A. .. Models,

. .. Main-results,

. .. Energies, 131 5.3.2 Free energy f(?, h) and f H (?, h)

. .. Properties, 137 5.5 On strict convexity for the PS free energy

, For any h ? R the point (?, h) := ? h f(?, h) is the unique point where the supremum sup

, For any ? [0, 1), the point h(?, ) := ?? g(?, ) is the only point where the infimum inf h?R {f(?, h) ? h} is reached, The function g(?, ·) is strictly concave and continuously differentiable

K. S. Alexander, The effect of disorder on polymer depinning transitions, Commun. Math. Phys, vol.279, issue.1, pp.117-146, 2008.

K. S. Alexander and N. Zygouras, Equality of critical points for polymer depinning transitions with loop exponent one, Ann. Appl. Probab, vol.20, issue.1, pp.356-366, 2010.

, Path properties of the disordered pinning model in the delocalized regime, Ann. Appl. Probab, vol.24, issue.2, pp.599-615, 2014.

I. Armendáriz, S. Grosskinsky, and M. Loulakis, Zero-range condensation at criticality, Stochastic Process, Appl, vol.123, issue.9, pp.3466-3496, 2013.

I. Armendáriz and M. Loulakis, Thermodynamic limit for the invariant measures in supercritical zero range processes, Probab. Theory Related Fields, vol.145, issue.1-2, pp.175-188, 2009.

A. Bar, A. Kabakç?o?lu, and D. Mukamel, Denaturation of circular DNA: Supercoil mechanism, Phys. Rev. E, vol.84, p.41935, 2011.

, Denaturation of circular DNA: Supercoils and overtwist, Phys. Rev. E, vol.86, p.61904, 2012.

Q. Berger, Notes on random walks in the Cauchy domain of attraction, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01576409

Q. Berger, G. Giacomin, and M. Khatib, DNA melting structures in the generalized Poland-Scheraga model, ALEA, Lat. Am. J. Probab. Math. Stat, vol.15, issue.2, pp.993-1025, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01511318

, Disorder and denaturation transition in the generalized Poland-Scheraga model

H. Lebesgue, , 2019.

Q. Berger, G. Giacomin, and H. Lacoin, Disorder and critical phenomena: the ? = 0 copolymer model, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01659845

Q. Berger and H. Lacoin, Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, J. Inst. Math. Jussieu, vol.17, issue.2, pp.305-346, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01141691

Q. Berger and A. Legrand, , 2019.

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol.27, 1989.

M. Birkner, A. Greven, and F. Hollander, Quenched large deviation principle for words in a letter sequence, Probab. Theory Related Fields, vol.148, issue.3-4, pp.403-456, 2010.

R. D. Blake, J. W. Bizzaro, J. D. Blake, G. Day, S. Delcourt et al., Statistical mechanical simulation of polymeric DNA melting with MELTSIM, Bioinformatics, issue.5, pp.370-375, 1999.

E. Bolthausen, Random copolymers, Correlated random systems: five different methods, Lecture Notes in Math, vol.2143, pp.1-43, 2015.

E. Bolthausen, F. Hollander, and A. A. Opoku, A copolymer near a selective interface: variational characterization of the free energy, Ann. Probab, vol.43, issue.2, pp.875-933, 2015.

A. A. Borovkov and A. A. Ski?, Probabilities of large deviations of sums of independent random vectors on the boundary and outside of the Cramér zone. I, Teor. Veroyatn, Primen, vol.53, issue.2, pp.336-344, 2008.

P. Bougerol and J. Lacroix, Products of random matrices with application to Schrödinger operators, vol.8, 1985.

M. Campanino and A. Klein, Anomalies in the one-dimensional Anderson model at weak disorder, Commun. Math. Phys, vol.130, issue.3, pp.441-456, 1990.

F. Caravenna and F. Hollander, A general smoothing inequality for disordered polymers, Electron. Commun. Probab, vol.18, issue.76, p.15, 2013.

F. Caravenna, G. Giacomin, and L. Zambotti, Sharp asymptotic behavior for wetting models in (1+ 1)-dimension, Electron. J. Probab, vol.11, pp.345-362, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00086233

J. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Correlation length bounds for disordered Ising ferromagnets, Commun. Math. Phys, vol.120, issue.3, pp.501-523, 1989.

X. Chen, V. Dagard, B. Derrida, Y. Hu, M. Lifshits et al., , 2019.

F. Comets, G. Giacomin, and R. L. Greenblatt, Continuum limit of random matrix products in statistical mechanics of disordered systems, Commun. Math. Phys, vol.369, pp.171-219, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02144572

A. Comtet, J. Luck, C. Texier, and Y. Tourigny, The Lyapunov exponent of products 2×2 matrices close to the identity, J. Stat. Phys, vol.150, pp.13-65, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00784782

A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices in Statistical Physics, vol.104, 1993.

B. Davis and D. Mcdonald, An elementary proof of the local central limit theorem, J. Theoret. Probab, vol.8, issue.3, pp.693-701, 1995.

C. De-calan, J. Luck, T. M. Nieuwenhuizen, and D. Petritis, On the distribution of a random variable occurring in 1D disordered systems, J. Phys. A, vol.18, issue.3, p.501, 1985.

L. C. Del-molino, P. Chleboun, and S. Grosskinsky, Condensation in randomly perturbed zero-range processes, J. Phys. A, vol.45, issue.20, p.17, 2012.

F. Hollander, Random polymers, Lectures from the 37th Probability Summer School, vol.1974, 2007.

D. Denisov, A. B. Dieker, and V. Shneer, Large deviations for random walks under subexponentiality: the big-jump domain, Ann. Probab, vol.36, issue.5, pp.1946-1991, 2008.

B. Derrida, V. Hakim, and J. Vannimenus, Effect of disorder on two-dimensional wetting, J. Stat. Phys, vol.66, issue.5-6, pp.1189-1213, 1992.

B. Derrida and H. Hilhorst, Singular behaviour of certain infinite products of random 2×2 matrices, J. Phys, vol.16, issue.12, p.2641, 1983.

B. Derrida and M. Retaux, The depinning transition in presence of disorder: a toy model, J. Stat. Phys, vol.156, pp.268-290, 2014.

R. A. Doney, A bivariate local limit theorem, J. Multivariate Anal, vol.36, issue.1, pp.95-102, 1991.

, A local limit theorem for moderate deviations, Bull. London Math. Soc, vol.33, issue.1, pp.100-108, 2001.

L. Dubois, Real cone contractions and analyticity properties of the characteristic exponents, Nonlinearity, vol.21, issue.11, pp.2519-2536, 2008.

F. J. Dyson, The dynamics of a disordered linear chain, Phys. Rev, vol.92, pp.1331-1338, 1953.

W. Feller, An introduction to probability theory and its applications, vol.II, 1971.

D. S. Fisher, Critical behavior of random transverse-field Ising spin chains, Physical review b, vol.51, issue.10, p.6411, 1995.

M. E. Fisher, Walks, walls, wetting, and melting, J. Stat. Phys, vol.34, issue.5-6, pp.667-729, 1984.

G. Forgacs, J. Luck, T. M. Nieuwenhuizen, and H. Orland, Exact critical behaviour of two-dimensional wetting problems with quenched disorder, J. Stat. Phys, vol.51, pp.29-56, 1988.

H. Furstenberg, Non-commuting Random Products, Trans. Amer. Math. Soc, vol.081, pp.377-428, 1963.

H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist, vol.31, pp.457-469, 1960.

H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math, vol.46, pp.12-32, 1983.

T. Garel and H. Orland, Generalized Poland-Scheraga model for DNA hybridization, Original Research on Biomolecules, vol.75, issue.6, pp.453-467, 2004.

G. Genovese, G. Giacomin, and R. L. Greenblatt, Singular behavior of the leading Lyapunov exponent of a product of random 2 × 2 matrices, Commun. Math. Phys, vol.351, issue.3, pp.923-958, 2017.

G. Giacomin, Random polymer models, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00155080

, Renewal convergence rates and correlation decay for homogeneous pinning models, Electron. J. Probab, vol.13, pp.513-529, 2008.

, Disorder and critical phenomena through basic probability models, Lecture Notes in Mathematics, vol.2025, 2011.

G. Giacomin and M. Khatib, Generalized Poland-Scheraga denaturation model and twodimensional renewal processes, Stochastic Process. Appl, vol.127, issue.2, pp.526-573, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01361730

G. Giacomin, H. Lacoin, and F. Toninelli, Marginal relevance of disorder for pinning models, Comm. Pure Appl. Math, vol.63, issue.2, pp.233-265, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00338985

G. Giacomin and F. L. Toninelli, Estimates on path delocalization for copolymers at selective interfaces, Probab. Theory Related Fields, vol.133, issue.4, pp.464-482, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00002982

, The localized phase of disordered copolymers with adsorption, ALEA Lat. Am. J. Probab. Math. Stat, vol.1, pp.149-180, 2006.

, Smoothing effect of quenched disorder on polymer depinning transitions, Commun. Math. Phys, vol.266, issue.1, pp.1-16, 2006.

, Smoothing of depinning transitions for directed polymers with quenched disorder, Phys. Rev. Lett, vol.96, issue.7, p.70602, 2006.

, On the irrelevant disorder regime of pinning models, Ann. Probab, vol.37, issue.5, pp.1841-1875, 2009.

B. Gnedenko and A. Kolmogorov, Limit distributions for sums of independent random variables, 1968.

A. Grabsch, C. Texier, and Y. Tourigny, One-dimensional disordered quantum mechanics and Sinai diffusion with random absorbers, Journal of Statistical Physics, vol.155, issue.2, pp.237-276, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968617

S. Grosskinsky, P. Chleboun, and G. M. Schütz, Instability of condensation in the zero-range process with random interaction, Phys. Rev. E, vol.78, p.30101, 2008.

A. B. Harris, Effect of random defects on the critical behaviour of Ising models, J. Phys. C: Solid State Physics, vol.7, issue.9, p.1671, 1974.

B. Havret, Regular Expansion for the characteristic exponent of a product of 2 × 2 random matrices, Math. Phys. Anal. Geom, vol.22, issue.2, p.15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01849549

H. Hennion, Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.67, pp.265-278, 1984.

, Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs, Ann. Inst. H. Poincaré Probab. Statist, vol.27, issue.1, pp.27-59, 1991.

, Limit theorems for products of positive random matrices, Ann. Probab, vol.25, issue.4, pp.1545-1587, 1997.

F. Iglói and C. Monthus, Strong disorder RG approach-a short review of recent developments, Eur. Phys. J. B, vol.91, issue.11, p.25, 2018.

H. Kesten, Random difference equations and Renewal theory for products of random matrices, Acta Math, vol.131, pp.207-248, 1973.

P. Kevei, A note on the Kesten-Grincevi?ius-Goldie theorem, Electron. Commun. Probab, vol.21, 2016.

, Implicit renewal theory in the arithmetic case, J. Appl. Probab, vol.54, issue.3, pp.732-749, 2017.

Y. Kifer, Perturbation of random matrix products, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.61, pp.83-95, 1982.

S. G. Krantz and H. R. Parks, A primer of real analytic functions, Birkhäuser Advanced Texts: Basler Lehrbücher, 2002.

H. Lacoin, The martingale approach to disorder irrelevance for pinning models, Electron. Commun. Probab, vol.15, pp.418-427, 2010.

C. Mailler, P. Mörters, and D. Ueltschi, Condensation and symmetry-breaking in the zerorange process with weak site disorder, Stochastic Process. Appl, vol.126, issue.11, pp.3283-3309, 2016.

H. Matsuda and K. Ishii, Localization of Normal Modes and Energy Transport in the Disordered Harmonic Chain, Progr. Theoret. Phys. Suppl, vol.45, pp.56-86, 1970.

B. M. Mccoy and T. T. Wu, Theory of a Two-Dimensional Ising Model with Random Impurities. I. Thermodynamics, Phys. Rev, vol.176, pp.631-643, 1968.

R. A. Neher and U. Gerland, Intermediate phase in DNA melting, Phys. Rev. E, vol.73, issue.3, p.30902, 2006.

T. M. Nieuwenhuizen and J. M. Luck, Exactly soluble random field Ising models in one dimension, J. Phys. A, vol.19, issue.7, p.1207, 1986.

V. I. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic exponents for dynamical systems, Trans. Moscow Math. Soc, vol.19, pp.197-231, 1968.

D. Poland and H. A. Scheraga, Occurrence of a phase transition in nucleic acid models, The Journal of chemical physics, vol.45, issue.5, pp.1464-1469, 1966.

, Phase transitions in one dimension and the helix-coil transition in polyamino acids, The Journal of chemical physics, vol.45, issue.5, pp.1456-1463, 1966.

, Theory of helix-coil transitions in biopolymers, 1970.

L. Pray, Discovery of DNA structure and function: Watson and Crick, Nature Education, vol.1, issue.1, p.100, 2008.

D. Ruelle, Analycity properties of the characteristic exponents of random matrix products, Adv. Math, vol.32, pp.68-80, 1979.

C. Sadel and H. Schulz-baldes, Random Lie group actions on compact manifolds: a perturbative analysis, vol.38, pp.2224-2257, 2010.

H. Schmidt, Disordered one-dimensional crystals, Phys. Rev, vol.105, pp.425-441, 1957.

R. Shankar and G. Murthy, Nearest-neighbor frustrated random-bond model in d=2: Some exact results, Phys. Rev. B, vol.36, pp.536-545, 1987.

F. L. Toninelli, Correlation lengths for random polymer models and for some renewal sequences, Electron. J. Probab, vol.12, pp.613-636, 2007.

, A replica-coupling approach to disordered pinning models, Commun. Math. Phys, vol.280, issue.2, pp.389-401, 2008.

M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Mathematics, 2014.

N. Zanon and B. Derrida, Weak disorder expansion of Liapunov exponents in a degenerate case, J. Stat. Phys, vol.50, pp.509-528, 1988.