Pr = 4.3).

positive skewed distribution. However, since the thermal boundary layer interacts directly

with the bulk flow, fluctuations are more intense in the modified cell: σ(Nutop) almost

doubles with respect to the to σ(Nubot), while the value of σ(Nubot)/Nu is comparable in

the ST and NT cells.

6.3.3 Changes in the spatial distributions of different quantities

Let us consider the spatial distribution for different fields. In order to facilitate the com-

parison between the ST and NT cells, let us focus on results for (Ra = 5 · 107,Pr = 4.3).

Vertical heat-flux at the top and bottom plates

For the contributions to Nubot and Nutop, we consider the local heat flux qy evaluated

on the top (y = 0.5) and bottom (y = −0.5) plates as a function of x (figure 6.10). For

the bottom plate, the profiles are very similar in both cases. For the top plate, different

profiles are observed: unlike the NT case, the ST profile decreases monotonically as one

gets away from the center. This might be related the effect of top/bottom asymmetry

prominently during the extended cessations or due to changes in the upper corner flows

due to the free-slip condition.
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Figure 6.11: Spatial distribution of contributions to the thermal dissipation ∂jθ∂jθ(x)
for (Ra = 5 · 107,Pr = 4.3) inside (a) ST and (b) NT cells. Solid lines correspond to
∂jθ∂jθ = 100.
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Figure 6.12: Spatial distribution of contributions to the viscous dissipation ∂jui∂jui(x)
for (Ra = 5 · 107,Pr = 4.3) inside (a) ST and (b) NT cells. Solid lines correspond to
∂jui∂jui = 100. Dashed horizontal lines located at y = ±0.4 for reference.

Thermal and viscous dissipation rates

Because of the increase in Nu and the relations in (2.50), the total thermal dissipation ǫθ
and total viscous dissipation ǫ increase as well when going from NT to ST cells. For both

cells, the thermal dissipation rate ǫθ is highly localized near the top and bottom plates

inside thermal boundary layers (figure 6.11). Also, the thermal boundary layer for the ST

cells is thinner at the top plate than at the bottom plate.

In both cells, the viscous dissipation rate ǫ is very localized near the no-slip walls, particu-

larly along the side-walls (figure 6.12). Additional, less intense contributions are observed

near the corners. For the ST cell, a dissipation layer is observed just below the top plate,

in which the dissipation has a comparable intensity to the corners. The viscous dissipa-

tion inside the bulk region (−0.4 < x < 0.4 and −0.4 < y < 0.4) is similar for both cells:

46% (resp. 45%) of ǫ for the ST (resp. NT) cells. Since the viscous dissipation barely

changes in the bulk, the absence of dissipation at the top plate, should be compensated

by remaining no-slip walls.

Temporal and spatial fluctuations in the modified cell near the (no-slip) bottom plate are

similar to those in both plates of the no-slip cell. This suggests a disconnection between the

top and bottom plates, which interact directly with the bulk flow but not with each other,
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5 · 107,Pr = 4.3). A horizontal line indicates the thickness δθ,bot.

consistent with observations from other asymmetric systems such as (J. C. Tisserand, et

al., 2011). In order to explore such hypothesis, let us take a closer look at the differences

in the flow structure near the top and bottom plates.

Comparison between the lower and upper half-cells

Consider the mean temperature and temperature fluctuation profiles in both the ST and

NT cells near the bottom plate (figure 6.13). As we mentioned earlier, the ST cell displays

a larger temperature difference θbot − 〈θ〉xy across the bottom thermal boundary layer,

but its thickness δθ,bot is comparable in both ST and NT cells. Near the bottom plate, the

vertical profiles of temperature fluctuations as well as the thermal dissipation are similar

in the ST and NT cases. The vertical profiles near the top plate are different. For the ST

cell, both the temperature difference 〈θ〉xy − θtop, thickness δθ,top are smaller than in the

NT cell. However, the slope of the mean temperature profile near the top wall is similar

in both cells (figure 6.14). Temperature fluctuations near the top plate are smaller than

fluctuations near the bottom plate for the ST cell, while contributions from the thermal

dissipation are much more localized near the top plate.

The vertical profiles based on the velocity also support the separation between the upper

and lower half-cells: the vertical profiles of the spatio-temporal velocity fluctuations close

to the bottom plate, and the viscous dissipation profile in the lower half-cell are very

similar for both NT and ST cells (figure 6.15). For the modified cell, the spatio-temporal

fluctuations of the horizontal velocity are maximum and the contributions to the viscous

dissipation are minimum at the top plate (figure 6.16). However, the contributions from

the dissipation layer are larger than in the no-slip case. Since the contributions from the

bulk change little, this increase is likely to come from the viscous boundary layers at the

side-walls.

Let us define Rayleigh and Nusselt numbers based on the temperature difference between

each plate and the bulk as done in other asymmetric configurations (see for instance J.-C.
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Tisserand, et al., 2011; Salort et al., 2014). This is equivalent to defining two virtual cells,

which are symmetric (no-slip/no-slip and free-slip/free-slip), have an homogeneous bulk

temperature and have the same temperature difference across the thermal boundary layers

as the asymmetric cell (no-slip/free-slip). The Rayleigh number associated to the no-slip

plate is defined as

Ran =
2β(Tbot − 〈T〉xy)gH3

κν
=

1

2(0.5 − 〈θ〉xy)
Ra (6.2)

and a corresponding Nusselt number

Nun =
〈vT〉 − κ∂y〈T〉

2κ(Tbot − 〈T〉xy)/H
= 2(0.5 − 〈θ〉xy) Nu (6.3)

Similarly for the free-slip plate, we define a Rayleigh number

Ras =
2β(〈T〉xy − Ttop)gH3

κν
=

1

2(〈θ〉xy + 0.5)
Ra (6.4)

and a corresponding Nusselt number

Nus =
〈vT〉 − κ∂y〈T〉

2κ(〈T〉xy − Ttop)/H
= 2(〈θ〉xy + 0.5) Nu (6.5)

The resulting Ran, Ras, Nun and Nus are given in figure 6.17. Let us discuss these results

separately. One the one had, results for the free-slip plate now reflect the three different

regimes associated to the temporal evolution (steady, oscillatory and turbulent regimes).

For values of Ras > 107, a power law Nus ∼ Ra0.34
s is observed. On the other hand,

results for the no-slip plate follow a power law scaling Nun ∼ Ra0.30
n which is comparable

to previous measurements in the NT cells, but the multiplicative factor of the power law

is 15% larger. These measurements appear to be insensitive to the change in regime on

the free-slip plate and suggest the behavior of both plates to be rather independent from

each other.

However, since results from a symmetric free-slip/free-slip cell with adiabatic no-slip side-

walls are not available at this time, we are unable to verify if the Nus ∼ Ra0.34
s scaling

is representative of such cells, or if it corresponds to a transition between different flow

regimes. Additional simulations for higher Ra would help clarify this point.
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6.4 Statistical characterization of temporal dynamics
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Figure 6.18: Time evolution of L2D/|L2D| for (Ra = 5 · 107,Pr = 4.3) inside a (a) NT
cell and (b) ST cell. The two continuous lines correspond to the thresholds used by the
filtering procedure. Value of the normalised standard deviation σ(|L2D|)/|L2D| = 0.452
for the NT cell and σ(|L2D|)/|L2D| = 0.603 for the ST cell.

To conclude this chapter, let us consider the influence of imposing the free-slip condition on

the dynamics of the large-scale flow by extending the statistical characterization presented

on §4 to the modified cells. More precisely, we are interested in the changes between

the regime of ‘consecutive reversals’ and the regime of ‘extended cessations’ for (Ra =

5 · 107,Pr = 4.3).

We follow the procedure described in §4: first we consider the evolution of the global

angular impulse L2D (figure 6.18), then we identify a set of consecutive times ri at which

L2D changes sign and define a time interval τi,1 = ri+1 − ri. We use the amplitude-based

filter to separate the CR and EC regimes and compute percentage of time spent in each

regime, pcr and pec = 1 − pcr, as well as the duration of the jump τd.

The number of sign switches of L2D increases significantly from 375 events in the NT cell

to over 1160 events on the modified cell in the same interval of 29,000 convective time

units. In addition, the number of sign switches associated to flow reversals increases from

161 to 358 in the same period. Additionally, the amount of time spent inside the CR

regime decreases from pcr = 83% to pcr = 79%, suggesting that flow reversals are shorter

and more frequent.

Consider the probability distribution of τ1 inside the CR and EC regimes (figure 6.19).

The ST cells display an average inter-switch interval of τ1 = 151 convective time units,

which is comparable to τ1 = 159 for the NT cell. However, the values are not distributed

in the same way, in general reversals in the modified cell are faster and more frequent: the

peak probability distribution of the inter-switch interval (resp. duration of the jump) is

τ1 = 53 compared to τ1 = 103 (resp. τd = 3.2 compared to τd = 11.2) for the NT cell.

For the ST cell, the EC regime is characterized by a short inter-switch interval (τ1 < 50),

126



(a)

NT cell

0 100 200 300 400

10−3

10−2

10−1

τ1

0 50 100 150

τd

(b)

ST cell

0 100 200 300 400

10−3

10−2

10−1

τ1

0 50 100 150

τd

Figure 6.19: PDF of τ1 and τd for (Ra = 5 · 107,Pr = 4.3) inside a (a) NT and (b) ST cell.
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whereas the values of τ1 are distributed over a wider range (10 < τ1 < 400) in the CR

regime. Both regimes overlap each other such that a separation time-scale τc may not be

defined.

In order to illustrate the variability of the results, consider the evolution of L2D, Ek,

and Ep, displayed in figure 6.20 for a dozen reversals representative of the entire series

to avoid cluttered graphs: roughly half of the events assigned to the CR regime display

the dynamical pattern of the generic cycle presented in §4, while the other half does not

appear to follow any particular trend. While it is still possible to use the conditionally

averaged curves and identify a generic reversal cycle with roughly the same features as in

the no-slip case, the standard deviation from the generic cycle is larger.

6.5 Conclusions of this chapter

We have studied the influence of mechanical boundary conditions on Rayleigh-Bénard

convection. The main differences between the classic and modified cells, concern the

change in the bulk temperature and an increase in both Nusselt and Reynolds numbers.

Our observations support a simplified description where the system can be viewed as being

composed of two half-cells interacting directly with the bulk flow but not with each other.

The lower half-cell is similar in many aspects (temporal fluctuations, boundary layers)

to the no-slip cell, except for the larger temperature gradient. The upper half cell lacks

a kinetic boundary layer, which leaves a thinner thermal boundary layer exposed to the

turbulent bulk flow.

The dynamics of the large scale flow are reminiscent of the regime of consecutive reversals

and of extended cessations observed in the no-slip cells, but the separation between both

regimes is less clear. Modified cells are characterized by the same type of flow structures

than the no-slip case, but their temporal evolution is quite different. Reversals are faster

and more frequent, whereas the extended cessations are more frequently observed. The re-

versal mechanism is identical for both cells, but larger deviations from the generic reversal

are commonly observed.
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Complementary material: Simulation Parameters

(a)
Ra Grid Length Nubot Nutop Nuvol Nuǫ Nud Nuθ Nu % 〈θ〉xy

1 · 104 512 ∗ 2.63 2.63 2.63 2.63 2.63 2.63 2.63 0.3 −0.063

3 · 104 512 ∗ 3.35 3.36 3.36 3.36 3.35 3.36 3.36 0.3 −0.091

5 · 104 512 ∗ 3.89 3.90 3.90 3.90 3.89 3.90 3.89 0.3 −0.108

8 · 104 512 ∗ 4.70 4.71 4.71 4.71 4.70 4.71 4.71 0.3 −0.115

1 · 105 512 ∗ 5.00 5.00 5.00 5.00 4.99 5.00 5.00 0.3 −0.120

1.5 · 105 512 500† 4.44 4.44 4.44 4.43 4.42 4.43 4.43 0.4 −0.052

2 · 105 512 500‡ 4.56 4.55 4.55 4.55 4.54 4.54 4.55 0.4 −0.054

2.5 · 105 512 500† 5.23 5.24 5.24 5.24 5.22 5.23 5.24 0.3 −0.060

3 · 105 512 2,000†‡ 5.42 5.42 5.42 5.42 5.40 5.42 5.42 0.4 −0.061

5 · 105 512 4,000 6.41 6.41 6.42 6.41 6.39 6.40 6.41 0.4 −0.075

8 · 105 512 4,000 7.41 7.41 7.41 7.40 7.38 7.39 7.40 0.4 −0.087

1 · 106 512 4,000 7.98 8.00 7.99 7.99 7.96 7.99 7.98 0.5 −0.088

3 · 106 512 4,000 11.12 11.13 11.14 11.12 11.08 11.09 11.11 0.6 −0.091

5 · 106 512 4,000 12.91 12.92 12.92 12.90 12.83 12.86 12.89 0.7 −0.096

8 · 106 512 4,000 14.69 14.68 14.68 14.66 14.56 14.58 14.64 0.9 −0.092

3 · 107 512 5,000 22.06 22.04 22.07 21.99 21.70 21.74 21.94 1.7 −0.099

5 · 107 1024 29,000 26.92 26.72 26.63 26.77 26.41 26.51 26.66 0.5 −0.111

8 · 107 1024 4,800 31.44 31.47 31.47 31.42 31.20 31.26 31.37 0.9 −0.120

1 · 108 1024 4,200 33.39 33.46 33.45 33.38 33.11 33.20 33.33 1.0 −0.121

3 · 108 1024 4,400 47.55 47.60 47.63 47.47 46.61 46.90 47.29 2.2 −0.136

5 · 108 1024 4,200 57.33 57.33 57.37 57.18 55.69 56.15 56.84 3.0 −0.143

(b)
Ra Grid Length Nubot Nutop Nuvol Nuǫ Nud Nuθ Nu % 〈θ〉xy

1 · 104 512 ∗ 2.65 2.64 2.65 2.65 2.65 2.65 2.65 0.3 −0.064

3 · 104 512 ∗ 3.61 3.62 3.62 3.62 3.61 3.62 3.62 0.3 −0.095

5 · 104 512 ∗ 4.16 4.15 4.16 4.16 4.16 4.16 4.16 0.2 −0.106

8 · 104 512 ∗ 4.73 4.72 4.73 4.73 4.73 4.72 4.73 0.2 −0.117

1 · 105 512 500† 3.83 3.82 3.82 3.82 3.83 3.83 3.83 0.3 −0.051

2 · 105 512 500† 5.22 5.22 5.21 5.22 5.21 5.21 5.21 0.2 −0.066

3 · 105 512 1,000‡ 5.74 5.75 5.75 5.75 5.73 5.74 5.74 0.3 −0.069

5 · 105 512 4,000 6.94 6.94 6.95 6.94 6.92 6.93 6.94 0.4 −0.074

8 · 105 512 4,000 8.06 8.06 8.07 8.06 8.03 8.05 8.06 0.4 −0.081

1 · 106 512 4,000 8.60 8.63 8.62 8.61 8.58 8.61 8.61 0.5 −0.082

3 · 106 512 4,000 11.70 11.71 11.71 11.70 11.64 11.67 11.69 0.6 −0.096

5 · 106 512 4,000 13.54 13.55 13.57 13.54 13.47 13.49 13.53 0.7 −0.098

8 · 106 512 4,000 15.59 15.59 15.61 15.57 15.47 15.50 15.55 0.9 −0.103

3 · 107 512 5,000 22.46 22.45 22.48 22.40 22.07 22.14 22.33 1.8 −0.101

5 · 107 1024 4,200 27.34 27.67 27.61 27.53 27.37 27.52 27.51 0.3 −0.109

8 · 107 1024 4,200 31.17 31.21 31.21 31.16 30.93 31.00 31.11 0.9 −0.115

1 · 108 1024 4,200 33.71 33.80 33.79 33.72 33.45 33.54 33.67 1.0 −0.116

3 · 108 1024 4,400 48.32 48.39 48.41 48.29 47.43 47.66 48.08 2.1 −0.134

5 · 108 1024 3,600 56.59 56.67 56.67 56.50 54.84 55.46 56.12 3.3 −0.140

Table 6.1: Convergence of Nusselt number for (a) Pr = 3.0 and (b) Pr = 4.3. Rayleigh
number, grid size, and length of simulation. Time-averaged values of Nu, average Nusselt
number Nu, % maximum relative difference and mean temperature 〈θ〉xy. A ∗ symbol
indicates a steady-state solution, while † and ‡ indicate one of two periodic solutions,
see text.
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Part IV

Influence of boundary conditions:

severe lateral confinement on a

rectangular Rayleigh-Bénard cell
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Chapter 7

Confined cells with adiabatic

side-walls

7.1 Preamble

Under the Boussinesq approximation, the 3-D RB system is fully defined by the Rayleigh

and Prandtl numbers, by the cell geometry (in particular the aspect ratio along the

transversal direction Γz) and the boundary conditions. The influence of geometrical pa-

rameters on the large scale circulation has been the subject of many studies in cylindrical

vessels or rectangular boxes. In the latter case, numerical or experimental studies (S.

Wagner, and Shishkina, 2013; S. D. Huang, et al., 2013; Kaczorowski et al., 2014; Ni

et al., 2015) have focused on the influence of the aspect ratio Γz on global properties as

well as the large-scale flow. In the numerics, for instance, the global Nusselt and Reynolds

numbers display a strong dependence on Γz for Ra ∼ 105 −107 (S. Wagner, and Shishkina,

2013). This geometrically induced heat-transfer enhancement was confirmed experimen-

tally and numerically by (S. D. Huang, et al., 2013) and was explained by the formation

of vertical turbulent channels instead of a large-scale roll. Experimentally, the influence

of confinement on the dynamics of these large-scale circulation has been also discussed by

(Ni et al., 2015).

Studies by (Chong, S.-D. Huang, et al., 2015; Chong and Xia, 2016) identified three

different flow regimes denoted as I, II, and III, see figure 7.1. The differences between the

regimes can be illustrated by considering an horizontal slice inside the bottom boundary

layer. Regime I is the classical regime in which thermal plumes are arranged into sheet-

like structures with no preferential alignment, except close to the side-walls (figure 7.1a).

When the characteristic size of the plumes is comparable to the transversal size of the box,

plumes do not split but in turn transform into sheets of constant width oriented along the

transversal direction. This corresponds to regime II (figure 7.1b). Inside regime III we

observe clear indications of a (quasi-)two-dimensional flow consistent with Hele-Shaw cells:

a transversal velocity close to zero and a Poiseuille-type velocity profile (figures 7.1c and

7.1d). To illustrate these changes in 3-D we consider instantaneous isotherms for different

aspect ratios displayed on figure 7.2. During transition from II to III the large thermal

structures locked near the corners which were separated (figure 7.2b) tend to merge and

form a single plume (figures 7.2c and 7.2d). Note that, the separation between regimes II
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Figure 7.1: (Left panel) Different regimes of heat transport under geometrical confinement
borrowed from Chong and Xia, 2016 for Pr = 4.38. Regime I represents the classical
three-dimensional case; Regime II is the plume-controlled regime; and regime III the
severely confined regime. A blue line (Γz = 12.42Ra−0.21) separates regimes I and II,
an orange one (Γz = 29.37Ra−0.31) separates regimes II and III, and a red line (Γz =
21.96Ra−0.5) indicates the onset of convection. Note that for a given Γz, the light area
inside III separates the Ra at the onset of convection to five times this value. (Right
panel) Horizontal slice of the temperature and velocity field in a plane in proximity of the
bottom boundary layer (x, y = −0.48, z). Each slice corresponds to a mark on the left
panel: (a) Γz = 1/2, (b) Γz = 1/4, (c) Γz = 1/8, and (d) Γz = 1/16.

and III (Γz = 29.37Ra−0.31) corresponds to the aspect ratio at which the average Nusselt

number reaches a maximum value while keeping Ra constant and increasing Γz (Chong

and Xia, 2016).

Thermal and solutal convection in Hele-Shaw cells has been the subject of several experi-

mental (Hartline and Lister, 1977; Ozawa et al., 1992), numerical (Bizon et al., 1997) and

analytical (Graham et al., 1992) studies. Such systems model fluid filtration in saturated

porous media (Gorin, 2012; Nield and Bejan, 2013). The most striking feature is again,

the suppression of a system-wide circulation in favor of the formation of large plumes (or

clusters of plumes) along the vertical direction. The scaling exponents of the Nusselt and

Reynolds numbers deviate from the exponents observed in cubic Rayleigh-Bénard convec-

tion. To the best of my knowledge, this case is not considered by the unifying theory of

thermal convection (Grossmann and Lohse, 2000; Grossmann and Lohse, 2003).

In the present chapter, we identify the main dynamical features of confined cells through

the use of fully resolved 3-D DNS in regime III. Note that in this regime, the observed large-

scale dynamic is very different from the one of pure two-dimensional turbulent convection

presented in chapters 4 and 5 of this thesis. In the subsequent chapter we compare results

from the 3-D DNS with two simplified models, which are used to explore the parameter

space and to study long-term dynamics for which the use of 3-D DNS is prohibitively

expensive.
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(a) Γz = 1/2 (b) Γz = 1/4 (c) Γz = 1/8

(d) Γz = 1/16 (e) Γz = 1/32 (f) Γz = 1/64

Figure 7.2: Instantaneous isotherms for {±0.45,±0.35,±0.25,±0.15} and (Ra = 107,Pr =
4.38). Figure (a) corresponds to regime I, figure (b) corresponds to regime II, and figures
(c-f) correspond to regime III.

135



7.2 Numerical approach

We explore here regime III, where we fixed Pr = 4.38 and varied Ra from 106 to 109.

Different aspect ratios 1/64 ≤ Γz ≤ 1/8 were also considered. Direct numerical simulations

were performed using the code Basilisk described in section 3.1.2. It is reminded that one

solves the Boussinesq equations

∂iui + ∂zw = 0 (7.1a)

∂tui + ∂j(ujui) + ∂z(wui) = −∂ip + PrRa−0.5(∂j∂jui + ∂2
zui) + Prθδiy (7.1b)

∂tw + ∂j(ujw) + ∂z(ww) = −∂zp + PrRa−0.5(∂j∂jw + ∂2
zw) (7.1c)

∂tθ + ∂j(ujθ) + ∂z(wθ) = Ra−0.5(∂j∂jθ + ∂2
zθ) (7.1d)

Here the Einstein notation is used only for the in-plane components, i.e. indices i, j = x, y.

The domain is defined as [−0.5, 0.5] × [−0.5, 0.5] × [−Γz/2,Γz/2], with Γz ≪ 1. Velocity

is zero on all walls. On the top (resp. bottom) walls, the reduced temperature is imposed

to be θ(y = 0.5) = −0.5 (resp. θ(y = −0.5) = 0.5). Side-walls are adiabatic i.e. ∂nθ = 0.

Results were obtained on uniform Cartesian grids with a variable time-step that verifies

CFL < 0.5. As a general rule, the distribution of grid points must be able to resolve the

steep gradients in the velocity and temperature fields near the walls (Grötzbach, 1983).

This is a difficult thing to do using regular Cartesian grids for confined cells since the

number of points along the transversal direction is usually small. A second, more subtle

limitation is a slow time evolution since velocities are quite small, making fully resolved

direct simulations increasingly onerous for Γz < 1/64.

Spatial resolution is verified to be adequate by following the procedure described on §3.2.2:

one checks numerically whether the exact relations between the instantaneous rates-of-

change (see equation (3.11)) and energy transfer rates are verified. A small residual value is

an indication that spatial resolution is adequate. The second check concerns the statistical

convergence of time-averaged Nusselt numbers proposed by (R. Stevens, Verzicco, et al.,

2010). The average values of Nuvol, Nutop, Nubot, Nuǫ, Nuθ, Nud, and Nu as well as the

maximum relative difference %Diff are listed in table 7.1 (see §2.2.7 for definitions). For

the finer grids, these quantities are shown to converge within 3% of Nu for the range of

(Ra,Pr) presented. In addition, the average Nusselt number Nu is in good agreement with

published results from Chong and Xia, 2016.
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Γz Ra t.u. Grid Nutop Nubot Nuvol Nuǫ Nud Nuθ Nu %Diff

1/8 106 750 2562 × 32 5.18 5.18 5.17 5.16 5.16 5.17 5.17 0.5
5 · 106 750 2562 × 32 10.70 10.72 10.70 10.61 10.60 10.62 10.66 1.0

107 † 5122 × 64 14.87 14.87 14.87 14.83 14.81 14.82 14.85 0.4
5 · 107 1,600 5122 × 64 28.44 28.44 28.45 28.30 28.19 28.17 28.33 1.0

108 1,800 5122 × 64 35.00 35.01 35.01 34.75 34.62 34.53 34.82 1.4

1/16 106 ∗ 2562 × 16 4.12 4.12 4.11 4.07 4.11 4.11 4.11 1.0
5 · 106 1,000 2562 × 16 7.17 7.17 7.16 7.08 7.14 7.14 7.15 1.2

107 5,000‡ 5122 × 32 9.42 9.44 9.43 9.40 9.40 9.41 9.41 0.4
2 · 107 2,500 5122 × 32 15.40 15.40 15.40 15.33 15.31 15.33 15.37 0.6
5 · 107 1,750 5122 × 32 22.76 22.76 22.76 22.63 22.58 22.59 22.68 0.8

108 2,250 5122 × 32 29.48 29.49 29.50 29.28 29.06 29.11 29.32 1.5

1/32 5 · 106 ∗ 5122 × 16 5.33 5.33 5.33 5.27 5.32 5.32 5.32 1.0
107 1,000 10242 × 32 6.52 6.54 6.53 6.52 6.52 6.52 6.52 0.3

5 · 107 750 10242 × 32 14.48 14.49 14.47 14.43 14.44 14.45 14.46 0.4
108 1,000 10242 × 32 19.94 19.88 19.91 19.85 19.85 19.86 19.88 0.5
109 1,000 10242 × 32 62.11 62.04 61.92 61.58 61.34 61.17 61.69 1.5

1/64 107 ∗ 10242 × 16 3.69 3.67 3.68 3.65 3.68 3.68 3.68 1.2
5 · 107 1,200 10242 × 16 7.84 7.87 7.85 7.76 7.85 7.85 7.84 1.0

108 1,200 10242 × 16 12.61 12.59 12.60 12.47 12.58 12.60 12.58 1.1
2 · 108 1,000 10242 × 16 19.39 19.42 19.51 19.29 19.31 19.35 19.38 1.1

109 2,000 10242 × 16 46.83 46.85 46.85 46.28 46.31 46.30 46.57 1.2

Table 7.1: Time-averaged Nusselt numbers and maximum relative difference between them
for the finest grid used. Here t.u. indicates the length of the simulation. Symbol † indicates
a periodic solution, ‡ an intermittent solution, and ∗ a steady-state.
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7.3 Dynamics of the confined regime in RB cells

7.3.1 Large-scale plume dynamics

Flow dynamics is mostly defined by the competition between friction and buoyancy forces.

For severely confined cells, the frictional drag on the front and back walls (z = ±Γz/2)

favors the formation of large plume clusters along the vertical direction (also called turbu-

lent channels) instead of a system-scale circulation observed in pure 2-D or in conventional

3-D convection. Figure 7.3 illustrates the evolution of flow structures as we decrease Γz for

(Ra = 107,Pr = 4.38). The plume width increases with the confinement. The resulting

flow is mainly controlled by the motion of the turbulent channels. Some channels cross

the domain unopposed from top to bottom or vice versa, as seen near the center of the

cavity in figures 7.3a to 7.3c. Other channels may collide with each other as they traverse

the domain. Such head-on collisions are typically found along the vertical side-walls, in

which the plumes are deviated in the horizontal direction.

For (Γz = 1/8,Ra = 107) the top-bottom symmetry is not observed and side-wall plumes

collide at a nearly constant height close to top or bottom plates. The interaction of side-

wall plumes with the central plume creates a periodic sweeping motion, which is reflected

on the the evolution of Nubot, Nutop, and Nuvol. A dominant frequency of f = 0.12 is

clearly observed for Nuvol (see figure 7.3a).

For (Γz = 1/16,Ra = 107) the collision of the side-wall plumes takes place near the mid-

height of the cavity. The interaction between the side-wall plumes and the central plume

leads to a chaotic motion with a dominant frequency f = 0.036. The side-wall plumes can

be moving in-phase or out-of-phase. During the in-phase motions the side-plumes keep the

central plume locked in place, whereas during the out-of-phase motions the side-plumes

push back and forth the central plume. In some instances, the coordinated motion pushes

the central plume into a wall which then merges with a side-wall plume.

For (Γz = 1/32,Ra = 107) one observes two types of periodic solutions: a flow with a

central plume locked in place (see figure 7.3c), and a flow without a central plume (see

figure 7.3d). In the former case, the motions of the side-wall plumes are coordinated,

pumping hot fluid from the bottom to the top or vice versa. In the latter case, the side-

wall plumes move out-of-phase to form a large-scale circulation and prevent other plumes

to settle. Both solutions have the same dominant frequency f = 0.025, suggesting the

oscillating motion of the side-plumes remains unchanged.

For the most confined cell (Γz = 1/64,Ra = 107), one arrives to a steady single-roll

configuration with one ascending and one descending plume (not shown in figure 7.3).

Figures 7.4 to 7.7 display the dynamics for Γz = 1/64 and different Ra. The plume width

is shown to decrease as we increase Ra. The relative plume size with respect to the size of

the cavity seems to play an important role in the overall dynamics. As such, similar flow

regimes may be observed for different combinations of Ra and Γz with a similar plume

size. For (Ra = 5 · 107,Γz = 1/64) we observe two types of solutions. In the first one

(figure 7.4a), the coordinated motion of the side-wall plumes prevents the center plume

from moving and one obtains a periodic oscillatory solution similar to the one displayed

on figure 7.3c. The second kind of solution (figure 7.4b) is a chaotic one, but different
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(a) Ra = 107,Γz = 1/8, periodic oscillatory
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(b) Ra = 107,Γz = 1/16, chaotic motion
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(c) Ra = 107,Γz = 1/32, periodic oscillatory with center plume
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(d) Ra = 107,Γz = 1/32, periodic oscillatory without center plume
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Figure 7.3: DNS results for (Ra = 107,Pr = 4.38) and different Γz. (Left) Time se-
ries of Nuvol (black), Nutop (blue) and Nubot (red); (Middle) Time-frequency spectra of
Nuvol; (Right) Snapshot of the reference height yr(x, y, 0, t) (see §2.2.4). Horizontal lines
correspond to y = ±(0.5 − 1

Nu
).
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(a) Ra = 5 · 107,Γz = 1/64, oscillatory periodic with center plume
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(b) Ra = 5 · 107,Γz = 1/64, chaotic motion without center plume
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Figure 7.4: DNS results for (Γz = 1/64,Ra = 5 · 107,Pr = 4.38). The two sequences
(a) and (b) correspond to different stable solutions, see text. First row: Time series of
Nuvol (black), Nutop (blue) and Nubot (red); a close-up view of the time-series inside the
interval indicated in dashed lines ; and time-frequency spectra of Nuvol. Second row:
snapshots of the reference height yr(x, y, 0, t) (see §2.2.4), where times corresponding to
snapshots are indicated in the time series by a ◦ mark. Thick horizontal lines correspond
to y = ±(0.5 − 1

Nu
) for reference.
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Ra = 1 · 108,Γz = 1/64, chaotic motion with center plume
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Figure 7.5: Same as in figure 7.4 but for Ra = 108.

from the one in figure 7.3b. Here the side-wall plumes move back and forth independently

from one another. One ascending and one descending central plume are observed almost

simultaneously, which repel each other to the sides as they collide, thus creating a system-

wide circulation.

Dynamics for (Ra = 108,Γz = 1/64) are determined by the interaction between the

side-wall plumes and one ascending (or descending) central plume (figure 7.5). This con-

figuration results in a chaotic motion with characteristic frequency f = 0.1. This solution

similar to the one displayed on figure 7.3b.

When Ra is further increased, additional channels are allowed to form (figures 7.6 and

7.7). For (Ra = 2 · 108,Γz = 1/64) in addition to having side-wall plumes of different

heights, we identify one ascending and one descending channels near the center of the

cavity (figure 7.6). Unlike configurations with a single central plume, this solution is

nearly centro-symmetric. The interaction between multiple turbulent channels leads to

rather complex dynamics characterized by a dominant frequency near f = 0.05.

For (Ra = 109,Γz = 1/64) thermal plumes are clustered into four ascending and three

descending turbulent channels (figure 7.7). Intervals of light (lower than average) and

intense (higher than average) heat-transfer alternate roughly every 100 convective time

units (see Nuvol(t) in figure 7.7). Light periods often coincide with the merging of hot (resp.

cold) plumes into large clusters close to the lower (resp. upper) thermal boundary layers.

These clusters detach from the boundary layers and make their way into the bulk. The

intense periods coincide with the collision of said clusters against the upper (resp. lower)

plate. The formation of multiple turbulent channels is consistent with observations from

(Bizon et al., 1997). Near the onset of convection, the sequence of conductive, stationary,

and oscillatory flow patterns is also consistent with experiments in Hele-Shaw cells (Ozawa

et al., 1992).

Finally, note a strong similarity between the turbulent channels and the type of convective

structures observed in similar systems where the third dimension is partially suppressed

due to the action of stabilizing forces. Examples include strong magnetic fields, a rapid
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Ra = 2 · 108,Γz = 1/64, chaotic motion with two center plumes
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Figure 7.6: Same as in figure 7.4 but for Ra = 2 · 108.

Ra = 1 · 109,Γz = 1/64, turbulent flow with multiple plumes
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Figure 7.7: Same as in figure 7.4 but for Ra = 109. One additional row of snapshots is
displayed to illustrate the sequence from below average to above average heat-flux.
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Viscous dissipation Thermal dissipation diapycnal mixing

Ra Γz (ǫ(z)/ǫ) σ(ǫ(z)/ǫ) (ǫ
(xy)
θ /ǫθ) σ(ǫ

(xy)
θ /ǫθ) (Φ

(xy)
d /Φd) σ(Φ

(xy)
d /Φd)

1 · 107 1/8 0.738 0.006 0.803 0.002 0.574 0.005
5 · 107 1/8 0.778 0.017 0.776 0.011 0.501 0.027
1 · 108 1/8 0.777 0.018 0.788 0.009 0.498 0.026

1 · 107 1/16 0.824 0.011 0.976 0.004 0.949 0.007
5 · 107 1/16 0.826 0.016 0.774 0.014 0.516 0.027
1 · 108 1/16 0.798 0.021 0.727 0.020 0.452 0.025

1 · 107 1/32 0.952 0.004 0.998 0.001 0.996 0.001
5 · 107 1/32 0.922 0.005 0.978 0.003 0.956 0.005
1 · 108 1/32 0.906 0.009 0.932 0.025 0.873 0.037
1 · 109 1/32 0.876 0.020 0.703 0.018 0.396 0.036

1 · 107 1/64 0.984 0.000 1.000 0.000 1.000 0.000
5 · 107 1/64 0.976 0.003 0.999 0.000 0.999 0.000
1 · 108 1/64 0.972 0.001 0.997 0.000 0.995 0.000
1 · 109 1/64 0.952 0.005 0.817 0.013 0.707 0.020

Table 7.2: Evolution of different global quantities as function of Ra and Γz. Time averaged

value and standard deviation of the ratios (ǫ(z)/ǫ), (ǫ
(xy)
θ /ǫθ), and (Φ

(xy)
d /Φd).

rotation around the vertical axis, the presence of an additional density gradient (Chong,

Kai Leong et al., 2017), or geometric confinement like in porous media (Otero et al., 2004;

D. R. Hewitt, et al., 2012; D. Hewitt, et al., 2014). The loss of three-dimensionality may

be illustrated through the various dissipative terms in (3.11): the viscous dissipation rate

ǫ, the thermal dissipation rate ǫθ and the diapycnal mixing Φd. Each of these terms may

be split in two parts: one part due to contributions from gradients along the transversal

direction z, and another due to gradients along the in-plane components x and y

ǫ(z) ≡ 〈(∂zui)(∂zui) + (∂zw)2〉xyz ǫ(xy) ≡ ǫ− ǫ(z) (7.2a)

ǫ
(z)
θ ≡ 〈(∂zθ)

2〉xyz ǫ
(xy)
θ ≡ 〈(∂jθ)(∂jθ)〉xyz (7.2b)

Φ
(z)
d ≡ 〈(∂zyr)(∂zθ)〉xyz Φ

(xy)
d ≡ 〈(∂jyr)(∂jθ)〉xyz (7.2c)

The relative contributions from ǫ(z)/ǫ, ǫ
(xy)
θ /ǫθ, and Φ

(xy)
d /Φd provide a good measurement

of the bi-dimensionalization of the flow structures (see table 7.2). First, ǫ(z) corresponds

to the energy lost due to frictional drag along the front and back walls (z = ±Γz/2). As

we decrease the aspect ratio Γz, ǫ
(z) contributes anywhere from 70% up to 98% of the total

viscous dissipation ǫ (see table 7.2). Second, ǫ
(xy)
θ represent from 70% to nearly 100% of

the total thermal dissipation, whereas Φ
(xy)
d represent from 50% to nearly 100% of the

total mixing rate Φd. This is expected in confined cells where adiabaticity of the front

and back walls imposes small temperature gradients along z.

7.3.2 Flow reversals inside the laterally confined geometry

A pure 2-D turbulent convection can be described by the superposition of a large-scale

flow over a incoherent turbulent background (see chapters 4 and 5). This large-scale flow

is mainly characterized by a single-roll structure which is sustained for extended periods

of time. However, a spontaneous re-organization takes place (known as a flow reversal),

changing the sense of rotation of the roll, thus restoring the statistical symmetry of the
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(a) Sequence of snapshots for a reversal

(a.i) (a.ii) (a.iii) (a.iv) (a.v)

(a.vi) (a.vii) (a.viii) (a.ix) (a.x)

(b) Time-series (and close-up view) of the Half-range Fourier coefficients ûpq
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û
2

2

0 200

−1
0
1

Time

(c) Time-series (and close-up view) of the kinetic and available potential energies
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Figure 7.8: Flow reversal observed for DNS at Ra = 2 ·107 and Γz = 1/16. (a) A sequence
of snapshots of field yr(x, y, 0, t) during the reversal. (b) Time-series of the half-range
Fourier coefficients of the horizontal velocity ûpq. Modal coefficients are multiplied by a
factor 102. The dashed box indicates the time interval where the reversal occurs. This
interval is displayed on the right indicating the times corresponding to the snapshots. (c)
Time-series (and its close-up view) of the normalized kinetic and the available potential
energies, Ek and Ea.
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system. In 3-D rectangular cells, flow reversals have been observed for different values of

Ra and Pr. For Γz = 0.3, this was seen by Sugiyama, Ni, et al., 2010, for Γz = 0.2 by

Vasiliev and Frick, 2011, and for 0.84 ≤ Γx ≤ 1.10 and 0.33 ≤ Γz ≤ 0.25 by Ni et al.,

2015. In the present work, we report a reversal process for more confined 3-D cells, which

corresponds to a different large-scale flow.

A configuration with one ascending plume near the center of the cavity (fig. 7.8a.i) may

be sustained for over 1,000 convective time units. Since the central plume collides against

the top plate, cold fluid is pushed towards the side-walls and suppresses the formation of

additional large-scale plumes. Due to a coordinated motion of the side-wall plumes, the

central plume (the direction of its motion is indicated by a red arrow) is displaced (fig.

7.8a.ii) and allows a second plume to appear on its left (fig. 7.8a.iii). Thereafter, the

central plume swings back towards the left, sweeping the newly formed plume towards the

side-wall leading to the destruction of both central plumes (fig. 7.8a.iv). In the absence of

a single central plume, ascending and descending plumes form simultaneously and actively

repel each other (fig. 7.8a.v-a.viii). They coexist until one is swept away and the other

becomes dominant (figs. 7.8a.ix-a.x).

This sequence is quite different from the reversals observed in pure 2-D. This is illustrated

based on a half-range Fourier decomposition of the horizontal velocity, see §2.5. In pure

2-D, the reversal of the large diagonal vortex occurs after being squeezed by counter-

rotating corner-rolls and it is characterized by the evolution of the first 2-D Fourier modes

(in particular modes (1,1),(1,3),(1,2) and (2,2)). Reversals are evidenced by a change in

sign in the mode (1,1). Let us consider a similar approach for the laterally confined cells

and follow the evolution 2-D Fourier modes in the transversal mid-plane z = 0 (see figure

7.8b). In laterally confined 3-D cells, the mode û1,1 is not dominant and oscillates around

zero, whereas the leading modes correspond to û2,2, and û1,2 instead. The value of û2,2

is mostly positive, while û1,2 and û1,4 switch signs during the flow reversal near t = 100.

In this sense, û1,2 is a natural choice to characterize the presence of flow reversals in this

geometry. Furthermore, near t = 550, t = 1000, and to a lesser degree for t = 1500

one observes failed reversals: these coefficients drop to zero, before returning to the same

plateau.

In 2-D reversals, the whole process is driven by localized and progressive accumulation of

thermal energy inside the corner-rolls, which eventually overcomes the central vortex. In

the confined geometry, the reversal is characterized by strong oscillations in Ek, Ea and

Nuvol (figure 7.8c), but it is less clear if there is a progressive build-up of thermal energy

as in pure 2-D. No noticeable change in size of the thermal structures was observed. Note

that reversal are rare and it is difficult to perform a detailed study using DNS. This

constitutes one of the motivations for developing the reduced order models presented in

the next chapter.

7.4 Statistical characterization of the confined regime: num-

ber of plumes and average plume width

We take a statistical approach to characterize the turbulent flow and the persistent large-

scale structures. In the context of the confined regime, we are interested in the number
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and size of large-scale turbulent channels that controls the flow dynamics. Given the loss

of three-dimensionality of the thermal structures along the transversal direction, we can

focus our observations on the transversal mid-plane z = 0.

From figure 7.9a, two type of plumes can be distinguished. Near the bottom plate we

observe three narrow ascending plumes (in orange) just detached from the boundary layers,

and two wider descending plumes (in blue) which are about to impact against the bottom

boundary layer. Similarly, near the upper plate we observe two narrow descending plumes

(in blue) and one wider ascending plume (in orange). A geometric characterization of such

individual plumes is a complex task. Different alternatives are available, see for instance

(Shishkina and C. Wagner, 2008). Here, a simple method is proposed taking advantage of

the alignment of sheet-like plumes perpendicular to the front and back walls (z = ±Γz/2)

in the confined regime. To compute the position of the narrow plumes just detached

from the boundary layer, one focuses on the height y = ±(0.5 − 1/Nu), i.e. twice the

thermal boundary layer thickness. Since plumes are the main carriers of heat across the

domain, it is reasonable to associate a plume to each local maxima in 〈φ2〉z(x, t) where

φ(x, t) = vθ−〈vθ〉x denotes the deviations from the mean instantaneous vertical heat-flux.

Hence, the location of the plumes is estimated by searching for the number and positions

of these local maxima (indicated in figure 7.9 by N marks).

The number of plumes at a given time depends on length Γx (here kept at Γx = 1), and

on the geometry of the plumes, which depends on Ra and Γz. For (Ra = 108,Γz = 1/64)

one identifies from 3 to 4 plumes near the bottom plate and from 3 to 4 others near the

top plate (figures 7.9a to 7.9c), whereas for (Ra = 109,Γz = 1/64) one identifies from 6 to

10 plumes near the bottom plate and a similar amount near the top plate (figures 7.9d to

7.9f). Ejected plumes are not evenly distributed but have instead the tendency to form

clusters (see figures 7.9e and 7.9f). Hence the distance between contiguous ejected plumes,

denoted by d0, is not necessarily equal to the length of the cavity divided by the number of

plumes. Figure 7.10a displays the probability distribution of d0 for (Γz = 1/64,Pr = 4.38)

and different values of Ra.

For Ra = 5·107, plume spacing near the bottom plate peaks near d0 = 0.5, i.e. the distance

between the side-walls and the central plume, while near the top plate a peak is observed

near d0 = 0.95, i.e. the distance between the side-wall plumes. For Ra = 108, a central

plume is observed at the bottom and two side-wall plumes at the top, but additional plumes

form near both plates, which are pushed towards the center or towards the side-walls. The

plume spacing d0 is distributed over a wider range due to the horizontal displacements

of the plumes, while a second smaller length scale reflects the motion of the new plumes

(see top part of figure 7.10a). Unlike Ra = 5 · 107 and Ra = 108, a transition towards

a symmetric configuration is observed for Ra = 2 · 108 and Ra = 109. This results in a

similar distributions of d0 at the top and bottom plates. Finally, for Ra = 109 the motion

of several turbulent channels that are formed, pushed and merged continuously with each

other is reflected on a smoother distribution of d0.

One may estimate a characteristic width of the ejected (narrow and intense) plumes. This

is done by computing the time averaged spatial auto-correlation function of φ

fcorr(r) =

(
〈φ(x, y, z, t)φ(x+ r, y, z, t)〉x

〈φ(x, y, z, t)φ(x, y, z, t)〉x

)
at y = ±(0.5 − 1/(2Nu), z = 0 (7.3)
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Figure 7.9: Plume characterization for (Γz = 1/64,Pr = 4.38) for (a,b,c) Ra = 108 and
(d,e,f) Ra = 109. Figures (a,d) display the reference height yr(x, y, 0, t0), whereas figures
(b,e) and (c,f) correspond to 〈φ2〉z(x, t) with φ = vθ− 〈vθ〉x for 5 consecutive instants (t0
to t4), each in a different color. Measurements taken at y = ±(0.5 − 1/Nu). The number
of plumes is deduced from local maxima in 〈φ2〉z(x, t) (each shown as N).
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Figure 7.10: (a) Probability distribution of the inter-plume spacing d0 measured near the
top (blue) and bottom (red) boundary layers for Pr = 4.38 and Γz = 1/64. From top to
bottom: Ra = 5 · 107 (w/central plume), Ra = 108, Ra = 2 · 108, and Ra = 109. (b)
Spatial auto-correlation for Pr = 4.38 and Γz = 1/64 used to illustrate the plume width.
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Plumes near top BL Plumes near bottom BL

Ra Γz No. d0/δ
(1)
θ r0/δ

(1)
θ L0/δ

(1)
θ No. d0/δ

(1)
θ r0/δ

(1)
θ L0/δ

(1)
θ

1 · 107 1/8 3.6 10.87 4.21 0.90 3.6 10.92 4.90 1.50

5 · 107 1/8 4.7 14.49 8.69 2.99 4.7 14.50 9.47 3.23

1 · 108 1/8 4.8 16.55 10.56 2.72 5.0 16.22 11.10 2.74

1 · 107 1/16 3.0 8.96 1.05 0.46 2.6 11.09 1.05 0.50

5 · 107 1/16 3.2 20.25 4.92 1.45 3.3 19.36 6.96 0.90

1 · 108 1/16 4.5 16.33 4.64 1.52 4.1 18.54 5.90 1.64

1 · 107 1/32 2.7 7.17 1.17 0.53 2.8 7.08 1.17 0.54

5 · 107 1/32 3.5 11.42 1.09 0.55 4.0 9.45 1.00 0.47

1 · 108 1/32 4.5 11.04 1.18 0.54 4.5 11.10 1.25 0.59

1 · 109 1/32 6.8 21.09 15.62 3.03 7.2 19.96 16.58 2.68

1 · 107 1/64 2.0 6.95 1.34 0.61 2.0 6.96 1.35 0.61

5 · 107 1/64 2.9 7.92 1.07 0.51 2.9 7.94 1.09 0.51

1 · 108 1/64 3.2 11.01 1.17 0.55 3.5 9.96 1.12 0.51

1 · 109 1/64 8.0 13.24 1.68 0.78 7.7 13.84 1.77 0.78

Table 7.3: Geometric characterization of plumes for y = ±(0.5 − 1/Nu): Average number
of plumes (No.), average plume spacing d0, mean correlation distance r0 and integral scale

L0. Values normalized by δ
(1)
θ = 1/(2Nu) for reference.

and measuring the distance r0 as the first zero-crossing of fcorr(r0) = 0, i.e. the distance

at which the plumes are no longer correlated to themselves (figure 7.10b). The distance

r0 is then used to compute an integral length scale of the vertical heat-flux L0

L0 =

∫ r0

−ro

fcorr(r) dr (7.4)

The value L0 is considered to be representative of the average plume width. Note that

the value of L0 is comparable to δ
(1)
θ = 1/(2Nu) (see table 7.3). This is consistent with

observations in cylindrical cells (Shishkina and C. Wagner, 2008) in which the thickness

of sheet-like plumes was found to be of the same order of the thermal boundary layer.

7.5 Statistical characterization of the confined regime: mean

profiles and boundary layer thickness

Turbulent convection is divided spatially into thermal and kinetic boundary layers and

a turbulent background away from the boundaries. Traditionally, in order to provide

a simplified description of the turbulent flow, one considers vertical profiles of different

quantities. In our particular case, the influence of the aspect ratio Γz is also explored

through the use of profiles of the viscous dissipation in the transversal direction.

7.5.1 Vertically averaged profiles

Consider the thermal vertical profiles displayed on figure 7.11: the spatio-temporal fluc-

tuations 〈θ〉rms
xz and the plane and time-averaged thermal dissipation rate 〈∂jθ∂jθ〉xz. Two

regimes are identifiable. In the first one, fluctuation profiles are similar to the typi-
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Figure 7.11: DNS results for (Γz = 1/64,Pr = 4.38) and different Ra. Spatio-temporal
fluctuations 〈θ〉rms

xz (y), and time-averaged thermal dissipation rate 〈∂jθ∂jθ〉xz(y).
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Figure 7.12: DNS results for (Γz = 1/64,Pr = 4.38) and different Ra. Spatio-temporal
fluctuations 〈u〉rms

xz (y), time-averaged viscous dissipation 〈∂jui∂jui〉xz(y) averaged along
the z direction, and time-averaged viscous dissipation 〈∂jui∂jui〉x(y, 0) at the transversal
mid-plane (z = 0).
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cal profiles found on unconfined turbulent convection cells (Kerr, 1996). This is the

case for (Γz = 1/64,Ra = 109) (figure 7.11a) but also for (Γz = 1/32,Ra = 108) and

(Γz = 1/32,Ra = 109) (not shown): temperature fluctuations reach a peak value close to

the top and bottom plates, indicating the presence of thermal boundary layers, whereas

a nearly constant temperature fluctuation is observed in the bulk. Additionally, ther-

mal dissipation is localized near the top and bottom plates. The second regime corre-

sponds to configurations where a central plume is observed to remain in place for long

periods of time. This is the case for (Ra = 108,Γz = 1/64) (figure 7.11b) but also for

(Γz = 1/64,Ra = 5 · 107) (not shown). In such cases, the vertical profiles are asymmetric

by exchanging the lower and upper half-cells inside the bulk. In addition to the features

of the first regime, the temperature fluctuations display a peak in the bulk, more precisely

at an intermediate height where the ascending and descending plumes collide. A small

increase in thermal dissipation is also observed at the same height.

These two regimes have a counterpart in the vertical velocity profiles of the spatio-temporal

fluctuations 〈u〉rms
xz (y), the plane-averaged viscous dissipation rate 〈∂jui∂jui〉xz and the

viscous dissipation rate 〈∂jui∂jui〉x at the median plane z = 0 (figure 7.12). In the first

regime, the horizontal velocity fluctuations display a peak value close to the top and

bottom plates and comparatively smaller values in the bulk (figure 7.12a). Unlike the

model profiles by (Kerr, 1996), the transversally averaged dissipation profile 〈∂jui∂jui〉xz

is nearly constant in the bulk due to frictional drag along the front and back walls. If we

consider the dissipation profile at the median plane instead of the transversally averaged

one, the viscous dissipation is localized near the top and bottom plates. For the second

regime, additional peaks in the velocity fluctuations and in the viscous dissipation are

observed at intermediate heights where the ascending and descending side-wall plumes

collide (figure 7.12b).

7.5.2 Mean thermal and kinetic boundary layers

In this section, we focus on the relation between the thermal and kinetic boundary layers.

In confined convection, the thickness of the thermal boundary layer depends not only on

Ra and Pr, as in the conventional convection, but also on Γz. The situation for the kinetic

boundary layer is different: for the confined case, its thickness depends mostly on Γz. This

implies that the ratio between thermal and kinetic boundary layers is no longer defined

by Pr as conventional (unconfined) convection, and leads to a situation where the thermal

boundary layer interacts directly with the bulk even for Pr > 1, which is not possible in

conventional convection.

Thermal boundary layer thickness at the top and bottom plates

We provide different estimates of the thermal boundary layer thickness presented in §2.4:

namely, thickness δ
(1)
θ = 1/(2Nu); a thickness δ

(2)
θ defined as the distance between the

closest peak in 〈θ〉rms
xz to the top and bottom plates; and thickness δ

(3)
θ defined as the

closest distance between the position where 〈∂jθ∂jθ〉xz(y) = Nu and the top and bottom

plates. To measure such thicknesses, we could have used the profiles at the transversal

mid-plane (z = 0) instead of the transversally averaged profiles, since 〈∂jθ∂jθ〉x(y, z) for
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Figure 7.13: Thermal dissipation for Γz = 1/64 and Pr = 4.38. Figure (a) displays
〈∂jθ∂jθ〉x(y, z) for Ra = 5 · 107 (left), Ra = 108 (center), and Ra = 109 (right). Figures
(b-d) display vertical profiles for 〈θ〉rms

xz (blue lines) and 〈∂jθ∂jθ〉xz(y) = Nu (red lines).

The horizontal lines y = 0.5 − δ
(1)
θ , y = 0.5 − δ

(2)
θ , and y = 0.5 − δ

(3)
θ are displayed in

orange, dashed blue, and dashed red lines, respectively, and y = 0.5 − Γz/2 is shown in
black for reference.

Ra = 5 · 107, Ra = 108, and Ra = 109 illustrating a small dependence on z of the thermal

dissipation, except for the largest Ra (figure 7.13).

A close-up of the vertical profiles near the top plate allows to compare the values of δ
(1)
θ ,

δ
(2)
θ , and δ

(3)
θ as we increase Ra for Γz = 1/64 (figure 7.13). In most cases, δ

(1)
θ was found

to be the smallest value and δ
(3)
θ was the largest one, see table 7.4. Since our main concern

is the relative thickness of the thermal and kinetic boundary layers, we will take the low

end estimate of the thickness, i.e. δ
(1)
θ , to define the thermal boundary layer thickness

(hatched region in figures 7.13b to 7.13d).

Kinetic boundary layers on the top and bottom plates

In turbulent Rayleigh-Bénard convection, a kinetic boundary layer develops in the vicinity

of the plates and of the side-walls (figure 7.14). In this section we focus on the kinetic

boundary layer of thickness δp on the top and bottom walls. Different estimations for δp

were presented in §2.4. First, a thickness δ
(1)
p defined based on the distance between the

closest peak in 〈u〉rms
xz to the top and bottom plates (see §2.4.2i). Second, a thickness δ

(2)
p

based on the closest distance between the position where 〈∂jui∂jui〉x(y, 0) = (Nu − 1) to

the top and bottom plates. The plane z = 0 is chosen in order to reduce the influence of

the side-walls on the measurements on the top and bottom plates.

Figure 7.15 displays a close-up of the vertical profiles near the bottom plate for Γz = 1/64.

In most cases, the thickness δ
(1)
p is larger than δ

(2)
p and is comparable to Γz. In the

following, we use the thickness δp = δ
(1)
p to define the kinetic boundary layer thickness at

the top and bottom plates (blue hatched region in figures 7.15b to 7.15d).
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Bottom Top Bottom Top

Γz Ra δ
(1)
θ /Γz δ

(2)
θ /Γz δ

(2)
θ /Γz δ

(3)
θ /Γz δ

(3)
θ /Γz

1/8 1 · 107 0.27 0.26 0.27 0.52 0.45

1/8 5 · 107 0.14 0.13 0.13 0.35 0.35

1/8 1 · 108 0.11 0.10 0.10 0.34 0.34

1/16 1 · 107 0.85 1.05 1.27 1.02 1.20

1/16 5 · 107 0.35 0.36 0.36 0.77 0.77

1/16 1 · 108 0.27 0.23 0.23 0.83 0.77

1/32 1 · 107 2.45 3.20 3.17 2.52 2.55

1/32 5 · 107 1.11 1.70 2.42 1.83 1.89

1/32 1 · 108 0.81 0.95 1.11 1.64 1.61

1/32 1 · 109 0.26 0.20 0.20 1.42 1.39

1/64 5 · 107 4.04 6.28 6.22 4.22 5.59

1/64 1 · 108 2.54 4.16 5.53 3.84 4.16

1/64 2 · 108 1.65 3.41 3.34 3.16 3.09

1/64 1 · 109 0.69 0.66 0.66 2.41 2.34

Table 7.4: Different estimations for the thickness of the thermal boundary layers: δ
(1)
θ ,

δ
(2)
θ , and δ

(3)
θ . Values are normalized by Γz for reference.
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Figure 7.14: Spatial distribution of the viscous dissipation 〈∂jui∂jui〉x(y, z) near the bot-
tom for Ra = 108, Pr = 4.38 and for: (a) Γz = 1/8, (b) Γz = 1/16, (c) Γz = 1/32, and
(d) Γz = 1/64. Boundary layer thicknesses at the plates δp and side-walls δw shown for
reference.
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Figure 7.15: Viscous dissipation for Γz = 1/64 and Pr = 4.38. Figure (a) displays
〈∂jui∂jui〉x(y, z) for Ra = 5 · 107, Ra = 108, and Ra = 109. Figures (b-d) display vertical

profiles for 〈u〉rms
xz (in blue lines) and 〈∂jui∂jui〉x(y, 0) (in purple lines). Thickness δ

(1)
p

(resp. δ
(2)
p ) displayed in blue (resp. purple) horizontal lines. Thickness δ

(1)
θ (resp. δ

(3)
θ )

are displayed in orange (resp. red) horizontal lines. The area hatched in blue corresponds
to the kinetic boundary layer, while the thermal one is displayed in orange. Here Γz/2 is
shown in black for reference.

Kinetic BL thickness Ratio between thermal and kinetic BL thicknesses

Bottom Top Bottom Top Bottom Top

Γz Ra δ
(1)
p /Γz δ

(1)
p /Γz δ

(1)
p /δ

(1)
θ δ

(2)
p /δ

(1)
θ δ

(2)
p /δ

(1)
θ δ

(3)
p /δ

(1)
θ δ

(3)
p /δ

(1)
θ

1/8 1 · 107 0.45 0.30 1.4 1.7 1.1 0.9 0.7

1/8 5 · 107 0.29 0.29 2.0 2.2 2.2 0.8 0.8

1/8 1 · 108 0.26 0.26 2.2 2.5 2.5 0.8 0.8

1/16 1 · 107 0.58 0.70 0.8 0.6 0.6 0.6 0.6

1/16 5 · 107 0.67 0.67 1.9 1.9 1.9 0.9 0.9

1/16 1 · 108 0.45 0.48 1.7 1.9 2.1 0.5 0.6

1/32 1 · 107 1.02 1.02 0.4 0.3 0.3 0.4 0.4

1/32 5 · 107 0.80 0.98 0.8 0.5 0.4 0.4 0.5

1/32 1 · 108 0.86 0.73 1.0 0.9 0.7 0.5 0.5

1/32 1 · 109 0.52 0.52 2.0 2.5 2.5 0.4 0.4

1/64 5 · 107 1.22 1.22 0.3 0.2 0.2 0.3 0.2

1/64 1 · 108 1.09 1.22 0.5 0.3 0.2 0.3 0.3

1/64 2 · 108 0.97 0.97 0.6 0.3 0.3 0.3 0.3

1/64 1 · 109 0.91 0.91 1.3 1.4 1.4 0.4 0.4

Table 7.5: Estimation for the thickness of the kinetic boundary layers at the top and

bottom plates δ
(1)
p and ratios between δ

(1)
p and the estimated thicknesses of the thermal

boundary layers: δ
(1)
θ , δ

(2)
θ , and δ

(3)
θ . Color red indicates the kinetic boundary is nested

inside the thermal one.
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Figure 7.16: DNS results for (Ra = 108,Pr = 4.38) and different Γz. Time-averaged
dissipation profiles in the transversal direction (purple lines). The shaded area of size
δw/Γz corresponds to the kinetic boundary layers on the front and back walls. The value
δw/Γz is compared to the value δw/Γz = 0.211 (red dotted lines).

Ratio between the thermal and kinetic boundary layers at the plates

For conventional (unconfined) cells, the ratio between δp and δθ is mostly defined by the

value of Pr: δθ is expected to be smaller than δp for Pr > 1 and vice versa. However,

for very confined cells, the thickness δθ increases as the convective transfer, i.e. Nusselt

(see table 7.1) is hampered by the confinement, while δp depends mostly on Γz and not

on Ra (see table 7.5). In this sense, the ratio δp/δθ is expected to become smaller as Γz

decreases regardless of the value of Pr. This a major difference between the unconfined

and confined regimes, which is consistent with observations from (Chong, Kai Leong et

al., 2017). This behavior is independent of the two regimes mentioned earlier on figures

7.11 and 7.12, which are related to behavior of thermal plumes and the asymmetry of the

vertical profiles. Both regimes are observed for δp/δθ > 1 and δp/δθ < 1 alike. Examples of

the second regime include (Ra = 5 ·107,Γz = 1/8) and (Ra = 108,Γz = 1/8) for δp/δθ > 1,

and (Ra = 107,Γz = 1/8) and (Ra = 108,Γz = 1/16) for δp/δθ < 1.

Kinetic boundary layers on the front and back walls

The second major difference from unconfined convection concerns the kinetic boundary

layers on the front and back walls which become dominant for geometrical reasons. To

define the boundary layer thickness, we consider the transversal profiles of the time-

averaged viscous dissipation 〈∂jui∂jui〉xy (figure 7.16) and compute the positions z where

〈∂jui∂jui〉xy = 〈∂jui∂jui〉xyz = (Nu − 1). The smallest distance between these points and

the front or back walls is taken as the thickness δw.

Locally, the velocity field along the side-walls may be considered as a wall-bounded flow.

For such a velocity field, the thickness δw is expected to increase as the Reynolds number

decreases and vice versa. This Reynolds number is based on the mean velocity magnitude

154



Γz Ra Red
δ

(1)
p

δ
(1)
θ

δw

Γz

∆z

Γz

ǫ(bl)

ǫ

1/8 1 · 107 9.7 1.4 0.15 0.02 0.52

1/8 5 · 107 26.5 2.0 0.13 0.02 0.50

1/8 1 · 108 38.9 2.2 0.12 0.02 0.49

1/16 1 · 107 2.4 0.8 0.21 0.03 0.69

1/16 5 · 107 7.7 1.9 0.19 0.03 0.62

1/16 1 · 108 12.1 1.7 0.19 0.03 0.61

Γz Ra Red
δ

(1)
p

δ
(1)
θ

δw

Γz

∆z

Γz

ǫ(bl)

ǫ

1/32 1 · 107 0.5 0.4 0.22 0.03 0.79

1/32 5 · 107 1.8 0.8 0.21 0.03 0.75

1/32 1 · 108 2.9 1.0 0.21 0.03 0.74

1/32 1 · 109 15.5 2.0 0.21 0.03 0.71

1/64 5 · 107 0.3 0.3 0.23 0.06 0.81

1/64 1 · 108 0.6 0.5 0.23 0.06 0.80

1/64 2 · 108 1.1 0.6 0.23 0.06 0.80

1/64 1 · 109 3.7 1.3 0.22 0.06 0.77

Table 7.6: Most conservative estimate of the ratio δ
(1)
p /δ

(1)
θ which indicates whether the

kinetic BL is nested inside the thermal one (shown in purple) or vice versa; average
thickness of the kinetic boundary layer at the front/back walls δw and contributions to
the viscous dissipation from the front/back kinetic boundary layers. Grid spacing in the
transversal direction ∆z is shown to illustrate the incertitude in the measurement of δw.

and on the depth of the cavity, that is

Red =
ΓzRa0.5

Pr
〈u2〉0.5

xyz (7.5)

At some level of confinement, the value of δw loses its Reynolds dependence being bounded

by the depth of the cavity. This process is illustrated in figure 7.16. As Γz decreases,

the dissipation becomes increasingly parabolic: dissipation peaks at the front and back

walls and is close to zero at the transversal mid-plane. Furthermore, the boundary layer

thickness ‘saturates’ to a constant value δw = 0.211Γz (indicated by a red dotted line

in figure 7.16). This value can be equally obtained by assuming the velocity profile to

be parabolic. For such a parabolic profile, the viscous dissipation at the front and back

walls (z/Γz = ±0.5) tends to 〈∂jui∂jui〉xy ≈ 3(Nu − 1) and the dissipation ǫ(bl,w) inside

the region enclosing the front and back kinetic boundary layers accounts for 80.7% of the

total dissipation ǫ. This peak dissipation at the front and back walls (see figure 7.14d)

and the value of the ratio ǫ(bl,w)/ǫ (see table 7.6) are observed in our simulations.

The transition towards δ
(1)
p /δ

(1)
θ < 1 is observed around Red ∼ 2 and often coincides with

the saturation the boundary layer thickness at the front and back walls to a constant value

δw = 0.211Γz indicating the transition to a parabolic velocity profile in the transversal

direction (table 7.6). In the following section, we explore how these deviations from the

conventional (unconfined) convection are reflected on the behavior of the Nusselt and

Reynolds numbers.

7.6 Nu and Re as function of Ra and Γz: scaling exponents

In order to characterize respectively, the heat-flux and the turbulent motion we use the

average Nusselt number defined in (2.50), and a Reynolds number

Re = Γy
Ra0.5

Pr
U U =

√
〈u2〉xyz (7.6)
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Figure 7.17: (a) Average Nusselt and (b) Reynolds numbers as a function of Ra and Γz

for Pr = 4.38. Symbols indicate the aspect ratios: ◦ Γz = 1/8, D Γz = 1/16, � Γz = 1/32,
and △ Γz = 1/64. A black (resp. red) line corresponds to the scaling for Γz = 1 (resp.
Γz = 1/64).

Γz βNu−1 βRe

1/8 0.41 ± 0.16 0.61 ± 0.12
1/16 0.50 ± 0.20 0.65 ± 0.19
1/32 0.51 ± 0.03 0.73 ± 0.01
1/64 0.61 ± 0.10 0.80 ± 0.03

Table 7.7: Scaling exponents from equation (7.7) with 95% confidence bounds.

based on the mean velocity magnitude and on the height of the cavity Γy = 1. Figures

7.17a and 7.17b display (Nu − 1) and Re as function of Ra for different values of Γz. Both

seem to depend on Ra following a power law

(Nu − 1) ∼ RaβNu−1 and Re ∼ RaβRe for constant Γz (7.7)

The scaling exponents βNu−1 and βRe are estimated by fitting our data and presented on

table 7.7. These exponents are consistent with values found in previous studies (Chong

and Xia, 2016).

For confined cells, scaling exponents display a dependence on Γz and hence deviate from

the Grossmann and Lohse, (2000) theory. For Γz = 1/64 one obtains βNu−1 = 0.61 and

βRe = 0.80 (red lines on figures 7.17a and 7.17b), which are different from βNu−1 = 0.30

and βRe = 0.52 observed in cubic cells (black lines in figures 7.17a and 7.17b). The latter

are compatible with (Grossmann and Lohse, 2000).

Chong and Xia, (2016) followed the evolution of scaling exponents with respect to Γz

up to Γz = 1/128 and concluded that these exponents were approaching the asymptotic

values (βNu−1 = 0.61 and βRe = 0.80), which we found here for Γz = 1/64. However, for

Hele-Shaw cells with aspect ratio Γz = 1/240 using free-slip boundaries, higher exponents

have been reported (βNu−1 = 0.872 and βRe = 0.96) (Bizon et al., 1997). While cells with

no-slip and free-slip conditions may have different dynamics, it is reasonable to wonder

if the same high exponents exists for no-slip conditions for aspect ratios smaller than

Γz = 1/128.
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Since the kinetic boundary layer thicknesses δp and δw become increasingly thin with Γz,

it is quite difficult to perform fully resolved direct numerical simulations in such confined

configurations. In order to explore this severely confined regime, it is convenient to take

a different approach. In the following chapter, we present a reduced model based on

the Hele-Shaw cells which is compared to DNS results. The resulting data is used to

explore the long term evolution of the large scale flow and the evolution of different global

quantities for Γz ≪ 1, before presenting a scaling theory (see section 8.5) suggesting the

asymptotic scaling exponents have different values from those of Chong and Xia, (2016).
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Chapter 8

A reduced model for confined cells

with adiabatic side-walls

Natural convection in the confined regime (III) is characterized by multiple large-scale

turbulent channels along the vertical direction and the flow dynamics is defined by the

non-linear interactions between these large-scale channels. In particular, over long periods

of time, these structures observe a series of re-configurations. A complete study of the

long-term behavior of these structures is deemed too expensive for 3-D DNS. An open

question concerns the asymptotic scaling of the Nusselt and Reynolds numbers suggested

by (Chong and Xia, 2016). In order to verify this scaling, additional simulations for Γz ≪ 1

are required. This is difficult because of the increasingly thin kinetic boundary layers as

Γz → 0. This configuration, however, is well suited for dimensionality reduction.

In this chapter, we focus on two reduced models for convection cells under severe confine-

ment. The first model assumes a Poiseuille-like velocity and constant temperature profiles

in the transversal direction. This approach has been used extensively for convection prob-

lems inside Hele-Shaw cells (Hartline and Lister, 1977; Vorontsov et al., 1991; Graham

et al., 1992; Bizon et al., 1997). A second model is also based on the assumption of a

Poiseuille-like velocity profile but takes into account inertial corrections, which play an

important role near boundaries. It represents a small but noticeable improvement over

the first model. Similar work has been done for Hele-Shaw cells (Gondret and Rabaud,

1997; Ruyer-Quil, 2012). By the end of this chapter, we expect to show how such models

may assist in the exploration of the parameter space and provide some insight on the

dynamics of the confined regime.

8.1 A ‘simple’ 2-D model for laterally confined cells

In this section, we consider a simple model for convection inside Hele-Shaw cells. In the

following we introduce the small parameter

ε =
Γz

2
(8.1)
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and take the average along the transversal direction (for the present chapter 〈 〉 means

〈 〉z) of the Boussinesq equations similar to the technique of von Kármán and Pohlhausen.

∂i〈ui〉 = 0 (8.2a)

∂t〈ui〉 + ∂j〈ujui〉 = −∂i〈p〉 + PrRa−0.5
[
∂j∂j〈ui〉 + ∂zui]

ε
−ε

]
+ Pr〈θ〉δiy (8.2b)

∂t〈θ〉 + ∂j〈ujθ〉 = Ra−0.5∂j∂j〈θ〉 (8.2c)

If we neglect inertial forces on the fluid inside a very confined cell ε ≪ 1, one may consider

transversal velocity to be negligible and the pressure to be independent of the transversal

direction. The resulting in-plane velocity components are expected to have a Poiseuille-like

profile. One may also suppose for a confined system with adiabatic walls the temperature

field to have no dependency on the transversal direction. In the first model, we assume

the primitive variables to have the following form

θ(x, y, z, t) = θ(x, y, t) (8.3a)

p(x, y, z, t) = p(x, y, t) (8.3b)

u(x, y, z, t) = v(x, y, t)g(z) (8.3c)

where

g(z) =
3

2

(
1 −

(
z

ε

)2
)

and v · ez = 0 (8.4)

Introducing ansatz (8.3a) to (8.3c), one evaluates the operator 〈 〉 which leads to the

following system of equations

∇xy · v = 0

∂tv +
6

5
v · ∇xyv = −∇xyp + PrRa−0.5∇2

xyv − λ1v + Pr θey

∂tθ + v · ∇xyθ = Ra−0.5∇2
xyθ

(8.5a)

(8.5b)

(8.5c)

with ∇xy as the operator ∇xy = ex∂x + ey∂y and λ1 being a friction coefficient on the

front and back walls

λ1 =
3

ε2
PrRa−0.5 (8.6)

These equations are reminiscent of those developed by (Gondret and Rabaud, 1997) in the

study of the Kelvin–Helmholtz instability. In order to compare results from this model

against the DNS, it is convenient to express the viscous and thermal energy dissipation

rates that is consistent with the simplified model. This is done by introducing (8.3a) to

(8.3c) in equations (7.2a) and (7.2b)

ǫ ≡ ǫ(xy) + ǫ(z) with ǫ(xy) =
6

5
〈∇xyv : ∇xyv〉xy and ǫ(z) =

3

ε2
〈v · v〉xy (8.7a)

ǫθ ≡ ǫ
(xy)
θ + ǫ

(z)
θ with ǫ

(xy)
θ = 〈∇xyθ · ∇xyθ〉xy and ǫ

(z)
θ = 0 (8.7b)
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8.2 A ‘better’ 2-D model with inertial corrections

In this section, we present a second reduced model which takes into account inertial effects.

This is done in the spirit of the work by Ruyer-Quil, 2001 that extended the model by

Gondret and Rabaud, 1997. Corrections are based on a classical perturbation technique

lying on the existence of a basic state to which deviations are applied: the velocity, pressure

and temperature fields are developed in terms of a small formal parameter. The profile of

the basic state along z corresponds to the solution profile at order zero: a parabolic profile

for the velocity field, a constant profile for the temperature and pressure fields. The model

equations may be obtained using two alternative methods: the gradient expansion method

and the weighted residuals method (Ruyer-Quil, 2012). For a given order of approximation,

both methods yield the same equations. In this work, we chose the weighted residuals

approach. The complete computations and approximations required are detailed in annex

F.

From this analysis, one obtains the expressions for θ and u

θ = 〈θ〉(x, y, t)f0(z) + ϑ̃(1,2)(x, y, t)f2(z) (8.8a)

u = 〈u〉(x, y, t)g0(z) + ã(1,2)(x, y, t)g2(z) + ã(1,4)(x, y, t)g4(z) (8.8b)

in terms of the transversally averaged fields 〈θ〉, and 〈u〉, as well as the inertial correction

terms ϑ̃(1,2), ãi
(1,2), and ãi

(1,4). The functions f0(z) = 1 and g0(z) = 3
2(1 − ( zε )2) are given

by the solution of the zeroth-order formulation and functions f2(z), f2(z), g2(z), and g4(z)

are the following polynomial functions

f2(z) =
1

60
(7 − 30(z/ε)2 + 15(z/ε)4) (8.9a)

g0(z) =
3

2
(1 − (z/ε)2) (8.9b)

g2(z) = −1

8
(7 − 21(z/ε)2 + 35(z/ε)4) (8.9c)

g4(z) =
1

16
(11 − 165(z/ε)2 + 385(z/ε)4 − 231(z/ε)6) (8.9d)

The amplitude of the inertial correction term for the temperature field is expressed by

ϑ̃(1,2) = − ε2Ra0.5

2
[〈u〉 · ∇xy〈θ〉] (8.10a)

while the amplitudes of the corrections for the velocity field read as follows

ã(1,2) = − ε2Ra0.5

42Pr
[∇xyp + λ1〈u〉 − Pr〈θ〉ey] (8.10b)

+
ε2Ra0.5

49Pr
[〈u〉 · ∇xy〈u〉] +

2ε4Ra

735
[〈u〉 · ∇xy〈θ〉] ey

ã(1,4) = − 2ε2Ra0.5

385Pr
[〈u〉 · ∇xy〈u〉] +

ε4Ra

3465
[〈u〉 · ∇xy〈θ〉] ey (8.10c)

In this second model, the transversally averaged fields 〈θ〉 and 〈u〉 satisfy the following
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dynamical equations

∇xy · 〈u〉 = 0

6

5
∂t〈u〉 +

54

35
〈u〉 · ∇xy〈u〉 = − ∇xyp +

6

5
PrRa−0.5∇2

xy〈u〉 − λ1〈u〉

+ Pr

[
〈θ〉 − 1

λ2
〈u〉 · ∇xy〈θ〉

]
ey

∂t〈θ〉 + 〈u〉 · ∇xy〈θ〉 = Ra−0.5∇2
xy〈θ〉

(8.11a)

(8.11b)

(8.11c)

with ∇xy = ex∂x + ey∂y, and λ1 being the same friction coefficient (8.6) as in the previous

model and λ2 being a correction coefficient for the buoyancy term

λ2 =
105

2ε2
Ra−0.5 (8.12)

This expression resembles equations (8.5a) to (8.5c) but with different coefficients and one

supplementary correction term for the buoyancy force.

Once again, in order to be able to compare results from the model against the DNS, it is

convenient to find an expression for the viscous and thermal energy dissipation rates that

are consistent with the model with inertial corrections.

ǫ =
6

5
〈∇xy〈u〉 : ∇xy〈u〉〉xy − 2

5
〈∇xy〈u〉 : ∇xyã(1,2)〉xy +

3

ε2
〈〈u〉 · 〈u〉〉xy (8.13a)

ǫθ = 〈∇xy〈θ〉 · ∇xy〈θ〉〉xy (8.13b)

8.3 Comparison between the 2-D models and the DNS

8.3.1 Plume dynamics using the reduced (2-D) models

It is important to determine whether the reduced models are able to reproduce the main

features of the large-scale flow described in the 3-D DNS for 1/64 ≤ Γz ≤ 1/8. As seen

in chapter 7, the confined Rayleigh-Bénard system may posses multiple stable states with

different dynamics for some aspect ratios. In order to facilitate the comparison, both

models use the same initial condition, which is obtained by averaging the initial condition

of the DNS along the transversal direction. The system is let evolve for several hundreds

of convective time units before taking any measurements. Figure 8.1 displays one snapshot

of the reference height field 〈yr〉(x, y, t) obtained from the reduced model (top), the model

with inertial corrections (middle) and from 3-D DNS (bottom) for (Ra = 107,Pr = 4.38)

and different aspect ratio Γz. The sequence from left to right shows that the laminarization

of the flow observed in the DNS when Γz is decreased, is reproduced correctly by both

models.

For the least confined geometry Γz = 1/8 (figure 8.1a), the fields already display some of

the elements of the DNS: the presence of plumes along the side-walls and a single central

plume spanning the height of the cavity. However, both models fail to recover the periodic

sweeping motion of the central plume observed in the DNS, returning a chaotic solution

with no dominant frequency instead (figure 8.2a). For Γz ≤ 1/16 (figures 8.2b to 8.2d)

both models are able to reproduce both the size, height and shape of thermal plumes. The
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2-D Model

w/corrections

3-D DNS
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Figure 8.1: Comparison of the reduced model, the model with inertial corrections, and
DNS results for Ra = 107 and Pr = 4.38. Instantaneous reference height field 〈yr〉(x, y, t)
for different Γz: (a) Γz = 1/8, (b) Γz = 1/16, (c) Γz = 1/32 almost periodic state
with central plume, (d) Γz = 1/32 almost periodic state without central plume, and (e)
Γz = 1/64 steady state.

‘flapping’ motion of side-plumes is now recovered and the time-frequency spectra of Nuvol

is in good agreement with the DNS. For Γz = 1/32, the models recover the multi-state

character of the DNS presented in the previous chapter: one almost periodic state with

a central plume where the side-wall plumes movements are in-phase (figure 8.2c) and one

almost periodic solution without central plume where the side-wall plumes movements are

out-of-phase (figure 8.2d). The models also recover the same dominant frequency as the

DNS (f = 0.025) in both cases (figures 8.2c and 8.2d). For the most confined geometry

Γz = 1/64 (figure 8.1e), results from the models are nearly indistinguishable from the

DNS.

Figures 8.3a to 8.3d display a sequence of snapshots of the reference height field 〈yr〉(x, y, t)

for (Γz = 1/64,Pr = 4.38) and different values of Ra. Each sequence from left to right is
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10−2 10−1 100

100

102

104

Freq.

(b)

10−2 10−1 100

100

102

104

Freq.

(c)

10−2 10−1 100

100

102

104

Freq.

(d)

10−2 10−1 100

100

102

104

Freq.

2Da

2Db

DNS

Figure 8.2: Comparison of reduced and DNS for Ra = 107 and Pr = 4.38: Time-frequency
spectra of Nuvol. Reduced model in red, model with inertial corrections in blue, and DNS
in black. (a) Γz = 1/8, (b) Γz = 1/16, (c) Γz = 1/32 almost periodic state with central
plume, (d) Γz = 1/32 almost periodic state without central plume.
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2-D Model

2-D Model

w/corrections

3-D DNS

(a) Ra = 5 · 107,Γz = 1/64

2-D Model

2-D Model

w/corrections

3-D DNS

(b) Ra = 108,Γz = 1/64

2-D Model

2-D Model

w/corrections

3-D DNS

(c) Ra = 2 · 108,Γz = 1/64

Figure 8.3: Comparison of the reduced model, the model with inertial corrections, and
DNS results for Γz = 1/64 and Pr = 4.38. Instantaneous reference height field 〈yr〉(x, y, t)
for different Ra. The sequence from left to right is taken at the same regular time intervals.
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(d) Ra = 109,Γz = 1/64

Figure 8.3: Continues from previous page.
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Figure 8.4: Comparison of reduced and DNS for Γz = 1/64 and Pr = 4.38: Time-frequency
spectra of Nuvol. Reduced model in red, model with inertial corrections in blue, and DNS
in black. (a) Ra = 5 · 107, (b) Ra = 108, (c) Ra = 2 · 108, (d) Ra = 109.
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(a) (b) (c)

Figure 8.5: Instantaneous reference height field 〈yr〉(x, y, t) (top) and vorticity field
〈ωz〉(x, y, t) (bottom) obtained using the model with inertial corrections for Pr = 4.38,
Γz = 1/128 and: (a) Ra = 108, (b) Ra = 109, and (c) Ra = 1010. The color map for the
vorticity corresponds to the interval [−1, 1]. For comparison see Chong and Xia, 2016.

taken at consecutive times every 5 convective units in order to give a sense of the plumes

motion. The same type of flow dynamics is recovered in each case.

The configuration with two stable central plumes (one ascending, one descending) dis-

played on figure 8.3c for Ra = 2 · 108 was initially obtained using the reduced model. We

wanted to check if such solution indeed existed for the DNS and the model with inertial

corrections. For the DNS we reconstructed the primitive initial fields using instanta-

neous fields obtained from the model and assuming a constant temperature profile and

a parabolic profile for the velocity. For the model with inertial corrections, we used the

same instantaneous fields as initial conditions. Both simulations were let evolve for sev-

eral hundreds of convective time units. In each case, the same configuration was retrieved.

This shows that the models can be used to help exploring the parameter space. However,

one should be aware that the type of solutions obtained by both models is limited to sym-

metric solutions with respect to z. Both models are qualitatively well suited to recover

the main features of the large-scale flow for the most confined configuration (Γz = 1/64).

In the following section, we attempt to perform a quantitative comparison for this value

of Γz.

Let us end with a side note: the approximate size and shape of the thermal structures

presented in figure 8.5 for Γz = 1/128 are in good agreement with the instantaneous fields

taken at the vertical mid-plane displayed in figures 5(g) to 5(i) of Chong and Xia, 2016.

8.3.2 Number of plumes and average plume width with the reduced

models

As seen on figures 8.3, for the most confined cell (Γz = 1/64), the number, shape, and

size of the thermal structures are consistent to the DNS. For Ra = 5 · 107 and Ra = 108

a persistent configuration is observed with three ascending (a central plume and the side-

wall plumes) and two descending channels. For Ra = 2 · 108 one observes three ascending
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Figure 8.6: Comparison of the 2-D models against DNS results. Probability distribution
of the inter-plume distance d0 measured near the top (blue) and bottom (red) boundary
layers for Pr = 4.38 and Γz = 1/64. From top to bottom: Ra = 5 · 107, Ra = 108,
Ra = 2 · 108 and Ra = 109.

and three descending channels; for Ra = 109 more channels are observed.

To quantify this aspect, the probability distribution of the inter-plume distance d0 is

compared for the two models and the DNS in figure 8.6, and the mean spatial auto-

correlation of the vertical heat-flux in figure 8.7. Both quantities are in good agreement

with the DNS for up to Ra ≤ 2 · 108. For Ra = 109 the correlation distance r0 and the

integral length scale L0 are underestimated by as much as 15%.

8.3.3 Mean vertical profiles

To illustrate the range of validity in Ra of the models, figures 8.8a to 8.8d display different

vertical profiles for (Γz = 1/64,Pr = 4.38). Profiles associated to the temperature corre-

spond to mean temperature 〈θ〉xz, spatio-temporal fluctuations of the temperature 〈θ〉rms
xz ,

and plane- and time-averaged thermal dissipation 〈∂jθ∂jθ〉xz, whereas the profiles associ-

ated to the velocity field correspond to the (spatio-temporal) fluctuations of the horizontal

and vertical velocities, 〈u〉rms
xz and 〈v〉rms

xz respectively, and to the plane- and time-averaged

viscous dissipation 〈∂jui∂jui〉xz.

The reduced model is able to recover the shape of the vertical profiles of the DNS. When

using the model with inertial corrections, these results slightly improve for Ra ≤ 2 · 108

(figures 8.8a to 8.8c). The most visible change being in the viscous dissipation profile

near the top and bottom plates, where the reduced model predicts a peak in dissipation

not seen on the DNS. For the model with inertial corrections, the position of the peak

values in 〈θ〉rms
xz (resp. 〈u〉rms

xz ) close to the top and bottom plates is in good agreement

with the DNS. These profiles are used to estimate the thickness of the thermal (resp.

kinetic) boundary layers. For the higher Ra (Ra = 109), deviations from the DNS become

noticeable, but both models still manage to recover the correct orders of magnitude and

the approximate shapes (see figure 8.8d).
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Figure 8.7: Comparison of the 2-D models against DNS results. The top (resp. bottom)
row displays the spatial auto-correlation function measured near the upper (resp. lower)
boundary layers for Pr = 4.38, Γz = 1/64, and different Ra.

8.3.4 Average Nusselt and Reynolds numbers

The last comparison concerns the time-averaged Nusselt (see §2.50) and time-averaged

Reynolds number (see equation (7.6)) for different Γz. For the DNS, the time-averaged

Nusselt Nuref , its maximum relative difference %Diff were evaluated in the previous chapter

(see table 7.1), and the time-averaged Reynolds number Reref is shown in figure 7.17. For

the reduced models, we evaluate Nuvol, Nutop, Nubot, Nuǫ, and Nuθ and compute again

their average value Nu and maximum relative difference %Diff. A time-averaged Reynolds

number based on the root mean squared velocity Re is also evaluated. For the ‘simple’

model, the expressions required to compute these quantities are (8.7a) and (8.7b). For the

model with inertial corrections, these expressions are detailed in annex F. In particular,

the Reynolds number is obtained using equation (F.44). The accuracy of the models is

quantified by %Error(Nu) (resp. %Error(Re)) as the deviation from the reference Nusselt

Nuref (resp. Reynolds Reref) obtained from 3-D DNS results.

%Error(Nu) = (Nu − Nuref)/Nuref × 100 (8.14)

%Error(Re) = (Re − Reref)/Reref × 100 (8.15)

A good convergence in Nu for the models, often coincides with small deviations from the

reference results obtained by the DNS (see table 8.1 and 8.2). Inside the range of validity

of the models, both models recover the main features of the confined regime, dominated by

large-scale coherent plumes and the Nusselt and Reynolds numbers are estimated within

a few percent (see tables 8.1 and 8.2) which implies similar scaling laws as the DNS for

these configurations.
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(c) Ra = 2 · 108,Γz = 1/64
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(d) Ra = 109,Γz = 1/64
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Figure 8.8: Comparison of the vertical profiles for DNS results (solid lines), reduced model
(• marks), and model with inertial corrections (N marks) for (Γz = 1/64,Pr = 4.38) and
different Ra. From left to right: temperature, RMS temperature, thermal dissipation,
RMS velocities and viscous dissipation. Here C0 = Nu − 1.
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Average Nusselt Nu %Diff %Error(Nu)
Ra Γz model w/corr 3D DNS model w/corr model w/corr

1 · 107 1/16 10.10 9.36 9.41 3.1 10.6 7.3 0.5
5 · 107 1/16 19.32 18.81 22.68 6.0 35.8 14.8 17.0
1 · 108 1/16 24.70 34.42 29.32 8.7 209.2 15.8 -

1 · 107 1/32 6.39 6.19 6.52 1.3 2.8 2.0 5.0
5 · 107 1/32 15.28 14.06 14.46 1.9 4.9 5.7 2. 7
1 · 108 1/32 21.51 19.58 19.88 3.0 7.0 8.2 1.5
1 · 109 1/32 49.64 87.48 61.69 23.0 381.0 19.5 -

1 · 107 1/64† 3.69 3.65 3.68 0.2 0.7 0.2 0.8
5 · 107 1/64 7.97 7.73 7.91 1.1 1.5 0.8 2.3
1 · 108 1/64 13.02 12.45 12.57 0.6 1.6 3.6 0.9
2 · 108 1/64 20.26 19.02 19.38 1.6 2.2 4.5 1.8
1 · 109 1/64 46.55 42.32 46.57 6.9 6.4 0.1 9.1

Table 8.1: Time-averaged Nusselt number and the maximum relative difference between
definitions of the Nusselt number %Diff for the reduced models using a 5122 grid. Mea-
surements are obtained over 1,000 convective time units. Results from the DNS is noted
here as Nuref , while the deviation from the DNS is noted as %Error(Nu). A † indicates
steady-state solutions.

There are incremental improvements when using the model with inertial corrections, most

notably on the average Reynolds number and the viscous dissipation but also on the

fluctuation profiles. In the following, we only consider results from the model with inertial

corrections.

8.4 Using the reduced model with inertial corrections to

explore the confined regime

One may use the reduced model with inertial corrections to study the long term evolution

of the large-scale flow in order to characterize flow reversals in the confined regime. To

illustrate the feasibility of such studies, we perform simulations using a 5122 grid for

(Γz = 1/16,Ra = 2 · 107,Pr = 4.38). A flow reversal was observed for this configuration

using 3-D DNS in section 7.3.2. The initial condition for the reduced model corresponds

to instantaneous fields obtained from the DNS which are averaged over the transversal

direction. The system was then evolved for over 35,000 convective time units: several

disruptions of the large-scale flow were observed, in particular 4 flow reversals. Each

reversal is indicated in the time series (figure 8.9) by marks (i) to (iv). The average time

interval between reversals is about 8,500 convective time units. Let us compare figures 8.9

and 7.8. In both cases, a sign switch in the Fourier coefficients of the horizontal velocity

û1,2 and û1,4 indicates the presence of a flow reversal. The odd Fourier modes û1,1 and

û1,3 oscillate around zero, and even mode û2,2 is mostly positive, while fluctuation in both

modes are increased during the re-organization periods, consistent with observations from

section 7.3.2.

Longer observations may be obtained from the reduced model, which allow us to compute

different quantities, such as the probability distributions for each modal coefficient. Note
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Average Reynolds Re %Error(Re)
Ra Γz model w/corr 3D DNS model w/corr

1 · 107 1/16 36.01 37.29 37.73 4.6 1.2
5 · 107 1/16 111.04 113.35 123.89 10.4 8.5
1 · 108 1/16 176.46 187.45 194.19 9.1 3.5

1 · 107 1/32 14.66 15.70 16.25 9.8 3.4
5 · 107 1/32 53.05 55.22 56.17 5.6 1.7
1 · 108 1/32 89.09 91.89 92.50 3.7 0.7
1 · 109 1/32 429.44 465.43 496.67 13.5 6.3

1 · 107 1/64† 5.30 5.76 5.80 8.6 0.7
5 · 107 1/64 18.96 20.35 20.57 7.8 1.1
1 · 108 1/64 35.25 37.62 37.91 7.0 0.8
2 · 108 1/64 62.94 66.40 67.45 6.7 1.6
1 · 109 1/64 215.91 222.04 233.96 7.7 5.1

Table 8.2: Time-averaged Reynolds number for the reduced models using a 5122 grid.
Measurements are obtained over 1,000 convective time units. Results from the DNS is
noted here as Reref , while the deviation from the DNS is noted as %Error(Re). A †
indicates steady-state solutions.
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û22

-1 0 1

10−1

100

Figure 8.9: Flow reversals obtained using the model with inertial corrections for Γz = 1/16,
Ra = 2 ·107 and Pr = 4.38. Each reversal is indicated by a mark (i) to (iv). Time-series of
the Fourier coefficients of the horizontal velocity ûpq (left) and corresponding probability
density distributions (right). Modal coefficients are multiplied by a factor 102.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 8.10: Flow reversal observed using the reduced model with inertial corrections for
Ra = 2 · 107 and Γz = 1/16. Figure displays a sequence of snapshots of field 〈yr〉(x, y, t)
superposed to the velocity vector field 〈u〉(x, y, t) during the flow reversal identified as
(iv) in figure 8.9.

that, the odd-modes, û1,1 and û1,3, have a symmetric PDF, û1,2 and û1,4 display a bi-

modal PDF, and the PDF of û2,2 is skewed symmetric. The relation between the different

modes might be related to the natural symmetries of the Rayleigh-Bénard cells, as in the

pure 2-D case.

Figure 8.10 displays a sequence of snapshots describes the evolution of the thermal struc-

tures during 100 convective units in which the reversal (iv) is observed. First, due to the

action of the side-wall plumes, the central plume is displaced to the sides, thus allowing

a second plume to appear (figures 8.10(1) to 8.10(4)). Instead of changing directions and

plunging against the left wall, like in the reversal described in figure 7.8, both plumes

continue their motion and merge into the right side-wall plume (figure 8.10(5)). Then,

ascending and descending plumes form simultaneously (figures 8.10(6) to 8.10(8)) and co-

exist until one becomes dominant (figures 8.10(9) to 8.10(10)). Reversals (i) to (iii) follow

a similar process, although some variations, like the direction of the plumes motion and the

duration of the reversal are observed. Despite these differences, the sequence is considered

as representative of the ensemble of flow reversals observed. Our observations suggests the

driving force behind flow reversals to be the interaction between the large-scale plumes

along the side-walls and near the center of the cavity, consistent with previous observations

from DNS results.

In this sense, the model appears to be well adapted for the study the long-term evolution

of the large-scale flow. Exploration of the parameter space is required in order to identify

a configuration with more frequent reversals in order to verify these observations.
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8.5 Scaling exponents of the Nusselt and Reynolds numbers

in the severely confined regime

One may use the reduced models with inertial corrections to perform simulations for very

small values of Γz focusing on the Nusselt and Reynolds scaling exponents in the confined

regime. Indeed, one interesting question raised by (Chong and Xia, 2016) concerns the

evolution of these scaling exponents towards some asymptotic values. The use of such

models could provide some insight on this question by considering values Γz which are

difficult to access for fully resolved DNS. This is done in §8.5.2, but before we would like

to introduce a theoretical prediction for the scaling exponents in the severely confined

regime.

8.5.1 A theoretical approach to the scaling exponents in the severely

confined regime

Scaling exponent for the Nusselt number

Let us revisit some central elements of Rayleigh-Bénard convection. Under a severe con-

finement, one may argue that characteristic velocity scales should differ those of equation

(1.3): the velocity scale of the heat conduction and the momentum dissipation are based on

the depth of the cavity d instead of the height H, while keeping the scale of the buoyancy

unchanged

U ′
cond =

κ

d
U ′

visc =
ν

d
Ubuoy =

√
β∆TgH (8.16)

Using the ratio between these velocities, we define a new dimensionless Rayleigh number

Rad ≡
U2

buoy

U ′
cond U

′
visc

=
β∆TgHd2

κν
(8.17)

which is related to the classical Rayleigh number as

Rad = Γ2
zRa (8.18)

The parameter Rad is reminiscent of the Darcy-Rayleigh number used in convection inside

fluid-saturated porous media, if the Darcy permeability coefficient (the square of a length

scale characterizing the porous medium) is replaced by K ∼ d2, where d is the depth of

a Hele-Shaw cell (Nield and Bejan, 2013). The similarities between both systems can be

seen in figure 8.11: the large-scale plumes observed in confined convection is analogous to

the ‘dripping’ patterns observed in convection inside porous media (Otero et al., 2004).

In the classical Rayleigh-Bénard, Malkus’ and Howard’s arguments based on the marginal

stability of the boundary layer lead to the classical βNu−1 = 1/3 exponent, see table 8.3.

Using the same arguments1, but considering a local Rad as the relevant control parameter

1 This reasoning was already applied to obtain the ultimate regime of convection in porous media
(Doering and Constantin, 1998; Otero et al., 2004; D. R. Hewitt, et al., 2012).
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(a) Confined regime (b) Convection in porous media

Figure 8.11: a) Snapshot of the reference height yr(x, y, 0, t) for Ra = 2 · 108, Pr =
4.38, and Γz = 1/64. b) Snapshot of the temperature field for Rad = 1581 from 2-D
Darcy–Oberbeck–Boussinesq equations. Image (b) is taken from (Otero et al., 2004).

Conventional convection Severe confinement

δθ = H/(2Nu)

where δθ is independent of H.

δθ = H/(2Nu)

where δθ is independent of H.

β∆Tgδ3
θ

κν
=

(
δθ

H

)3

Ra ∼ 103 β∆Tgδθd
2

κν
=

(
δθ

H

)
Rad ∼ 103

Nu ∼ Ra1/3 Nu ∼ Rad = Γ2
zRa

Table 8.3: Malkus’ and Howard’s theory applied to conventional convection (left) and
convection under severe confinement (right). The latter is consistent with the ultimate
regime in porous media.
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instead of a local Ra, one gets (see table 8.3)

Nu ∼ Rad = Γ2
zRa for Γz ≪ 1 (8.19)

hence βNu−1 = 1. This value is larger than the βNu−1 = 0.872 observed by (Bizon et al.,

1997) and βNu−1 = 0.61 observed by (Chong and Xia, 2016).

Scaling exponent for the Reynolds number

The scaling exponent for the Reynolds number may be deduced by following the reasoning

from Grossmann-Lohse (GL) scaling theory. The basic element of the GL theory are the

exact relations for the viscous dissipation rates derived from the Boussinesq equations,

ǫ = (Nu − 1) (Shraiman and Siggia, 1990). This term is decomposed into contributions

from the different boundary layers and the viscous bulk and estimates for each term are

obtained from dimensional analysis.

Let us focus on the contributions from the kinetic boundary layers at the front and back

walls. In the GL scaling theory, the contributions from the side-walls are estimated from

dimensional analysis assuming a balance between the advective and viscous terms

ǫbl,w ∼ U
2

δ2
w

(
δw

Γz

)
(8.20)

with δw
Γz

being the fraction of volume occupied by the kinetic boundary layers at the side-

walls.

Using DNS results for the most confined cells Γz = 1/32 and Γz = 1/64, we measured the

thickness of the kinetic boundary layer at the front and back walls δw and the relative

contributions to the viscous dissipation from the region enclosing the boundary layers ǫbl,w

(see table 7.6)

δw = 0.211Γz ǫbl,w = 0.807 ǫ (8.21)

It is reminded that both values are consistent with a parabolic velocity profile in the

transversal direction. Introducing equation (8.21) into (8.20)

0.807 ǫ ∼ U
2

Γ2
z

for Γz ≪ 1 (8.22)

Introducing equation (7.6) and the exact relation ǫ = (Nu − 1) into (8.22) yields

(Nu − 1) = ǫ ∼ Re
2
Pr2

Γ2
zRa

(8.23)

Bizon et al., 1997 uses a balance between Hele-Shaw plume drag and buoyancy forces to

obtain the same results. Note that equation 8.23 imposes a relation between the scaling

exponents

βRe = (βNu−1 + 1)/2 (8.24)

Equation (8.23) is combined with (8.19) to obtain the following scaling for the Reynolds
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(a) 3-D DNS

Γz βNu−1 βRe
βNu−1+1

2

1/16 0.50 0.65 0.750
1/32 0.51 0.73 0.755
1/64 0.61 0.80 0.805

(b) Model with inertial corrections

Γz βNu−1 βRe
βNu−1+1

2

1/16 0.456 0.692 0.728
1/32 0.511 0.728 0.755
1/64 0.565 0.763 0.782

1/128 0.616 0.791 0.808
1/192 0.613 0.789 0.806
1/256 0.617 0.795 0.808

Table 8.4: Scaling coefficients obtained from (a) 3-D DNS and (b) model with inertial
corrections.

number

Re ∼ Γ2
zRa

Pr
and for Γz ≪ 1 (8.25)

This leads to the theoretical exponents βNu−1 = βRe = 1, which are not identical but

closer to the values βNu−1 = 0.872 and βRe = 0.96 obtained by (Bizon et al., 1997) for

Γz = 1/240 using stress-free boundaries. In order to verify if such scaling may be observed,

we perform simulations from reduced model with inertial corrections for up to Γz = 1/256.

8.5.2 Scaling exponents in the severely confined regime using the re-

duced model with inertial corrections

We compute scaling exponents obtained from simulations of the reduced model with in-

ertial corrections for Γz < 1/16, see table 8.4. Since the kinetic boundary layer thickness

is comparable to Γz, this value becomes a limiting factor for these simulations. Here, we

use a 10242 grid for Γz = 1/64, Γz = 1/128, Γz = 1/192, and Γz = 1/256

Figures 8.12a and 8.12b display the compensated Nusselt and Reynolds numbers as func-

tion of Ra for different Γz from 1/16 to 1/256. Fitted scaling exponents (see table 8.4)

are comparable to those obtained from DNS results and to published results (Chong and

Xia, 2016): βNu−1 = 0.61 and βNu−1 = 0.80 for Γz = 1/128. The relation between the

scaling exponents (8.24) also appears to be verified for the most confined cells (Γz < 1/32)

in both the DNS and the model. However, a close inspection of figure 8.12 for the more

confined cells Γz < 1/128, suggests there is a change of slope. This change is seen in

a compensated plot when represented as function of Ra/Ra∗ (see figure 8.13), where we

introduce 1/Ra∗ = 1.85 · 10−5Γ3.23
z as proposed by (Chong and Xia, 2016) to collapse our

data.

A first group which corresponds to Ra/Ra∗ < 0.005 and Nu > 5 exhibits βNu−1 = 0.82 and

βRe = 0.91 (dashed red lines in figure 8.13). These scaling exponents are consistent with

equation (8.24). A second group which corresponds to Ra/Ra∗ > 0.005 yields the scaling

exponents βNu−1 = 0.44 and βRe = 0.69 (dashed green lines in figure 8.13). In contrast,

these exponents do not verify equation (8.24). A third group of outliers corresponds to

points with Nu < 5 and Ra/Ra∗ < 0.005.

The change in slope of the Nusselt and Reynolds numbers observed around Ra/Ra∗ ∼
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Figure 8.12: Model with inertial corrections: compensated Nusselt and Reynolds numbers
using exponents βNu−1 = 0.61 and βRe = 0.81. A thick solid line indicates the scaling for
a cubic cell. Symbols indicate the value of Γz: D Γz = 1/16, � Γz = 1/32, △ Γz = 1/64,
⋄ Γz = 1/128, ◦ Γz = 1/192, and ⊗ Γz = 1/256.
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Figure 8.13: Model with inertial corrections: Compensated Nusselt and Reynolds numbers
using exponents βNu−1 = 0.82 and βRe = 0.91 as a function of Ra/Ra∗ = 1.85·10−5Γ3.23

z Ra
proposed by (Chong and Xia, 2016). Symbols indicate the value of Γz: D Γz = 1/16, �
Γz = 1/32, △ Γz = 1/64, ⋄ Γz = 1/128, ◦ Γz = 1/192, and ⊗ Γz = 1/256.
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Figure 8.14: Ratio between the kinetic δ
(1)
p and thermal δ

(1)
θ boundary layer thicknesses

as function of (a) Ra and (b) Ra/Ra∗ = 1.85 · 10−5RaΓ3.23
z . Symbols indicate the value of

Γz: ⋄ Γz = 1/128, ◦ Γz = 1/192, and ⊗ Γz = 1/256.

0.005 suggests a change in the flow structure or in the temporal evolution. Indeed, for

Ra/Ra∗ < 0.01 the kinetic boundary layers are nested inside the thermal boundary layers

and vice versa (see figure 8.14). The inversion of the boundary layers may be related to

the change in scaling exponents.

For Ra/Ra∗ < 0.005 and Nu > 5, the exponents βNu−1 = 0.82 and βRe = 0.91, are larger

than the asymptotic values estimated by (Chong and Xia, 2016), but differ from the values

βNu−1 = 0.827 and βRe = 0.96 obtained by (Bizon et al., 1997) as well as the theoretical

exponents βNu−1 = βRe = 1 proposed in section 8.5.1.

There are two possibilities for the differences in the scaling exponents. The first one is

that the exponents βNu−1 = 0.82 and βRe = 0.91 do not correspond yet to the asymptotic

regime. To test this affirmation, additional simulations for Γz < 1/256 should be consid-

ered. The second possibility, is that our scaling theory is too simple. In this sense, it could

be interesting to extend the Grossmann & Lohse unifying scaling theory as to include the

aspect ratio dependency which may provide a better prediction of the scaling exponents

confined regime.

Conclusions of chapters 7 and 8

In this part we used data from 3-D DNS in rectangular Rayleigh-Bénard cells for small

aspect ratio to highlight the main features of the confined regime III. As one increases

the level of confinement, the temperature field becomes independent of the transversal

coordinate while the velocity field becomes increasingly parabolic. The confined regime is

characterized by the formation of large-scale turbulent channels in the vertical direction

and the non-linear interaction between these channels is seen to play a fundamental role

on the dynamics of the large-scale flow.

Turbulent convection inside the confined regime may be divided spatially in different

regions: thermal and kinetic boundary layers along the top and bottom plates, kinetic

boundary layers along the side-walls, and a bulk flow away from the boundaries. Under

a severe confinement, the thickness of the kinetic boundary layer at the top and bottom

plates becomes comparable to the depth of the cavity. In contrast, the thermal boundary

layer becomes increasingly thicker as the convective heat-flux is hindered by the front
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and back walls. This leads to a situation where the thermal boundary layer is directly

exposed to the bulk flow, even for Pr > 1. Another important difference from conventional

(unconfined) convection concerns the thickness of the kinetic boundary layer at the front

and back walls, which ‘saturates’ to a constant value consistent with a parabolic velocity

profile.

This configuration is well suited for dimensionality reduction. By analogy to previous

works inside Hele-Shaw cells, we extended an reduced model to take into account inertial

corrections and performed quantitative comparison of both models to 3-D DNS with good

results. Two potential applications of the model with inertial corrections are explored. The

first potential use is in the study the long term evolution and the dynamics of reorientations

of the large-scale flow. The second potential use concerns the evolution of global quantities

for very confined cells. Our observations suggests the presence of a change in flow regime

and different scaling laws between confined and severely confined geometries.
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Part V

Conclusions and Perspectives
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General conclusions

The work exposed in this manuscript is a contribution to the numerical study of large-

scale flow dynamics in Rayleigh-Bénard convection. Using a DNS code we simulated the

long term evolution for various Rayleigh-Bénard configurations and developed a series of

analysis tools for their characterization. A particular attention was given to spontaneous

reorientations and reconfigurations of the large-scale flow (or flow reversals) over long

periods of time by considering a pure 2-D flow inside a square cell, then by considering a

slim rectangular cavity. For such long simulations, it is imperative to identify a meaningful

quantity, global or local, to guide our observations.

For the 2-D case, a pertinent choice is the global angular impulse. We devised a filtering

procedure based on the amplitude of this quantity to separate the different flow regimes,

which allowed us to characterize each regime separately. A first regime composed of

consecutive reversals displays a well defined and consistent dynamical pattern. Using a

time rescaling and conditional statistics allowed us to identify a generic reversal mechanism

in terms of accumulation and exchange of mechanical energy. This work resulted in a

publication (Castillo-Castellanos et al., 2016). A second regime composed of extended

cessations of the large-scale circulation, required to choose a different quantity. A good

candidate was obtained from a POD analysis. A statistical characterization suggested this

regime to be driven by random stochastic processes.

We extended this analysis to a configuration with a free-slip condition imposed on the top

and a no-slip bottom plate. Observations suggest a disconnection between the thermal

boundary layer at the top and bottom plates. Both interact directly to the bulk flow

but not with each other. This configuration is characterized by the same type of flow

structures as in the classical case, but their time evolution is entirely different and the

clear separation between the regime of consecutive reversals and the regime of extended

cessations no longer exists. Finally, by considering the plates separately we identified a

change of regime in the free-slip plate.

In the last part, we used 3-D DNS to study the flow dynamics inside a slim rectangular

cavity. By analogy to other confined systems, such as Hele-Shaw cells and thin liquid films,

we proposed a reduced model with inertial corrections to mimic the three-dimensional flow.

Results from this model agree well with our own 3-D DNS and with existing publications.

We successfully tested the feasibility of studying the dynamics of flow reversals inside

confined cells by performing long simulations using this model for one configuration and

identified a handful of flow reversals. The nature of these reversals is different from

pure 2-D reversals. The reduced model also allowed us to identify inside regime III a

transition between two different dynamics, which depends on the ratio between the kinetic
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and thermal boundary layer thicknesses. A scaling theory for such confined regime was

proposed.

Perspectives

In this work we identified a generic reversal mechanism inside square cells in which accu-

mulation of thermal energy inside the counter-rotating corner-rolls is a key process. Since

Prandtl number is related to diffusion of thermal energy, it might be interesting to ex-

amine the influence of this number on the reversal cycle. Another interesting point is to

consider the influence of corner-rolls by studying a case in which such rolls are weaker or

nonexistent but still experience flow reversals. This would allow us to verify if the main

ingredient of flow reversals is related to the localized accumulation of energy somewhere in

the flow, or specifically depends on the existence of corner-rolls. For instance, it could be

interesting to study from our energetical point of view a 2-D cell with free-slip conditions

imposed on all boundaries. Indeed (Verma et al., 2015) showed that this system exhibits

reversals without corner-rolls.

Our statistical approach can be extended to 3-D geometries provided one is able to follow

the plane of large-scale circulation and that one is able to obtain a long time signal

containing a sufficient number of events. However, extending the statistical approach to

cubic and cylindrical containers is more challenging because of the meandering of the LSC

plane which can also be subject to torsional or sloshing motions. In this work, we were

able to contour both limitations when considering a slim rectangular cavity, effectively

restricting the large-scale flow to a plane and by proposing a reduced model which is

computationally less expensive than using 3-D DNS.

Large-scale flow dynamics inside laterally confined cells are to be further explored. To

explore the apparent significance of the ratio between the thickness of the thermal and

kinetic boundary layers, a parametric study of the aspect ratio and the Prandtl number

would be desirable. These observations could eventually allow to include the aspect ratio

dependency in the unifying scaling theory of Grossmann & Lohse. Such approach would

allow for a smooth transition between the different regime and provide a better prediction

of the scaling exponents inside the confined regime.
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Appendix A

Code FUSION

A.1 Temporal discretization scheme

The time discretization of the equation system is performed by first introducing an in-

creasing sequence if [t0, t1, · · · , tn] times with tn = n∆t where ∆t represents the discrete

time-step. The velocity, pressure and temperature fields at time tn read as

u(x)n = u(x, tn) , p(x)n = p(x, tn) , θ(x)n = θ(x, tn) (A.1)

We use a second-order backward Euler method to approximate the time derivatives

∂tui
n+1 =

(3ui
n+1 − 4ui

n + ui
n−1)

2∆t
+ O(∆t)2 (A.2)

Equations are discretised using a semi-implicit method, with viscous terms treated implic-

itly and advective terms explicitly and approximated as follows

∂j(ujui)
n+1 = 2∂j(ujui)

n − ∂j(ujui)
n−1 + O(∆t)2 (A.3)

The discretized equations would have the following form

∂iui
n+1 = 0 (A.4a)

(3ui
n+1 − 4ui

n + ui
n−1)

2∆t
+ ∂j(2ujui

n − ujui
n−1) = −∂ip

n+1 + PrRa−0.5∂2
j ui

n+1
+ Prθn+1δi2

(A.4b)

(3θn+1 − 4θn + θn−1)

2∆t
+ ∂j(2ujθ

n − ujθ
n−1) = Ra−0.5∂2

j θ
n+1

(A.4c)

In order to solve equations (A.4a) and (A.4b) one must know beforehand the solution for

θn+1 from equation (A.4c). This equation has the form of a Helmholtz-Poisson problem

and can be treated independently.

Due to the incompressibility condition and the pressure gradient involved, the velocity-

pressure coupling is more complex. We use a rotational incremental-pressure correction

scheme (see for instance Chorin, 1969; Guermond et al., 2006). In this scheme, the
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pressure term is treated explicitly to obtain a provisional velocity field u∗ which may

not be divergence-free. A correction is obtained by projecting the provisional velocity into

a divergence-free space and assume the difference to derived from an scalar function Π,

called the pressure potential term.

Solution of the energy equation

In order to obtain θn+1 we need to solve a Helmholtz-Poisson problem; This type of

problem can be written in the general form

θn+1 − 1

Λ
Ra−0.5∂2

j θ
n+1 =

1

Λ
Qθ

n (A.5)

with Λ = 3
2∆t

and Qθ
n(x) being the source term corresponding to field θ.

Qθ
n(x) =

(4θn − θn−1)

2∆t
−
(
2∂j(ujθ)

n − ∂j(ujθ)
n−1
)

(A.6)

In order to solve directly this three-dimensional Helmholtz system, we use the Douglas-

Rachford Alternating Direction Implicit method to separate the operators into one-dimensional

components and split the scheme into one sub-step for each coordinate. The main compo-

nent the ADI method is the factorization of the right-hand side of equation (A.5) as the

product of one-dimensional operators in the following form (Ferziger and Perić, 2002).

(
1 − Γ∂2

j

)
θn+1 =

(
1 − Γ∂2

x

) (
1 − Γ∂2

y

) (
1 − Γ∂2

z

)
θn+1

− Γ2(∂2
x∂

2
y + ∂2

x∂
2
z + ∂2

y∂
2
z )θn+1 + Γ3∂2

x∂
2
y∂

2
zθ

n+1
(A.7)

Introducing equation (A.7) into equation (A.5) with Γ = 1
Λ
Ra−0.5 and dropping O(∆t2Ra−1)

terms, leaves the following expression

(
1 − 1

Λ
Ra−0.5∂2

x

)(
1 − 1

Λ
Ra−0.5∂2

y

)(
1 − 1

Λ
Ra−0.5∂2

z

)
θn+1 =

1

Λ
Qθ

n

We use a multi-step approach to this problem and solve a one-dimensional Helmholtz

problem for each direction.

(
1 − 1

Λ
Ra−0.5∂2

x

)
θn+ 1

3 = 1
Λ
Qθ

n w/ BC on ex

(
1 − 1

Λ
Ra−0.5∂2

y

)
θn+ 2

3 = θn+ 1
3 w/ BC on ey

(
1 − 1

Λ
Ra−0.5∂2

z

)
θn+1 = θn+ 2

3 w/ BC on ez

(A.8)

where θn+ 1
3 and θn+ 2

3 are the intermediate solutions from the first and second sub-steps,

respectively. Observe that each ADI sub-step takes the form of a 1D Helmholtz problem.
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Solution of the velocity-pressure coupling: prediction step

We treat the pressure term explicitly in equation (A.4b) leaving the following expression

Λui
∗ − PrRa−0.5 ∂2

j ui
∗ = Qi

n − ∂ip
n (A.9)

with Qi
n(x) being the source term corresponding to the velocity field

Qi
n(x) =

(4ui
n − ui

n−1)

2∆t
−
(
2∂j(ujui)

n − ∂j(ujui)
n−1
)

+ Prθn+1δi2 (A.10)

We then proceed to use ADI method to separate the operators into one-dimensional com-

ponents and split the scheme into one sub-step for each coordinate

(
1 − 1

Λ
PrRa−0.5∂2

x

)
ui

n+ 1
3 = 1

Λ
Qi

n w/ BC on ex

(
1 − 1

Λ
PrRa−0.5∂2

y

)
ui

n+ 2
3 = ui

n+ 1
3 w/ BC on ey

(
1 − 1

Λ
PrRa−0.5∂2

z

)
ui

∗ = ui
n+ 2

3 w/ BC on ez

(A.11)

with each ADI sub-step taking the form of a one-dimensional Helmholtz problem.

Solution of the velocity-pressure coupling: projection step

In the projection step, we assume the difference (un+1 − u∗) to be derived from a scalar

function Π, called the pressure potential term

Λ(ui
n+1 − ui

∗) ≡ −∂iΠ
n+1, with un

n+1 = un
∗ = 0 on the boundaries (A.12)

Taking the divergence and introducing (A.12) one obtains a Poisson equation

∂2
j Πn+1 = Λ∂iui

∗, with ∂nΠn+1 = 0 on the boundaries (A.13)

Solution of the velocity-pressure coupling: correction step

After having obtained a solution for Πn+1, the corrected velocity field is evaluated as

ui
n+1 = ui

∗ − 1

Λ
∂iΠ

n+1 (A.14)

Note that for the velocity field un+1 satisfy equation (A.4a) the pressure term must be

such that

pn+1 = pn +
1

Λ
Πn+1 − PrRa−0.5∂iui

∗ (A.15)

Adding equations (A.9) and (A.12) leaves

Λui
n+1 − PrRa−0.5 (∂2

j ui
∗ − ∂j∂iui

∗) = Qi
n − ∂ip

n+1 (A.16)
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where ∂2
j ui

n+1 = ∂2
j ui

∗ − ∂j∂iui
∗ may be deduced from equation (A.12). Note that this

condition ensures only that the imposed normal velocity be preserved for un+1 and the

splitting error manifest only in the form of an inexact tangential boundary condition on

the velocity (Guermond et al., 2006).

A.2 Spatial discretization

We use an staggered grid arrangement (Harlow and Welch, 1965) with a central differen-

tiation scheme (CDS) and linear interpolation for an overall second-order precision. For

this arrangement one defines different type of grids. A cell centered grid for the scalar

quantities, such as the temperature, pressure and density fields, and one additional grid

for each velocity component.

Generation of grid points

The spatial discretization of the system is performed by first introducing an increas-

ing sequence of points [x1, x2, · · · , xnx ] along the x-direction, [y1, y2, · · · , yny ] along the

y-direction, and [z1, z2, · · · , znz ] along the z-direction.

Let us consider the points xi: These points can be either regularly spaced

xi = Γx
2i − 3

2(nx − 2)
, for i = 1, · · · nx (A.17)

where Γx is the aspect ratio on the x-direction.

Or these points can be spaced following a given function, like the hyperbolic tangent

function.

xi =





−x2 for i = 1

1
2Γx

[
1 +

tanh(γ( i−1
nx−1

−0.5))

tanh(γ/2)

]
for i = 2, · · · ,nx − 1

2Γx − xnx−1 for i = nx

(A.18)

where γ is a coefficient for the stretching function.

We then introduce a second sequence of points along each direction: [xu0, xu1, · · · , xunx ]

along the x-direction, [yv0, yv1, · · · , yvny
] along the y-direction, and [zw0, zw1, · · · , zwnz ]

along the z-direction. Consider the sequence of points xui

xui =





−xu2 for i = 0
1
2 (xi+1 + xi) for i = 1, · · · ,nx − 1 − 1

2Γx − xunx−2 for i = nx

(A.19)

Distance between points

We will define a quantity [∆x1, ∆x2, · · · , ∆xnx ] as the length of the segment between the

indicated points as follows. First, for each cell we define a forward spacing ∆x+
i and a
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Figure A.1: Distribution of points xi and xui along the x-direction. Boundary domains
are shown in thick black lines.

backward spacing ∆x−
i

∆x+
i = xi+1 − xi for i = 1, · · · ,nx − 1

∆x−
i = xi − xi−1 for i = 2, · · · ,nx

and define the length of the segment ∆xi

∆xi =





∆x2 for i = 1
1
2(∆x+

i + ∆x−
i ) for i = 2, · · · ,nx − 1

∆xnx−1 for i = nx

In similar fashion, we define a quantity [∆xu1, ∆xu2, · · · , ∆xunx ] as the length of the segment

between the indicated points as follows. First, one introduces a forward and backward

spacing ∆xu+
i and ∆xu−

i , respectively

∆xu+
i = xui+1 − xui for i = 1, · · · ,nx − 1

∆xu−
i = xui − xui−1 for i = 2, · · · ,nx

and we proceed to evaluate the length of the segment ∆xui

∆xui =





0 for i = 1,nx

1
2(∆x+

i + ∆x−
i ) for i = 2, · · · ,nx − 1

The same process is repeated on the y and z directions.

Staggered grid arrangement

Four different grids are defined in function of these sets of points. We define the following

quantities in each grid:

- Grid for the scalar quantities

θi,j,k = θ(xi, yj, zk) (A.20a)

pi,j,k = p(xi, yj, zk) (A.20b)

Πi,j,k = Π(xi, yj, zk) (A.20c)

- Grid for the velocity component ux

ui,j,k = ux(xui, yj, zk) (A.20d)

199



- Grid for the velocity component uy

vi,j,k = uy(xi, yvj, zk) (A.20e)

- Grid for the velocity component uz

wi,j,k = uz(xi, yj, zwk) (A.20f)

Additionally, for any given node, for instance θi,j,k, one may introduce the following

notation for the neighboring points in each direction,

For a given point θp = θi,j,k





θe = θi+1,j,k , θw = θi−1,j,k

θn = θi,j+1,k , θs = θi,j−1,k

θf = θi,j,k+1 , θb = θi,j,k−1

where each subindex alluding the cardinal directions in the plane: east and west along x,

north and south along y; and front and back along the transversal direction z.

The finite volume method

The principle of the finite volume method lies on the integration of the model equation over

each of the control volumes. Observe that in a staggered arrangement, different control

volumes exist for each grid. Consider for instance, field φ defined on the scalar grid

∫

Ω
φ dΩ −

∮

∂Ω
D(∂nφ) dS =

∫

Ω
Q dΩ (A.21)

where dΩ = dxdydz represents a differential element of the control volume Ωp = ∆xp∆yp∆zp

and dS a differential element of the control surface S composed of six faces defined as:

Se = Sw = ∆yp∆zp, Sn = Ss = ∆xp∆zp, and Sb = Sf = ∆xp∆yp.

In order to transform our model equation into an algebraic system, we need to approximate

the volume (resp. surface) integrals using a simple second-order approximation considering

the values at the center of the contol volume (resp. surface) as the mean value of the contol

volume (resp. surface).

A.3 Solution for the energy equation

Consider the first ADI sub-step from equation (A.8) integrated over the scalar control

volume as follows
∫

Ω
θn+ 1

3 dΩ − 1

Λ
Ra−0.5

[∫
∂xθ|

e

n+ 1
3 dSe −

∫
∂xθ |

w

n+ 1
3 dSw

]
=

1

Λ

∫

Ω
Qθ

n dΩ (A.22)
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Equations for the bulk nodes

Consider the interior points, or bulk points, which correspond to i = 3, · · · ,nx − 2. Intro-

ducing the approximations to the volume and surface integrals one obtains

Ωpθp − 1

Λ
Ra−0.5

[
Se

(θe − θp)

∆x+
p

− Sw

(θp − θw)

∆x−
p

]
=

1

Λ
ΩpQθ

n
p (A.23)

Considering Ωp = ∆xp∆yp∆zp and Se = Sw = ∆yp∆zp, we can rearrange the terms in the

following tridiagonal form

Apθp − Aeθe − Awθw = Qθ
n
p,





Ae = Ra−0.5

∆xp∆x+
p

Aw = Ra−0.5

∆xp∆x−

p

Ap = Λ + Ae + Aw

(A.24)

Before proceeding to solve this system, we have to apply the boundary conditions to the

boundary nodes on both ends.

Equations for the boundary nodes

In order to implement the boundary condition additional nodes are placed outside the fluid

domain, known as virtual or ghost nodes. These values are a function of the interpolation

scheme selected, the values presented in this section correspond to linear interpolation and

second order CDS.

Let us consider a node θp located on xnx−1, such that the neighboring node θe corresponds

to a ghost point on xnx and the boundary is located on xunx−1. On the boundary xunx−1,

we consider the following Robin boundary condition

(θp + θe)

2
b +

(θe − θp)

∆x+
p

c = g (A.25)

with b, c, and g being the parameters of the boundary condition. The value required at

the ghost node θe would read as

θe = Feg + Geθp, with Fe =
2∆x+

p

2c + b∆x+
p

, and Ge =
2c − b∆x+

p

2c + b∆x+
p

(A.26)

If we introduce this expression into equation (A.24) one obtains

Apθp − Awθw = Qθ
n
p + AeFeg,





Ae = Ra−0.5

∆xp∆x+
p

Aw = Ra−0.5

∆xp∆x−

p

Ap = Λ + Aw − Ae(Ge − 1)

(A.27)

Now consider a node θp located on x2, such that the neighboring node θw corresponds to

a ghost point on x1 and the boundary is located on xu1, the value required at the ghost

201



point would be

θw = Fwg + Gwθp, with Fw =
2∆x−

p

2c − b∆x−
p

, and Gw =
2c + b∆x−

p

2c − b∆x−
p

(A.28)

and the resulting equation system would read as

Apθp − Aeθe = Qθ
n
p + AwFwg,





Ae = Ra−0.5

∆xp∆x+
p

Aw = Ra−0.5

∆xp∆x−

p

Ap = Λ + Ae − Aw(Gw − 1)

(A.29)

Resulting linear equation system

The resulting system is composed by equation (A.24) for the bulk nodes i = 3, · · · ,nx − 2,

equation (A.27) for boundary node i = nx − 1 and equation (A.29) for boundary node

i = 2.





Apθ
n+ 1

3
p − Awθ

n+ 1
3

w = Qθ
n
p + AeFeg, i = nx − 1

Apθ
n+ 1

3
p − Aeθ

n+ 1
3

e − Awθ
n+ 1

3
w = Qθ

n
p, i = 3, · · · ,nx − 2

Apθ
n+ 1

3
p − Aeθ

n+ 1
3

e = Qθ
n
p + AwFwg, i = 2

(A.30)

with the matrix coefficients defined as

Ae =
Ra−0.5

∆xp∆x+
p

, Aw =
Ra−0.5

∆xp∆x−
p

, Ap =





Λ + Aw − Ae(Ge − 1), i = nx − 1

Λ + Ae + Aw, i = 3, · · · ,nx − 2

Λ + Ae − Aw(Gw − 1), i = 2

This algebraic equation system may be solved using the tridiagonal matrix algorithm to

obtain θn+ 1
3 .

This procedure is repeated for the second ADI sub-steps by replacing Qθ
n
p by θn+ 1

3 and

introducing the corresponding boundary conditions accordingly.





Apθ
n+ 2

3
p − Asθ

n+ 2
3

s = θ
n+ 1

3
p + AnFng, j = ny − 1

Apθ
n+ 2

3
p − Anθ

n+ 2
3

n − Asθ
n+ 2

3
s = θ

n+ 1
3

p , j = 3, · · · ,ny − 2

Apθ
n+ 2

3
p − Anθ

n+ 2
3

n = θ
n+ 1

3
p + AsFsg, j = 2

(A.31)

with the matrix coefficients defined as

An =
Ra−0.5

∆yp∆y+
p

, As =
Ra−0.5

∆yp∆y−
p

, Ap =





Λ + As − An(Gn − 1), j = ny − 1

Λ + An + As, j = 3, · · · ,ny − 2

Λ + An − As(Gs − 1), j = 2

Fn =
2∆y+

p

2c + b∆y+
p

, Fs =
2∆y−

p

2c − b∆y−
p

, Gn =
2c − b∆y+

p

2c + b∆y+
p

, Gs =
2c + b∆y−

p

2c − b∆y−
p

and so on for the last ADI sub-step by replacing θn+ 1
3 with θn+ 2

3 .

202



A.4 Solution for the provisional velocity

Solution of the provisional velocity field takes place on the staggered grid, one for each

component of the velocity field. For the first two ADI sub-steps the procedure is the same

as the one used in the temperature equation. For the last ADI sub-step, in which the

velocity component is aligned to the direction of the ADI sweep.

Consider for instance, the first ADI sub-step from equation (A.11) along the x-direction.

For the velocity components perpendicular to the ADI sweep, i.e. v (resp. w), one inte-

grates over the control volume Ωp = ∆xp∆yvp∆zp (resp. control volume Ωp = ∆xp∆yp∆zwp).

∫

Ω
vn+ 1

3 dΩ − 1

Λ
PrRa−0.5

[∫
∂xv|

e

n+ 1
3 dSe −

∫
∂xv |

w

n+ 1
3 dSw

]
=

1

Λ

∫

Ω
Qy

n dΩ (A.32)

and the corresponding control surfaces.

Equations for the bulk nodes

Consider the interior points, or bulk points, which correspond to i = 3, · · · ,nx − 2. Intro-

ducing the approximations to the volume and surface integrals one obtains

v
n+ 1

3
p − 1

Λ

PrRa−0.5

∆xp


(v

n+ 1
3

e − v
n+ 1

3
p )

∆x+
p

− (v
n+ 1

3
p − v

n+ 1
3

w )

∆x−
p


 =

1

Λ
Qy

n
p

(A.33)

For convenience, the terms are rearranged as follows

Apv
n+ 1

3
p − Aev

n+ 1
3

e − Awv
n+ 1

3
w = Qy

n
p
,





Ae = PrRa−0.5

∆xp∆x+
p

Aw = PrRa−0.5

∆xp∆x−

p

Ap = Λ + Ae + Aw

(A.34)

Equations for the boundary nodes

Two types of boundary conditions are imposed on the tangential velocity: either a Dirichlet

or a Neumann condition. As in the previous case, the domain boundary overlaps the

control surface of the boundary nodes. Let us consider a node vp located on xnx−1, such

that the neighboring node ve corresponds to a ghost point on xnx and the boundary is

located on xunx−1.

For convenience, let us consider a general Robin boundary conditionon said boundary

(vp + ve)

2
b +

(ve − vp)

∆x+
p

c = g (A.35)

where b, c, and g are the parameters of the boundary condition. Setting b = 1 and c = 0

(resp. b = 0 and c = 1) results in a Dirichlet (resp. Neumann) boundary condition. The
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value required at the ghost node ve would read as

ve = Feg + Gevp, Fe =
2∆x+

p

2c + b∆x+
p

, Ge =
2c − b∆x+

p

2c + b∆x+
p

(A.36)

If we introduce this expression into equation (A.34) one obtains

Apv
n+ 1

3
p − Awv

n+ 1
3

w = Qy
n
p

+ AeFeg,





Ae = PrRa−0.5

∆xp∆x+
p

Aw = PrRa−0.5

∆xp∆x−

p

Ap = Λ + Aw − Ae(Gp − 1)

(A.37)

Conversely, if we consider a node vp located on x2, such that the neighboring node θw

corresponds to a ghost point on x1 and the boundary is located on xu1, the value required

at the ghost point would be

vw = Fwg + Gwvp, Fw =
2∆x−

p

2c − b∆x−
p

, Gw =
2c + b∆x−

p

2c − b∆x−
p

(A.38)

and the resulting equation

Apv
n+ 1

3
p − Aev

n+ 1
3

w = Qy
n
p

+ AwFwg,





Ae = PrRa−0.5

∆xp∆x+
p

Aw = PrRa−0.5

∆xp∆x−

p

Ap = Λ + Ae − Aw(Gw − 1)

(A.39)

Resulting linear equation system

The resulting system is composed by equation (A.34) for the bulk nodes i = 3, · · · ,nx − 2,

equation (A.37) for boundary node i = nx−1 and equation (A.39) for boundary node i = 2.

This algebraic equation system may be solved using the tridiagonal matrix algorithm to

obtain vn+ 1
3 . This procedure is repeated for the second ADI sub-step sweeping along

the z-direction by replacing Qy
n
p

by vn+ 1
3 and introducing the corresponding boundary

conditions.

Last ADI sub-step

In last ADI-substep the velocity component is aligned to the direction on which the ADI

sub-step is applied, i.e. for v when sweeping in the y-direction. In this case, the domain

boundary overlaps with the center of the boundary nodes and we may only impose an

homogeneous Dirichlet condition.

For the bulk nodes, j = 2, · · · ,ny − 2 one has

Apv∗
p − Anv∗

n − Asv∗
s = v

n+ 2
3

p ,





An = PrRa−0.5

∆yvp∆yv+
p

As = PrRa−0.5

∆yvp∆yv−

p

Ap = Λ + An + As

(A.40)
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The value v∗
p = 0 is directly imposed on the boundary nodes j = 1 and j = nx − 1. The

values imposed on the ghost nodes are v∗
w = −v∗

e for j = 1 and j = nx − 1. Finally, since

the grid overlaps the domain boundaries, our equation system is modifies to ensure that

v∗
p = 0. We do this by imposing a very large number on the matrix coefficients,

Apv∗
p − Anv∗

n − Asv∗
s = v

n+ 2
3

p ,





An = PrRa−0.5

∆yvp∆yv+
p

As = PrRa−0.5

∆yvp∆yv−

p

Ap = 1030

(A.41)

The resulting system is composed by equation (A.40) for the bulk nodes j = 2, · · · ,ny − 2,

equation (A.41) and equation (A.39) for the boundary nodes j = 1 and j = ny − 1. This

algebraic equation system may be solved using the tridiagonal matrix algorithm to obtain

v∗.

A.5 Solution for the pressure potential

Integration of equation (A.13) over the scalar control volume gives

∫

Ω
∂2

i Πn+1 dΩ = Λ

∮
un

∗ dS (A.42)

Introducing the the approximations from the finite volume method one obtains

D2
xyzΠn+1 = RHSp (A.43)

where D2
xyz represents the discrete Laplacian operator in 3D which can be written as a

Kronecker sum of discrete Laplacians in each direction (see for instance Demmel, 1997)

D2
xyz = (D2

x ⊗ I ⊗ I) + (I ⊗ D2
y ⊗ I) + (I ⊗ I ⊗ D2

z) (A.44)

also written as

D2
xyz = D2

x ⊕ D2
y ⊕ D2

z (A.45)

with D2
x, D2

y, and D2
z being the one-dimensional discrete Laplacian operators in the x, y and

z-direction, respectively. Each discrete Laplacian must be consistent with the boundary

conditions imposed on each direction.

The right-hand term RHSp is evaluated as

RHSp = Λ

[
(u∗

p − u∗
w)

∆xp
+

(v∗
p − v∗

s)

∆yp

+
(w∗

p − w∗
b)

∆zp

]
(A.46)

In this section, we will present the bidiagonalization algorithm used for the Poisson prob-

lem, sometimes referred to as a fast Poisson solver, see for instance (Golub et al., 1998;

Strang, 2007; Shishkina, Shishkin, et al., 2009).

Since this method is presented in terms of the Kronecker product, it is convenient to recall

the definition of the Kronecker product and some of its most important properties.
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Kronecker product

For any given matrix A of size m × n and matrix B of size p × q, then C = A ⊗ B is a

matrix of size (mp) × (nq)

C = A ⊗ B =




a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB


 (A.47)

or as expressed in index notation as

cα,β = aijbkl,




α = p(i− 1) + k

β = q(j − 1) + l
(A.48)

The Kronecker product verifies the following properties

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) Mixed-product (A.49a)

(A ⊗ B)−1 = (A−1 ⊗ B−1) Inversion (A.49b)

(A ⊗ B)T = (AT ⊗ BT ) Transposition (A.49c)

Bidiagonalization procedure

Let us consider Dx = R Λx R−1 (resp. Dy = S Λy S−1), as the eigendecomposition of

Dx (resp. Dy). Here, the matrix R (resp. S) is an orthogonal matrix whose columns are

the eigenvectors of Dx (resp. Dy), whereas the matrix Λx (resp. Λy) is a diagonal matrix

composed with the eigenvalues of Dx (resp. Dy).

The first term of equation (A.44) becomes

(D2
x ⊗ I ⊗ I) = ((R Λx R−1) ⊗ I ⊗ I) (A.50)

We multiply this expression by SS−1 and use the mixed-product property from equation

(A.49a) and the inversion rule equation (A.49b)

(D2
x ⊗ I ⊗ I) = ((R Λx R−1) ⊗ (S I S−1)) ⊗ I

= (R ⊗ S)((ΛxR−1) ⊗ (I S−1)) ⊗ I

= (R ⊗ S)(Λx ⊗ I)(R−1 ⊗ S−1) ⊗ I

= (R ⊗ S ⊗ I)(Λx ⊗ I ⊗ I)(R ⊗ S ⊗ I)−1

Supossing D2
x to be real an symmetric matrix we can write

(D2
x ⊗ I ⊗ I) = (R ⊗ S ⊗ I)(Λx ⊗ I ⊗ I)(R ⊗ S ⊗ I)T (A.51)

Similarly, we can write the second term of equation (A.44) as

(I ⊗ D2
y ⊗ I) = (R ⊗ S ⊗ I)(I ⊗ Λy ⊗ I)(R ⊗ S ⊗ I)T (A.52)
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By multiplying both sides of equation (A.43) by a factor (R⊗S⊗I)T and using expressions

(A.51) and (A.52) we obtain a tridiagonal system of the form

(Λx ⊕ Λy ⊕ D2
z)Vec(Π̃n+1

i,j,k) = (̃RHSi,j,k) (A.53)

with Π̃n+1
i,j,k being the pressure potential projected on the eigenspace

Π̃n+1
i,j,k = (R ⊗ S ⊗ I)TΠn+1

i,j,k (A.54)

R̃HSi,j,k being the right-hand side of equation (A.43) projected on the same eigenspace,

and Vec(· · · ) the column vector operator.

Solution of the potential pressure term

The bidiagonalization algorithm can be summarized as follows

i. Evaluate the one-dimensional discrete Laplacian D2
x and D2

y with a homogeneous

Neumann boundary condition and evaluate the corresponding eigenvalues and eigen-

vectors only once.

ii. Evaluate the one-dimensional discrete Laplacian D2
z imposing a homogeneous Neu-

mann boundary condition.

iii. Evaluate R̃HSi,j,k by multiplying the right-hand side of equation (A.43) by the (R ⊗
S ⊗ I)T

R̃HSl,m,q =
nx−1∑

i=2

ny−1∑

j=2

nz−1∑

k=2

(rT
l,isT

m,jδqk) RHSi,j,k (A.55)

iv. Evaluate Π̃n+1
i,j,k from equation (A.53) using the tridiagonal matrix algorithm.

D̃l,m,qΠ̃n+1
l,m,q − Ũl,m,qΠ̃n+1

l,m,q+1 − L̃l,m,qΠ̃n+1
l,m,q−1 = R̃HSl,m,q (A.56)

with the corresponding coefficients defined as





D̃l,m,q = 1
∆z+

q
+ 1

∆z−

q
+ Λx

l,l + Λy
m,m

Ũl,m,q = 1
∆z+

q

L̃l,m,q = 1
∆z−

q

(A.57)

while L̃l,m,q = 0 for q = 2 and Ũl,m,q = 0 for q = nz − 1.

v. Finally, one multiplies Π̃n+1
l,m,q by (R ⊗ S ⊗ I) to obtain Πn+1

i,j,k.

Πn+1
i,j,k =

nx−1∑

l=2

ny−1∑

m=2

(rT
l,isT

m,jδnk) Π̃n+1
l,m,k (A.58)
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A.6 Corrected pressure and velocity fields

The correction for the velocity terms is obtained from equation (A.12)

un+1
p = u∗

p −
(Πn+1

e − Πn+1
p )

∆xup
(A.59a)

vn+1
p = v∗

p −
(Πn+1

n − Πn+1
p )

∆yvp

(A.59b)

wn+1
p = w∗

p −
(Πn+1

f − Πn+1
p )

∆zwp
(A.59c)

whereas the pressure field is obtained from equation (A.15)

pn+1
p = pn

p +
1

Λ
Πn+1

p − PrRa−0.5

[
(u∗

p − u∗
w)

∆xp
+

(v∗
p − v∗

s)

∆yp

+
(w∗

p − w∗
b)

∆zp

]
(A.60)
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Appendix B

Code BASILISK

Basilisk is an ensemble of solver-blocks written using an extension to the C program-

ming language, called Basilisk C, useful to write discretization schemes in Cartesian grids

(Stéphane Popinet, 2016). Instead of writing an entirely new code, existing blocks of code

were combined to solve Boussinesq equations. Before presenting the numerical method

used, it is convenient to mention some of the main features of this code.

B.1 Main features

B.1.1 Regular, Multi-grid or Adaptative grids

Figure B.1: Schematics of the spatial discretization and hierarchical structure for tree-
based grids.

Three type of grids are available to us in Basilisk C: regular Cartesian grids (one level

only), multi-level grids, and tree-based adaptative grids. Each discretized cell is a square

in 2D and a cube in 3D. Code written in Basilisk C is meant to be the same for different

types of grids. For tree-based grids, cells are organized hierarchically in levels, from a root

cell placed at the lowest level to a leaf cell located at highest level. Each ‘parent’ cell may

nest 4 ‘child’ cells (resp. 8 cells) for 2D (resp. 3D) cells, see figure B.1. Each cell has at

least one direct neighbour at the same level in each direction. Variables can be defined at

the center of each cell (when declared using scalar, vector, tensor), on the center of

the cell faces (using face vector), or at the vertex of the cell (using vertex scalar). In

the present work, we limit ourselves to multi-level grids.

The use of pre-defined stencils simplifies the access to neighboring points. Assuming the

shaded cell in figure B.2, corresponds to the current cell, the symbol × placed at the center
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(a) scalar, vector

• •⊗ •

(b) scalar vertex

•⊗

•

•

•

(c) face vector

x-component

•

•⊗

•

•

•

•

y-component

• •⊗ •

• • •

Figure B.2: Stencils for different scalar and vector fields used in Basilisk C. The hatched
region indicates the current cell, while a ⊗ symbol marks the placement of the [0, 0, 0]
index relative to this cell.

of the cell, cell face, or cell vertex, accordingly, is associated to the index [0, 0, 0] in the

local stencil. Neighboring cells are referred to by their relative placement with respect

to the current cell: The neighboring cell in the positive x-direction would correspond to

index [1, 0, 0], and so on. The stencils automatically define certain variables associated to

the current grid, such as the position (x, y, z) of the current cell.

B.1.2 Fields and Iterators

The main difference with respect to other numerical codes, is the introduction of pre-

defined types for scalar, vector, and tensor fields, and field iterators meant to reduce

duplicate code. Consider for instance, the following scalar field a(x) in R2, declared as

follows

scalar a[]; // Declare field

foreach () // Iterate over each cell

a[] = (x + y)*Delta ; // Initialize values

A vector field b(x), defined as the discrete gradient of field a(x) in R2, b = ∇a evaluated

at the center of the cell as

vector b[]; // Declare field

foreach (){ // Iterate over each cell

b.x [] = (a[1 ,0] - a[ -1 ,0])/sq(Delta ); // Gradient in X

b.y [] = (a[0 ,1] - a[0 , -1])/sq(Delta ); // Gradient in Y

}
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B.1.3 Events and building blocks

The second main characteristic of Basilisk C is the use of events. An event allows to

evaluate a code block or perform any given action at the specified interval, be it every n

steps, or every fixed amount of time. The syntax to declare a new event name, every 1

time unit from t=1 to t=5, would read as follows

event name (t = 1; t <= 5; t += 1) {

do_something ();

}

Certain pre-defined solvers are available, with each one having events of their own. Con-

sider for instance, the centered formulation of the incompressible Navier-Stokes equa-

tion included in centered.h (the numerical method will be introduced in the follow-

ing section). For each time step, one evaluates the code contained inside the following

events: dtmax, stability, VOF, tracer advection, properties, advection term,

viscosity, acceleration, and projection events.

Instead of modifying these existing routines and trying to adapt them to a particular

problem, we seek to re-use the existing code and use these events to make the required

changes. Consider the event properties contained inside centered.h

event properties (i++, last) {

boundary ({ alpha , mu , rho });

}

Suppose that we define an event which is also named properties inside our main routine

# include " centered .h"

event properties (i++) {

do_something (alpha , mu , rho);

}

The code contained inside the new event will be introduced just before the event of the

same name inside the included file centered.h. If we include several files that contain

an event with the same name, the code will be executed in the order of the inclusion.

Instead of modifying the source code, we are piggybacking on the existing code. This

building-block approach is specially well suited for split-step methods.

In the following section, we will provide a brief description of the numerical method used

to solve the Bousinesq equation in Cartesian multi-level grids.

211



B.2 Overall temporal discretization scheme

A solution to the Boussinesq equation system is obtained by combining a centered formula-

tion of the incompressible Navier-Stokes equations (see centered.h), a diffusion solver for

the temperature field (see diffusion.h) and one tracer advection event (see tracer.h).

The numerical scheme resulting from this combination has a global second-order accuracy,

as shown in (Bell et al., 1989).

The formulation of the incompressible Navier-Stokes equations uses the fractional-step

method using a staggered in time discretization of the velocity and the scalar fields (see

Popinet, 2003; Popinet, 2009): one supposes the velocity field to be known at time n and

the scalar fields (pressure, temperature, density) to be known at time n − 1/2, and one

computes velocity at time n+ 1 and scalars at time n+ 1/2,

∂iui
n+1 = 0 (B.1a)

(ui
n+1 − ui

n)

∆t
+ ∂j(ujui)

n+ 1
2 = −∂ip

n+ 1
2 +

ν∂j(∂jui
n+1 + ∂jui

n)

2
+ ai

n+ 1
2 (B.1b)

θn+ 1
2 − θn− 1

2

∆t
+ ∂j(ujθ)

n = ∂j(κ∂jθ)
n+ 1

2 (B.1c)

where ν = PrRa−0.5 corresponds to the kinematic viscosity, κ = Ra−0.5 to the thermal

diffusive coefficient. Since the external forcing term ai
n+ 1

2 in our case corresponds to the

buoyancy force ai
n+ 1

2 = −Prθn+ 1
2 δi2, it is compulsory to start by solving the equation for

temperature (B.1c), before the equations (B.1a) and (B.1b).

In the following, we use the lowercase (resp. uppercase) variables, for instance ui and

θ (resp. Ui and Θ) to identify the quantities evaluated at the cell center (resp. at the

center of the cell face). The velocity component at the center of the face Ui
n is evaluated

from the velocity ui
n from both cells sharing this face through a simple interpolation. In

addition, subscript (d) refers to the cell faces.

B.2.1 Solution of the energy equation

The solution of equation (B.1c) is obtained in two steps. First, the advection terms

are evaluated using the Bell-Collela-Glaz (BCG) second-order un-split upwind scheme.

Second, an Helmholtz-Poisson problem for the energy equation is solved using a multi-

level Poisson solver to obtain θn+ 1
2 .

Approximation of the scalar advection term

Consider the advection term ∂j(ujθ)
n integrated over a control volume Ω, which is approx-

imated as the sum of the fluxes in each control surface (4 in 2D or 6 in 3D).

∫

Ω
∂j(ujθ)

n dΩ =

∮

∂Ω
(njuj

n)θn dS ≈
∑

(d)

S(d)(njUj
n)Θn (B.2)

where nj corresponds to the (outward) normal unit vector at the face center.
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Notation-wise, we refer to θ[0,0,0] as the value of the temperature at the center of the current

cell. The values θ[0,−1,0], θ[0,0,0], and θ[0,1,0] correspond to the temperature evaluated at

the center of three contiguous cells along the y-direction. Similarly, θ[0,0,−1], θ[0,0,0], and

θ[0,0,1] indicate the temperature evaluated at the center of three contiguous cells along the

z-direction.

The process may be explained using the case of cell face that is perpendicular to the

x-axis and located west of the current cell center [0,0,0]. Note that this process has to

be repeated in each face, before proceeding to evaluate the total temperature flux using

equation (B.2). Based on the face velocity Ux
n, we identify the cell located upstream as C

and located downstream as Nd. We may define an index k, k = −1 for (Ux
n− 1

2 > 0) and

k = 0 otherwise, such that C = [k, 0, 0].

Since the temperature field (and other scalar fields for that matter) Θn is staggered in time

and in space with respect to the centered field θn− 1
2 , the value Θn has to be approximated.

Two possible values of Θn may be constructed (one from each cell sharing the same face).

Since our main focus is the advection process, we consider the value obtained from the

cell C located upstream using the BCG advection scheme.

We perform a Taylor series expansion around the upstream cell C

Θn = θn− 1
2 + s

∆x

2
(∂xθ)

n− 1
2 +

∆t

2
(∂tθ)

n− 1
2 + O(∆t2, ∆x2) (B.3a)

where s = sign(Ux
n). The temporal derivative is approximated in terms of spatial deriva-

tives using the energy equation (discarding the diffusive terms) as

(∂tθ)
n− 1

2 = −(uj∂jθ)
n− 1

2 (B.3b)

Combining both expressions leads to

Θn = θn− 1
2 + s

∆x

2
(∂xθ)

n− 1
2 − ∆t

2
(uj ∂̃jθ)

n− 1
2 (B.3c)

where ∂xθ is approximated by

(∂xθ)
n− 1

2

[k,0,0] = (θ
n− 1

2

[k+1,0,0] − θ
n− 1

2

[k−1,0,0])/(2∆x) (B.4)

and ∂̃jθ denotes the spatial derivatives ∂jθ evaluated numerically as follows. The gradient

normal to the cell face, i.e. ux∂̃xθ, is approximated by

(ux∂̃xθ)
n− 1

2

[k,0,0] = Ux
n
[0,0,0](θ

n− 1
2

[k+1,0,0] − θ
n− 1

2

[k−1,0,0])/(2∆x) (B.5a)

For the other directions we do something different

(uy∂̃yθ)
n− 1

2 ≈



ûy

n(θ
n− 1

2

[k,1,0] − θ
n− 1

2

[k,0,0])/∆y if ûy
n < 0

ûy
n(θ

n− 1
2

[k,0,0] − θ
n− 1

2

[k,−1,0])/∆y if ûy
n ≥ 0

(B.5b)

(uz∂̃zθ)
n− 1

2 ≈



ûz

n(θ
n− 1

2

[k,0,1] − θ
n− 1

2

[k,0,0])/∆z if ûz
n < 0

ûz
n(θ

n− 1
2

[k,0,0] − θ
n− 1

2

[k,0,−1])/∆z if ûz
n ≥ 0

(B.5c)
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where ûy
n and ûz

n are evaluated as follows

ûy
n =

1

2
(Uy

n
[k,1,0] + Uy

n
[k,0,0]) (B.6)

ûz
n =

1

2
(Uz

n
[k,0,1] + Uz

n
[k,0,0]) (B.7)

B.2.2 Solution of the velocity-pressure coupling

The velocity-pressure coupling is treated using a classical time-splitting projection method

(see Chorin, 1969). First, the pressure term is ignored in order to obtain a provisional

velocity field u∗ which may not be divergence-free.

(ui
∗ − ui

n)

∆t
+ ∂j(ujui)

n+ 1
2 = ∂j(ν(∂jui

∗ + ∂jui
n)) + ai

n+ 1
2 (B.8a)

The momentum equation has the general form of an Helmholtz-type equation, which can

be solved using a multi-level Poisson-Helmholtz solver if the advection term is provided,

see below.

Second, a correction is sought by projecting the provisional velocity u∗ into a divergence-

free space, using a pressure such that

ui
n+1 − ui

∗

∆t
= −∂ipn+ 1

2 (B.8b)

Evaluated from the following Poisson problem

∂i
(
∆t∂ip

n+ 1
2

)
= ∂iui

∗ (B.8c)

in order to verify the incompressibility

∂iui
n+1 = 0 (B.8d)

This problem can be solved using the multi-level Poisson-Helmholtz solver (see poisson.h).

Approximation of the advection term

Consider the advection term integrated over a control volume Ω, which is approximated

as the sum of the fluxes in each control surface (4 in 2D or 6 in 3D).

∫

Ω
∂j(ujui)

n+ 1
2 dΩ =

∮

∂Ω
((njuj)ui)

n+ 1
2 dS ≈

∑

(d)

S(d)(njUj
n+ 1

2 )Ûi
n+ 1

2 (B.9)

where nj corresponds to the (outward) normal unit vector at the face center.

A priori, both Ûi
n+ 1

2 and Ui
n+ 1

2 represent the same quantity, but are treated in a different

way. In this context, Ûi
n+ 1

2 represents the “advectee” and Ui
n+ 1

2 represents the “advector”.

The “advectee” is treated in the same way as any other advected field, whereas the “ad-

vector” receives an special treatment to ensure the conservation of mass. Both procedures

will be detailed shortly.
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In the following, we refer to ui[0,0,0] as the value of the ith-velocity component at the center

of the current cell. The values ui[0,−1,0], ui[0,0,0], and ui[0,1,0] indicate the ith velocity com-

ponent evaluated at the center of three contiguous cells along the y-direction. Similarly,

we consider ui[0,0,−1], ui[0,0,0], and ui[0,0,1] indicate the velocity component evaluated at

the center of three contiguous cells along the z-direction.

Consider the previous example with a control surface perpendicular to the x-direction

located west of the current cell center [0, 0, 0]. Based on the face velocity Ux
n, we identify

the cell located upstream as C and located downstream as Nd. We may define an index k,

k = −1 for (Ux
n > 0) and k = 0 otherwise, such that C = [k, 0, 0].

Evaluation of the “advectee”, i.e. Ûi
n+ 1

2

Since the required face velocity field Ûi
n+ 1

2 is staggered in time and in space with respect

to the known velocity field ui
n, the value Ûi

n+ 1
2 has to be approximated. For given a cell

face, two values of Ûi
n+ 1

2 may be constructed. Following a similar reasoning to the one

used on the previous section, one selects the value obtained from the upstream cell C using

a BCG advection scheme.

We perform a Taylor series expansion around the upstream cell C

Ûi
n+ 1

2 = ui
n + s

∆x

2
(∂xui)

n +
∆t

2
(∂tui)

n + O(∆t2, ∆x2) (B.10a)

where s = sign(Ux
n). The evolution of ui is assumed to be governed by a non-conservative

form of Euler equation in order to approximate the temporal derivative in terms of the

spatial derivatives of ui

(∂tui)
n = −(uj∂jui)

n + gi
n (B.10b)

where gi
n contains both the pressure gradient and the external forcing term, gi

n =

−(∂ip)
n + ai

n both evaluated at the cell face. Since scalar quantities may not be available

at this instant, as a first approximation, we assume that

gi
n = −(∂ip)

n− 1
2 + ai

n− 1
2 (B.10c)

This leaves the following expression

Ûi
n+ 1

2 = ui
n + s

∆x

2
(∂xui)

n − ∆t

2

[
(uj ∂̃jui)

n
+ gi

n
]

(B.10d)

where (∂xui)
n is approximated by

(∂xui)
n
[k,0,0] = (ui

n
[k+1,0,0] − ui

n
[k−1,0,0])/(2∆x) (B.11)

and ∂̃j indicates the spatial derivatives ∂j evaluated numerically as follows. The gradient

normal to the cell face, i.e. ux∂̃xui, is approximated by

(ux∂̃xui)
n

[k,0,0] = Ux
n+ 1

2

[0,0,0](ui
n
[k+1,0,0] − ui

n
[k−1,0,0])/(2∆x) (B.12a)
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For the other directions we do something different

(uy∂̃yui)
n ≈




ûy

n+ 1
2 (ui

n
[k,1,0] − ui

n
[k,0,0])/∆y if ûy

n+ 1
2 < 0

ûy
n+ 1

2 (ui
n
[k,0,0] − ui

n
[k,−1,0])/∆y if ûy

n+ 1
2 ≥ 0

(B.12b)

(uz∂̃zui)
n ≈




ûz

n+ 1
2 (ui

n
[k,0,1] − ui

n
[k,0,0])/∆z if ûz

n+ 1
2 < 0

ûz
n+ 1

2 (ui
n
[k,0,0] − ui

n
[k,0,−1])/∆z if ûz

n+ 1
2 ≥ 0

(B.12c)

where ûy
n+ 1

2 and ûz
n+ 1

2 are evaluated as follows

ûy
n+ 1

2 =
1

2
(Uy

n+ 1
2

[k,1,0] + Uy
n+ 1

2

[k,0,0]) (B.13)

ûz
n+ 1

2 =
1

2
(Uz

n+ 1
2

[k,0,1] + Uz
n+ 1

2

[k,0,0]) (B.14)

Evaluation of the “advector”, i.e. Ui
n+ 1

2

To obtain the field “advector” Ui
n+ 1

2 , we follow a very similar procedure up to equation

(B.10d).

Ũi
n+ 1

2 = ui
n + s

∆x

2
(∂xui)

n − ∆t

2

[
(uj ∂̃jui)

n
+ gi

n
]

However, the quantities in the expression above are evaluated in a different way.

For the gradient normal to the cell face one may use a CDS scheme,

(∂xui)
n
[k,0,0] = (ui

n
[k+1,0,0] − ui

n
[k−1,0,0])/(2∆x) (B.15)

or the gradient may also be evaluated using a generalized minmod limiter (or any other

kind of slope limiter for that matter), in which the gradient at the center of the neighboring

cells in the x-direction may also be required. For our particular problem, we use CDS.

In contrast, the gradient normal to the cell face i.e. ux∂̃xui, is now approximated as follows

(ux∂̃xui)
n

= Ux
n
[0,0,0](ui

n
[k+1,0,0] − ui

n
[k−1,0,0])/(2∆x) (B.16a)

which is slightly different from equation (B.12a).

For the other directions we do something different from equations (B.12c) and (B.12c) as

well

(uy∂̃yui)
n ≈




uy

n
[k,0,0](ui

n
[k,1,0] − ui

n
[k,0,0])/∆y if uy

n
[k,0,0] < 0

uy
n
[k,0,0](ui

n
[k,0,0] − ui

n
[k,−1,0])/∆y if uy

n
[k,0,0] ≥ 0

(B.16b)

(uz∂̃zui)
n ≈




uz

n
[k,0,0](ui

n
[k,0,1] − ui

n
[k,0,0])/∆z if uz

n
[k,0,0] < 0

uz
n
[k,0,0](ui

n
[k,0,0] − ui

n
[k,0,−1])/∆z if uz

n
[k,0,0] ≥ 0

(B.16c)

The final step required to compute the advection term using equation (B.10d), is to ensure

the “advector” to be divergence-free. This is done by projecting the provisional predicted
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velocity into a divergence-free space which requires solving the following Poisson problem

Dxyzφ =
1

∆x∆y∆z

∑

d

SdŨ(d)
n+ 1

2 (B.17)

where Dxyz indicates a discrete Laplacian, then correcting the velocity field

Ui
n+ 1

2 = Ũi
n+ 1

2 − ∂iφ (B.18)

We repeat this prediction-correction process for each component of the velocity field and

for each face, in order to evaluate the non-linear term using equation (B.9).

The advection scheme implemented inside tracer.h, gbc.h, and centered.h follows

closely the equivalent BCG scheme used in Gerris. The sequence of events required to

solve one generic time step is represented in figure B.3. Additional details may be found

in (Popinet, 2003).

stability

tracer advection

advection term

viscous term

acceleration

projection

Update ∆t to verify CFL condi-
tion

Advection step of the tempera-
ture equation (and other tracers)

Predict velocity at staggered
time, project in divergence-free
space, evaluate advection term

Implicit solution of viscous term,
update face velocity
Diffusion step of the tempera-
ture equation, update buoyancy
forcing term, obtain provisional
velocity
Obtain pressure field and cor-
rected velocity field pn+ 1

2 , un+1

an+ 1
2 , u∗

θn− 1
2 , pn− 1

2 , un

Un, Θn

Ûn+ 1
2 , Ũn+ 1

2 , Un+ 1
2

Figure B.3: Flowchart to the generic time-step, providing a minimal description of the
contents of each event.
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Appendix C

Parallel I/O model using XDMF

C.1 Presentation of the XDMF Format

The eXtensible Data Model and Format (XDMF) was developed to exchange scientific

data from different high performance computing (HPC) codes (see Clarke and Namburu,

2002; Clarke and Mark, 2007). XDMF data may be categorized by function: format data

and model data. The format describes the rank and dimensions of arrays, while the model

data describes what to use data for. Data may also be organized by size as light data and

heavy data. Light data is stored using eXtensible Markup Language (XML) to describe

the data model and the data format. Heavy data is composed of large datasets stored

using the Hierarchical Data Format (HDF5).

Consider the following minimal example composed of one Xdmf element, one Domain

element and one Temporal collection with one Grid element per time instant.

Example C.1: Temporal collections

<?xml version ="1.0" ?>

<! DOCTYPE Xdmf SYSTEM "Xdmf.dtd" [] >

<Xdmf Version ="2.0">

<Domain Name="Rayleigh - Benard Cell">

<Grid Name=" Snapshots " Grid Type=" Collection " CollectionType =" Temporal ">

<Grid Name="Time =0" Grid Type=" Uniform ">

<Time Value ="0.00"/>

...

</Grid >

<Grid Name="Time =5" Grid Type=" Uniform ">

<Time Value ="5.00"/>

...

</Grid >

...

</Grid >

</ Domain >

</Xdmf >

Each one of the Grid elements may contain one or more Topology, Geometry, and Attribute

elements. Topology describes the general organization of the data, i.e. 2D or 3D, struc-

tured or unstructured, and so on. Geometry describes the mesh points. An Attribute

element may define values associated with the mesh, such as a scalar, vector or tensor

fields.
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The following example, presents a domain with a structured mesh (3D) of size NX*NY*NZ.

The mesh is defined by three arrays, one for each direction, all of them stored inside an

external HDF5 file called “heavy data.h5”. Finally, one attribute defines a scalar field

called “Temperature” for each grid point, stored in the same HDF5 file. Additional fields

may be added by following this template.

Example C.2: A Cartesian grid containing one scalar field

...

<Grid Name="Time =0" Grid Type=" Uniform ">

<Time Value ="0.00"/>

<Topology Topology Type="3 DRectMesh " NumberOfElements ="NZ NY NX"/>

<Geometry Geometry Type=" VXVYVZ ">

<DataItem Dimensions =" NX " NumberType =" Float " Precision ="8" Format ="HDF">

heavy_data .h5:/grid/ vertex / CoordinateX

</ DataItem >

...

</ Geometry >

<Attribute Name=" Temperature " Attribute Type=" Scalar " Center =" Point ">

<DataItem Dimensions ="NZ NY NX" NumberType =" Float " Precision ="8" Format ="HDF">

heavy_data .h5:/ snapshot / time_0 .0/ Temperature

</ DataItem >

</ Attribute >

...

</Grid >

...

C.2 Presentation of the HDF5 format

The second half of the XDMF format, i.e. the heavy data, is composed of relatively large

datasets stored using the Hierarchical Data Format (HDF5), see The HDF Group, 2016.

As the name implies, data is organized following a hierarchical structure. HDF5 files can

be read without any prior knowledge of the stored data. The list of software capable of

reading HDF5 files includes Visit, Paraview, Matlab, and Tecplot, to name a few.

The type, rank, dimension and other properties of each array are stored inside the file in

the form of meta-data. The following example uses a set of command-line tools to explore

the contents of an existing file,

Example C.3: HDF5 file contents organized in groups and subgroups.

>> h5ls -r heavy_data .h5

/ Group

/ snapshot Group

/ snapshot / time_0 .0 Group

/ snapshot / time_0 .0/ Temperature Dataset {NZ , NY , NX}

/ snapshot / time_5 .0 Group

/ snapshot / time_5 .0/ Temperature Dataset {NZ , NY , NX}

...

/grid Group

/grid/ vertex Group

/grid/ vertex / CoordinateX Dataset {NX}

...

>> h5dump -d /grid/ vertex / CoordinateX heavy_data .h5

HDF5 " output_basilisk .h5" {

DATASET "/grid/ vertex / CoordinateX " {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( NX ) / ( NX ) }

DATA {
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(0): -0.5, -0.492188 , -0.484375 , -0.476562 , -0.46875 , -0.460938 ,

...

}

}

}

Additional features include support for a large number of objects, file compression, a

parallel I/O implementation through the MPI-IO or MPI POSIX drivers. A software

library that provides a high-level API with interfaces to both C and Fortran, can be

usually found already installed in a large number of computing centers. If the library is

available, one must add an include line in the program source code.

Example C.4: Fusion

program FUSION

use declarations

...

use hdf5

implicit none

...

end program

Example C.5: Basilisk

# include "grid/ multigrid3D .h"

# include "navier - stokes / centered .h"

...

# include <hdf5.h>

...

int main () {

...

run ();

}

...

And then proceed to link the program with the library object file during compilation.
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Appendix D

Demonstrations related to the

available potential energy

D.1 Proof related to the change of the available potential

energy

Consider the formal definition of yr(x, y, z, t) from Winters et al., 1995,

yr(x, y, z, t) − ybot =
1

V

∫
H(θ(x, y, z, t) − θ(x′, y′, z′, t)) dV′ (D.1a)

where ybot is the reference height at the bottom plate, H(x) the Heaviside function, dV =

dxdydz and dV′ = dx′dy′dz′. Now consider the following definitions

δ(x) = lim
ε→0

1

ε
√
π

exp

(
−x2

ε2

)
H(x) =

1

2
lim
ε→0

erfc

(
−x

ε

)
(D.1b)

erfc(y) = 1 − 2√
π

∫ ∞

0
exp(−y2)dt

d

dt
erfc(y) = − 2√

π
exp(−y2) (D.1c)

We define a variable u = θ(x, y, z, t) − θ(x′, y′, z′, t)

d

dt
H(u) = lim

ε→0

∂

∂t

[
1

2
erfc

(
−u

ε

)]
= lim

ε→0

1

ε
√
π

exp

(
−u2

ε2

)
∂tu = δ(u)∂tu (D.1d)

Finally, one combines this expression into the definition of yr(x, y, z, t)

∫

V
θ∂tyrdV =

1

V

x
θ∂rH(u) dV′dV =

1

V

x
[θδ(u)∂tu] dV′dV (D.1e)

which becomes zero if the temperature field is indeed univoque.

∫

V
θ∂tyrdV = 0 (D.1f)
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Appendix E

Demonstrations related to the

vorticity functions

For a two-dimensional configuration r ∈ R2, vorticity has only one component perpen-

dicular to the plane (xy) ω = ωez. By taking the curl of the momentum equation one

obtains the following dynamical equation for the vorticity ω,

∂tω + ∂j(ujω) = PrRa−0.5∂j∂jω + Pr∂xθ (E.1)

The global angular impulse is defined as

L2D ≡ −1

2

y
rkrkω dxdy (E.2)

Such that

d

dt
L2D ≡ −1

2

y
rkrk∂tω dxdy (E.3)

From the dynamical equation of the vorticity one has the following expression

d

dt
L2D = PrRa−0.5I + II + M (E.4)

with I, II, and M given as

I = − 1

2

x
(rkrk)(∂j∂jω) dxdy (E.5)

II =
1

2

x
(rkrk)∂j(ujω) dxdy (E.6)

M = − 1

2
Pr

x
rkrk∂xθ dxdy (E.7)

The first term I is transformed as follows

I = − 1

2

x
(rkrk)(∂j∂jω) dxdy = −1

2

x
(∂j(rkrk∂jω) − ∂j(rkrk) ∂jω) dxdy (E.8)
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where ∂j(rkrk) ∂jω may be rewritten as follows

∂j(rkrk) ∂jω = 2rj∂jω = ∂j(2rjω) − ω∂j(2rj) = ∂j(2rjω) − 4ω (E.9)

Finally, we may write I as

I = − 1

2

∮
rkrk∂nω ds +

∮
rnω ds − 2

x
ω dxdy (E.10)

where ds is an infinitesimal element of the boundary ∂A, dA = dxdy, and the loop integral

is counterclockwise.

The second term II is transformed through the following relation

(rkrk)∂j(ujω) = ∂j(rkrkujω) − ujω∂j(rkrk) = ∂j(rkrkujω) − 2rjujω (E.11)

Leaving the following expression for II

II =
1

2

∮
rkrkunω ds −

x
rjujω dxdy (E.12)

Since ω = εli∂lui, one may write

rjujω = ǫjirj∂l

[
1

2
umumδil − ului

]
(E.13)

= ǫji∂i

[
rj

2
umum

]
− ǫji∂l [rjului] (E.14)

Applying the divergence theorem in two-dimensions

II =
1

2

∮
rkrkunω ds +

1

2

∮
ukukǫjinjri ds +

∮
unǫjinjui ds (E.15)

Considering impermeable boundaries, i.e. un = 0, simplifies this expression to

II =
1

2

∮
ukukǫjinjri ds (E.16)

where ds is an infinitesimal element of the boundary ∂A, dA = dxdy, and the loop integral

is counterclockwise. Furthermore, imposing no-slip boundary conditions results in the

same expressions from Molenaar et al., 2004.

I = − 1

2

∮
rkrk∂nω ds +

∮
rnω ds (E.17)

II =0 (E.18)

M = − 1

2

x
rkrk∂xθ dxdy (E.19)
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Appendix F

Derivation of a 2-D model with

inertial corrections using the

weighted residuals method

In this section we present a reduced model which takes into account inertial effects. This is

done in the spirit of (Ruyer-Quil, 2001) that extended the work by (Gondret and Rabaud,

1997) using a weighted residuals method (WRM) (see for instance Finlayson, 2013).

F.1 Method of weighted residuals

Before presenting the model itself, let us present a general description of the weighted

residuals method closely following (Kalliadasis et al., 2011). Consider a problem that can

be formally written as E(U) = 0, for some set of variables U . In our particular case,

U corresponds to velocity and temperature fields and E to a simplified form of the non-

dimensionalized Boussinesq equations (7.1a)-(7.1d). We proceed to search a solution of U
in the form of a series expansion

U =
N∑

n=0

φ(n)(x, y, t)fn(z) (F.1)

where fn(z) with n = 0, 1, · · · , N are called test functions. This set of functions forms

a complete basis in the functional space S of functions of z inside the interval [−ε, ε]
and that satisfy the boundary conditions of the problem. It is reminded that in our case

ε = Γz/2. In addition this space disposes of an inner product 〈a|b〉 =
∫ ε

−ε(a b)dz.

The method of weighted residuals determines the amplitudes φ(n) and is divided in three

steps. First, one introduces a series of N + 1 weight functions wm(z), m = 0, · · · , N .

Second, one projects the original equation E(U) = 0 onto the N + 1 weight functions,

leading to N + 1 residual problems

Rm ≡ 〈wm|E(U)〉 = 〈wm|E(
N∑

n=0

φ(n)fn)〉 = 0 for m = 0, · · · , N (F.2)
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Instead of solving the general problem E(U) = 0, the N + 1 residuals yield a linear system

of equations for the amplitudes φ(n). The choice of the weight functions wm determines

the particular kind of weighted residual method being used. Note that a judicious choice of

test functions simplifies the resulting equation system (Ruyer-Quil and Manneville, 2000).

When the weight and test functions are identical, i.e. wm = fm, the WRM is the same as

a Galerkin method.

F.2 Introduction to a reduced model with inertial correc-

tions

In the following we introduce a rescaled space variable z ≡ z
ε defined in the interval

[−1, 1]. The equation of continuity (7.1a) suggests the transversal velocity component w

to be rescaled as

w = εw̃ with w̃ ≡ −
∫ z

−1
(∂iui)dz (F.3)

The non-dimensionalization of velocity in system (7.1a)-(7.1d) is based on the free-fall

velocity. For confined cells this characteristic velocity is no longer representative: velocities

are smaller than one and the time scales are much longer. Indeed, the root mean squared

velocity is such that (see table in figure F.1)

α ≡
√

〈u2〉xz ≪ 1 (F.4)

One thus introduces a slow time scale τ and rescaled velocities

τ = αt ui =
ui

α
w =

w̃

α
(F.5)

Leading to the following system of equations

∂iui + ∂zw = 0 (F.6a)

α2
[
∂τui + ∂j(ujui) + ∂z(w ui)

]
= − ∂ip + αPrRa−0.5

[
∂j∂jui + ε−2∂2

zui

]
+ Prθδiy

(F.6b)

α2
[
∂τw + ∂j(ujw) + ∂z(w w)

]
= − ε−2∂zp + αPrRa−0.5

[
∂j∂jw + ε−2∂2

zw
]

(F.6c)

α
[
∂τθ + ∂j(ujθ) + ∂z(w θ)

]
=Ra−0.5

[
∂j∂jθ + ε−2∂2

zθ
]

(F.6d)

The characteristic temperature scale is still valid and the temperature field remains bounded

in the interval [−0.5, 0.5]. However, outside the boundary layers the temperature is ex-

pected to be smaller than one. Since the pressure gradient and the thermal forcing are

inextricably intertwined in the following we assume

Far from the BL :
p = αp

θ = αθ
(F.7)

where p and θ are terms of order one. Introducing these terms into equations (F.6a)-(F.6d)

yields a system of equations where the orders of magnitude of each term is deduced in
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terms of α, ε, Ra and Pr.

∂iui + ∂zw = 0 (F.8a)

α
[
∂τui + ∂j(ujui) + ∂z(w ui)

]
= − ∂ip + PrRa−0.5∂j∂jui (F.8b)

+ ε−2PrRa−0.5∂2
zui + Prθδiy

α
[
∂τw + ∂j(ujw) + ∂z(w w)

]
= − ε−2∂zp + PrRa−0.5∂j∂jw (F.8c)

+ ε−2PrRa−0.5∂2
zw

α
[
∂τθ + ∂j(ujθ) + ∂z(w θ)

]
= Ra−0.5∂j∂jθ + ε−2Ra−0.5∂2

zθ (F.8d)

This is completed by the mechanical and thermal boundary conditions at the front and

back walls

ui = w = 0 at z = ±1 (F.9a)

∂nθ = 0 at z = ±1 (F.9b)

Inside Hele-Shaw cells, the terms highlighted in blue are expected to lead: the viscous and

thermal diffusion operators in the transversal direction, i.e. ∂2
zui and ∂2

zθ, as well as the

buoyancy force and the pressure gradient. This imposes the following constraints on the

values of ε and Ra

ε−2Ra−0.5 ≫ α or equivalently αε2Ra0.5 ≪ 1 (F.10)

Using the DNS results presented in chapter 7, we perform a data fit to obtain a very

rough approximation for the velocity scale α in terms of Ra and ε, α ≈ 0.083ε0.92Ra0.17

(see figure F.1). Introducing this expression into (F.10), one obtains an upper boundary

in Ra and Γz for the range of validity of the Hele-Shaw approximation. Using this for a

fixed value of Ra, the aspect ratio Γz must verify

Γz = 2ε ≪ 4.689Ra−0.2295 (F.11)

This limit may be better represented on the phase diagram displayed on the bottom right

part of figure F.1.
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Ra Γz α αε2Ra0.5

1 · 106 1/8. 0.069 0.271

5 · 106 1/8. 0.091 0.798

1 · 107 1/8. 0.107 1.324

5 · 107 1/8. 0.132 3.646

1 · 108 1/8. 0.137 5.362

1 · 106 1/16. 0.033 0.033

5 · 106 1/16. 0.045 0.098

1 · 107 1/16. 0.068 0.209

5 · 107 1/16. 0.077 0.533

1 · 108 1/16. 0.086 0.836

1 · 106 1/32. 0.011 0.003

5 · 106 1/32. 0.020 0.011

1 · 107 1/32. 0.023 0.018

5 · 107 1/32. 0.035 0.060

1 · 108 1/32. 0.041 0.099

1 · 109 1/32. 0.069 0.534

1 · 107 1/64. 0.008 0.002

5 · 107 1/64. 0.013 0.006

1 · 108 1/64. 0.017 0.010

2 · 108 1/64. 0.021 0.018

1 · 109 1/64. 0.032 0.063

0 5 · 10−2 0.1 0.15
0

5 · 10−2

0.1

0.15

0.044Γ0.92
z Ra0.17

α

105 107 109

1/128

1/64

1/32

1/16

1/8

1/4

III

II

Ra

Γ
z

Figure F.1: (Left) Table providing the values of α and αε2Ra0.5 obtained from DNS. The
latter must remain small in order to satisfy the formulation proposed. Unwanted values
are indicated in red. (Top right) Value of α compared to a data fit α = 0.083ε0.92Ra0.17

estimated using DNS data for different Ra and Γz. (Bottom right) Phase diagram repro-
duced from figure 7.1. Marks indicate the values of (Ra,Γz) considered and the thick line
corresponds to the limit Γz = 4.689Ra−0.2295.
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F.2.1 Solution to the zeroth-order formulation: recovering the profile

of the simplified model

As a first approximation, consider removing the terms of order α from equations (F.8a)

to (F.8d), and neglect the terms in Ra−0.5 with respect to ε−2Ra−0.5. This zeroth-order

approximation has the following form

∂zw = − ∂iui (F.12a)

∂2
zui = ε2Ra0.5Pr−1

[
∂ip − Prθδiy

]
(F.12b)

∂zp = 0 (F.12c)

∂2
zθ = 0 (F.12d)

From equation (F.12d) and the adiabatic boundary conditions one deduces that the tem-

perature profile must be constant along the transversal direction, i.e. θ(x, y, z, τ) =

θ(x, y, τ). Equation (F.12c) implies the pressure field to be independent of the transversal

coordinate, i.e. p(x, y, z, τ) = p(x, y, τ). Equation (F.12b) implies the velocity to have

a parabolic profile in order to satisfy the no-slip boundary conditions on (z = ±1). The

solution at the zeroth-order has the following form

ui(x, y, z, τ) = ε2 1

3
Ra0.5Pr−1

(
−∂ip(x, y, τ) + Prθ(x, y, τ)δiy

)
g0(z) (F.13)

where

g0(z) ≡ 3

2
(1 − z2) (F.14)

This parabolic profile (F.13) in addition to the continuity equation (F.12a) imposes

w = 0 and ∂iui = 0 (F.15)

This procedure leads to the same transversal profiles as in the simplified model 8.1, but

does not lead to the same dynamical equations. In this case, this leads to a Poisson

equation for the pressure field.

F.2.2 First-order formulation

We would like to go further than the zeroth-order approximation and compute the de-

viations from such profiles by taking into account the terms of order α from equations

(F.8a)-(F.8b). Let us consider the temperature, pressure and velocity fields may be writ-

ten in the following form

θ = θ(0) + αθ(1) + O(α2) (F.16a)

p = p(0) + αp(1) + O(α2) (F.16b)

ui = ui
(0) + αui

(1) + O(α2) (F.16c)
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The terms θ(0), p(0), and ui
(0) have identical profiles as the zeroth-order solution

θ(0) = ϑ(0)(x, y, τ)f0(z) with f0(z) = 1 (F.17a)

p(0) = p(0)(x, y, τ) (F.17b)

ui
(0) = ai

(0)(x, y, τ)g0(z) with g0(z) =
3

2
(1 − z2) (F.17c)

but their amplitudes may be different from the zeroth-order formulation.

To define precisely each term in equations (F.17a) and (F.17c), all contributions to the

transversally averaged fields 〈u〉, 〈p〉 and 〈θ〉 are assumed to be concentrated in the

zeroth-order terms,

〈θ〉 = θ(0) 〈u〉 = ai
(0) 〈p〉 = p(0) (F.18)

In turn, this imposes gauge conditions for θ(1), ui
(1), and p(1)

〈θ(1)〉 = 0 〈ui
(1)〉 = 0 〈p(1)〉 = 0 (F.19)

Introducing equation (F.17c) into the continuity equation (F.8a) and integrating over z

from −1 to z gives the following expression for the transversal velocity w

w = −
∫ z

−1
∂iui

(0)dz − α

∫ z

−1
∂iui

(1)dz = −∂iai
(0)G0(z) − α∂i

[∫ z

−1
ui

(1)dz

]
(F.20)

where G0 = (2+3z−z3)
2 . Since w verifies the no-slip boundary condition on z = 1 and ui

(1)

satisfies the gauge condition (F.19), the only non-trivial solution is

∂iai
(0) = 0 (F.21)

which implies that w is at least of order α,

w = αw(1) (F.22)

Because of this, momentum equation along z (F.8c) is greatly simplified. Integrating the

resulting equation between −ε and z gives an expression for the pressure field

p = p(0) − αPrRa−0.5∂juj
(1) (F.23)

where ∂juj |(z=−1) = 0 due to the no-slip condition.

Because of all of the above, the expanded system reads at the first-order as

α∂τui
(0) + α∂j(uj

(0)ui
(0)) = −∂ip

(0) + PrRa−0.5(∂j∂jui
(0) + α∂j(∂jui

(1) + ∂iuj
(1)))

+ ε−2PrRa−0.5(∂2
zui

(0) + α∂2
zui

(1))

+ Pr(θ(0) + αθ(1))δiy (F.24a)

α∂τθ
(0) + α∂j(ui

(0)θ(0)) = Ra−0.5(∂j∂jθ
(0) + α∂j∂jθ

(1) + ε−2α∂2
zθ

(1)) (F.24b)

We decide to keep the diffusion terms along x and y, PrRa−0.5∂j∂jui
(0) and PrRa−0.5∂j∂jθ

(0),
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as to preserve the boundary layers on the top and bottom plates, but we neglect the same

terms associated to the first order, i.e. αPrRa−0.5∂j∂jui
(1) and αRa−0.5∂j∂jθ

(1). For

the first order terms, we keep only the second derivatives along the transversal direction,

which is ε−2 larger than the previous terms. In addition, we discarded the second term

in equation (F.23) which generates in equation (F.24a) a term that is ε2 smaller than the

transversal diffusion. Since we neglect these terms, the model equation reads

α∂τai
(0)g0 + α∂j(aj

(0)ai
(0))g2

0 = −∂ip
(0) + PrRa−0.5(∂j∂jai

(0)g0 + ε−2ai
(0)g′′

0 + αε−2∂2
zui

(1))

+ Pr(ϑ(0) + αθ(1))δiy (F.25a)

α∂τϑ
(0) + α∂j(ai

(0)ϑ(0))g0 = Ra−0.5(∂j∂jϑ
(0) + αε−2∂2

zθ
(1)) (F.25b)

In the following section we present a solution to the first-order formulations from equations

(F.25a) and (F.25b).

F.3 Solution of the first-order formulation by the WRM

The next step of the derivation of the reduced model consists in using the resulting equa-

tions to deduce an expression for θ(1)(x, y, z, τ) and ui
(1)(x, y, z, τ) in terms of the zeroth-

order terms ϑ(0)(x, y, τ), p(0)(x, y, τ) and ai
(0)(x, y, τ), then to obtain a system of partial

differential equations for the zeroth-order terms. This can be done using one of two dif-

ferent approaches: a gradient expansion method and weighted residuals. Both approaches

are known to give the same system of equations.

The gradient expansion approach benefits from the fact that θ(1) (resp. ui
(1)) appears

only once as ∂2
zθ

(1) (resp. ∂2
zui

(1)) in equation (F.25b) (resp. (F.25a)). Integrating both

equations twice with respect to z and imposing the respective gauge condition yields

directly the expressions for θ(1) and ui
(1).

In the weighted residual approach we search a solution for θ(1) and ui
(1) in the form of a

series expansion

θ(1) =
N∑

n=1

ϑ(1,n)(x, y, τ)fn(z) with f ′
n(z = ±1) = 0 (F.26a)

ui
(1) =

N∑

n=1

ai
(1,n)(x, y, τ)gn(z) with gn(z = ±1) = 0 (F.26b)

where ϑ(1,n) (resp. ai
(1,n)) are amplitudes to determine and fn(z) (resp. gn(z)) are called

test functions which form a complete basis that satisfies the thermal (resp. mechanical)

boundary conditions. The amplitudes are determined by introducing a series of weight

functions wθm (resp. wum) and projecting the original equations onto the weight function

in order to define a series of residual problems Rm = 0. The last part consists in solving

the vanishing residuals Rm = 0 which yields a linear equation system for the amplitudes

ϑ(1,n) (resp. ai
(1,n)).

At this point one is not required to make a specific choice of test functions, save for f0

and g0. Similarly, a specific choice of weight functions is not yet required.
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We proceed to evaluate the inner product on (F.25b) by a series of N + 1 weight functions

wu
m (to be specified later) leaving the following equation system for the velocity problem

α
[
∂τai

(0)〈wu
m|g0〉 + ∂j(aj

(0)ai
(0))〈wu

m|g2
0〉
]

= − ∂ip
(0)〈wu

m|1〉 (F.27)

+ PrRa−0.5∂2
j ai

(0)〈wu
m|g0〉

+ ε−2PrRa−0.5ai
(0)〈wu

m|g′′
0〉 + Prϑ(0)〈wu

m|1〉δiy

+ αε−2PrRa−0.5

[
N∑

n=1

ai
(1,n)〈wum|g′′

n〉
]

+ αPr

[
N∑

n=1

ϑ(1,n)〈wum|fn〉
]
δiy

with m = 0, · · · , N . Notice how the only time derivatives present in (F.27) belong to

the zeroth-order amplitude ai
(0). As such, the first-order amplitudes are pegged to the

evolution and respond instantaneously to changes in these terms.

Likewise, we evaluate the inner product on equation (F.25b) by a series of N + 1 weight

functions wθm and write the following equation system for the temperature amplitudes

α
[
∂τϑ

(0)〈wθm|1〉 + ∂j(aj
(0)ϑ(0))〈wθm|g0〉

]
= Ra−0.5∂2

jϑ
(0)〈wθm|1〉 (F.28)

+ αε−2Ra−0.5

[
N∑

n=1

ϑ(1,n)〈wθm|f ′′
n〉
]

with m = 0, · · · , N . In the two following sections we will select a set of test and weight

functions, which reduces the complexity by removing the summations from equations

(F.27) and (F.28).

F.3.1 Choice of test fn functions and weight functions wθ
m for the tem-

perature

In order to simplify the summations from equation (F.28), test and weight functions are

selected so that the following relation is satisfied

N∑

n=1

〈wθm|f ′′
n〉 = 〈wθm|f ′′

m〉 with m = 0, · · · , N (F.29)

It is reminded that f0 = 1 and each test function fn satisfies f ′
n(±1) = 0 to ensure the

adiabatic boundary conditions and a gauge condition 〈1|fn〉 = 0 for n ≥ 1.

One alternative is to use test functions fm that satisfy 〈f ′′
m|f ′′

n〉 = cnδmn and to use as

weight functions wθ0 = 1 and wθm = f ′′
m for m ≥ 1. In order to find such a basis, let us

consider a set Fn of linearly independent functions that verify F′
n(±1) = 0. For instance,

let us consider a basis Fn such that F′
n = zn(z2 − 1). The second derivate of Fn reads

as F′′
n = zn−1((n + 2)z2 − n) for n ≥ 1. One then proceeds to apply a Gram-Schmidt

orthogonalization procedure to F′′
n to obtain an orthogonal basis over the interval [−1, 1]

for n ≥ 1. The first orthogonalized function reads as

f ′′
1 = F′′

1 = 2z
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and the n-th orthogonalized function reads as

f ′′
n = F′′

n −
n−1∑

j=1

projf ′′

j
(F′′

n) for n > 1 (F.30)

with proja(b) = 〈b|a〉
〈a|a〉a being the projection of b on a. The resulting orthogonal basis f ′′

n(z)

is integrated twice taking care to ensure that both f ′
n(±1) = 0 and 〈1|fn〉 = 0 for n ≥ 1

are verified to obtain the following set of optimal test functions fn(z)

f0(z) = 1,

f1(z) = −1

3
z(3 − z2),

f2(z) =
1

60
(7 − 30z2 + 15z4)

f3(z) =
1

5
z(1 − 2z2 + z4)

f4(z) = − 1

42
(1 − 9z2 + 15z4 − 7z6)

so on and so forth.

F.3.2 Choice of test gn functions and weight functions wu
m for the velocity

Similarly, one way to remove the summations from equation (F.27) is to select test and

weight functions that satisfy the following

N∑

n=1

〈wu
m|g′′

n〉 = 〈wu
m|g′′

m〉 (F.31)

In this case, each test function must satisfy gn(±1) = 0 so that expression (F.26b) verifies

the no-slip boundary condition. We also require to verify the gauge condition 〈1|gn〉 = 0

for n ≥ 1. One alternative is to choose the weight functions as wu
m = gm (Galerkin method)

and seek to define a complete basis that verifies 〈gm|g′′
n〉 = dlδmn and gn(±1) = 0. This

is obtained as linear combination of Legendre polynomials in the following form (Luke,

1969; Livermore, 2010)

gn(z) =
1

4

3∑

i=1

ci(n)P
(0,0)
n+2−i(z) (F.32)

where P
(0,0)
n (z) denotes the n-th degree Legendre polynomial

P (0,0)
n (z) =

1

2nn!

dn

dzn
(z2 − 1)n (F.33)

and the three values of ci are independent of n and are determined by the boundary

condition as c1 = −4, c2 = 0, and c3 = 4.
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The resulting series has the following form

g0(z) =
3

2
(1 − z2),

g1(z) =
5

2
z(1 − z2),

g2(z) = −1

8
(7 − 21z2 + 35z4)

g3(z) = −1

8
z(27 − 90z2 + 63z4)

g4(z) =
1

16
(11 − 165z2 + 385z4 − 231z6)

Having selected the weight and test functions for each problem, we may proceed to solve

for the amplitudes.

F.3.3 Amplitudes for the temperature field

Thanks to the choice of test and weight functions, equations (F.27) is simplified reducing

the summation to one term.

• For m = 0 one obtains an equation for ϑ(0)

α
[
∂τϑ

(0)〈1|1〉 + ∂j(aj
(0)ϑ(0))〈1|g0〉

]
= Ra−0.5∂2

jϑ
(0)〈1|1〉 (F.34a)

• For m = 2, one obtains an expression for ϑ(1,2) as function of ai
(0) and ϑ(0)

ϑ(1,2)〈f ′′
2 |f ′′

2 〉 =ε2Ra0.5∂j(aj
(0)ϑ(0))〈f ′′

2 |g0〉 (F.34b)

• The remaining amplitudes are zero.

ϑ(1,m) =0 for m 6= 0, 2 (F.34c)

The temperature field takes the form

θ(x, y, z, τ) = αθ(x, y, z, τ) = αϑ(0) + α2ϑ(1,2)f2 (F.35)

or alternatively as

θ(x, y, z, τ) = 〈θ〉(x, y, τ) + α2ϑ(1,2)(x, y, τ)f2(z) (F.36)

F.3.4 Amplitudes for the velocity field

Thanks to the choice of test and weight functions (F.27) is also simplified but a summation

remains. However, because of (F.35), this summation reduces to one term.

236



• For m = 0 one obtains an equation for ai
(0)

α
[
∂τai

(0)〈g0|g0〉 + ∂j(aj
(0)ai

(0))〈g0|g2
0〉
]

= − ∂ip
(0)〈g0|1〉 (F.37a)

+ PrRa−0.5∂2
j ai

(0)〈g0|g0〉
+ ε−2PrRa−0.5ai

(0)〈g0|g′′
0〉 + Prϑ(0)〈g0|1〉δiy

+ αPrϑ(1,2)〈g0|f2〉δiy

• For m = 2 one obtains an expression for ai
(1,2)

α
[
∂τai

(0)〈g2|g0〉 + ∂j(aj
(0)ai

(0))〈g2|g2
0〉
]

=PrRa−0.5∂2
j ai

(0)〈g2|g0〉 (F.37b)

+ αε−2PrRa−0.5ai
(1,2)〈g2|g′′

2〉
+ αPrϑ(1,2)〈g2|f2〉δiy

• For m = 4 one obtains an expression for ai
(1,4)

ε−2PrRa−0.5ai
(1,4)〈g4|g′′

4〉 =∂j(aj
(0)ai

(0))〈g4|g2
0〉 − Prϑ(1,2)〈g4|f2〉δiy (F.37c)

• The remaining amplitudes are zero

ai
(1,m) =0 for m 6= 0, 2, 4 (F.37d)

The velocity field has the following form

ui(x, y, z, τ) = αui(x, y, z, τ) = αai
(0)g0 + α2ai

(1,2)g2 + α2ai
(1,4)g4 (F.38)

or alternatively

ui(x, y, z, τ) = 〈ui〉(x, y, τ)g0(z) + α2ai
(1,2)(x, y, τ)g2(z) + α2ai

(1,4)(x, y, τ)g4(z) (F.39)

F.4 Resulting equation system

All of the above leads to a dynamical equation for the average fields: a(0), ϑ(0) and p(0),

and to an expression for the inertial correction terms: ϑ(1,2), ai
(1,2), and ai

(1,4).

F.4.1 Equation system for the transversally averaged fields

Using (F.34b) and equations (F.21), (F.34a) and (F.37a) gives a dynamical equation for

a(0), ϑ(0) and p(0). However, it is much more convenient to write these expressions in

terms of more physical quantities such as the mean temperature 〈θ〉 = α〈ϑ(0)〉, velocity

〈u〉 = α〈a(0)〉, and pressure 〈p〉 = α〈p〉

• Continuity equation: from equation (F.21)

∇xy · 〈u〉 = 0 (F.40a)
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• Momentum equation: from equation (F.37a) and (F.34b)

6

5
∂t〈u〉 +

54

35
〈u〉 · ∇xy〈u〉 = − ∇xy〈p〉 +

6

5
PrRa−0.5∇2

xy〈u〉 − λ1〈u〉

+ Pr

[
〈θ〉 − 1

λ2
〈u〉 · ∇xy〈θ〉

]
ey (F.40b)

• Temperature equation: from equation (F.34a)

∂t〈θ〉 + 〈u〉 · ∇xy〈θ〉 = Ra−0.5∇2
xy〈θ〉 (F.40c)

with ∇xy = ex∂x + ey∂y, a friction coefficient λ1 and a correction coefficient λ2

λ1 =
3

ε2
PrRa−0.5 and λ2 =

105

2ε2
Ra−0.5 (F.41)

F.4.2 Equations for the inertial correction terms

For the evolution of the mean fields 〈θ〉 and 〈u〉, the equations (F.40a) to (F.40c) are

sufficient. However, one may be interested on computing the inertial corrections in order

to perform a a reconstruction of the temperature and velocity fields (F.36) and (F.39), or

to compute different global quantities.

θ(x, y, z, t) = 〈θ〉 + α2ϑ(1,2)f2 (F.42a)

u(x, y, z, t) = 〈u〉g0 + α2a(1,2)g2 + α2a(1,4)g4 (F.42b)

where the correction terms are given by the following expressions:

• One correction for the temperature field evaluated from (F.34b)

α2ϑ(1,2) = − ε2Ra0.5

2
[〈u〉 · ∇xy〈θ〉] (F.43a)

• One correction for the velocity field is obtained from (F.37b)

1

35
∂t〈u〉 +

2

35
[〈u〉 · ∇xy〈u〉] =

1

35
PrRa−0.5∇2

xy〈u〉 + α2Prε−2Ra−0.5a(1,2)

+ α2 2

315
Prϑ(1,2)ey (F.43b)

which is combined to (F.40b) and (F.43a) to get rid of the time derivative and gives

the following expression in terms of 〈u〉, 〈p〉, and 〈θ〉

α2a(1,2) = − ε2Ra0.5

42Pr
[∇xy〈p〉 + λ1〈u〉 − Pr〈θ〉ey] (F.43c)

+
ε2Ra0.5

49Pr
[〈u〉 · ∇xy〈u〉] +

2ε4Ra

735
[〈u〉 · ∇xy〈θ〉] ey
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• An additional correction for the velocity field evaluated from (F.37c)

α2a(1,4) = − 2ε2Ra0.5

385Pr
[〈u〉 · ∇xy〈u〉] +

ε4Ra

3465
[〈u〉 · ∇xy〈θ〉] ey (F.43d)

F.5 Mechanical energy budget for the model with inertial

corrections

We are interested in describing the evolution of different global quantities in terms of the

amplitudes to the velocity field a(n) and the amplitudes of the temperature field ϑ(n).

F.5.1 Global kinetic energy and transfer rates

Using (F.42b) we may approximate the kinetic energy as

ek =
1

2

[
〈u〉g0 + α2ai

(1,2)g2 + α2ai
(1,4)g4

]2

Integrating over the fluid volume leaves the following expression

Ek(t) =
3

5
〈〈u〉 · 〈u〉〉xy − α2

5
〈〈u〉 · a(1,2)〉xy + (F.44)

α4
[

7

45
〈a(1,2) · a(1,2)〉xy − 1

9
〈a(1,2) · a(1,4)〉xy +

11

117
〈a(1,4) · a(1,4)〉xy

]

In practice, the terms of order α4 in equation (F.44) may be safely neglected. A Reynolds

number based on the root mean squared velocity, Re ≡ Ra0.5Pr−1
√

2Ek may be evaluated

using equation (F.44).

Now consider the rate-of-change for the kinetic energy as d
dtEk(t) = PrRa−0.5(Φy − ǫ).

Each term can be subsequently written in terms of the amplitudes a(n) and ϑ(n).

Vertical heat-flux

Using (F.42a) and (F.42b) we may approximate the vertical heat flux as

vθ =
[
〈uy〉g0 + α2ay

(1,2)g2 + α2ay
(1,4)g4

] [
〈θ〉f0 + α2ϑ(1,2)f2

]

Integrating over the fluid volume, gives an expression for Φy

Φy =Ra0.5〈〈uy〉〈θ〉〉xy + α2Ra0.5 4

105
〈〈uy〉ϑ

(1,2)〉xy (F.45)

− α4Ra0.5
[

2

45
〈ay

(1,2)ϑ(1,2)〉xy − 2

315
〈ay

(1,4)ϑ(1,2)〉xy

]

where terms of order α4 may be neglected.
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Viscous dissipation rate

Consider the following expression

(∇u)2 = (∇xyu)2 + (∂zu)2

where each part can be written in terms of the amplitudes a(n) and ϑ(n).

(∇xyu)2 =
[
∇xy〈u〉g0 + α2∇xya(1,2)g2 + α2∇xya(1,4)g4

]2

(∂zu)2 =
[
〈u〉g′

0 + α2a(1,2)g′
2 + α2a(1,4)g′

4

]2

Expanding and integrating both expressions over the volume gives

ǫ(xy) =
6

5
〈∇xy〈u〉 : ∇xy〈u〉〉xy − α2 2

5
〈∇xy〈u〉 : ∇xya(1,2)〉xy (F.46)

+ α4
[

14

45
〈∇xya(1,2) : ∇xya(1,2)〉xy − 2

9
〈∇xya(1,2) : ∇xya(1,4)〉xy

+
22

117
〈∇xya(1,4) : ∇xya(1,4)〉xy

]

ǫ(z) =
3

ε2
〈〈u〉 · 〈u〉〉xy + α4 7

ε2
〈a(1,2) · a(1,2)〉xy + α4 11

ε2
〈a(1,4) · a(1,4)〉xy (F.47)

where terms of order α4 may be neglected. Combining these expressions gives the total

viscous dissipation ǫ = ǫ(xy) + ǫ(z).

F.5.2 Total potential energy and transfer rates

The total potential energy Ep = −Pr〈yθ〉vol may be rewritten as

Ep = −Pr〈y〈θ〉〉xy (F.48)

Now consider the rate-of-change d
dtEp(t) = PrRa−0.5(Φy − Φi − Φb1). Similarly to Φy, the

terms Φi and Φb1 can be written as function of the amplitudes a(n) and ϑ(n).

Φi = 〈∂y〈θ〉〉xy (F.49)

Φb1 = − 1

Γx

∮
y∂n〈θ〉ds (F.50)

with ds being an infinitesimal element of the boundary ∂A, where dA = dxdy and the

loop integral is counterclockwise.

F.5.3 Global thermal fluctuations and transfer rate

Using the equation (F.42a) we may approximate the temperature fluctuations

θ2 =
[
〈θ〉f0 + α2ϑ(1,2)f2

]2
(F.51)
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Integrating over the fluid volume, we can approximate Eθ ≡ 1
2〈θ2〉xyz as

Eθ(t) =
1

2
〈〈θ〉〈θ〉〉xy +

2α4

525
〈ϑ(1,2)ϑ(1,2)〉xy (F.52)

where terms of order α4 may be neglected. Now consider the rate-of-change d
dtEθ(t) =

−Ra−0.5(ǫθ − Φb3). Each term can be written as function of the amplitudes ϑ(n).

Thermal dissipation rate

Consider the following expression

(∇θ)2 = (∇xyθ)
2 + (∂zθ)

2

Each part can be written in terms of the amplitudes ϑ(n).

(∇xyθ)
2 =

[
∇xy〈θ〉f0 + ∇xyϑ

(1,2)f2

]2

(∂zθ)
2 =

[
〈θ〉f ′

0 + ϑ(1,2)f ′
2

]2

Expanding and integrating both expressions over the volume gives

ǫθ = 〈∇xy〈θ〉 · ∇xy〈θ〉〉xy +
4α4

525
〈∇xyϑ

(1,2) · ∇xyϑ
(1,2)〉xy +

8α4

105
〈ϑ(1,2)ϑ(1,2)〉xy (F.53)

where terms of order α4 may be neglected.

Boundary flux

A similar procedure is used to evaluate Φb3

Φb3 =
1

Γx

∮
〈θ〉∂n〈θ〉ds +

1

Γx

4α4

525

∮
ϑ(1,2)∂nϑ

(1,2)ds

with ds being an infinitesimal element of the boundary ∂A, where dA = dxdy and the

loop integral is counterclockwise. A closer inspection of equation (F.43a) reveals that

ϑ(1,2) = 0 on the boundaries such that

Φb3 =
1

Γx

∮
ϑ(0)∂nϑ

(0)ds (F.54)
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