. .. Affordances, 96 7.2.1 Foundation and Definition(s)

. .. Affordances-in-robotic, , p.98

. .. , Learning affordances from local features, vol.101

. .. Method,

.. .. Experiments,

.. .. Results,

F. Discussion and . .. Works, , p.112

.. .. Conclusion,

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua et al., , p.15, 2010.

H. Bay, T. Tuytelaars, and L. Van-gool, Surf: Speeded up robust features, European conference on computer vision, p.21, 2006.

N. Bergström, C. H. Ek, M. Björkman, and D. Kragic, Scene understanding through autonomous interactive perception, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6962 LNCS, pp.153-162, 2011.

C. Bersch, D. Pangercic, S. Osentoski, K. Hausman, R. Zoltan-csaba-marton et al., Segmentation of Textured and Textureless Objects through Interactive Perception. RSS Workshop on Robots in Clutter: Manipulation, Perception and Navigation in Human Environments, 2012.

A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann, Grasp affordances from multi-fingered tactile exploration using dynamic potential fields, Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, pp.168-174, 2009.

J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic et al., Interactive perception: Leveraging action in perception and perception in action, IEEE Transactions on Robotics, vol.33, issue.6, pp.1273-1291, 2017.

A. Bordes and L. Bottou, The huller: a simple and efficient online svm, ECML, pp.505-512, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00752501

A. Bordes, S. Ertekin, J. Weston, and L. Bottou, Fast kernel classifiers with online and active learning, Journal of Machine Learning Research, vol.6, pp.1579-1619, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00752361

A. Borji, M. Cheng, H. Jiang, and J. Li, Salient Object Detection: A Survey, pp.1-26, 2014.

A. Borji, M. Cheng, H. Jiang, and J. Li, Salient Object Detection: A Benchmark, pp.1-15, 2015.

. Bibliography,

J. C. Christopher and . Burges, A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, vol.2, pp.121-167, 1998.

W. Cai, Y. Zhang, and J. Zhou, Maximizing expected model change for active learning in regression, IEEE 13th International Conference on, p.38, 2013.

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, Brief: Binary robust independent elementary features, European conference on computer vision, p.21, 2010.

A. Cangelosi, M. Schlesinger, and L. B. Smith, Developmental robotics: From babies to robots, 2015.

O. Cappé and E. Moulines, On-line expectation-maximization algorithm for latent data models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.71, issue.3, pp.593-613, 2009.

M. Carrasco, Visual attention: The past 25 years, Vision research, vol.51, issue.13, pp.1484-1525, 2011.

G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine learning, Advances in neural information processing systems, pp.409-415, 2001.

J. David, R. M. Chalmers, D. R. French, and . Hofstadter, High-level perception, representation, and analogy: A critique of artificial intelligence methodology, Journal of Experimental & Theoretical Artificial Intelligence, vol.4, issue.3, pp.185-211, 1992.

L. Chang, J. R. Smith, and D. Fox, Interactive singulation of objects from a pile, Proceedings -IEEE International Conference on Robotics and Automation, pp.3875-3882, 2012.

K. Chaudhary, C. Au, P. Wesley, K. Chan, H. Nagahama et al., Retrieving unknown objects using robot in-the-loop based interactive segmentation, System Integration (SII), 2016 IEEE/SICE International Symposium on, p.51, 2016.

A. Chemero, An outline of a theory of affordances, Ecological psychology, vol.15, issue.2, pp.181-195, 2003.

C. Craye, D. Filliat, and J. Goudou, Exploration Strategies for Incremental Learning of Object-Based Visual Saliency, Proc. of the 5th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, pp.13-18, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01170532

A. Cully, J. Clune, D. Tarapore, and J. Mouret, Robots that can adapt like animals, Nature, vol.521, issue.7553, p.503, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158243

A. Culotta and A. Mccallum, Reducing labeling effort for structured prediction tasks, AAAI, vol.5, pp.746-751, 2005.

H. Dang and . Peter-k-allen, Semantic grasping: planning task-specific stable robotic grasps, Autonomous Robots, vol.37, issue.3, pp.301-316, 2014.

A. Declercq, H. Justus, and . Piater, Online learning of gaussian mixture modelsa two-level approach, VISAPP (1), vol.32, p.31, 2008.

S. Doncieux, Creativity: A driver for research on robotics in open environments, Intellectica, issue.1, p.53, 2016.

S. Doncieux, N. Bredeche, J. Mouret, and A. Eiben, Evolutionary robotics: what, why, and where to, Frontiers in Robotics and AI, vol.2, issue.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01131267

S. Doncieux, D. Filliat, N. Díaz-rodríguez, T. Hospedales, R. Duro et al., Open-ended learning: A conceptual framework based on representational redescription, Frontiers in neurorobotics, vol.12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889947

A. Eitel, N. Hauff, and W. Burgard, Learning to singulate objects using a push proposal network, vol.52, p.51, 2017.

R. Ellis and M. Tucker, Micro-affordance: The potentiation of components of action by seen objects, British journal of psychology, vol.91, issue.4, p.99, 2000.

A. Martin, . Fischler, C. Robert, and . Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, p.51, 1981.

P. Fitzpatrick and G. Metta, Grounding vision through experimental manipulation. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol.361, pp.2165-2185, 1811.

M. Paul, G. Fitzpatrick, and . Metta, Towards manipulation-driven vision, Intelligent Robots and Systems, vol.1, p.49, 2002.

. Bibliography,

S. Geman, E. Bienenstock, and R. Doursat, Neural networks and the bias/variance dilemma, Neural computation, vol.4, issue.1, pp.1-58, 1992.

J. Eleanor and . Gibson, Perceptual learning in development: Some basic concepts, Ecological Psychology, vol.12, issue.4, pp.295-302, 2000.

J. Eleanor and . Gibson, The world is so full of a number of things: On specification and perceptual learning, Ecological psychology, vol.15, issue.4, pp.283-287, 2003.

J. James and . Gibson, The ecological approach to visual perception: classic edition, 1979.

J. Gibson, The senses considered as perceptual systems, 1966.

M. Gupta, S. Gaurav, and . Sukhatme, Using manipulation primitives for brick sorting in clutter, Robotics and Automation (ICRA), 2012 IEEE International Conference on, vol.51, p.49, 2012.

, Semi-supervised learning, Handbook on Neural Information Processing, vol.9, pp.215-239, 2013.

K. Hausman, F. Balint-benczedi, D. Pangercic, R. Zoltan-csaba-marton, K. Ueda et al., Tracking-based Interactive Segmentation of Textureless Objects, Robotics and Automation (ICRA), 2013.

T. Hermans, M. James, A. Rehg, and . Bobick, Guided pushing for object singulation, Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp.4783-4790, 2012.

A. Holub, P. Perona, and M. Burl, Entropy-based active learning for object recognition, Computer Vision and Pattern Recognition Workshops, p.36, 2008.

A. Thomas-e-horton, R. Chakraborty, and . St-amant, Affordances for robots: a brief survey, AVANT. Pismo Awangardy Filozoficzno-Naukowej, vol.2, p.98, 2012.

J. Sheng, Z. Huang, and . Zhou, Active query driven by uncertainty and diversity for incremental multi-label learning, Data Mining (ICDM), 2013.

, IEEE 13th International Conference on, pp.1079-1084, 2013.

L. Itti and C. Koch, Computational modelling of visual attention, Nature reviews. Neuroscience, vol.2, issue.3, pp.194-203, 2001.

W. James, The principles of psychology, vol.2

L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino et al., Affordances in psychology, neuroscience, and robotics: A survey. IEEE Transactions on Cognitive and Developmental Systems, vol.10, p.98, 2016.

M. Jegorova, S. Doncieux, and T. Hospedales, Generative adversarial policy networks for behavioural repertoire, 2018.

Y. Jia and M. Han, Category-independent object-level saliency detection, Proceedings of the IEEE international conference on computer vision, p.56, 2013.

B. Jiang, L. Zhang, H. Lu, C. Yang, and M. Yang, Saliency detection via absorbing markov chain, Proceedings of the IEEE International Conference on Computer Vision, pp.1665-1672, 2013.

H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng et al., Salient object detection: A discriminative regional feature integration approach, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2083-2090, 2013.

P. Jiang, H. Ling, J. Yu, and J. Peng, Salient region detection by ufo: Uniqueness, focusness and objectness, Proceedings of the IEEE International Conference on Computer Vision, 1976.

Z. Jiang, S. Larry, and . Davis, Submodular salient region detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2043-2050, 2013.

D. Katz, A. Venkatraman, M. Kazemi, A. Bagnell, and A. Stentz, Perceiving, learning, and exploiting object affordances for autonomous pile manipulation, Autonomous Robots, vol.37, issue.4, pp.369-382, 2014.

J. Kenney, T. Buckley, and O. Brock, Interactive segmentation for manipulation in unstructured environments, IEEE, p.51, 2009.

. Bibliography,

D. Kim, S. Gaurav, and . Sukhatme, Semantic labeling of 3d point clouds with object affordance for robot manipulation, Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp.5578-5584, 2014.

D. Kim, S. Gaurav, and . Sukhatme, Interactive affordance map building for a robotic task, Intelligent Robots and Systems (IROS), pp.4581-4586, 2015.

J. Kim, D. Han, Y. Tai, and J. Kim, Salient region detection via high-dimensional color transform, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p.54, 2014.

S. Kim, A. Coninx, and S. Doncieux, From exploration to control: learning object manipulation skills through novelty search and local adaptation, 2019.

D. Kraft, R. Detry, N. Pugeault, E. Baseski, F. Guerin et al., Development of object and grasping knowledge by robot exploration, IEEE Transactions on Autonomous Mental Development, vol.2, issue.4, pp.368-383, 2010.

M. Kristan, D. Skocaj, and A. Leonardis, Incremental learning with gaussian mixture models, Computer Vision Winter Workshop, pp.25-32, 2008.

M. Kristan, A. Leonardis, and D. Sko?aj, Multivariate online kernel density estimation with gaussian kernels, Pattern Recognition, vol.44, pp.2630-2642, 2011.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, p.116, 2012.

O. Kroemer, E. Ugur, E. Oztop, and J. Peters, A kernel-based approach to direct action perception, Robotics and Automation (ICRA), 2012 IEEE International Conference on, p.101, 2012.

N. Krüger, N. Pugeault, E. Baseski, S. Jensen, . Kalkan et al., Early cognitive vision as a front-end for cognitive systems, ECCV 2010 Workshop on "Vision for Cognitive Tasks, p.103, 2010.

N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman et al., Object-action complexes: Grounded abstractions of sensory-motor processes

, Robotics and Autonomous Systems, vol.59, issue.10, pp.740-757, 2011.

N. Krüger, M. Popovic, L. Bodenhagen, D. Kraft, and F. Guerin, Grasp learning by means of developing sensorimotor schemas and generic world knowledge, AISB Convention, pp.23-31, 2011.

S. Kullback, A. Richard, and . Leibler, On information and sufficiency. The annals of mathematical statistics, vol.22, p.93, 1951.

E. Stergar?ek-kuzmi? and A. Ude, Object segmentation and learning through feature grouping and manipulation, Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pp.371-378, 2010.

E. Lachat, M. A. Macher, . Mittet, P. Landes, and . Grussenmeyer, First experiences with kinect v2 sensor for close range 3d modelling. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.40, p.57, 2015.

A. Laflaquière, B. Kevin-o'regan, A. Gas, and . Terekhov, Discovering space-grounding spatial topology and metric regularity in a naive agent's sensorimotor experience, Neural Networks, vol.100, 2018.

Y. Lecun, C. Cortes, and C. J. Burges, Mnist handwritten digit database. AT&T Labs, vol.2, 2010.

J. Lehman, O. Kenneth, and . Stanley, Abandoning objectives: Evolution through the search for novelty alone, Evolutionary computation, vol.19, issue.2, pp.189-223, 2011.

J. Lehman, J. Clune, D. Misevic, C. Adami, J. Beaulieu et al., The surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01735473

A. Levinshtein, A. Stere, N. Kiriakos, . Kutulakos, J. David et al., Turbopixels: Fast superpixels using geometric flows, IEEE transactions on pattern analysis and machine intelligence, vol.31, p.19, 2009.

D. David, J. Lewis, and . Catlett, Heterogeneous uncertainty sampling for supervised learning, Machine Learning Proceedings, vol.35, pp.148-156, 1994.

. Bibliography,

X. Li, H. Lu, L. Zhang, X. Ruan, and M. Yang, Saliency detection via dense and sparse reconstruction, Proceedings of the IEEE International Conference on Computer Vision, pp.2976-2983, 2013.

X. Li and Y. Guo, Active learning with multi-label svm classification, IJCAI, p.36, 2013.

R. Liu, J. Cao, Z. Lin, and S. Shan, Adaptive partial differential equation learning for visual saliency detection, Proceedings of the IEEE conference on computer vision and pattern recognition, vol.55, pp.3866-3873, 2014.

G. David and . Lowe, Object recognition from local scale-invariant features, Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol.2, p.21, 1999.

C. Maestre, G. Mukhtar, C. Gonzales, and S. Doncieux, Iterative affordance learning with adaptive action generation, International Conference on Development and Learning (ICDL) and the International Conference on Epigenetic Robotics (EpiRob, p.101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617793

A. Maleki, Graph-based visual saliency model using background color, vol.54, 2012.

N. Mamitsuka, Query learning strategies using boosting and bagging, Machine learning: proceedings of the fifteenth international conference (ICML'98), vol.1, p.37, 1998.

S. Leonard and . Mark, Eyeheight-scaled information about affordances: A study of sitting and stair climbing, vol.13, p.97, 1987.

S. Marsland, Machine learning: an algorithmic perspective, vol.8, 2011.

G. Metta and P. Fitzpatrick, Early integration of vision and manipulation, Proceedings of the International Joint Conference on, vol.4, p.49, 2003.

H. Min, R. Yi, J. Luo, S. Zhu, and . Bi, Affordance research in developmental robotics: A survey, IEEE Transactions on Cognitive and Developmental Systems, vol.8, issue.4, p.98, 2016.

L. Montesano and M. Lopes, Learning grasping affordances from local visual descriptors, IEEE 8th International Conference on, pp.1-6, 2009.

A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos, Affordance detection of tool parts from geometric features, ICRA, pp.1374-1381, 2015.

M. Radford, G. E. Neal, and . Hinton, A view of the em algorithm that justifies incremental, sparse, and other variants, Learning in graphical models, p.93, 1998.

D. Norman, The design of everyday things: Revised and expanded edition. Constellation, 2013.

J. Kevin, O. Regan, and A. Noë, A sensorimotor account of vision and visual consciousness, Behavioral and brain sciences, vol.24, issue.5, pp.939-973, 2001.

S. Otte, J. Kulick, M. Toussaint, and O. Brock, Entropy-based strategies for physical exploration of the environment's degrees of freedom, Intelligent Robots and Systems (IROS 2014), p.36, 2014.

P. Oudeyer, Intelligent adaptive curiosity: a source of self-development, 2004.

P. , Y. Oudeyer, and F. Kaplan, What is intrinsic motivation? a typology of computational approaches, Frontiers in neurorobotics, vol.1, issue.6, 2009.

C. Nikunji and . Oza, Online bagging and boosting, 2005.

L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner, Perception and developmental learning of affordances in autonomous robots, Annual Conference on Artificial Intelligence, p.103, 2007.

J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, Voxel cloud connectivity segmentation -Supervoxels for point clouds, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.19, pp.2027-2034, 2013.

J. Papon, T. Kulvicius, E. E. Aksoy, and F. Wörgötter, Point cloud video object segmentation using a persistent supervoxel world-model, telligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp.3712-3718, 2013.

T. Pattent, M. Zillich, and M. Vincze, Action selection for interactive object segmentation in clutter, IEEE/RSJ International Conference on. IEEE, p.132, 2018.

. Bibliography,

H. Peng, B. Li, R. Ji, W. Hu, W. Xiong et al., Salient object detection via low-rank and structured sparse matrix decomposition, AAAI, vol.55, pp.796-802, 2013.

D. Philipona, J. Kevin-o'regan, and . Nadal, Is there something out there? inferring space from sensorimotor dependencies, Neural computation, vol.15, issue.9, pp.2029-2049, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00143855

J. Piaget and M. Cook, The origins of intelligence in children, vol.8, 1952.

M. Popovi?, G. Kootstra, J. A. Jørgensen, D. Kragic, and N. Krüger, Grasping unknown objects using an early cognitive vision system for general scene understanding, IEEE International Conference on Intelligent Robots and Systems, pp.987-994, 2011.

A. Raffin, A. Hill, R. Traoré, T. Lesort, N. Díaz-rodríguez et al., S-rl toolbox: Environments, datasets and evaluation metrics for state representation learning, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01931713

S. Richardson, J. Peter, and . Green, On bayesian analysis of mixtures with an unknown number of components (with discussion), Journal of the Royal Statistical Society: series B (statistical methodology), vol.59, issue.4, pp.731-792, 1997.

N. Roy and A. Mccallum, Toward optimal active learning through monte carlo estimation of error reduction, ICML, vol.38, pp.441-448, 2001.

B. Radu, S. Rusu, and . Cousins, 3D is here: Point Cloud Library (PCL), IEEE International Conference on Robotics and Automation (ICRA), 2011.

N. Radu-bogdan-rusu, M. Blodow, and . Beetz, Fast point feature histograms (fpfh) for 3d registration, Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, pp.3212-3217, 2009.

A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, On-line random forests, Computer Vision Workshops (ICCV Workshops, 2009.

, Cité en pages 27, IEEE 12th International Conference on, vol.30, pp.1393-1400, 2009.

A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof, Online multi-class lpboost, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp.3570-3577, 2010.

E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk, To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control, Adaptive Behavior, vol.15, issue.4, pp.447-472, 2007.

T. Scheffer, C. Decomain, and S. Wrobel, Active hidden markov models for information extraction, International Symposium on Intelligent Data Analysis, p.36, 2001.

D. Schiebener, A. Ude, J. Morimoto, T. Asfour, and R. Dillmann, Segmentation and learning of unknown objects through physical interaction, Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, pp.500-506, 2011.

D. Schiebener, A. Ude, and T. Asfour, Physical interaction for segmentation of unknown textured and non-textured rigid objects, Proceedings -IEEE International Conference on Robotics and Automation, pp.4959-4966, 2014.

B. Settles, Active learning, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.6, issue.1, pp.1-114, 2012.

M. H-sebastian-seung, H. Opper, and . Sompolinsky, Query by committee, Proceedings of the fifth annual workshop on Computational learning theory, p.37, 1992.

S. Shalev-shwartz, Online learning and online convex optimization. Foundations and Trends® in Machine Learning, vol.4, p.28, 2012.

X. Shen and Y. Wu, A unified approach to salient object detection via low rank matrix recovery, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, vol.55, pp.853-860, 2012.

J. Shi and C. Tomasi, Good features to track, p.21, 1993.

F. Guido and E. Smits, Improved svm regression using mixtures of kernels, Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint Conference on, vol.3, pp.2785-2790, 2002.

M. Steedman, Formalizing affordance, Proceedings of the Annual Meeting of the Cognitive Science Society, vol.24, 2002.

M. Steedman, Plans, affordances, and combinatory grammar, Linguistics and Philosophy, vol.25, issue.5-6, pp.723-753, 2002.

. Bibliography,

A. Thomas and . Stoffregen, Affordances as properties of the animal-environment system, Ecological psychology, vol.15, issue.2, p.97, 2003.

A. Stoytchev, Some basic principles of developmental robotics, IEEE Transactions on Autonomous Mental Development, vol.1, issue.2, pp.122-130, 2009.

A. Ioan, S. ?ucan, and . Chitta, , p.59, 2018.

A. Ioan, M. ?ucan, L. E. Moll, and . Kavraki, The Open Motion Planning Library, IEEE Robotics & Automation Magazine, vol.19, issue.4, p.59, 2012.

S. Richard and . Sutton, Verification, the key to ai. on-line essay, 2001.

W. Tan and B. Yan, Salient object detection via multiple saliency weights. Multimedia Tools and Applications, 2017.

M. J. David, P. Tax, and . Laskov, Online svm learning: from classification to data description and back, Neural Networks for Signal Processing, 2003. NNSP'03. 2003 IEEE 13th Workshop on, pp.499-508, 2003.

J. Constantine, . Tsikos, K. Ruzena, and . Bajcsy, Segmentation via manipulation, Technical Reports (CIS), p.49, 1988.

T. Michael and . Turvey, Affordances and prospective control: An outline of the ontology, Ecological psychology, vol.4, issue.3, p.97, 1992.

T. Tuytelaars and K. Mikolajczyk, Local invariant feature detectors: a survey. Foundations and trends® in computer graphics and vision, vol.3, p.21, 2008.

A. Ude, D. Omr?en, and G. Cheng, Making object learning and recognition an active process, International Journal of Humanoid Robotics, vol.5, issue.02, p.51, 2008.

N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton, Smem algorithm for mixture models, Neural computation, vol.12, issue.9, pp.2109-2128, 2000.

. Emre?gur, M. Mehmet-r-dogar, E. Cakmak, and . Sahin, Curiosity-driven learning of traversability affordance on a mobile robot, 2007 IEEE 6th International Conference on Development and Learning, pp.13-18, 2007.

O. Herke-van-hoof, J. Kroemer, and . Peters, Probabilistic Segmentation and Targeted Exploration of Objects in Cluttered Environments, IEEE Transactions on Robotics, vol.51, p.49, 2014.

M. Karthik, M. Varadarajan, and . Vincze, Afrob: The affordance network ontology for robots, Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp.1343-1350, 2012.

H. Alonso, H. Vera, and . Simon, Situated action: A symbolic interpretation, Cognitive science, vol.17, issue.1, p.97, 1993.

N. Vlassis and A. Likas, A greedy em algorithm for gaussian mixture learning. Neural processing letters, vol.15, pp.77-87, 2002.

H. William and . Warren, Journal of experimental psychology: Human perception and performance, vol.10, p.97, 1984.

W. William and S. Whang, Visual guidance of walking through apertures: body-scaled information for affordances, vol.13, p.97, 1987.

A. Markus, J. Wenzel, B. Golenia, and . Blankertz, Classification of eye fixation related potentials for variable stimulus saliency. Frontiers in neuroscience, vol.10, 2016.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang et al., 3d shapenets: A deep representation for volumetric shapes, Proceedings of the IEEE conference on computer vision and pattern recognition, vol.120, 1912.

K. Xu, H. Huang, Y. Shi, H. Li, P. Long et al., Autoscanning for coupled scene reconstruction and proactive object analysis, ACM Transactions on Graphics (TOG), vol.34, issue.6, p.51, 2015.

Q. Yan, L. Xu, J. Shi, and J. Jia, Hierarchical saliency detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol.54, pp.1155-1162, 2013.

X. You, R. Wang, and D. Tao, Diverse expected gradient active learning for relative attributes, IEEE Transactions on Image Processing, vol.23, issue.7, pp.3203-3217, 2014.

P. Zech, S. Haller, B. Safoura-rezapour-lakani, E. Ridge, J. Ugur et al., Computational models of affordance in robotics: a taxonomy and systematic classification, Adaptive Behavior, vol.25, issue.5, pp.235-271, 2017.

Z. Zhang, C. Chen, J. Sun, and K. Chan, Em algorithms for gaussian mixtures with split-and-merge operation, Pattern recognition, vol.36, issue.9, pp.1973-1983, 2003.

Z. Zhang, K. Luk-chan, Y. Wu, and C. Chen, Learning a multivariate gaussian mixture model with the reversible jump mcmc algorithm, Statistics and Computing, vol.14, p.33, 2004.

W. Zhu, S. Liang, Y. Wei, and J. Sun, Saliency optimization from robust background detection, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2814-2821, 2014.

X. Zhu, J. Lafferty, and Z. Ghahramani, Combining active learning and semi-supervised learning using gaussian fields and harmonic functions, ICML 2003 workshop on the continuum from labeled to unlabeled data in machine learning and data mining, vol.3, p.38, 2003.

W. Zou, K. Kpalma, Z. Liu, and J. Ronsin, Segmentation driven low-rank matrix recovery for saliency detection, 24th British machine vision conference (BMVC), vol.55, pp.1-13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853385