
HAL Id: tel-02485710
https://hal.sorbonne-universite.fr/tel-02485710

Submitted on 20 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of SystemC-AMS Simulation Platforms into
TTool

Rodrigo Cortés Porto

To cite this version:
Rodrigo Cortés Porto. Integration of SystemC-AMS Simulation Platforms into TTool. Computer
Science [cs]. TU Kaiserslautern, 2018. English. �NNT : �. �tel-02485710�

https://hal.sorbonne-universite.fr/tel-02485710
https://hal.archives-ouvertes.fr

University of Kaiserslautern
Department of Electrical Engineering and Information Technology

Microelectronic Systems Design Research Group

Master Thesis
Integration of SystemC-AMS Simulation Platforms into TTool

Presented: November 26, 2018

Author: Rodrigo Cortés Porto (402425)

Research Group Chief: Prof. Dr.-Ing. N. Wehn

Tutors: Dr. D. Genius (Sorbonne University, LIP6)

Prof. Dr. C. Grimm (TU Kaiserslautern, CPS)

Dr.-Ing. M. Jung (TU Kaiserslautern, EMS)

Statement

I declare that this thesis was written solely by myself and exclusively with help of the
cited resources.

Kaiserslautern, November 26, 2018

Rodrigo Cortés Porto

Acknowledgments

I would like to express my deepest gratitude to Dr. Daniela Genius, my supervisor at
the LIP6 (Laboratoire d’Informatique de Paris 6, France), for giving me the opportunity
to work on the project “SystemC-AMS extensions for TTool”, and providing me not only
great technical guidance but also valuable support on my administrative issues before
and during my whole stay in France.

I would like to thank the CONACyT (Consejo Nacional de Ciencia y Tecnología, México),
for the economical support that they provided me which made it possible to carry out
my Master’s studies in Europe.

I would like to express my gratitude to Dr. Marie-Minerve Louërat, head of the System-
On-Chip department at the LIP6, and Dr. François Pêcheux, professor at the LIP6, for
their guidance and advise that helped to define the path of this work. I also would like
to thank Dr. Liliana Andrade for the help provided on the CPN and SystemC-MDVP
topics. I am thankful to Irina Lee, master student at the Sorbonne University, for her
hard and excellent work on the SystemC-AMS graphical interface for TTool and for her
proactivity during her traineeship working on this project.

I would like to thank my professors at the TU Kaiserslautern, Prof. Christoph Grimm,
head of the Design of Cyber-Physical Systems chair, for his support in this project,
agreeing to be my supervisor from the TU Kaiserslautern side and being the principal
contact between the LIP6 and the TU Kaiserslautern; Prof. Norbert Wehn, head of the
Microelectronic Systems Design research group, and Dr. Christian Weis, professor at
the Microelectronic Systems Design research group, for their support in accepting this
project to be developed as part of my Master’s thesis; Dr. Matthias Jung, from the
Fraunhofer IESE (Institute for Experimental Software Engineering), for his support in
being my co-supervisor from the Electrical and Computer Engineering department at the
TU Kaiserslautern side; Prof. Wolfgang Kunz, head of the Electronic Design Automation
chair, for his great support and guidance during my Master’s studies.

I would like to thank my professors at the Tecnológico de Monterrey, Mexico City Cam-
pus, Dr. Katya Eugenia Romo-Medrano Mora, Dr. Alfredo Victor Mantilla Caeiros and
Dr. Edgar Omar López Caudana, for their great support and recommendations, that
opened me the doors to come to Germany to start my Master’s studies.

I would like to acknowledge the great administrative support and advise from Aurore
Marcos and Nadia Anbajagan here at the LIP6; and from Arthur Harutyunyan, from the
International School for Graduate Studies at the TU Kaiserslautern.

I would like to thank Dr. Hassan Aboushady and Dr. Haralampos Stratigopoulos for
their advise and friendship during my work at the LIP6. I would also like to express my
gratitude to my office mates and friends at the LIP6, and to all my friends at the TU
Kaiserslautern, for their daily friendship and great work environment that they built.

Finally, I would like to express all my gratitude to my parents and the rest of my family,
for all the support and love that they have given me during my whole studies.

Abstract

Embedded systems consist of the integration of software and hardware components,
where the latest are increasingly of a heterogeneous nature, composed of digital and
analog integrated circuits, sensors and actuators. A heterogeneous modeling, including
analog/mixed signal and radio frequency components, is a requirement for the design
and development of many embedded systems applications.

The integration of analog components into a high-level modeling and virtual prototyping
tool, named TTool, is presented here. The idea is to integrate the analog components as
targets into a digital model of an MPSoC that runs software under an operating system.
The resulting virtual prototype can be simulated at cycle-accurate/bit-accurate level.

The development of this thesis is based on the results of a previous work, in which the
graphical interface of TTool has been augmented to allow the creation of analog/mixed
signal models without including any digital component, and which could already generate
operational SystemC-AMS code of the models.

The integration tasks are divided in two stages: during the first stage, the integration be-
tween the analog and digital components has been implemented independently of TTool,
but using the same digital components that TTool uses without running any operat-
ing system nor software. In the second stage, the integration of the analog and digital
components into TTool has been performed. During this stage, the validation of the
analog models at the design level before the generation of the virtual prototype has been
implemented.

Two case studies are presented to demonstrate the outcome of this work. First, a rover
system is modeled, consisting of an MPSoC digital platform and the models of two analog
sensors. A virtual prototype including embedded software is generated and simulated
based on this model. Second, a model of a vibration sensor is created and its virtual
prototype is generated and simulated. The results of the simulation of this model, along
with the validation at the design level are compared against the outcomes of the model
being simulated directly using SystemC-AMS and SystemC-MDVP. Several other models
are presented to expose particular problems that may arise during the integration of
analog and digital models, specially when dealing with the interaction of Discrete Event
and Timed Data Flow Models of Computation. These models are also used to compare
the behavior of the results of this work with the behavior from the models created directly
using SystemC-AMS and SystemC-MDVP.

Zusammenfassung

Eingebettete Systeme bestehen aus der Integration von Software- und Hardwarekompo-
nenten, von denen die letzten zunehmend heterogener Natur sind, bestehend aus digi-
talen und analogen integrierten Schaltkreisen, Sensoren und Aktoren. Eine heterogene
Modellierung einschließlich Analog- / Mixed-Signal- und Radiofrequenzkomponenten ist
eine Voraussetzung für das Design und die Entwicklung vieler Eingebettete Systeme-
Anwendungen.

In der vorliegenden Arbeit wird die Integration analoger Komponenten in ein High-
Level-Modellierungs- und virtuelles Prototyping-Tool namens TTool vorgestellt. Die Idee
besteht darin, die analogen Komponenten als Ziele in ein digitales Modell eines MPSoC
zu integrieren, auf dem Software unter einem Betriebssystem ausgeführt wird. Der resul-
tierende virtuelle Prototyp kann auf cycle-accurate/bit-accurate Niveau simuliert werden.

Die Entwicklung dieser Arbeit basiert auf den Ergebnissen einer früheren Arbeit, in
der die grafische Benutzeroberfläche von TTool erweitert wurde, um die Erstellung von
Analog- / Mixed-Signal-Modellen ohne jegliche digitale Komponente zu ermöglichen, und
die bereits operatives SystemC-AMS-Code der Modelle generieren konnte.

Die Integrationsaufgaben sind in zwei Stufen unterteilt: Während der ersten Stufe wurde
die Integration zwischen analogen und digitalen Komponenten unabhängig von TTool
implementiert, wobei jedoch dieselben digitalen Komponenten verwendet wurden, die
TTool verwendet, ohne dass eine Software und das zu deren Ausführung benötigte Be-
triebssystem verwendet wird. In der zweiten Stufe wurden die analogen und digitalen
Komponenten in TTool integriert. In dieser Stufe wurde die Validierung der analogen
Modelle auf Designebene vor der Generierung des virtuellen Prototyps implementiert.

Es werden zwei Fallstudien vorgestellt, um die Ergebnisse dieser Arbeit zu demonstri-
eren. Zunächst wird ein Rover-System modelliert, das aus einer digitalen MPSoC-
Plattform und den Modellen zweier analoger Sensoren besteht. Basierend auf diesem
Modell wird ein virtueller Prototyp mit eingebetteter Software generiert und simuliert.
Als zweites wird ein Modell eines Vibrationssensors erstellt und sein virtueller Prototyp
erstellt und simuliert. Die Ergebnisse der Simulation dieses Modells sowie die Validierung
auf Entwurfsebene werden mit den Ergebnissen des Modells verglichen, das direkt mit
SystemC-AMS und SystemC-MDVP simuliert wird. Verschiedene andere Modelle wer-
den vorgestellt, um besondere Probleme aufzuzeigen, die bei der Integration von analogen
und digitalen Modellen auftreten können, insbesondere wenn es um die Interaktion zwis-
chen Discrete-Event- und Timed-Data-Flow Berechnungsmodellen geht. Diese Modelle
werden auch verwendet, um das Verhalten der Ergebnisse dieser Arbeit mit dem Ver-
halten der Modelle zu vergleichen, die direkt mit SystemC-AMS und SystemC-MDVP
erstellt wurden.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Objective . 2
1.3 Thesis organization . 2

2 Related work 4
2.1 SystemC and SystemC-AMS . 4
2.2 SoCLib . 5
2.3 SystemC-MDVP and timed-CPNs . 6
2.4 TTool . 8
2.5 SystemC-AMS graphical interface and platform generation in TTool . . . 10

3 Integration of SystemC-AMS and SoCLib components 13
3.1 Development of the GPIO2VCI SoCLib component 13
3.2 Integration of SystemC-AMS modules with a pedagogic SoCLib model . . 16
3.3 Integration of SystemC-AMS modules with a full SoCLib model 20

4 Time synchronization between TDF and DE MoCs 25
4.1 Detection of time synchronization issues 25

4.1.1 Access to input converter port before an access to output converter
port . 25

4.1.2 Access to output converter port before an access to input converter
port . 28

4.1.3 Access to output converter port before an access to another output
converter port . 30

4.1.4 Access to input converter port before an access to another input
converter port . 33

4.1.5 Preliminary conclusions . 36
4.2 Avoidance of time synchronization issues 36
4.3 Proposal for detection and avoidance of time synchronization issues 39

5 Integration of SystemC-AMS and SoCLib modules into TTool 46
5.1 Integration decisions to augment the graphical interface of TTool 46
5.2 Integration of SystemC-AMS and the SoCLib modules in TTool 47
5.3 Synchronization of SystemC-AMS and SoCLib modules in TTool 58

6 Case studies and comparison between TTool, SystemC-AMS and
SystemC-MDVP 64
6.1 Case studies . 64

6.1.1 Introduction . 64
6.1.2 Case study 1: Rover . 64
6.1.3 Case study 2: Vibration sensor . 71

6.2 Comparison between TTool, SystemC-AMS and SystemC-MDVP simulators 76
6.2.1 Model 1 . 76
6.2.2 Model 2 . 80
6.2.3 Model 3 . 82

7 Conclusion and perspectives 86
7.1 Conclusion . 86

7.2 Perspectives . 87

A Appendix: Source codes 88

B Appendix: Directory tree of source code and generated files 93

C Appendix: Static schedule computation of model from Section 4 96

D Appendix: TTool’s usage scenario 98

E Appendix: Lists 105
List of Figures . 105
List of Tables . 109
List of Listings . 110
List of Abbreviations . 112

References 114

1. INTRODUCTION

1. Introduction

1.1. Context

Due to the high complexity of today’s embedded systems, model-driven development
techniques are a current practice for the design and development of embedded software.
These techniques make use of high level models to create the specification of the software,
and then perform transformations of the models to generate the source code [1, p. 10].

These approaches however are limited to the digital part of the system. Embedded
systems are often of a heterogeneous nature, composed of digital and analog–AMS
(analog/mixed signal) and RF (radio frequency)–components. For this purpose, many
heterogeneous embedded systems require a modeling that includes models of their AMS
and RF components. Moreover, the possibility to run software on the digital part is
required.

TTool [2] is a design tool for safe and secure digital embedded systems, developed at Tele-
com ParisTech and containing extensive verification capabilities. It has been extended
by LIP6 with the possibility to generate cycle-bit accurate virtual prototypes for a full-
system simulation—including an OS (Operating System), embedded SW (software) and
a model of HW (hardware) [3].

The present work is part of the LIP6 project “SystemC-AMS extensions for TTool”,
which aims at the addition of models for analog hardware components, with the aim of
obtaining a platform that can run software.

Abstractions of the analog hardware components are necessary for the generation of
the SystemC/SystemC-AMS virtual prototype of the model. The addition of analog
hardware components into TTool for the generation and simulation of mixed analog and
digital virtual MPSoC (multi-processors system on chip) prototypes consists of three
phases:

1. The first phase, which was developed as part of [4], consists of generating fully
functional SystemC-AMS topcells in TTool, by limiting to platforms without any
software part and without any preexisting SoCLib[5] component. A graphical inter-
face has already been augmented, offering the possibility to describe SystemC-AMS
modules within Timed Data Flow clusters.

2. In the second phase, the intention is to combine the SystemC-AMS part with a
digital SoC platform modeled with SoCLib components. First, we will provide
assembler instructions directly to the memory blocks of the SoC platform. Later,
C code will be cross-compiled to the specific CPU architecture of the model and
loaded to the memory blocks of the SoC platform. In this phase no OS will be
used.

3. In the third phase, the SystemC-AMS modules created in TTool will be integrated
with the digital hardware components of TTool (SoCLib components). We intend
to run larger scope software, generated directly from the Software Design Diagrams
of TTool and requiring an OS and a linker script.

1

1. INTRODUCTION

1.2. Objective

The focus of this work is on the second and third phases of the LIP6 project “SystemC-
AMS extensions for TTool” described above. The main objective is to extend the func-
tionality of TTool to generate virtual prototypes of heterogeneous embedded systems
composed of digital hardware (MPSoC) and analog hardware, that can run embedded
software using an OS (MutekH [6]). This will be done by integrating the SystemC-AMS
components with a digital MPSoC platform based on SoCLib components including em-
bedded software and the MutekH OS; and by implementing a solution to the time syn-
chronization issues that may occur between the DE (Discrete Event) and TDF (Timed
Data Flow) MoC (Models of Computation).

1.3. Thesis organization

In Chapter 1, the context and objective of this thesis is defined. The organization of the
rest of the document is presented below.

In Chapter 2, related work to this thesis is presented. The AMS extensions for Sys-
temC are described. The SoCLib library is introduced and its main features are pointed
out. An approach developed as part of the SystemC-MDVP (Multi-Disciplinary Virtual
Prototyping) simulator that deals with the problem of time synchronization between the
TDF and DE MoCs is explained. An overview of TTool and the SystemC-AMS graphical
interface and platform generation developed in phase 1 is shown.

In Chapter 3, the development of phase 2 of the LIP6 project “SystemC-AMS extensions
for TTool” is described, which consists in the integration of SystemC-AMS and SoCLib
components without the use of an OS. Two different steps are carried out: first by using
a pedagogic SoCLib SystemC model of a one memory mono-core SoC in which assembler
instructions were inserted; and later using a SoCLib model of a similar one memory
mono-core SoC in which C code was programmed. It is explained as well the need of
creating a generic adapter module for connecting the analog and digital components of
the models.

In Chapter 4, the time synchronization issues between the TDF and DE MoCs interac-
tions are described more deeply. A description of the method proposed in [7] is presented.
Finally, a solution for these synchronization issues within the context of this thesis is pro-
posed.

In Chapter 5, the development of phase 3 is explained, which integrates the work done
from phase 1 and 2 by using TTool’s SoCLib and SystemC-AMS modules along with
the MutekH OS. The implementation into TTool of the solution for the synchronization
issues between the TDF and the DE MoCs presented in Chapter 4 is described.

In Chapter 6, simulation results of different test models are presented. A model that
initially stems from a purely digital model in TTool, a rover system meant to assist
rescuers to find victims in debris, is used as a case study. A vibration sensor model
from the H-Inception project [8] has been modeled and simulated in TTool and is used
to compare the results obtained by the SystemC-MDVP simulator as part of the work
of [7]. Other SystemC-AMS models have been created in TTool, in SystemC-MDVP and

2

1. INTRODUCTION

in SystemC to show how the synchronization issues between TDF and DE MoCs are
handled in each simulator and compare the results.

Finally in Chapter 7, the conclusions and perspectives of this work are presented.

3

2. RELATED WORK

2. Related work

2.1. SystemC and SystemC-AMS

SystemC [9] is a C++ class library which supports the modeling of embedded systems
and represents their hardware components as modules; these modules are connected
using ports. The scheduling and synchronization of concurrent processes uses events
and sensitivity of the ports. SystemC advances simulation time, separates computations
(processes) from communication (channels); it supports hardware oriented data types
[10, p. 562].

The SystemC simulation kernel is based on the DE MoC, which describes systems based
on temporal sequences of a countable number of events [11]. The processes of a DE
MoC describe the functional behavior of the system. The execution of these processes is
triggered by events (inputs are sensitive to these events) or by the passing of time (after
a "wait" of certain time). The processes themselves can generate new events. All events
are sorted with respect to time stamps, and inserted into an event queue. A scheduler
determines which processes can be executed next, based on the events from the event
queue and the passing of time. Since the schedule is computed during run time, it is
known as dynamic scheduling.

The SystemC-AMS extensions increase the capabilities of the SystemC library to allow
the design and simulation of AMS and signal processing systems along with digital hard-
ware systems [12, p. 169]. SystemC-AMS can be used for creating system-level models
which can be used for different use cases such as executable specification, virtual proto-
typing, architectural exploration and validation of the system [13, p. 1 f].

SystemC-AMS extensions are implemented as a C++ class library. As shown in Fig-
ure 2.1, they are built on top of the SystemC standard. SystemC-AMS defines different
modeling formalisms implemented by using different MoCs, to support AMS behavioral
modeling. The MoCs that are currently in SystemC-AMS are TDF (Timed Data Flow),
LSF (Linear Signal Flow) and ELN (Electrical Linear Networks).

Mixed-Signal Virtual Prototype: User Defined

AMS methodology specific elements.

TDF:
modules,
ports and
signals.

LSF:
modules,
ports and
signals.

ELN:
modules,
terminals
and
nodes.

Scheduler Linear DAE Solver

Time domain and small signal frequency-domain
simulation infrastructure (synchronization layer).

SystemC Language Standard (IEEE Std. 1666-20011)

SystemC
methodology
specific
elements:
Transaction Level
Modeling, CABA
modeling, etc.

Figure 2.1: SystemC-AMS extensions. (Adapted from [12].)

4

2. RELATED WORK

The focus of this work is on the SystemC-AMS TDF MoC. It is based on the SDF
(Synchronous Data Flow) [14] modeling formalism with the difference that TDF is a
discrete-time model which considers the data as signals sampled in time, while SDF is
an untimed MoC. As explained in [13, p. 7], the TDF model consists of nodes (modules)
that represent processes; and arcs (signals) that represent data paths. TDF modules use
ports as an interface to connect to other modules through signals. To connect to other
TDF modules, TDF ports are used. To connect to DE modules, TDF converter ports
are used. A set of connected TDF modules form a directed graph called TDF cluster.
Figure 2.2 shows a TDF cluster, where the DE modules are represented as white blocks;
TDF modules as gray blocks; TDF ports as black squares; TDF converter ports as black
and white squares; DE ports as white squares; and TDF signals as arrows. The TDF
modules of a cluster have attributes which are described below.

1. Module Timestep (Tm): denotes the period in which the module will be activated.
One module will only be activated if there are enough samples available at its input
ports.

2. Rate (R): Each module will read or write a fixed number of data samples each time
it is activated. This number is annotated to the ports and it is known as the port
rate.

3. Port Timestep (Tp): it is the period at which each port of a module will be
activated. It also denotes the time interval between two samples that are being
read or written.

4. Delay (D): A delay can be assigned to a port. As its name suggests, this attribute
will make the port to hold up a number of samples each time it is activated, and
read or write them in the following activation of the port.

A B Y
R= 1
D= 1

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

Figure 2.2: TDF Cluster

Compared to DE models, TDF models have the advantage that they can execute without
the overhead of dynamic scheduling. Instead, they define a static schedule which is
calculated before the simulation starts, accelerating the simulation’s run time. Once the
static schedule is computed, the TDF modules are executed according to this schedule.

2.2. SoCLib

As specified in [5], SoCLib is an open SystemC library for the creation of virtual pro-
totypes of MPSoCs. It consists of simulation DE models for virtual components which
can be simulated with the SystemC simulation environment. SoCLib components are
implemented in two ways, based on the type of simulation that is required:

5

2. RELATED WORK

1. CABA (cycle-accurate bit-accurate) for very accurate but slower simulations [15].
TTool mainly focuses on the use of these components.

2. TLM (Transaction Level Modeling) [16] for faster simulations with some loss of
accuracy.

SoCLib components are interconnected based on the VCI (Virtual Component Inter-
face) [17] protocol. This makes the components easily inter-operable and facilitates the
integration of new components into the platform. As noted in [17], it is important to
mention that the VCI is not a bus but an interface. Hence, it specifies a request-response
protocol, a protocol for transfer of requests and responses, and the coding and contents
of these requests and responses. This interface can be used to connect two components
in a point-to-point connection. One of the components will act as an initiator, issuing
requests; while the other will act as a target, responding to these requests. Also, the VCI
can be used as an interface to a wrapper, in other words, as a connection to a bus. In
this way, the components can be connected to any bus.

SoCLib makes use of this interface to define its own interconnect component models.
These interconnect components can be of two types:

1. Physical interconnects, which implement interconnects for which an equivalent
physical hardware exists.

2. Virtual interconnects, which implement the behavior of an interconnect without
having an equivalent physical hardware, which makes simulations faster. TTool
implements this type of interconnects which can be either a VGMN (virtual generic
micro-network) or a VGSB (virtual generic system bus).

Many SoCLib components have a VCI interface. SoCLib implements special signals to
use with the VCI protocol. By doing so, the SoCLib hardware components may connect
to the interconnect components via their VCI interfaces and using this VCI signals.

2.3. SystemC-MDVP and timed-CPNs

The SystemC-MDVP simulator was developed at LIP6 as part of two previous works
[7, 18]. This simulator targets the simulation of heterogeneous systems which can be
modeled using different MoCs. Within the context of SystemC-MDVP a solution for
the detection of the time synchronization issues between the DE and TDF MoCs during
the elaboration phase of the SystemC model is proposed. The approach is based on an
equivalent representation of the TDF clusters and the interactions with the DE domain
using timed-CPN (timed-Coloured Petri Nets).

CPN (Coloured Petri Nets) is a graphical discrete-event modelling language that can be
used to create models and analyze the properties of concurrent systems. It combines the
capabilities of Petri Nets and those of a high level programming language. Finally, it
provides the primitives for the definition of data types, for describing the manipulation
of the data, and for creating compact models that can be parameterisable.[19, p. 3] As it
is described below, CPN can be used to represent TDF modules and their connections.
Finally, if timing information is required, it can be added to the CPN models. In this
case they are known as timed-CPNs.[19, p. 231]

6

2. RELATED WORK

As mentioned before, the TDF MoC is based on the SDF modeling formalism. It is possi-
ble to transform SDF models into Petri Nets by means of a set of translating mechanisms
[20]. Since an SDF model may be represented by using Petri Nets, a TDF model can
make use of Petri Nets as well in order to perform pre-simulation analyses of the model
that do not include interactions between the TDF and DE time domains. These pre-
simulation analyses do not take into account the time notion handled by the TDF ports
and modules of a TDF cluster, but they can be useful in order to obtain a static schedule
of the model. To be able to represent the timing information handled by the TDF con-
verter ports and their interactions with the DE domain, timed-CPNs have showed to be
a good choice for this purpose since they facilitate the detection of time synchronization
problems and the proposition of a possible solution to these issues.[7, p. 56 ff] As it is
described in detail in [21] and [7, p. 60 ff], the construction of an equivalent representa-
tion of the TDF clusters and their interactions with the DE domain using timed-CPN
requires a three steps process, which is summarized below.

1. The first step is to represent a TDF module as an equivalent CPN. Figure 2.3
shows this equivalent CPN representation where a transition (square) represents
the execution action of the TDF module. This transition has a name M:qM; a
guard [jM <> qM] that evaluates if the transition is enabled or not, where jM is the
current execution number of the module and qM is the maximum execution number
of the module; and a priority LOW. The current execution number jM is stored in
a place (ellipse) which has a name Counter M; a color set INT that defines the
data type; and the initial tokens of the place InitCountM.

Figure 2.3: Equivalent CPN of a TDF module. (Reprinted from [7, p. 60] with permission.)

2. The second step consists on representing the TDF connections or signals as an
equivalent CPN. Figure 2.4 shows the equivalent CPN representation of a TDF
signal where the modules that are being connected are represented in a simple way
by squares, and the signal is represented using a place (ellipse). The place has a
name SN; a color set INT that defines the data type; and a multiset of delay tokens
DelaySN which are the addition of the delay attributes of the interconnected ports.
The producer and transition modules are linked via directed arcs with functions
that calculate the token identifiers produced or consumed when a module is fired.

Figure 2.4: Equivalent CPN of a TDF signal. (Reprinted from [7, p. 62] with permission.)

7

2. RELATED WORK

3. The third step is to represent the TDF input and output converter ports as equiv-
alent timed-CPNs. Each port is transformed into a series of transitions and places
which control the read and write synchronization events between the TDF and DE
MoC. This representation is explained in detail in [7].

Finally, it is shown in [21, 7] that by using an equivalent timed-CPN model for the DE-
TDF model, pre-simulation analysis can be performed in order to detect any causality
errors and if necessary, provide suggestions on the needed delay modifications that will
avoid these time synchronization issues. Using this representation, the SystemC-MDVP
simulator can can detect time synchronization issues between the TDF and the DE
MoCs before the simulation phase starts, providing as an output to the user a list of
Delay parameters that need to be added to the TDF converter ports in order to avoid
causality problems.

2.4. TTool

TTool, developed mainly at Télécom ParisTech with LIP6 contribution on code gener-
ation and OS for MPSoC, is a UML and SysML based free and open-source software
for model-based design and development of embedded systems at two different levels:
partitioning (blue upper section of Figure 2.5) and embedded software design (blue lower
section of Figure 2.5). According to TTool’s philosophy, models are validated before any
code is generated and the generated code is correct-by-construction.[2]

Final
software
code

Refinements

VHDL/Verilog

Virtual Prototype

Deployment

Hardware
design

HW Abstractions

Simulation
 and
Verification

Micro kernel
MPSoC
Model in
SystemC

HW/SW Partitioning

Functional

Software Design Hardware
model

Figure 2.5: TTool’s different levels for model-based design and development of embedded sys-
tems. (Adapted from [22]).

At the partitioning level, Functional and HW/SW Partitioning diagrams can be created
in order to find the best software and hardware candidates that can execute the required
functions of the system.

1. In the Functional Diagram, the functions of the system, which later will be assigned
and implemented in software or hardware, can be modeled.

2. In the HW/SW Partitioning Diagram, the possible hardware architectures for the
system can be modeled either as execution nodes (CPUs and HW Accelerators),
communication nodes (buses) and storage nodes (memories) [2]. Finally in the

8

2. RELATED WORK

HW/SW Partitioning Diagram, the functions defined in the Functional Diagram are
mapped to the hardware architecture and they can be allocated either to CPUs or
HW Accelerators, while the communication between the functions can be assigned
to specific communication and storage nodes.

At the embedded software design level, Software Design and Deployment diagrams can
be created. They target the design of software as well as modeling and formal verification
of embedded systems.

1. In the Software Design Diagrams, two types of diagrams can be created: Block
Diagrams and State Machine Diagrams. With these two diagrams, the system
software can be designed as communicating block diagrams and the behavior of
each block can be implemented as state machines.

2. With the Deployment Diagrams (DD), each block representing the system software
can be mapped to the chosen hardware architecture (CPUs or HW Accelerators)
and their internal variables can be mapped to memories.

The Functional, HW/SW Partitioning and Software Design Diagrams are subject to
formal verification and validation before the embedded software code can be generated.

SoCLib
Executable

DDSyntaxChecker

TopcellGeneratorLdscriptGeneratorCodeGenerator

SyntaxChecker

Specification

top.cc

DDSpecification

ldscriptmain.cblock0.c blockn.c

Block Diagram
and

State Machine Diagram

Deployment
Diagram

libavatar

crosscompiler

loader

soclib-cc

deployinfo.h

...

Application
Binary

Figure 2.6: Toolchain for the software design level (Adapted from [3]).

In Figure 2.6, the Toolchain of the software design level is shown. From the software
design level in the left, using a Block Diagram, the tasks of the components of a system
can be represented by Blocks. Once a Block is created, a State Machine Diagram for

9

2. RELATED WORK

that Block can be created, which allows to design the software of the specific task. When
the software design is complete, the SyntaxChecker will verify the correctness of the
diagrams and will generate a Specification for the software. This Specification along
with the DDSpecification is used by the CodeGenerator to generate one source code file
per block and a main.c file. Using the libavatar libraries and the MutekH OS (a free
portable OS for embedded systems with which several CPU architectures can be targeted
[6]), the source code will be cross-compiled to the selected CPU architecture in order to
generate an application binary.

In the Deployment Diagrams hardware abstractions are used as shown in Figure 2.5.
In the work of [3], the abstraction of digital hardware components into the Deployment
Diagram has been addressed and model transformations given, where hardware compo-
nents can be transformed into SoCLib modules to generate a SystemC virtual prototype
of the model and simulate it with a CABA (cycle-accurate bit-accurate) approach. Once
the Deployment Diagram is complete, the DDSyntaxChecker shown in Figure 2.6, will
verify that the Deployment Diagram is syntactically correct and generate a DDSpec-
ification, used by the CodeGenerator and the deployinfo.h file. The deployinfo.h
file contains information used by the LdscriptGenerator to generate the linker script
(ldscript) which will be used by Loader utility of SoCLib later. The DDSpecification
is also used by the TopcellGenerator to generate a SystemC topcell (top.cc) file, which
includes all the required SoCLib modules for the model. This topcell can be compiled
using the soclib-cc command to build a platform of the model or SoCLib Executable
as it is shown in Figure 2.6. The topcell generates the mapping table for the different
components of the model. It instantiates all the components from the model and creates
the required signals to interconnect them. It creates the Net-List where all the inter-
connections of the components are defined. It also calls the Loader utility from SoCLib,
which uses the ldscript to load the application binary into the RAM memory compo-
nent of the model. Finally the SoCLib executable can be run to start the simulation of
the virtual prototype.

2.5. SystemC-AMS graphical interface and platform generation in TTool

During the first phase of the project “SystemC-AMS extensions for TTool” developed as
part of [4], the graphical interface of TTool was augmented, offering the possibility to
create SystemC-AMS TDF models which consist of TDF clusters including TDF and DE
blocks. As it shown in Figure 2.7, a new SystemC-AMS panel was added. In this panel,
a new SystemC-AMS Component Diagram can be created where TDF models can be
designed.

Figure 2.7: TTool’s augmented graphical interface with SystemC-AMS Component Diagram.

10

2. RELATED WORK

A model consists of a TDF cluster which can contain TDF modules (gray blocks) and
DE modules (white blocks) that can be interconnected with each other through their
respective ports and signals. Several TDF clusters can be designed each in its own
panel, in such way that they will be seen by the SoCLib initiator components (CPUs)
as individual target components, when the integration of SystemC-AMS with SoCLib
components is implemented.

To connect TDF modules, TDF ports (black ports) are used. To connect DE modules,
DE ports (white ports) are used. In order to connect a TDF module with a DE module,
converter ports (black and white ports) are used. The graphical interface offers a toolbar
which allows to select the different components to build the model. The code for the TDF
and DE modules functions should be provided directly as SystemC-AMS code through
the graphical interface of TTool, as Figure 2.8b shows.

When a TDF module is created, it is possible to modify its attributes, parameters and
provide manually the code that will define its behavior. The name and Timestep or
Period (Tm) of a module can be defined. The period units can be selected as well
between seconds, milliseconds, microseconds or nanoseconds. The parameters of a TDF
module such as its internal variables or template parameters can be also set up, as it
is shown in Figure 2.8a. Finally the code of the TDF module can be given manually.
This code will define the SystemC-AMS processing() function, as it is depicted in
Figure 2.8b.

(a) TDF module parameters. (b) TDF module process code.

Figure 2.8: Setting TDF module’s attributes in TTool.

When a DE module is created, TTool’s graphic interface allows to modify in a similar
way its attributes, parameters and the code of the module’s method.

Regarding the ports of the TDF and DE modules, their attributes can also be modified
through the graphic interface of TTool. For converter ports and normal TDF ports, the
name of the port can be introduced. The Period or Timestep of the port (Tp) can also
be assigned along with its units (seconds, milliseconds, microseconds or nanoseconds).
The Rate and Delay attributes can also be set up. The Type of the port can be chosen
between int, double or bool for normal ports. Finally the Origin of the port should be
set up, either to be an Input port or an Output port. For DE ports, the port can be
added to the sensitivity list of the module by enabling the Sensitive field and selecting
if the port will be sensitive to a positive or negative edge of the incoming signal or null
for any incoming signal change.

11

2. RELATED WORK

As a side note, the graphical interface of TTool was also augmented to support the
creation of SystemC-AMS models based on the ELN MoC. ELN integration is out of the
focus of this thesis.

Once a TDF model is designed, the SystemC-AMS code can be generated at the click of
a button through the TTool user interface. During this phase of the project, each block
of the TDF model generates one header (.h) file which represents the SystemC-AMS or
SystemC code of the TDF or DE block. The header file contains declarations of all the
attributes of the block, such as its ports, timesteps, rates and delays; and the code for
the functions that implement the behavior of the block.

Then, a source (.cpp) file is generated as a test-bench. It implements the sc_main
function. This function defines the signals that connect the different blocks of the cluster.
It instantiates all the TDF and DE modules from the TDF cluster. It also creates the
interconnection Net-List of the modules by binding the module’s ports to the signals.
Finally, it starts the simulation for a default time of 100 milliseconds.

At last, a Makefile is generated. This Makefile can be used to compile the generated
SystemC-AMS code and execute the simulation of the TDF model, without including
any SoCLib component or embedded software.

12

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

3. Integration of SystemC-AMS and SoCLib components

3.1. Development of the GPIO2VCI SoCLib component

SoCLib is based on the shared memory paradigm, whose components are interconnected
based on the VCI protocol. These components can be initiators which issue requests (e.g.
CPUs) and targets that respond to these requests (e.g. RAM memory). The main idea
for the integration of SystemC-AMS and SoCLib components in TTool is that the analog
components will act as targets for the SoCLib initiator digital components (CPUs). In
this sense, the generated topcell will be composed of SoCLib modules and the SystemC-
AMS modules (TDF clusters). It is also important to mention that a TDF cluster may
have DE modules within it, which are not part of the SoCLib library. This interaction
is shown in Figure 3.1, where only the hierarchical composition of the modules is shown.

TDFTDF TDFTDF

DE

TDF Cluster

SoCLib
Components

Topcell

TDFTDF TDFTDF

DE

TDF Cluster

Figure 3.1: Integration of SoCLib and SystemC AMS components.

Due to the fact that SoCLib components are interconnected using the VCI protocol,
the need of creating a generic adaptor module which can work as an interface between
the SystemC-AMS modules and the the SoCLib interconnect components arose. This
new component, which was modelled as a GPIO (general-purpose input/output) adap-
tor to VCI and called GPIO2VCI, was developed as a VCI target component following
the modeling rules for writing CABA SystemC simulation models for SoCLib [15]. Fig-
ure 3.2 shows the model of this component and how it works as an interface between the
SystemC-AMS modules (TDF_Module belonging to a TDF Cluster) and the SoCLib
VCI interconnect component (VCI_Bus).

The previously mentioned modeling rules specify that the CABA components are built by
one or several synchronous FSM (Finite State Machines) and have clearly identified in-
ternal registers. The FSM can be described by three types of functions. The transition

13

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

function, which is triggered once per cycle on the rising edge of the clock, will compute
the next values of the registers, depending on their current values and the values of the
input signals. The genMoore function, which is triggered once per cycle on the falling
edge of the clock, computes the values of output signals that depend on the internal
registers. The genMealy function, which is triggered once per cycle on the falling edge
of the clock, computes the values of output signals that depend on the internal registers
and the values of the input signals.

GPIO2VCI

p_rdata_ams

p_wdata_ams

TDF_Module

p_clk

p_resetn

p_vci

VCI_Bus

TDF Cluster SoCLib DE
Components

Figure 3.2: GPIO2VCI component.

The GPIO2VCI component’s interface definition shown in Listing 3.1, contains the ports
that a typical VCI target component has. These ports are an input clock port p_clk, a
negative-edge reset port p_resetn and a VCI target port p_vci. It also has two ports
used for communication with the SystemC-AMS modules. These ports are an input port
p_rdata_ams, which is used to read data coming from the SystemC-AMS modules; and
an output port p_wdata_ams, which is used to write data to the SystemC-AMS modules.
It is important to mention that the data type vci_param::data_t of these two ports is
internally defined as sc_uint<32>, so any SystemC-AMS module that is connected to
the GPIO2VCI component through converter ports, should define this data type in these
ports.

sc_in<bool> p_clk;
sc_in<bool> p_resetn;
soclib::caba::VciTarget<vci_param> p_vci;
sc_in< typename vci_param::data_t > p_rdata_ams;
sc_out< typename vci_param::data_t > p_wdata_ams;

Listing 3.1: GPIO2VCI ports definition.

#define sc_register sc_signal
...

sc_register< typename vci_param::data_t > r_rdata_ams, r_wdata_ams;
sc_register<int> r_fsm_state, r_buf_eop;

Listing 3.2: GPIO2VCI registers definition.

The internal registers definition shown in Listing 3.2, has two standard VCI target regis-
ters. These registers are the r_fsm_state register, that stores the next state of the FSM
of the component; and the r_buf_eop register, which is used to mark an end of packet—
i.e. end of a VCI transfer. It also has two new defined registers. The r_rdata_ams

14

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

register is used to store the data that was read from the SystemC-AMS components.
The r_wdata_ams register is used to store the data that needs to be written to the
SystemC-AMS components.

As defined in the modeling rules, the component implements two member functions
transition() and genMoore(). The transition() function shown in Listing 3.3, will
store into the internal registers of the component r_rdata_ams and r_wdata_ams, the
values that need to be read from or written to the SystemC-AMS modules, depending on
the VCI command p_vci.cmdval that is received. These values are read from the input
ports of the component p_rdata_ams and p_vci.wdata.

tmpl(void)::transition() {
if(p_resetn == false) {

r_fsm_state = TARGET_IDLE;
}
else {

switch(r_fsm_state) {
case TARGET_IDLE:

if(p_vci.cmdval.read()) {
r_buf_eop = p_vci.eop.read();
if (p_vci.cmd.read() == vci_param::CMD_WRITE) {

r_wdata_ams = p_vci.wdata.read();
r_fsm_state = TARGET_WRITE;

}
else { //VCI_CMD_READ

r_rdata_ams = p_rdata_ams.read();
r_fsm_state = TARGET_READ;

}
}
break;

case TARGET_WRITE:
case TARGET_READ:

if(p_vci.rspack.read()) {
r_fsm_state = TARGET_IDLE;

}
break;

}
}

}

Listing 3.3: GPIO2VCI transtion() function implementation.

tmpl(void)::genMoore() {
switch (r_fsm_state) {
case TARGET_IDLE:

p_vci.rspNop();
break;

case TARGET_WRITE:
p_vci.rspWrite(r_buf_eop.read());
p_wdata_ams.write(r_wdata_ams);
break;

case TARGET_READ:
p_vci.rspRead(r_buf_eop.read(), r_rdata_ams);
break;

}
// We only accept commands in Idle state
p_vci.cmdack = (r_fsm_state == TARGET_IDLE);

}

Listing 3.4: GPIO2VCI genMoore() function implementation.

15

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

The genMoore() function shown in Listing 3.4, will write the values on the output ports
of the component depending on the state of the component’s FSM. Besides the typical
VCI output ports, it will write the values that need to be written to the SystemC-AMS
modules through the p_wdata_ams output port.

The complete GPIO2VCI component definition and implementation code can be found
in the Listings A.1 and A.2 from the Appendix.

3.2. Integration of SystemC-AMS modules with a pedagogic SoCLib
model

The first step towards the integration of SystemC-AMS modules and SoCLib components
without the use of an OS focuses on using an existing SystemC SoC model created for
pedagogic purposes, taken from a Master’s course in context of the H-Inception project
[8]. This model consists of a 32 bits MiniMIPS processor ISS (Instruction Set Simulator),
a simple 128 Bytes RAM memory, and a VCI local crossbar interconnect component. The
components of the pedagogic SoCLib SoC are modeled in a similar fashion as the SoCLib
components. The advantage of this model is that it does not require to install all the
SoCLib libraries and utilities in order to compile and run. It also does not need any
cross-compilers, since the software is written directly in assembler, which is processor
specific, into the memory of the model. For these reasons, this model was chosen to be
used as part of an initial approach for the integration with SystemC-AMS modules.

The simple Sine Source and the Sink SystemC-AMS modules, taken from a Master’s
course in context of the H-Inception project, were integrated with this one memory mono-
core SystemC SoC model. As explained in Section 3.1, the GPIO2VCI component is used
as an interface between the SystemC SoC model and the SystemC-AMS components.
Figure 3.3 shows a simplified model of this SoC connected to the analog components
via the GPIO2VCI component. It shows how the GPIO2VCI component is connected
to the SystemC-AMS modules and to the VCI Interconnect, without including other
internal ports like the clock or reset. The Sine Source block will generate a sine wave of
a fixed frequency, which amplitude parameter is being controlled by the value that the
GPIO2VCI component sends to this block. The values of the generated sine wave will
be sent to the Sink block, which will print this value to the host computer terminal, and
back to the GPIO2VCI component which will read this value and send it to the VCI Bus
if required.

Sine Source

Sink

GPIO2VCI

VCI Bus

MiniMIPS

RAM

Figure 3.3: Model integrating SystemC-AMS and SystemC SoC components.

16

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

Since the SystemC SoC model uses a shared memory architecture, address space segmen-
tation is used to assign segments of memory to the Hardware components via a mapping
table. Listing 3.5 shows the declaration and construction of this mapping table, where
three segments are added: the first two, instructions and data, are for the RAM in-
structions and data memory; and the third segment, gpio2vci, is for the GPIO2VCI
component. In each segment the second field refers to the actual address assigned to the
segment and the third field refers to the size of the segment. The fourth field indicates
to which target each segment is mapped to. In this case, the instructions and data
segments are mapped to target 0 (RAM component t0), while the gpio2vci segment is
mapped to target 1 (GPIO2VCI component t1).

SOCLIB_MAPPING_TABLE maptab (32, 1, intList(1), intList(1), 0x3<<29);
maptab.addSegment("instructions", 0x00000000, 0x40, maptab.ident(intList(0)),
SEGMENT_TYPE_CACHED);
maptab.addSegment("data", 0x00000040, 0x40, maptab.ident(intList(0)),
SEGMENT_TYPE_CACHED);
maptab.addSegment("gpio2vci", 0x80000000, 0x10, maptab.ident(intList(1)),
SEGMENT_TYPE_CACHED);

Listing 3.5: Mapping table for the SystemC SoC model.

For reading simplicity, the components have been instantiated with the names of the
targets that they represent, as it is shown in Listing 3.6. It is important to note that the
VCI Crossbar component cb0 receives as templated parameters the number of initiators
(1) and targets (2).

SOCLIB_VCI_ISS < VCI_PARAM > i0 ("i0");
SOCLIB_VCI_SIMPLERAM < VCI_PARAM > t0 ("t0");
GPIO2VCI < VCI_PARAM > t1 ("t1");
SOCLIB_VCI_LOCAL_CROSSBAR_SIMPLE<1, 2, VCI_PARAM> cb0("cb0", intList(), maptab);
SINE_SOURCE sine_1 ("sine_1");
SINK sink_1("sink_1");

Listing 3.6: Instantiation of the SystemC SoC model components.

Finally the Net-List is constructed by connecting the ports of the different components as
it is shown in Listing 3.7. It can be noted that the GPIO2VCI component t1 is connected
to the SystemC-AMS component sine_1 using the ports p_rdata_ams and p_wdata_ams
(lines 12 and 13). It is important to note too that the VCI Crossbar component cb0
specifies via its TLOC_VCI and ILOC_VCI ports to which initiator and target component
it is connected (lines 17-19).

As explained before, the Sine Source component will read a value from the input converter
port (in) that is connected to the GPIO2VCI component, and it will use that value as
the amplitude parameter to generate a sine wave. The generated sine wave value will be
converted to an integer and will be sent back to the GPIO2VCI component via its output
converter port (out). In a similar way, the generated sine wave value will be sent to the
Sink component via a normal output port(tdf_out). The behavior of the component is
shown in the processing() function from Listing 3.8.

The Sink component will only read values from its input port (in) and print them to the
console of the host machine, as shown in Listing 3.9.

17

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

1 i0.CLK(signal_clk);
2 i0.RESETN(signal_resetn);
3 i0.VCI_INITIATOR(ilink);
4

5 t0.CLK(signal_clk);
6 t0.RESETN(signal_resetn);
7 t0.VCI_TARGET(tlink0);
8

9 t1.p_clk(signal_clk);
10 t1.p_resetn(signal_resetn);
11 t1.p_vci(tlink1);
12 t1.p_rdata_ams(s_from_ams);
13 t1.p_wdata_ams(s_to_ams);
14

15 cb0.CLK(signal_clk);
16 cb0.RESETN(signal_resetn);
17 cb0.TLOC_VCI[0](ilink);
18 cb0.ILOC_VCI[0](tlink0);
19 cb0.ILOC_VCI[1](tlink1);
20

21 sine_1.in(s_to_ams);
22 sine_1.out(s_from_ams);
23 sine_1.tdf_out(sig_1);
24

25 sink_1.in(sig_1);

Listing 3.7: Net-List of the SystemC SoC model.

void processing() {
// Get current time of the sample to be written to the out port.
double t = out.get_time().to_seconds();
// Calculate current value of the sine wave (amp = in.read(), f = 5 MHz)
double x = in.read() * sin(2.0 * M_PI * 5000000.0 * t);
// Write the value to the output ports
out.write((int) x);
tdf_out.write(x);

}

Listing 3.8: Sine Source processing() function.

void processing() {
using namespace std;
cout << " " << this->name() << " @ " << this->get_time() << ": "

<< in.read() << endl;
}

Listing 3.9: Sink processing() function.

To test this first approach, assembler instructions need to be hard-coded to the memory
of the model. For this purpose, the model of the RAM memory from the H-Inception
project [8] was modified to include some assembler instructions in a binary format, as it
is shown in Listing 3.10. In the following paragraphs, these assembler instructions are
described along with captions of the produced simulation output from the console of the
host machine shown in Figure 3.4.

According to the mapping table (Listing 3.5), the address of the GPIO2VCI component
was defined as 0x80000000. In line 3, register 1 will point to address 0x18 of the memory,
which has already stored the value 0x80000000 as it can be seen in the last line.

18

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

1 int mem[1024];
2 ...
3 mem[0x00 >> 2]=0x20010018; // addi $1,$0, 0x18
4 mem[0x04 >> 2]=0x8c220000; // lw $2,0($1) : mem[0x18]
5 mem[0x08 >> 2]=0xAC410004; // sw $1,4($2) : mem[0x80000004] <- 0x18
6 mem[0x0C >> 2]=0x8c430000; // lw $3,0($2) : mem[0x80000000]
7 mem[0x10 >> 2]=0xAC410004; // sw $1,4($2) : mem[0x80000004] <- 0x18 //DUMMY
8 mem[0x14 >> 2]=0x8c430000; // lw $3,0($2) : mem[0x80000000]
9 mem[0x18 >> 2]=0x80000000;

Listing 3.10: Assembler instructions hard-coded in RAM memory of the SystemC model.

In line 4, the value on address 0x18 is loaded to register 2, in such way that register 2 will
be a pointer to address 0x80000000. In the simulation output depicted in Figure 3.4a,
a “Load” from address 0x18 is requested at time 17.5 ns, and the value 0x80000000 is
loaded at time 23 ns.

(a) “Load” from line 4 (b) “Store” from line 5

(c) “Load” from line 6 (d) “Store” from line 7

(e) “Load” from line 8

Figure 3.4: Simulation output from the the host machine console of the integration of SystemC-
AMS and SystemC SoC components.

In line 5, the value 0x18 is stored into address 0x80000004 meaning that the GPIO2VCI
component will receive this value as an input from the VCI Crossbar component, who
in turn will send this value to the Sine Source component. In Figure 3.4b, a “Store”
instruction of the value 0x18 (24 in decimal) in address 0x80000004 is performed at
time 32.5 ns. It is important to note that before this value was sent to the GPIO2VCI
component, the Sink module connected to the Sine Source was printing a value of 0.
But after this “Store” instruction was performed, at time 34 ns, the Sink module starts

19

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

printing the values corresponding to the sine wave generated, taking as amplitude the
value given to the GPIO2VCI component (0x18 or 24 in decimal).

In line 6, the value stored in address 0x80000000 will be loaded into register 3. This means
that the GPIO2VCI component will receive a read command from the VCI Crossbar
component. This command will make the GPIO2VCI component to read the value
produced by the Sine Source at that moment and send it back to the VCI Crossbar
component. In Figure 3.4c, a “Load” from address 0x80000000 is requested at time 44.5 ns
and the value 0x17 (23 in decimal) is loaded at time 47 ns. This value corresponds to
the value of the sine wave that is being generated (converted to Integer), which matches
to the output printed by the Sink component.

In line 7, the same store instruction as in line 5 is repeated, which will not produce any
effect, since the same value 0x18 is being sent (DUMMY instruction). Figure 3.4d shows
this “Store” instruction, which will cause no effect to the Sine Source.

But finally in line 8, another read from the GPIO2VCI component is performed via the
load instruction from address 0x80000000. In Figure 3.4e, the “Load” instruction from
address 0x80000000 is requested at time 68.5 ns and the value 0x13 (19 in decimal) is
loaded at time 71 ns. This value corresponds to the value of the sine wave generated by
the Sine Source component and printed by the Sink component.

3.3. Integration of SystemC-AMS modules with a full SoCLib model

In the previous section, a platform integrating SystemC-AMS components and a peda-
gogic SoCLib SoC was developed. The next step is to integrate SystemC-AMS modules
with a full SoCLib model without the use of an OS. For this purpose, an existing SoCLib
model from the H-Inception project [8] was used. This model consists of a MIPS32 pro-
cessor ISS, A 128 KB RAM memory, a TTY console, and a VCI Virtual Micro-network
(Vgmn) component. This model uses the “Loader” utility from SoCLib to load cross-
compiled C code (Embedded Software) into the RAM memory component.

Sine Source

Sink

GPIO2VCI

VCI_Vgmn

MIPS32

RAM

TTY

SoCLib SoC

Figure 3.5: Model integrating SystemC-AMS and SoCLib components.

The model was modified in order to include the Sine Source and Sink System-C AMS
modules, which are connected via the GPIO2VCI component to the SoCLib SoC model as

20

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

it is shown Figure 3.5. The model has a similar behavior as in the previous section, with
the difference that now, the SoCLib SoC module will print also messages into the TTY
console component based on the embedded software that is programmed to the SoC.
Note that this figure shows a simplified version of the model, which does not include
all the ports of the GPIO2VCI and the other SoCLib components, but only the most
important ports that are used to connect the analog and digital hardware components.

Similar to the model used in the previous section, this SoCLib model uses a mapping
table to assign segments of memory to the Hardware components. The declaration and
construction of this mapping table is shown in Listing 3.11. The first four segments that
are added to the mapping table correspond to the RAM memory component, including
the reset and exception (excep) address spaces, as well as the data and instructions
(text) memory address spaces. The next segment tty corresponds to the TTY console
component. The last segment gpio2vci corresponds to the GPIO2VCI component. In
each segment, besides the base address and size parameters, it is important to note the
fourth field, which indicates to which target each segment is mapped to. The first four
segments (RAM memory segments) are mapped to target 0. The fifth segment tty is
mapped to target 1 and the sixth segment gpio2vci is mapped to target 2. Finally, note
that the base address assigned to the gpio2vci component is 0xC1200000. This address
was chosen specifically for this model, being an address that does not clash with the
addresses of the other components.

#define TEXT_BASE 0x00400000
#define TEXT_SIZE 0x00050000
#define RESET_BASE 0xBFC00000
#define RESET_SIZE 0x00010000
#define EXCEP_BASE 0x80000000
#define EXCEP_SIZE 0x00010000
#define DATA_BASE 0x10000000
#define DATA_SIZE 0x00020000
#define TTY_BASE 0xC0200000
#define TTY_SIZE 0x00000040
#define GPIO2VCI_BASE 0xC1200000
#define GPIO2VCI_SIZE 0x00000010
...

soclib::common::MappingTable maptab(32, IntTab(8), IntTab(8), 0x00300000);
maptab.add(Segment("reset" , RESET_BASE , RESET_SIZE , IntTab(0), true));
maptab.add(Segment("excep" , EXCEP_BASE , EXCEP_SIZE , IntTab(0), true));
maptab.add(Segment("text" , TEXT_BASE , TEXT_SIZE , IntTab(0), true));
maptab.add(Segment("data" , DATA_BASE , DATA_SIZE , IntTab(0), true));
maptab.add(Segment("tty" , TTY_BASE , TTY_SIZE , IntTab(1), false));
maptab.add(Segment("gpio2vci", GPIO2VCI_BASE, GPIO2VCI_SIZE, IntTab(2), false));

Listing 3.11: Mapping table for the SoCLib SoC model.

In Listing 3.12, the instantiation of all the components is shown. The RAM memory
component (vcimultiram0) receives as parameter the SoCLib loader utility. There are
two important parameters in the VCI Vgmn component (vgmn) , the third and foruth
parameters, which indicate the number of initiators (1) and targets (3) connected to
the VCI component. Also, note that each component receives as parameter the index
of the target number to which they are mapped to—e.g. IntTab(2) for the gpio2vci
component.

The Net-List is constructed in a very similar way as in the previous section. In List-
ing 3.13, only the Net-List for the gpio2vci component and the vgmn component is
shown. As before, the gpio2vci component is connected to the SystemC-AMS modules

21

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

soclib::caba::VciXcacheWrapper<vci_param, soclib::common::Mips32ElIss > cache0("cache0", 0,
maptab,IntTab(0), 4,1,8, 4,1,8);
soclib::common::Loader loader("soft/bin.soft");
soclib::caba::VciRam<vci_param> vcimultiram0("vcimultiram0", IntTab(0), maptab, loader);
soclib::caba::VciMultiTty<vci_param> vcitty("vcitty", IntTab(1), maptab, "vcitty0", NULL);
soclib::caba::VciVgmn<vci_param> vgmn("vgmn",maptab, 1, 3, 3, 8);
soclib::caba::GPIO2VCI<vci_param> gpio2vci0("gpio2vci0", IntTab(2), maptab);
SINE_SOURCE sine0 ("sine0");
SINK sink0("sink0");

Listing 3.12: Instantiation of the SoCLib SoC model components.

via the p_rdata_ams and p_wdata_ams ports, and it is connected to the vgmn component
via the p_vci port. The vgmn component connects to the initiator (which in this model
is the MIPS32 processor ISS) via the p_to_initiator[0] port; and it connects to all
the targets via the p_to_target[n] port. As the gpio2vci component was mapped to
target 2, it is connected to the port p_to_target[2] of the vgmn component.

gpio2vci0.p_clk(signal_clk);
gpio2vci0.p_resetn(signal_resetn);
gpio2vci0.p_vci(signal_vci_gpio2vci);
gpio2vci0.p_rdata_ams(s_from_ams);
gpio2vci0.p_wdata_ams(s_to_ams);

vgmn.p_clk(signal_clk);
vgmn.p_resetn(signal_resetn);
vgmn.p_to_initiator[0](signal_vci_m0);
vgmn.p_to_target[0](signal_vci_vcimultiram0);
vgmn.p_to_target[1](signal_vci_tty);
vgmn.p_to_target[2](signal_vci_gpio2vci);

Listing 3.13: Net-List of the SoCLib SoC model components.

In order to be able to include the new GPIO2VCI component into SoCLib, a Metadata
.sd file for this component should be created. Metadata are needed for building SoCLib
modules automatically, describe the modules to automated netlisters, and provide extra
information about the module [23]. The .sd files contains information about the Module
that is created, such as the definition and implementation files, class name, ports, etc.
Listing A.3 from the Appendix shows the Metadata file gpio2vci.sd that was created
for the GPIO2VCI component. Along with this Metadata file, the Platform Description
file contains the topcell source file name of the model and a list of all the used modules
and their parameters. In order to be able to use the GPIO2VCI component with the
SoCLib SoC, the platform_desc file needed to be modified, as it is shown in Listing A.4
from the Appendix, where line 9 for the gpio2vci component was added.

The SoCLib platform was originally designed to work only with SystemC modules. But
in this stage of the project, the SystemC-AMS extensions have to be compiled when
they are added to the topcell of the model. For this purpose, the SoCLib configuration
files need to be modified as well. As it is pointed in the SoCLib documentation [23],
there are three ways in which the configuration files can be modified: at the installation
directory level, at the user home directory level or at the current directory level. At
this stage, modifications at the current directory level were chosen to make sure that the
changes would only affect the current model. For this, a soclib.conf file was created in
the current directory of the model and the necessary SystemC and SystemC-AMS flags

22

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

and libraries were configured. The soclib.conf file is shown in Listing A.5 from the
Appendix.

The SoCLib SoC model that is being used here, already has the necessary libraries to
implement C code that can be cross-compiled for the MIPS32 architecture and used as
embedded Software for the model, by using the “Loader” utility from SoCLib to load the
program into the RAM memory. So finally, to test this second integration approach, a
C program was created that could communicate with the GPIO2VCI component and
the SystemC-AMS modules in a similar way as it was done in the previous section.
Listing 3.14 shows the main function of this C code. In Figure 3.6 (a - d), the simulation
output from the host machine console is shown. In Figure 3.6e, the output from the
TTY terminal is presented. Below, the output of this simulation and the C code program
are described to show how the integration between the SystemC-AMS modules and the
SoCLib SoC works.

1 int main(void)
2 {
3 int * wr_ptr;
4 int * rd_ptr;
5 wr_ptr = (int*)0xC1200000; //Address of the GPIO2VCI component.
6 rd_ptr = (int*) 0xC1200004;
7 *wr_ptr = 25;
8 printf("Setting amplitude of sine generator to %d\n", *wr_ptr);
9 printf("Reading value of sine generator: %d\n", *rd_ptr);

10 printf("Reading value of sine generator: %d\n", *rd_ptr);
11 printf("Reading value of sine generator: %d\n", *rd_ptr);
12 while (1);
13 return 0;
14 }

Listing 3.14: C code of the main function from the SoCLib SoC Software.

In lines 3 to 6, two pointers are defined and initialized to the values 0xC1200000 and
0xC1200004 which correspond to the address segments where the GPIO2VCI component
is mapped to.

In line 7, the value 25 is written to the address 0xC1200000 pointed by the wr_ptr pointer.
This will tell the VCI vgmn component to send a write command to the GPIO2VCI
component, which in turn will send the value through its p_wdata_ams port to the Sine
Source component. This can bee seen in the host machine console simulation output
in Figure 3.6a, where the value 25 is written to address 0xC1200000 at time 1022 ns.
Note that before this value is sent to the GPIO2VCI component, the output of the Sink
component which is connected to the Sine Source module has a value of 0. But after the
GPIO2VCI component writes this value to the Sine Source component, the Sink output
starts printing the values of the sine wave generated, using as amplitude the value sent
to the GPIO2VCI component. In a similar way, Figure 3.6e shows the output of the SoC
TTY console. These messages are printed from the C code program that was loaded to
the RAM memory of the SoCLib SoC model. In line 3 of the TTY console, the value
written to the GPIO2VCI component is shown as well.

In line 9 of Listing 3.14, the value of address 0xC1200004 pointed by the rd_ptr pointer
is accessed. This will tell the VCI component to send a read command to the GPIO2VCI
component which will in turn read the value from its p_rdata_ams port which is con-
nected to the Sine Source component. This is shown in the host machine console simula-
tion output in Figure 3.6b, where the value -12 is read from the GPIO2VCI component

23

3. INTEGRATION OF SYSTEMC-AMS AND SOCLIB COMPONENTS

at time 1917 ns. This value corresponds to the output printed by the Sink component at
that time, which are the values of the generated sine wave. Similarly, Figure 3.6e shows
in line 4 the same value being printed into the TTY console of the SoC model.

Lines 10 and 11 of Listing 3.14 read again values from address 0xC1200004. In the same
way, the GPIO2VCI component will read from its p_rdata_ams port the values, as shown
in the host machine console simulation output in Figures 3.4c and 3.6d, which correspond
to a value of 9 at time 2812 ns and a value of 24 at time 3644 ns. These are the values
of the sine wave being read at those specific times. The same values are being printed in
the TTY console of the SoC model, as shown in the last two lines of Figure 3.6e.

(a) Host machine console: Write to the
GPIO2VCI component.

(b) Host machine console: Read from the
GPIO2VCI component.

(c) Host machine console: Read from the
GPIO2VCI component.

(d) Host machine console: Read from the
GPIO2VCI component.

(e) TTY console output.

Figure 3.6: Simulation of the integration of SystemC-AMS and SoCLib SoC components.

24

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

4. Time synchronization between TDF and DE MoCs

4.1. Detection of time synchronization issues

As mentioned in Chapter 1, when executing a SystemC-AMS simulation of a model,
synchronization issues between the TDF and the DE MoCs may arise, specially when
dealing with multi-rate TDF blocks that are connected to DE blocks by means of TDF
converter ports. According to [24], when a SystemC-AMS simulation is being executed,
the execution of the SystemC DE simulation kernel is blocked while the SystemC-AMS
simulation kernel is running. As a consequence, during this period the DE simulation
time (tDE) does not advance at all, while the TDF simulation time (tTDF) is running
according to the timesteps of the TDF modules and ports. When there is an access to
a TDF converter port (which connects one DE and one TDF block), the SystemC-AMS
simulation kernel is interrupted and yields to the SystemC DE simulation kernel. In this
way, the tDE advances until it is equal to the tTDF. In general the tTDF runs ahead of
the tDE, such that Equation 4.1 should always hold.

tTDF ≥ tDE (4.1)

In some scenarios, the tDE may be greater than the tTDF which may generate causality
problems during the simulation of the model.

Here, three synchronization operations are defined.

1. Periodic synchronization operation: It occurs when a period of a TDF cluster has
completed. A causality check is done using Equation 4.1. The SystemC-AMS
simulation kernel is interrupted and yields to the SystemC DE simulation kernel.
In consequence, the tDE advances until it is equal to the tTDF.

2. Read synchronization operation: It occurs when an access to an input converter
port occurs. A causality check is done using Equation 4.1. The SystemC-AMS
simulation kernel is interrupted and yields to the SystemC DE simulation kernel.
In consequence, the tDE advances until it is equal to the tTDF.

3. Write synchronization operation: It occurs when an access to an output converter
port occurs. A causality check is done using Equation 4.1. But in this case, the
SystemC-AMS simulation kernel is not interrupted, hence the tDE does not advance.

In the following subsections, four different possible scenarios are presented and analyzed
in order to show when a time synchronization issue may occur, depending on the sequence
of accesses to the TDF converter ports. A simple example adapted from [21, 7] will be
used to create the TDF models and execute the simulations that will help to describe
the different scenarios.

4.1.1. Access to input converter port before an access to output converter port

For this first scenario, the model shown in Figure 4.1 was used. It consists of two
TDF modules A and B connected to two DE modules X and Y through the signals
sig1 and sig3 respectively by means of the TDF converter ports A.in and B.out. For

25

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

each module, the Module-Timestep (Tm) and the port parameters Rate (R), Delay (D)
and Port-Timestep (Tp) are given. According to the module and port parameters, the
determined execution order or static schedule of the TDF modules for one period of this
model is ABABB, as explained in Appendix C. The SystemC-AMS simulation output
of this model is shown in Figure 4.2.

A BX Y
R

in
= 1

D
in

= 0
R

out
= 1

D
out

= 0

Tm
A
= 6 ms Tm

B
= 4 ms

Tp
in

= 6 ms Tp
out

= 4 ms

R
out

= 3

Tp
out

= 2 ms
D

out
= 0

inout inout out in

sig1 sig2 sig3
R

in
= 2

D
in

= 0

Tp
in

= 2 ms

Figure 4.1: TDF-DE model accessing input converter port before accessing output converter
port. (Adapted from [7]).

(a) (b)

(c) Detection of time synchronization issue.

Figure 4.2: SystemC-AMS simulation of model accessing input converter port before accessing
output converter port.

Step Sync. Type tTDF (ms) tDE (ms) tTDF ≥ tDE New tDE (ms)
1 Read tTDFA.in

= 0 0 True 0
2 – – – – –
3 – – – – –
4 Write tTDFB.out

= 0 0 True 0
5 Read tTDFA.in

= 6 0 True 6
6 – – – – –
7 – – – – –
8 Write tTDFB.out

= 4 6 False –

Table 4.1: TDF and DE simulation time tracking for model accessing input converter port
before accessing output converter port.

26

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

Below, the details of the execution of this model’s simulation are shown. Table 4.1 shows
how the tTDF and tDE advance when a synchronization operation occurs, according to
each step of the below description. It also shows if Equation 4.1 holds or if a causality
problem is generated.

1. At the start of the simulation, tDE, tTDFA
, and tTDFB

are at 0 ms. Module A
activates at tTDFA

= 0 ms, but for module A to be executed, an access to the
input converter port A.in will occur, generating a read synchronization operation.
In consequence, the SystemC DE simulation kernel is executed and tDE advances
to 0 ms. This step is not really shown in Figure 4.2 because when the access to the
input converter port A.in happens, tDE is already equal to tTDFA.in

.

2. After this, module A reads the available sample from the input converter port A.in
at 0 ms, executes its internal functions and writes three samples into the output
port A.out with timestamps of 0 ms, 2 ms and 4 ms respectively. This can be seen
in the upper part of Figure 4.2a.

3. Module B is activated at tTDFB
= 0 ms. As shown in Figure 4.2a, it reads two of

the three available samples from the input port B.in at 0 ms and 2 ms respectively,
executes its internal functions and writes one sample into the output converter port
B.out at 0 ms.

4. Since an access to the output converter port B.out occurred at 0 ms, a write syn-
chronization operation is generated. Equation 4.1 still holds since tTDFB.out

= 0 ms
and tDE = 0 ms, but as shown in Figure 4.2a, the SystemC DE simulation kernel
does not execute and tDE does not advance.

5. According to the schedule, the next module to be executed is A. Since the timestep
of the module is TmA = 6 ms, it activates at tTDFA

= 6 ms as Figure 4.2a shows.
But once again in order to be executed, an access to the input converter port
A.in will occur at 6 ms and a read synchronization operation will be generated.
Equation 4.1 still holds since tTDFA.in

= 6 ms and tDE = 0 ms. As it can be seen
in the lower part of Figure 4.2a and the beginning of Figure 4.2b, the SystemC
DE simulation kernel is executed and tDE advances until it reaches tTDFA.in

; that is
tDE = 6 ms. Figure 4.2b shows that theX andY modules execute up to tDE = 5 ms.
After this, the tDE advances to 6 ms and then the SystemC-AMS simulation kernel
takes control.

6. Now module A reads the available sample from the input converter port A.in at
6 ms, executes its internal functions and writes three samples into the output port
A.out with timestamps of 6 ms, 8 ms and 10 ms respectively, as it is shown in the
lower part of Figure 4.2b or the upper part of Figure 4.2c.

7. The next module to be activated according to the schedule is moduleB. Its timestep
is TmB = 4 ms, hence it is activated at tTDFB

= 4 ms. It reads two of the four
available samples from the input port B.in at 4 ms and 6 ms respectively, as shown
in Figure 4.2c. It executes its internal functions and tries to write one sample into
the output converter port B.out at 4 ms.

8. Since an access to the output converter port B.out occurred at 4 ms, a write
synchronization operation would be required. In step 5, a read synchronization

27

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

operation was performed, so tDE = 6 ms. But since tTDFB.out
= 4 ms, Equation 4.1

does not hold and a causality problem is generated. This is depicted in the last
lines of Figure 4.2c, where a time synchronization problem was detected by the
SystemC-AMS simulator. We can see in this figure that the tTDFB.out

= 4 ms
(current sca-time: 4 ms) and the tDE = 6 ms (current sc-time: 6 ms).

4.1.2. Access to output converter port before an access to input converter port

In this second scenario, a similar model is used. The difference is that the type of
converter ports are modified as shown in Figure 4.3. The TDF module A has an output
converter port A.out_de connected to the DE module X, while the TDF module B has
an input converter port B.in_de connected to the DE module Y. The other parameters
are the same as in the previous scenario. But my making these changes, this scenario
will test the behavior of the SystemC-AMS simulator when accessing an output converter
port before accessing an input converter port. Similarly, the SystemC-AMS simulation
output is shown in Figure 4.4

A BX Y
R

out_de
=1

D
out_de

=0
R

in_de
=1

D
in_de

=0

Tm
A
= 6 ms Tm

B
= 4 ms

Tp
out_de

= 6 ms Tp
in_de

= 4 ms

R
out

=3

Tp
out

= 2 ms
D

out
=0

out_dein inout in_de out

sig1 sig2 sig3
R

in
=2

D
in
=0

Tp
in

= 2 ms

Figure 4.3: TDF-DE model accessing output converter port before accessing input converter
port. (Adapted from [7]).

(a) (b)

Figure 4.4: SystemC-AMS simulation of model accessing output converter port before accessing
input converter port.

28

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

The details of the execution of this model are described below. Table 4.2 presents how
the tTDF and tDE advance when a synchronization operation occurs, according to each
step of the below description. It also shows if Equation 4.1 holds or if a causality problem
is generated.

Step Sync. Type tTDF (ms) tDE (ms) tTDF ≥ tDE New tDE (ms)
1 Write tTDFA.out_de

= 0 0 True 0
2 Read tTDFB.in_de

= 0 0 True 0
3 – – – – –
4 Write tTDFA.out_de

= 6 0 True 0
5 Read tTDFB.in_de

= 4 0 True 4
6 – – – – –
7 Read tTDFB.in_de

= 8 4 True 8
8 – – – – –
9 Periodic tTDF = 12 8 – 12

Table 4.2: TDF and DE simulation time tracking for model accessing output converter port
before accessing input converter port.

1. At the start of the simulation, tDE, tTDFA
, and tTDFB

are at 0 ms. Module A
activates at tTDFA

= 0 ms. It executes its internal functions, writes one sample
into the output converter port A.out_de at 0 ms and writes three samples into
the output port A.out with timestamps of 0 ms, 2 ms and 4 ms respectively, as it
is shown in Figure 4.4a. Since an access to the output converter port A.out_de
occurred at 0 ms, a write synchronization operation is generated. Equation 4.1
holds because tTDFA.out_de

= 0 ms and tDE = 0 ms, but as it can be seen in
Figure 4.4a, the SystemC DE simulation kernel does not execute and tDE does not
advance.

2. Then, Module B is activated at tTDFB
= 0 ms. For module B to be executed, an

access to the input converter port B.in_de will occur, generating a read synchro-
nization operation. In consequence, the SystemC DE simulation kernel is executed
and tDE advances to 0 ms. This step is not shown in Figure 4.4 because when
the access to the input converter port B.in_de happens, tDE is already equal to
tTDFB.in_de

.

3. Module B executes its internal functions and reads the sample available at the
input converter port B.in_de at tTDFB.in_de

= 0 ms and two of the three samples
available at the input port B.in at tTDFB.in

equals to 0 ms and 2 ms respectively.

4. According to the schedule, the next module to be executed is A. Since the timestep
of the module is TmA = 6 ms, it activates at tTDFA

= 6 ms, as Figure 4.4a shows.
It executes its internal functions and again, writes one sample into the output
converter port A.out_de at 6 ms and writes three samples into the output port
A.out with timestamps of 6 ms, 8 ms and 10 ms respectively. A write synchro-
nization operation is generated because the output converter port A.out_de was
accessed. Equation 4.1 still holds because tDE = 0 ms. And as Figure 4.4a shows,
the SystemC DE simulation kernel does not execute and tDE does not advance.

5. Now, module B is activated at tTDFB
= 4 ms, but in order to be executed, an access

to the input converter port B.in_de will occur at 4 ms and a read synchronization

29

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

operation will be generated. Equation 4.1 still holds since tTDFB.in_de
= 4 ms and

tDE = 0 ms. Figure 4.4a shows that the SystemC DE simulation kernel is executed
and tDE advances until it reaches tTDFB.in_de

; that is tDE = 4 ms. Figure 4.4a
shows that the X and Y modules execute up to tDE = 3 ms. After this, the tDE
advances to 4 ms and then the SystemC-AMS simulation kernel takes control.

6. Module B executes its internal functions and reads the available sample from the
input converter port B.in_de at tTDFB.in_de

= 4 ms. It reads two of the four
samples available at the input port B.in at tTDFB.in

equals to 4 ms and 6 ms
respectively, as Figure 4.4a shows.

7. The next module to be activated according to the schedule is module B. It activates
at tTDFB

= 8 ms, as it can be seen in the bottom part of Figure 4.4a. In order to
be executed, an access to the input converter port B.in_de will occur at 8 ms and
a read synchronization operation will be generated. Equation 4.1 still holds since
tTDFB.in_de

= 8 ms and tDE = 4 ms. Now, as it is shown in Figures 4.4a and 4.4b,
the SystemC DE simulation kernel is executed and tDE advances until it reaches
tTDFB.in_de

= 8 ms. Again, the X and Y modules execute up to tDE = 7 ms. After
this, the tDE advances to 8 ms and then the SystemC-AMS simulation kernel takes
control.

8. Finally, module B executes its internal functions, reads the available sample from
the input converter port B.in_de at tTDFB.in_de

= 8 ms and reads the last two
available samples at the input port B.in at tTDFB.in

equals to 8 ms and 10 ms
respectively.

9. At this point, one period of the schedule of the model has been executed. Hence,
a periodic synchronization operation occurs. The SystemC DE simulation kernel
executes and tDE advances until it reaches the new tTDF for the start of a new TDF
cluster period; that is until tDE = 12 ms. This is shown the bottom of Figure 4.4b,
where a new period starts.

It is important to notice that in this scenario there was no time synchronization issues
even if same TDF module parameters as in the previous scenario were used. The only
thing that was modified, were the type of converter ports used in each of the TDF
modules. So this behavior was present due to the fact that the tDE only advanced after
a read synchronization operation occurred or when a period of the TDF cluster was
completed.

4.1.3. Access to output converter port before an access to another output
converter port

In the following scenario, the case when two output converter ports are accessed one
after another will be analyzed. The same model used in the previous scenarios will be
modified in order that the converter port of each of the two TDF modules will be an
output converter port. All the other module parameters are being kept the same. This is
depicted in Figure 4.5, where the module A has an output converter port A.out_de and
the module B has another output converter port B.out_de. Once again, the SystemC-
AMS simulation output of this model is presented in Figure 4.6.

30

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

A BX Y
R

out_de
=1

D
out_de

=0
R

out_de
=1

D
out_de

=0

Tm
A
= 6 ms Tm

B
= 4 ms

Tp
out_de

= 6 ms Tp
out_de

= 4 ms

R
out

=3

Tp
out

= 2 ms
D

out
=0

out_dein inout out_de in

sig1 sig2 sig3
R

in
=2

D
in
=0

Tp
in

= 2 ms

Figure 4.5: TDF-DE model accessing output converter port before accessing another output
converter port. (Adapted from [7]).

(a) (b)

Figure 4.6: SystemC-AMS simulation of model accessing output converter port before accessing
another output converter port.

Step Sync. Type tTDF (ms) tDE (ms) tTDF ≥ tDE New tDE (ms)
1 – – – – –
2 Write tTDFA.out_de

= 0 0 True 0
3 – – – – –
4 Write tTDFB.out_de

= 0 0 True 0
5 – – – – –
6 Write tTDFA.out_de

= 6 0 True 0
7 – – – – –
8 Write tTDFB.out_de

= 4 0 True 0
9 – – – – –
10 Write tTDFB.out_de

= 8 0 True 0
11 Periodic tTDF = 12 0 – 12

Table 4.3: TDF and DE simulation time tracking for model accessing output converter port
before accessing another output converter port.

The description of the execution of the SystemC simulation output is presented below.
As in the previous scenarios, Table 4.3 shows how the tTDF and tDE advance when a

31

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

synchronization operation occurs, according to each step of the below description. It
also shows if Equation 4.1 holds or if a causality problem is generated.

1. At the beginning of the simulation, tDE, tTDFA
, and tTDFB

are at 0 ms. Module
A activates at tTDFA

= 0 ms. It executes its internal functions, writes one sample
into the output converter port A.out_de at 0 ms and writes three samples into
the output port A.out with timestamps of 0 ms, 2 ms and 4 ms respectively. This
is shown in the upper part of Figure 4.6a.

2. Since an access to the output converter port A.out_de occurred at 0 ms,
a write synchronization operation is generated. Equation 4.1 holds because
tTDFA.out_de

= 0 ms and tDE = 0 ms, but as it can be seen in Figure 4.6a,
the SystemC DE simulation kernel does not execute and tDE does not advance.

3. Module B is activated at tTDFB
= 0 ms. As shown in Figure 4.6a, it reads two of

the three available samples from the input port B.in at 0 ms and 2 ms respectively,
executes its internal functions and writes one sample into the output converter port
B.out_de at 0 ms.

4. Because an access to the output converter port B.out_de occurred at 0 ms,
a write synchronization operation is generated. Equation 4.1 still holds since
tTDFB.out_de

= 0 ms and tDE = 0 ms. But again, the SystemC DE simulation
kernel does not execute and tDE does not advance.

5. According to the schedule, the next module to be executed is A. Since the timestep
of the module is TmA = 6 ms, it activates at tTDFA

= 6 ms, as Figure 4.6a shows.
It executes its internal functions and again, writes one sample into the output
converter port A.out_de at 6 ms and writes three samples into the output port
A.out with timestamps of 6 ms, 8 ms and 10 ms respectively.

6. A write synchronization operation is generated because the output converter port
A.out_de was accessed at 6 ms. Equation 4.1 still holds because tDE = 0 ms.
And as Figure 4.6a shows, the SystemC DE simulation kernel does not execute and
tDE does not advance.

7. The next module to be activated according to the schedule is moduleB. Its timestep
is TmB = 4 ms, hence it is activated at tTDFB

= 4 ms. It reads two of the four
available samples from the input port B.in at 4 ms and 6 ms respectively, as shown
in Figure 4.6a. It executes its internal functions and tries to write one sample into
the output converter port B.out_de at 4 ms.

8. This access to the output converter port B.out_de at 4 ms generates a write
synchronization operation. Equation 4.1 still holds because tDE has not advanced
yet. And as it is shown in Figure 4.6a, the SystemC DE simulation kernel does not
execute and tDE still does not advance.

9. It is turn again for module B to be executed according to the schedule. It is
activated at tTDFB

= 8 ms. It reads the last two available samples at the input
port B.in at tTDFB.in

equals to 8 ms and 10 ms respectively. And as shown in
Figure 4.6a, it writes one sample into the output converter port B.out_de at
8 ms.

32

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

10. Since an access to the output converter port B.out_de occurred at 8 ms, a write
synchronization operation is generated. Equation 4.1 still holds, but the SystemC
DE simulation kernel does not execute and tDE still does not advance.

11. At this point, one period of the TDF cluster has been executed. A periodic syn-
chronization operation is generated, and as it can be seen in Figures 4.6a and 4.6b,
the SystemC DE simulation kernel finally executes and tDE advances from 0 ms
until it reaches the new tTDF for the start of a new TDF cluster period; that is
until tDE = 12 ms. At the bottom of Figure 4.6b, the execution of a new TDF
cluster period at tTDF = 12 ms occurs. And at this point in time, the SystemC DE
simulation kernel is interrupted.

During the analysis of this scenario, no synchronization issues occurred, because the tDE
didn’t advance when write synchronization operations took place. The SystemC DE
kernel only executed and the tDE advanced only when a period of the TDF cluster was
completed.

4.1.4. Access to input converter port before an access to another input converter
port

In this last scenario, the case when two input converter ports are accessed one after
another is analyzed. A similar model will be used for this purpose, with the difference
that the converter ports of the TDF modules A and B will be input converter ports in
both cases. Figure 4.7 shows this model, where module A has an input converter port
A.in and module B has another input converter port B.in_de. The SystemC-AMS
simulation output of this model is shown in Figure 4.8.

A BX Y
R

in
=1

D
in
=0

R
in_de

=1
D

in_de
=0

Tm
A
= 6 ms Tm

B
= 4 ms

Tp
in

= 6 ms Tp
in_de

= 4 ms

R
out

=3

Tp
out

= 2 ms
D

out
=0

inout inout in_de out

sig1 sig2 sig3
R

in
=2

D
in
=0

Tp
in

= 2 ms

Figure 4.7: TDF-DE model accessing input converter port before accessing another input con-
verter port. (Adapted from [7]).

Below, an explanation of the execution of the SystemC-AMS simulation of this model is
presented. Table 4.4 shows how the tTDF and tDE advance depending on the synchro-
nization operations that may occur. It also shows if Equation 4.1 holds, denoting if a
synchronization problem has occurred or not.

1. At the start of the simulation, tDE, tTDFA
, and tTDFB

are at 0 ms. Module A
activates at tTDFA

= 0 ms, but for module A to be executed, an access to the
input converter port A.in will occur, generating a read synchronization operation.
In consequence, the SystemC DE simulation kernel is executed and tDE advances
to 0 ms. This step is not shown in Figure 4.8 because when the access to the input
converter port A.in happens, tDE is already equal to tTDFA.in

.

33

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

(a) (b)

Figure 4.8: SystemC-AMS simulation of model accessing input converter port before accessing
another input converter port.

2. After this, module A reads the available sample from the input converter port A.in
at 0 ms, executes its internal functions and writes three samples into the output
port A.out with timestamps of 0 ms, 2 ms and 4 ms respectively. This is shown
in the upper part of Figure 4.8a.

3. Then, Module B is activated at tTDFB
= 0 ms. For module B to be executed, an

access to the input converter port B.in_de will occur, generating a read synchro-
nization operation. In consequence, the SystemC DE simulation kernel is executed
and tDE advances to 0 ms. This step is not shown in Figure 4.4 because when
the access to the input converter port B.in_de happens, tDE is already equal to
tTDFB.in_de

.

4. Module B executes its internal functions and reads the sample available at the
input converter port B.in_de at tTDFB.in_de

= 0 ms and two of the three samples
available at the input port B.in at tTDFB.in

equals to 0 ms and 2 ms respectively.

5. According to the schedule, the next module to be executed is A. Since the timestep
of the module is TmA = 6 ms, it activates at tTDFA

= 6 ms as Figure 4.8a shows.
But once again in order to be executed, an access to the input converter port
A.in will occur at 6 ms and a read synchronization operation will be generated.
Equation 4.1 still holds since tTDFA.in

= 6 ms and tDE = 0 ms. As Figure 4.8a
shows, the SystemC DE simulation kernel is executed and tDE advances until it
reaches tTDFA.in

; that is tDE = 6 ms. Figure 4.8a shows that the X and Y modules
execute up to tDE = 5 ms. After this, the tDE advances to 6 ms and then the
SystemC-AMS simulation kernel takes control.

6. Now module A reads the available sample from the input converter port A.in at
6 ms, executes its internal functions and writes three samples into the output port

34

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

Step Sync. Type tTDF (ms) tDE (ms) tTDF ≥ tDE
New tDE
(ms)

1 Read tTDFA.in
= 0 0 True 0

2 – – – – –
3 Read tTDFB.in_de

= 0 0 True 0
4 – – – – –
5 Read tTDFA.in

= 6 0 True 6
6 – – – – –
7 Write tTDFB.in_de

= 4 6 False-no sync. issue 6
8 – – – – –
9 Write tTDFB.in_de

= 8 6 True 8
10 – – – – –
11 Periodic tTDF = 12 8 – 12

Table 4.4: TDF and DE simulation time tracking for model accessing input converter port
before accessing another input converter port.

A.out with timestamps of 6 ms, 8 ms and 10 ms respectively, as it is shown in the
lower part of Figure 4.8a.

7. The next module to be activated according to the schedule is moduleB. Its timestep
is TmB = 4 ms, hence it is activated at tTDFB

= 4 ms. But in order to be executed,
an access to the input converter port B.in_de will occur at 4 ms and a read
synchronization operation will be generated. Notice here that Equation 4.1 will
NOT hold, since tTDFB.in_de

= 4 ms and tDE = 6 ms. But as it can be seen from
the simulation output in Figure 4.8b, NO synchronization issue was generated. In
this case the tDE should advance to 4 ms, but since it is already equal to 6 ms, no
action is taken.

8. So module B executes its internal functions and reads the available sample from
the input converter port B.in_de at tTDFB.in_de

= 4 ms. It reads two of the
four samples available at the input port B.in at tTDFB.in

equals to 4 ms and 6 ms
respectively, as Figure 4.8b shows.

9. Then, it is turn for module B to be activated according to the schedule. It activates
at tTDFB

= 8 ms, as Figure 4.8b shows. In order to be executed, an access to
the input converter port B.in_de will occur at 8 ms and a read synchronization
operation will be generated. In this case Equation 4.1 holds since tTDFB.in_de

= 8 ms
and tDE = 6 ms. Now, as it is shown in Figure 4.8b, the SystemC DE simulation
kernel is executed and tDE advances until it reaches tTDFB.in_de

= 8 ms. Again, the
X and Y modules execute up to tDE = 7 ms. After this, the tDE advances to 8 ms
and then the SystemC-AMS simulation kernel takes control.

10. Finally, module B executes its internal functions, reads the available sample from
the input converter port B.in_de at tTDFB.in_de

= 8 ms and reads the last two
available samples at the input port B.in at tTDFB.in

equals to 8 ms and 10 ms
respectively.

11. At this point, one period of the TDF cluster has been executed. A periodic syn-
chronization operation is generated, and as Figure 4.8b shows, the SystemC DE
simulation kernel finally executes and tDE advances from 8 ms until it reaches the

35

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

new tTDF for the start of a new TDF cluster period; that is until tDE = 12 ms. At the
bottom of Figure 4.8b, the execution of a new TDF cluster period at tTDF = 12 ms
occurs. And at this point in time, the SystemC DE simulation kernel is interrupted.

From the analysis of this scenario, even if Equation 4.1 failed to hold during step 7, the
SystemC-AMS simulator didn’t generate any synchronization issues. This means that
the time synchronization check happens, but if Equation 4.1 does not hold, the SystemC
DE simulation kernel will not execute but no synchronization issue will be generated. If
it holds, the SystemC DE simulation kernel will take control and execute normally, and
the tDE will advance.

4.1.5. Preliminary conclusions

Considering the previous four scenarios’ analysis, two things can be concluded:

1. Only in two cases the SystemC-AMS simulation kernel is interrupted to yield to
the SystemC DE simulation kernel and in consequence the tDE advances:

a) When there is an access to a TDF input converter port and Equation 4.1
holds.

b) When one period of the TDF cluster has finished executing.

2. Time synchronization issues between DE and TDF MoCs only occur when there
was an access to an input converter port that advanced the tDE further than the
tTDF of the actual output converter port that is being accessed. The reason is
that the tTDF of the output converter ports needs to be always greater or equal
than the tDE, according to Equation 4.1. In other words, time synchronization
issues may only occur when there is a read synchronization operation before a
write synchronization operation. The analysis shows that there are no causality
problems in any other scenario—i.e. read before read, write before write, or write
before read synchronization operations.

4.2. Avoidance of time synchronization issues

From the previous analysis of the first scenario in Subsection 4.1.1, in order to avoid
the time synchronization issue that was detected, the sample that is written into the
output converter port B.out should be written at least at tTDFB.out

= 6 ms, such that
tTDFB.out

≥ tDE holds. We see that the timestamp when the sample is written into B.out
should be shifted by

tDE − tTDFB.out
= 6 ms - 4 ms = 2 ms.

This is similarly shown in the SystemC-AMS simulation output from Figure 4.2c: “insert
delay of at least: 2 ms”. To achieve this, we can make use of the Delay parameter of a

36

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

TDF converter port’s module. In general, the minimum required Delay value in a port
p from a module M (DreqM.p) can be determined by Equation 4.2.

DreqM.p =

⌈
tDE − tTDFM.p

TpM.p

⌉
(4.2)

To solve the synchronization issue using Equation 4.2, the minimum required delay in
port B.out should be

DreqM.p =

⌈
6 ms - 4 ms

4 ms

⌉
= 1

The SystemC-AMS simulation output of the model from Figure 4.1 using a delay in port
B.out of Dout = 1 is shown in Figure 4.9. The details of the simulation’s execution of
the model are shown below.

(a) (b)

Figure 4.9: SystemC-AMS simulation of model accessing input converter port before accessing
output converter port using a delay to solve causality problems.

Table 4.5 shows how the tTDF and tDE advance when a synchronization operation occurs,
according to each step of the below description. It also shows if Equation 4.1 holds or if
a causality problem is generated.

1. At start of the simulation, tDE, tTDFA
, and tTDFB

are at 0 ms. Because of the delay
Dout = 1 in the output converter port B.out, there is a sample already available
at tTDFB.out

= 0 ms.

2. ModuleA activates at tTDFA
= 0 ms, but for moduleA to be executed, an access to

the input converter port A.in occurs, generating a read synchronization operation.
In consequence, the SystemC DE simulation kernel is executed and tDE advances
to 0 ms. The step is not shown in Figure 4.9, because when the access to the input
converter port A.in happens, the tDE is already equal to the tTDFA.in

.

37

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

Step Sync. Type tTDF (ms) tDE (ms) tTDF ≥ tDE New tDE (ms)
1 – tTDFB.out

= 0 0 – –
2 Read tTDFA.in

= 0 0 True 0
3 – – – – –
4 – – – – –
5 Write tTDFB.out

= 4 0 True 0
6 Read tTDFA.in

= 6 0 True 6
7 – – – – –
8 – – – – –
9 Write tTDFB.out

= 8 6 True 6
10 – – – – –
11 Write tTDFB.out

= 12 6 True 6
12 Periodic tTDF = 12 6 True 12

Table 4.5: TDF and DE simulation time tracking for model accessing input converter port
before accessing output converter port using a delay to solve causality problems.

3. Then, module A reads the available sample from the input converter port A.in at
0 ms, executes its internal functions and writes three samples into the output port
A.out with timestamps of 0 ms, 2 ms and 4 ms respectively. This is shown at the
upper part of Figure 4.9a.

4. Module B is activated at tTDFB
= 0 ms. As shown in Figure 4.9a, it reads two of

the three available samples from the input port B.in at 0 ms and 2 ms respectively,
executes its internal functions and writes one sample into the output converter port.
But because a delay of Dout = 1 was inserted in the output converter port B.out,
this sample will actually be written to the DE module at 4 ms. This can be seen in
Figure 4.9a, when the module Y reads a value of 0 from tDE = 0 ms to 3 ms, and
then it starts reading the current sample from module B at tDE = 4 ms. Hence it
is considered that the access to the output converter port occurs at 4 ms due to
the action of the delay.

5. Since an access to the output converter port B.out occurred at 4 ms, a write
synchronization operation is generated. Equation 4.1 holds since tTDFB.out

= 4 ms
and tDE = 0 ms, and the SystemC DE simulation kernel does not execute and tDE
does not advance.

6. According to the schedule, the next module to be executed is A. Since the timestep
of the module is TmA = 6 ms, it activates at tTDFA

= 6 ms as Figure 4.9a shows.
But once again in order to be executed, an access to the input converter port
A.in will occur at 6 ms and a read synchronization operation will be generated.
Equation 4.1 still holds since tTDFA.in

= 6 ms and tDE = 0 ms. As Figure 4.9a
shows, the SystemC DE simulation kernel is executed and tDE advances until it
reaches tTDFA.in

; that is tDE = 6 ms. Figure 4.9a shows that the X and Y modules
execute up to tDE = 5 ms. After this, the tDE advances to 6 ms and then the
SystemC-AMS simulation kernel takes control.

7. Now module A reads the available sample from the input converter port A.in at
6 ms as shown at the bottom of Figure 4.9a, executes its internal functions and
writes three samples into the output port A.out with timestamps of 6 ms, 8 ms
and 10 ms respectively, as it is shown in the upper part of Figure 4.9b.

38

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

8. The next module to be activated according to the schedule is moduleB. Its timestep
is TmB = 4 ms, hence it is activated at tTDFB

= 4 ms. It reads two of the four
available samples from the input port B.in at 4 ms and 6 ms respectively, as shown
in Figure 4.9b. It executes its internal functions and tries to write one sample into
the output converter port B.out at 8 ms (due to the action of the delay).

9. Since an access to the output converter port B.out occurred at 8 ms, a write syn-
chronization operation is generated. Equation 4.1 still holds since tTDFB.out

= 8 ms
and tDE = 6 ms, but the SystemC DE simulation kernel does not execute and tDE
does not advance.

10. As there are still two available samples in the port B.in to be consumed, module
B is activated again at tTDFB

= 8 ms as shown in Figure 4.9b. It reads the last
two available samples from the input port B.in at 8 ms and 10 ms respectively,
executes its internal functions and writes one sample into the output converter port
B.out at 12 ms.

11. Since an access to the output converter port B.out occurred at 12 ms, a write syn-
chronization operation is generated. Equation 4.1 still holds since tTDFB.out

= 12 ms
and tDE = 6 ms, but the SystemC DE simulation kernel does not execute and tDE
does not advance.

12. At this point, one period of the schedule of the model has been executed. The last
sample that is available in the output converter port B.out represents the delay
sample corresponding to the next period of the execution of the model. A periodic
synchronization operation is generated, and as Figure 4.9b shows, the SystemC DE
simulation kernel finally executes and tDE advances from 6 ms until it reaches the
new tTDF for the start of a new TDF cluster period; that is until tDE = 12 ms. At the
bottom of Figure 4.9b, the execution of a new TDF cluster period at tTDF = 12 ms
occurs. And at this point in time, the SystemC DE simulation kernel is interrupted.

4.3. Proposal for detection and avoidance of time synchronization issues

The SystemC-MDVP simulator can detect time synchronization issues between the DE
and TDF MoCs by transforming the TDF clusters and their interaction with the DE
domain into an equivalent timed-CPN model. But to do that, the SystemC code should
be generated and executed in order to find any possible causality problems during the
elaboration (pre-simulation) phase and provide the necessary delay suggestions to avoid
these issues. Following TTool’s philosophy of verification and validation of the models
at the partitioning and software design levels, the synchronization between the DE and
TDF MoCs should be validated before the SystemC-AMS code is generated. Therefore,
another approach was explored.

Referring to the results of the analysis presented in Subsection 4.1.5, in the SystemC-
AMS simulation kernel time synchronization issues between DE and TDF MoCs only
occur when there is a read synchronization operation that advances the tDE further than
the tTDF of the following write synchronization operation. The approach presented here
is based on this fact.

39

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

Whenever there are multi-rate TDF clusters that interact with the DE domain using
input/output converter ports, a time analysis including all the input and output converter
ports is required. The interactions of each converter port of a TDF cluster with the DE
domain cannot be considered independently, since they maintain a time relation with
each TDF converter port and their DE counterparts. The time relation is based on the
static schedule of the TDF Cluster which is pre-computed in the same way as the static
schedule of an SDF MoC [25]. This means that once a static schedule has been found, the
timestamps of the DE domain should be tracked after each execution of a TDF module
that accesses a converter port. The following equations derived from [7, p. 51] show
how to perform this DE timestamp tracking. As shown in Figure 4.10, where only the
properties of converter ports are represented, TmM is the timestep of the TDF module
M; Tpp is the timestep of the TDF converter port p of module M; Dp is the delay
associated to this converter port and Rp is the rate associated to the converter port.

M
R

p
= 1

D
p
= 1

Tm
M

= 6 ms

Tp
p
= 6 ms

X
p

Figure 4.10: Parameters of the TDF module and its converter ports.

Here, jM is the number of times that the TDF module M has been executed, considering
that jM is increased only when the number of samples indicated by the rates of the input
and output ports have been consumed/produced and the module has finished executing.
Finally, k represents the number of times that the converter port has been accessed
within one activation of the module M—i.e. the sample number that has been produced
or consumed.

Equation 4.3 shows how to calculate the DE timestamps for input converter ports. In
other words, this equation determines how the tDE advances when there is an access to
an input converter port.

tDE = (jM · TmM) + ((k − 1) · Tpp)−Dp · Tpp k = [1...Rp] (4.3)

On the other hand, Equation 4.4 is used in order to determine if a future access to an
output converter port will generate a causality problem. This equation determines the
tTDFM.p

of an output converter port p from a module M.

tTDFM.p
= (jM · TmM) + ((k − 1) · Tpp) +Dp · Tpp k = [1...Rp] (4.4)

As mentioned before, the time synchronization issues only occur when there is an access
to an input converter port before an access to an output converter port. So in order
to validate that Equation 4.1 always holds, only read synchronization operations before
write synchronization operations will be analyzed. For this purpose and based on the
static schedule for one complete TDF cluster period, every time each module is executed,
the minimum timestamp tTDFM.p

of all the accessed output converter ports of the current
executed module should be greater or equal than the maximum timestamp (tDE) of all

40

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

the accessed input converter ports of previously executed TDF modules in the schedule.
This is shown in Equation 4.5

MIN
(
tTDFM.p

(m(o))
)
≥MAX

(
tDE(n(i))

)
m = current_executed_module,

o = [1...#out_converter_ports],
n = [first_executed_module...m],

i = [1...#in_converter_ports] (4.5)

If Equation 4.5 does not hold, then a delay calculated from Equation 4.2 should be
inserted in the corresponding output converter port. It is important to mention, that
even if these equations are only applied for the case when there is a read synchronization
operation before a write synchronization operation, the same equations will work in all
the other possible scenarios. Only the parameters i and o from Equation 4.5 should be
adapted to the specific scenario that is being validated.

1: procedure walkThroughSchedule(static_schedule)
2: max_tDE ← 0
3: jM ← 0 . For each module M
4: for each module M in static_schedule do
5: detectTimeSyncIssues(M.converterPorts, jM , max_tDE)
6: jM ← jM + 1
7: end for
8: end procedure

1: procedure detectTimeSyncIssues(converterPorts, jM , max_tDE)
2: for each converterPort p in converterPorts do
3: if p.origin = input then
4: k ← Rp
5: tDE ← (jM · TmM) + ((k − 1) · Tpp)−Dp · Tpp
6: max_tDE ← max(max_tDE, tDE)
7: else if p.origin = output then
8: k ← 1
9: tTDFM.p

← (jM · TmM) + ((k − 1) · Tpp) +Dp · Tpp
10: if !(tTDFM.p

≥ max_tDE) then
11: Dreq ←

⌈
(max_tDE − tTDFM.p

)/Tpp
⌉

12: CAUSALITY ERROR - STOP
13: end if
14: end if
15: end for
16: end procedure

Listing 4.1: Algorithm to detect time synchronization issues.

The algorithm shown in Listing 4.1, makes use of the previously defined Equations to
detect time synchronization issues between the TDF and DE MoCs and to suggest an
appropriate port Delay that can solve these causality problems.

In the procedure walkThroughSchedule from lines 1-8, the global variable max_tDE (ini-
tialized to 0 in line 2) will be used to store the maximum calculated tDE from all
the accessed input converter ports. The variable jM (number of times that module

41

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

M has been executed) is local to each module M and will be initialized to 0 for each
module M of the model at line 3. In lines 4-7 the procedure will go over the pre-
computed static schedule list, and for each module M in the schedule, it will call the
detectTimeSyncIssues procedure, giving as parameters the list of all converter ports of
the module M (M.converterPorts), and the variables jM and max_tDE. After this in line
6, it will increment jM, meaning that the module M has been executed one more time.

The detectTimeSyncIssues procedure in lines 1-16 will check for time synchroniza-
tion issues in the current scheduled module M. In lines 2-15, it will go over the list of
converterPorts. In line 3, it will check if it is an input converter port. Note that in
line 4 the variable k is set to the value of the port rate Rp. This is because according to
Equation 4.5, we want to get the biggest value of tDE for that input converter port. So
in this case, it is useless to calculate the tDE for previous samples (in case the port Rate
is greater than 1). After this, it will calculate the tDE in line 5 using Equation 4.3. Then
in line 6, the computed tDE is compared against the previously stored value max_tDE, to
keep track of the maximum calculated tDE from all the accessed input converter ports.

In line 7, it will check if the converter port is an output converter port. Notice that
according to Equation 4.5, we are looking for the minimum tTDFM.p

of all the accessed
output converter ports of the current executed module. For that reason, the variable k is
set to 1 in line 8, since calculating bigger values of tTDFM.p

is useless in this case. Then,
the tTDFM.p

will be calculated in line 9 using Equation 4.4.

Now that the minimum tTDFM.p
has been computed, Equation 4.5 can be applied. This

is done in line 10. And as explained before, if this equation does not hold, it means that
a causality problem is present and a delay should be inserted in that output converter
port to solve the problem. This delay is computed in line 11 using Equation 4.2. After
this, the execution of the program is stopped because a time synchronization issue was
found (line 12).

Step

Executed
Module/
port
(M.p)

jM
TmM
(ms)

Tpp
(ms) Dp

tDE
(ms)
(Eq. 4.3)

max_tDE
(ms)

tTDFM.p

(ms)
(Eq. 4.4)

Causality
Check
(Eq. 4.5)

1 A.in 0 6 6 0 0 0 – –
2 A.in 1 6 6 0 0 0 – –
3 B.out 0 4 4 0 – 0 0 True
4 B.out 1 4 4 0 – 0 0 –
5 A.in 1 6 6 0 6 6 – –
6 A.in 2 6 6 0 6 6 – –
7 B.out 1 4 4 0 – 6 4 False

Table 4.6: Execution of model without delay and computation of DE and TDF simulation times.

Using the same model from Figure 4.1, the algorithm from Listing 4.1 has been applied
during the execution of the model’s simulation, in order to verify that the computed
times are the same and that the synchronization issues are detected as in Sections 4.1
and 4.2. Table 4.6 shows all the parameters to calculate the tDE, tTDF and the detection
of synchronization issues. Since the rates (Rp) of the converter ports of this model are
equal to 1, the parameter k will always have a value of 1 and it is not shown in the

42

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

table. Below, a description of the execution and calculation of the simulation times of
the model is presented. Remember that the static schedule of this model is ABABB.

1. Starting from the walkThroughSchedule procedure, module A is executed for the
first time (jA = 0) according to the schedule. Procedure detectTimeSyncIssues
is called. Module A has only one converter port, which is an input converter port.
Since Rin = 1, k will be set up to 1 as mentioned before. The tDE will be calculated
and the max_tDE will be chosen as shown in Table 4.6. Since there is no access to
an output converter port, the causality check will not be performed.

2. There are no more converter ports, so the procedure detectTimeSyncIssues fin-
ishes and jA is incremented.

3. Next, module B is executed for the first time (jB = 0) according to the schedule.
Procedure detectTimeSyncIssues is called. Module B has only one converter
port, which is an output converter port. Hence k is set up to 1, and tTDFB.out

is
calculated. Then the causality check using Equation 4.5 is performed. In this case
max_tDE = 0 ms and tTDFB.out

= 0 ms so there is no causality problem.

4. Module B has no more converter ports, so detectTimeSyncIssues finishes and jB
is incremented.

5. Now, module A is executed for the second time (jA = 1). The procedure
detectTimeSyncIssues is called. For its only input converter port the tDE is
calculated and max_tDE is chosen.

6. There are no more converter ports, so the procedure detectTimeSyncIssues fin-
ishes and jA is incremented.

7. Then, module B is executed for the second time (jB = 1). The procedure
detectTimeSyncIssues is called. For the output converter port, the tTDFB.out

is calculated. As it can be seen in Table 4.6, since the max_tDE of all previously
accessed input converter ports is 6 ms and tTDFB.out

= 4 ms, Equation 4.5 does
not hold and a causality problem is generated. This is the same behavior that was
analyzed in Section 4.1. The minimum required delay is calculated as before using
Equation 4.2, that is DreqB.out = 1, and the execution is interrupted.

Now we can apply the same algorithm in order to verify that the synchronization issues
are solved when this new delay is inserted. Table 4.7 shows how the simulation times are
calculated using this new delay as well as the causality check. Below, the description of
the execution of the model with the new delay added is presented.

1. Starting from the walkThroughSchedule procedure, module A is executed for the
first time (jA = 0) according to the schedule. Procedure detectTimeSyncIssues
is called. Module A has only one converter port, which is an input converter port.
Since Rin = 1, k will be set up to 1 as mentioned before. The tDE will be calculated
and the max_tDE will be chosen as shown in Table 4.7. Since there is no access to
an output converter port, the causality check will not be performed.

2. There are no more converter ports, so the procedure detectTimeSyncIssues fin-
ishes and jA is incremented.

43

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

Step

Executed
Module/
port
(M.p)

jM
TmM
(ms)

Tpp
(ms) Dp

tDE
(ms)
(Eq. 4.3)

max_tDE
(ms)

tTDFM.p

(ms)
(Eq. 4.4)

Causality
Check
(Eq. 4.5)

1 A.in 0 6 6 0 0 0 – –
2 A.in 1 6 6 0 0 0 – –
3 B.out 0 4 4 1 – 0 4 True
4 B.out 1 4 4 1 – 0 4 –
5 A.in 1 6 6 0 6 6 – –
6 A.in 2 6 6 0 6 6 – –
7 B.out 1 4 4 1 – 6 8 True
8 B.out 2 4 4 1 – 6 8 True
9 B.out 2 4 4 1 – 6 12 True
10 B.out 3 4 4 1 – 6 12 True

Table 4.7: Execution of model with delay and computation of DE and TDF simulation times.

3. Next, module B is executed for the first time (jB = 0) according to the schedule.
Procedure detectTimeSyncIssues is called. Since module B has only one output
converter port, the tTDFB.out

is calculated using the new delay Dout = 1 as shown
in Table 4.7. Then the causality check using Equation 4.5 is performed. In this
case max_tDE = 0 ms and tTDFB.out

= 4 ms so there is no causality problem.

4. Module B has no more converter ports, so detectTimeSyncIssues finishes and jB
is incremented.

5. Now, module A is executed for the second time (jA = 1). The procedure
detectTimeSyncIssues is called. For its only input converter port the tDE is
calculated and max_tDE is chosen.

6. There are no more converter ports, so the procedure detectTimeSyncIssues fin-
ishes and jA is incremented.

7. Then, module B is executed for the second time (jB = 1). The procedure
detectTimeSyncIssues is called. For the output converter port, the tTDFB.out

is calculated. As it can be seen in Table 4.7, since the max_tDE of all previously
accessed input converter ports is 6 ms and tTDFB.out

= 8 ms, Equation 4.5 holds
and there is no causality problem.

8. Module B has no more converter ports, so detectTimeSyncIssues finishes and jB
is incremented.

9. According to the schedule, module B needs to be executed one last time (jB = 2).
The procedure detectTimeSyncIssues is called. For the output converter port, the
tTDFB.out

is calculated. Once again, since max_tDE = 6 ms and tTDFB.out
= 12 ms,

Equation 4.5 holds and there is no causality problem.

10. Finally, module B has no more converter ports, so detectTimeSyncIssues finishes
and jB is incremented.

44

4. TIME SYNCHRONIZATION BETWEEN TDF AND DE MOCS

As it occurred in Section 4.2, the synchronization issues were avoided with the introduc-
tion of the delay.

With this approach, analysis at the design level can be performed, which allows the
detection of time synchronization issues before the SystemC-AMS code of a model is
generated, and provides suggestions on the needed delay modifications to avoid these
synchronization issues.

This solution was chosen for the integration and synchronization of the SystemC-AMS
and SoCLib components in TTool due to its easiness of implementation. In Chapter 6,
the simulation results of different models are shown, to prove the correct behavior of this
approach by comparing it with the SystemC-AMS and SystemC-MDVP simulators.

45

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

5. Integration of SystemC-AMS and SoCLib modules into
TTool

5.1. Integration decisions to augment the graphical interface of TTool

During phase 2 of the project and before integration of the SoCLib and SystemC-AMS
TDF modules in TTool phase started, some decisions were taken concerning the way the
graphical interface must be augmented, which were implemented as part of the work of
[4]. Below is a description of these changes to the graphical interface.

Since the actual code generation of the platform is done from the Deployment Diagrams,
the SystemC-AMS TDF clusters should be visible here. The Deployment Diagram of
TTool was thus augmented with a representation of each TDF cluster. Figure 5.1 shows
the new SystemC-AMS Cluster block (gray) that was created in order to offer a graphical
interface to initiate with the integration between the SystemC-AMS TDF modules and
the SoCLib modules from the Deployment Diagram. When this block is inserted, it allows
only to modify its name, which should be the same name as the TDF cluster created
in the SystemC-AMS Component Diagram panel. When this block is double-clicked, a
panel containing a corresponding SystemC-AMS Component Diagram will open.

Figure 5.1: Deployment Diagram with two SystemC-AMS Cluster blocks.

As shown in Figure 5.1, several SystemC-AMS Cluster blocks can be created and they
can be connected to the SoCLib interconnect component which uses the VCI protocol.
As explained in Section 3.1, a generic adaptor component (GPIO2VCI) was developed
as a VCI target, which works as an interface between the SystemC-AMS and the SoCLib
interconnect components. Since the SystemC-AMS TDF cluster will be connected to
the GPIO2VCI component, the graphical interface of the SystemC-AMS Component
Diagram was augmented too.

Figure 5.2 shows a new block called blockGPIO2VCI, that can be created in the SystemC-
AMS Component Diagram panel. This block does not have any attributes and it must be
created outside of the TDF cluster. It only allows to insert DE ports, which will be used
to connect the blockGPIO2VCI to a TDF or DE module. Note that a dotted connector is
used to show that the module is connected to the blockGPIO2VCI. This connector and the
new blockGPIO2VCI will be used for the later integration development. Finally, a new

46

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

data type sc_uint<32> was introduced in the list of data types to choose from the DE
and TDF converter ports. This data type is needed to allow the TDF or DE modules
to connect to the GPIO2VCI component, because as it was explained in Section 3.1,
the ports of the GPIO2VCI components have a data type that is internally defined as
sc_uint<32>.

Figure 5.2: blockGPIO2VCI in the SystemC-AMS Component Diagram for Cluster1.

5.2. Integration of SystemC-AMS and the SoCLib modules in TTool

On one side and as explained before, the graphical interface of TTool was extended
to allow the possibility of creating abstractions of AMS hardware components into a
SystemC-AMS Component Diagram, which allows the generation of SystemC-AMS vir-
tual prototypes of the AMS models [4]. On the other side, the abstraction of digital
hardware components into a Deployment Diagram has been addressed [3], which allows
the generation of SoCLib (SystemC) virtual prototypes of these digital hardware models.
Now, the integration of TTool’s TDF models with its SoCLib models is implemented in
this phase.

The main idea for the integration is to use the topcell file generated from the Deployment
Diagram to include the SystemC-AMS TDF clusters created in the SystemC-AMS Com-
ponent Diagrams. For this, the first step is to be able to compile the topcell file while
including the SystemC-AMS libraries. As it was explained in Section 3.3, the SoCLib
platform is designed to work only with SystemC modules, but its configuration files can
be modified to include the SystemC-AMS libraries. The SoCLib libraries in TTool are
configured at the user home directory level, using a global.conf file that is located in
the following path $HOME/.soclib/global.conf.

Listing A.6 from the Appendix shows the modified global.conf file. First, the SystemC
version in the configuration file needed to be updated to use version 2.3.1 (line 24), since
SystemC-AMS-2.1 does not work with SystemC-2.2.0, which was originally being used.
In lines 29-41, the SystemC-AMS libraries, configuration flags and paths are included.
This configuration was added in the libraries section of the build environment in line 50.

Once the generated topcell from the Deployment Diagram can be compiled including
the SystemC-AMS libraries, the next step is to include the GPIO2VCI component into
the SoCLib components directory. It was decided to create a new gpio2vci/ directory
under $HOME/TTool/MPSoC/soclib/soclib/module/connectivity_component/. Since
the GPIO2VCI component is implemented as a CABA component, its definition, im-

47

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

plementation and Metadata files were created under the caba/ directory following the
SoCLib components structure, as it is described below.

Under the connectivity_component/ directory, the GPIO2VCI component’s definition
file gpio2vci.h shown in Listing A.1, the GPIO2VCI component’s implementation file
gpio2vci.cpp shown in Listing A.2, and the Metadata file gpio2vci.sd shown in List-
ing A.3, were created and added to their corresponding directories.

In order to integrate the TDF modules into the SoCLib topcell, a cluster file that instan-
tiates all the TDF modules of a cluster needs to be generated. In this way, the clusters
can be included and instantiated directly in the top.cc topcell from the SoCLib modules,
without having to instantiate each of the modules of an AMS cluster individually. Then
each TDF cluster can be connected to the SoCLib interconnect using the GPIO2VCI
component.

Figure 5.3: SystemC-AMS Cluster0 from the model shown in Figure 5.1.

The model presented in Figure 5.1 which contains two SystemC-AMS Cluster blocks
(shown in Figures 5.2 and 5.3) will be used in the following descriptions to exemplify the
generation of the SystemC-AMS modules and clusters code, as well as for the generation
of the embedded software code. The model consists of the two SystemC-AMS Cluster
blocks (gray), one CPU, one RAM memory, and one TTY console. All the components
are connected via a VGMN interconnect component.

The TDF cluster Cluster0 shown in Figure 5.3, consists of three TDF modules (B0,
C0 and D0) all connected to one TDF module (A0). Module A0 is connected to the
blockGPIO2VCI component. These TDF cluster does not replicate any particular behav-
ior. It is used to explain the SystemC-AMS generated code, focusing on the attributes
of the modules and the cluster.

The TDF cluster Cluster1 shown in Figure 5.2, consists of two TDF modules (A1
and B1). They replicate the Sine Source and Sink model used in Sections 3.2 and 3.3.
Module A1 contains the SystemC-AMS code for the Sine Source, and module B1 has
the SystemC-AMS code for the Sink.

The following .java files were created. They are responsible for generating the SystemC-
AMS modules and clusters code.

48

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

PrimitiveCode.java: This file generates the SystemC-AMS code of the TDF/DE mod-
ules created under the SystemC-AMS Component Diagram. The generated code is stored
as a header (.h) file for each module using the name of the block from the diagram as
blockname_tdf.h. Each module is created as a C++ class taking the name from the
block of the diagram and inheriting from the SystemC-AMS sca_tdf::sca_module class.
The module includes all its ports and attributes defined in the SystemC-AMS Compo-
nent Diagram. The SystemC-AMS code for the processing() function, that is created
manually in the SystemC-AMS Component Diagram is also included in this header file.
The same code developed in [4] was used for this purpose.

Listing 5.1 shows the class and the ports of file A0_tdf.h generated from the TDF module
A0 from Cluster0 shown in Figure 5.3. As it can be seen in the figure, this module has 5
ports which are instantiated in the SystemC-AMS code. Note that the data type of the
ports that are connected to the blockGPIO2VCI in the model is sc_uint<32>.

class A0 : public sca_tdf::sca_module {

public:
sca_tdf::sca_in< int > in_left;
sca_tdf::sca_in< int > in_front;
sca_tdf::sca_in< int > in_right;
sca_tdf::sca_de::sca_out< sc_uint<32> > out;
sca_tdf::sca_de::sca_in< sc_uint<32> > in;

Listing 5.1: Class and ports of the SystemC-AMS code generated for module A0.

ClusterCode.java: This file was created to generate the cluster code that instantiates
the AMS modules from a TDF cluster. For each TDF cluster, the cluster code is being
generated as a header (.h) file. The name of the file takes the name of the TDF cluster
from the SystemC-AMS Component Diagram as clustername_tdf.h. Each cluster is
created as a templated C++ class named after the cluster’s name, and inheriting from
the SystemC sc_core::sc_module class, as shown in Listing 5.2. This means that the
cluster is created as a SystemC module. The template parameter that the class receives,
is related to the VCI parameters that are defined in the top.cc topcell from the SoCLib
modules.

Inside the cluster’s class, the necessary signals to interconnect the different TDF/DE
modules are declared as sc_core::sc_signal. As it is presented in Listing 5.2, they take
their name from the signal name defined in the SystemC-AMS Component Diagram, or
using a default name sig_# if no name was defined before; being # the number of signal
that is declared.

Then each TDF/DE module from the cluster is instantiated using the name of the
block in the form blockname_#, being # the number of block being instantiated, as
it can be seen in Listing 5.2. Two default ports are generated for each cluster: in_ams
which is a sc_in port; and out_ams which is a sc_out port. Both ports are of type
vci_param::data_t (internally defined as sc_uint<32>), and they will be used to con-
nect later to the GPIO2VCI component.

Inside the constructor SC_CTOR of the module, shown in Listing 5.3, the Net-List of
the TDF cluster is created, using the previously declared signals to interconnect the
TDF/DE modules through their respective ports. As it was depicted in Figure 5.2,
modules B0, C0 and D0 are connected to module A0 using signals sig_0, sig_1 and

49

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

template <typename vci_param>
class Cluster0 : public sc_core::sc_module {

sca_tdf::sca_signal<int> sig_0;
sca_tdf::sca_signal<int> sig_1;
sca_tdf::sca_signal<int> sig_2;

// Instantiate cluster's modules.
A0 A0_0;
C0 C0_1;
B0 B0_2;
D0 D0_3;

public:
sc_in< typename vci_param::data_t > in_ams;
sc_out< typename vci_param::data_t > out_ams;

Listing 5.2: Class, ports and modules of the SystemC-AMS code generated for Cluster0.

template <typename vci_param>
SC_CTOR(Cluster0) :
...
{

A0_0.in_left(sig_2);
A0_0.in_front(sig_1);
A0_0.in_right(sig_0);
A0_0.out(out_ams);
A0_0.in(in_ams);
C0_1.out(sig_1);
B0_2.out(sig_2);
D0_3.out(sig_0);

}

Listing 5.3: Constructor SC_CTOR of the SystemC-AMS code generated for Cluster0.

sig_2. It is important to notice that the ports A0_0.in and A0_0.out that are connected
to the blockGPIO2VCI in the SystemC-AMS Component Diagram, will be connected here
directly to the in_ams and out_ams ports of the cluster. In this way, the cluster module
will be the one that will be connected later to the GPIO2VCI component once it is
instantiated in the top.cc topcell from the SoCLib modules.

Finally, a function invoking the SystemC-AMS tracing function sca_trace is imple-
mented. This function will allow to create trace files using the signals of the AMS
components of the cluster. The function is named using the cluster’s name in the form
trace_clustername as shown in Listing 5.4. This function can be called later from the
top.cc topcell of the SoCLib modules, if tracing is required.

void trace_Cluster0(sca_util::sca_trace_file* tf) {
sca_trace(tf, sig_0, "sig_0");
sca_trace(tf, sig_1, "sig_1");
sca_trace(tf, sig_2, "sig_2");

}

Listing 5.4: Trace function of the SystemC-AMS code generated for Cluster0.

Header.java: This file is used to create the #include list that is added to both, the
modules and clusters generated files. This code was slightly modified from the original
version of [4], to adapt to the new files naming conventions.

TopCellGeneratorCluster.java: This file is the one in charge of creating the generated
SystemC AMS code for the clusters and modules and saving them into their respective

50

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

directories. This file was also slightly modified from the original version of [4] to create
the files for this phase.

Now that the SystemC-AMS code for the modules and the clusters is being generated,
the clusters’ code needs to be included and instantiated in the topcell (top.cc) generated
from the Deployment Diagram. For this task, the following .java files were modified.
These files generate the top.cc topcell code.

Header.java: It generates the #include files list in the top.cc topcell. If a SystemC-
AMS Cluster block was added to the Deployment Diagram, then the top.cc topcell will
include the GPIO2VCI component definition file gpio2vci.h and the TDF cluster file
clustername_tdf.h for each cluster that was added to the Deployment Diagram. This is
shown in Listing 5.5, where the generated files from the two clusters of the model shown
in Figure 5.1 are being included along with the GPIO2VCI component.

#include "gpio2vci.h"
#include "Cluster0_tdf.h"
#include "Cluster1_tdf.h"

Listing 5.5: #include list of the top.cc topcell.

MappingTable.java: This file generates the mapping table and adds segments to it,
including all the necessary parameters that the mapping table requires. For each TDF
cluster that was created, it will add one segment to the mapping table for the GPIO2VCI
component assigned to each cluster. The segments have the name gpio2vci#, being #
the number of TDF cluster being added. The assigned addresses start from address
0xc0200000 and increase the address by 0x1000000 for every new segment that is added.
Up to 16 TDF clusters can be handled by the mapping table, being the last possible
assigned address 0xcf200000. This address range was chosen, being an address that
does not clash with any of the other possible addresses that can be assigned to other
SoCLib components. A segment size of 0x10 was chosen, to give some freedom for
the internal addresses that may be used within the GPIO2VCI component. Finally, the
component target number is added as the fourth parameter as IntTab(#). The Segments
corresponding to the two clusters of the model being analyzed are shown in Listing 5.6.
Note that the addresses 0xc0200000 and 0xc1200000 were asigned to each segment.

maptab.add(Segment("gpio2vci0" , 0xc0200000, 0x00000010, IntTab(12), false));
maptab.add(Segment("gpio2vci1" , 0xc1200000, 0x00000010, IntTab(13), false));

Listing 5.6: Segments of the mapping table of the top.cc topcell.

Declaration.java: The instantiation of the components is done here. Since the TDF
clusters will be handled as VCI target components, the SoCLib interconnect components
VciVgsb and VciVgmn, should update their internal parameters for the number of target
components of the model, adding the number of TDF clusters that were created. This
is shown in line 1 of Listing 5.7, where the VciVgmn component receives a value of 14
indicating that it is handling 14 target components. Then for each TDF cluster that
was created, an instance of the Gpio2Vci component will be created, named in the form
gpio2vci#, # being the number of TDF cluster assigned to the GPIO2VCI component
This is shown in lines 3 and 6 of Listing 5.7. Also an instance of the TDF cluster
component will be created, named as the TDF cluster name, as shown in lines 4 and 7.

51

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

1 soclib::caba::VciVgmn<vci_param> vgmn("Bus0" , maptab, 5,14,10,8);
2

3 caba::Gpio2Vci<vci_param> gpio2vci0("gpio2vci0", IntTab(12), maptab);
4 Cluster0<vci_param> Cluster0_0("Cluster0_0");
5

6 caba::Gpio2Vci<vci_param> gpio2vci1("gpio2vci1", IntTab(13), maptab);
7 Cluster1<vci_param> Cluster1_1("Cluster1_1");

Listing 5.7: Instantiation of clusters and GPIO2VCI component of the top.cc topcell.

Signal.java: This file creates the necessary signals for the model. For each TDF cluster
that was created, three different signals will be instantiated. One VciSignals named
signal_vci_gpio2vci#. One sc_signal<vci_param::data_t> named signal_to_ams#.
And one sc_signal<vci_param::data_t> named signal_from_ams#. Remember that
the vci_param::data_t data type is internally defined as sc_uint<32>, as explained
in Section 3.1. For all the signals, # is the number of TDF cluster assigned to the
GPIO2VCI component. The signals instantiated for the two clusters of the model are
shown in Listing 5.8.

1 soclib::caba::VciSignals<vci_param> signal_vci_gpio2vci0("signal_vci_gpio2vci0");
2 sc_signal< vci_param::data_t > signal_to_ams0("signal_to_ams0");
3 sc_signal< vci_param::data_t > signal_from_ams0("signal_from_ams0");
4

5 soclib::caba::VciSignals<vci_param> signal_vci_gpio2vci1("signal_vci_gpio2vci1");
6 sc_signal< vci_param::data_t > signal_to_ams1("signal_to_ams1");
7 sc_signal< vci_param::data_t > signal_from_ams1("signal_from_ams1");

Listing 5.8: Signals of the top.cc topcell.

gpio2vci0.p_clk(signal_clk);
gpio2vci0.p_resetn(signal_resetn);
gpio2vci0.p_vci(signal_vci_gpio2vci0);
gpio2vci0.p_wdata_ams(signal_to_ams0);
gpio2vci0.p_rdata_ams(signal_from_ams0);

Cluster0_0.in_ams(signal_to_ams0);
Cluster0_0.out_ams(signal_from_ams0);

vgmn.p_to_target[12](signal_vci_gpio2vci0);

gpio2vci1.p_clk(signal_clk);
gpio2vci1.p_resetn(signal_resetn);
gpio2vci1.p_vci(signal_vci_gpio2vci1);
gpio2vci1.p_wdata_ams(signal_to_ams1);
gpio2vci1.p_rdata_ams(signal_from_ams1);

Cluster1_1.in_ams(signal_to_ams1);
Cluster1_1.out_ams(signal_from_ams1);

vgmn.p_to_target[13](signal_vci_gpio2vci1);

Listing 5.9: Net-List of the top.cc topcell.

Netlist.java: The Net-List that interconnects all the components is created here. For
each created TDF cluster, the following interconnections will be generated, as shown
in the generated Net-List from Listing 5.9. For the gpio2vci0 component, the VCI
target port p_vci is connected through the signal_vci_gpio2vci0 signal to the port-
to-VCI-target p_to_target[12] of the SoCLib Interconnect component, in this case

52

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

to a VGMN component vgmn. The port p_wdata_ams is connected through the signal
signal_to_ams0 to the input port in_ams of the TDF cluster component Cluster0_0.
The port p_rdata_ams is connected through the signal signal_from_ams0 to the output
port out_ams of the Cluster0_0. In this way, the GPIO2VCI component connects the
TDF clusters to the Interconnect component of the MPSoC. A similar interconnection is
done for the second cluster Cluster1_1 of the model.

Finally, the Netlist.java file offers the possibility to generate the code to create trace
files. Listing 5.10 shows how tracing is handled for the SystemC-AMS components.
In line 1, an sca_util::sca_trace_file object is created, and a tabular trace file is
created with a given name. Then in lines 2 and 3 the signals that connect the GPIO2VCI
component to the TDF cluster are added to the trace object. Finally in line 4, the tracing
function created in the cluster’s SystemC-AMS code (See Listing 5.4) is called and the
trace object is sent as parameter. A similar thing happens for the second cluster in lines
6-8. Finally in line 10, the trace file is closed.

1 sca_util::sca_trace_file *tfp = sca_util::sca_create_tabular_trace_file("my_trace_analog");
2 sca_util::sca_trace(tfp,signal_to_ams0,"signal_to_ams0");
3 sca_util::sca_trace(tfp,signal_from_ams0,"signal_from_ams0");
4 Cluster0_0.trace_Cluster0(tfp);
5

6 sca_util::sca_trace(tfp,signal_to_ams1,"signal_to_ams1");
7 sca_util::sca_trace(tfp,signal_from_ams1,"signal_from_ams1");
8 Cluster1_1.trace_Cluster1(tfp);
9 ...

10 sca_util::sca_close_tabular_trace_file(tfp);

Listing 5.10: Tracing for the AMS components of the top.cc topcell.

It is important to mention that the tracing functionality can be enabled from the TTool
graphical interface, but currently tracing is not yet fully functional for the SoCLib mod-
ules. Still, tracing for the SystemC signals of the GPIO2VCI component was added to
the code, for when it becomes fully functional. This is depicted in Listing 5.11.

1 sc_trace(tf,signal_vci_gpio2vci0,"signal_vci_gpio2vci0");
2 sc_trace(tf,signal_to_ams0,"signal_to_ams0");
3 sc_trace(tf,signal_from_ams0,"signal_from_ams0");
4 sc_trace(tf,signal_vci_gpio2vci1,"signal_vci_gpio2vci1");
5 sc_trace(tf,signal_to_ams1,"signal_to_ams1");
6 sc_trace(tf,signal_from_ams1,"signal_from_ams1");

Listing 5.11: Tracing for the GPIO2VCI SystemC signals of the top.cc topcell.

PlatformInfo.java: This file generates the Platform Description File platform_desc
similar to the one described in Section 3.3. In this case if any TDF cluster was created
in the Deployment Diagram, then it will add an entry to the file to use the GPIO2VCI
component, similar to the one shown in line 9 in Listing A.4 from the Appendix.

At this point, the SystemC-AMS code for the TDF modules and TDF clusters is being
generated. The TDF clusters are being instantiated in the top.cc topcell of the SoCLib
modules and connected to the SoCLib interconnect component using the GPIO2VCI com-
ponent. Now, the software that will be loaded to the virtual prototype to communicate
to the AMS modules needs to be generated.

53

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

The model of the TDF cluster Cluster1 from Figure 5.2, which is a Sine Source (module
A1) and Sink (module B1) model similar to the one used in Sections 3.2 and 3.3 will
be used here. The idea is to create a software program at the software design level, that
will communicate with the TDF cluster Cluster1. In Figure 5.4, the two diagrams that
are used here are showed.

In the Block Diagram, the tasks of the components of a system can be represented by
Blocks. As it is shown in Figure 5.4a, one Block Cluster1_Control has been created
to represent the software tasks that will be used to communicate with the TDF cluster
Cluster1. In the Software Design Diagrams, when a Block is created, automatically a
new panel with the name of the Block is created. This panel allows to design the software
of the specific task through a State Machine Diagram, as it can be seen in Figure 5.4b.
In this case inside the Cluster1_Control State Machine Diagram, the first state block
setAmplitude will set up the amplitude of the Sine Source module (module A1), and
the second state block readCluster1 will read the values generated by this module.

(a) (b)

Figure 5.4: Block Diagram and State Diagram for Cluster1.

Normally, the generated code from the state machine is correct-by-construction. But
also, inside the state blocks of the State Machine Diagram, TTool allows to write C code
manually, which later will be added to the generated software of the model. As it was
shown in Sections 3.2 and 3.3, the communication with the AMS components through
the GPIO2VCI component is done by writing to and reading from the assigned memory
addresses of the GPIO2VCI component. So when the software needs to communicate
with the AMS components, the C code that is written in the state blocks of the State
Machine Diagram needs to specify these memory addresses. To facilitate the creation
of the embedded software at this level, write and read functions were created to allow
communication with the different TDF clusters.

To make this functions available to the cross-compiler, the first step was to create a new
library libsyscams under $HOME/TTool/MPSoC/mutekh/libsyscams/ which will contain
the functions for the communication with the GPIO2VCI component. The following files
were created inside this directory.

gpio2vci_iface.h: It defines the write_gpio2vci and read_gpio2vci functions as
shown in Listing 5.12. The write_gpio2vci function receives the data parameter which
represents the 32 bits of data that will be sent to the GPIO2VCI component. The param-
eter name is the name of the SystemC-AMS TDF cluster to which the data will be sent.

54

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

The read_gpio2vci function receives the name which is the name of the SystemC-AMS
TDF cluster from which the data will be read.

#ifndef GPIO2VCI_IFACE_H
#define GPIO2VCI_IFACE_H

#include "gpio2vci_address.h"

void write_gpio2vci(int data, char name[]);

int read_gpio2vci(char name[]);

#endif //GPIO2VCI_IFACE_H

Listing 5.12: gpio2vci_iface.h definition file from the libsyscams library.

gpio2vci_iface.c: In the file shown in Listing 5.13 the implementation of these functions
is given. The write_gpio2vci function uses a pointer created in line 4, in which the
address from the GPIO2VCI component connected to the TDF cluster will be loaded.
In line 5 the address is obtained by calling the get_address function which will be
explained below. Then in line 6, the data is sent to that address. In a similar way,
the read_gpio2vci function uses a pointer to read the values from the address of the
GPIO2VCI component. In line 11 the address is loaded to the pointer by calling the
get_address function, using the name of the TDF cluster. Then in line 12 the value read
from that address is returned.

1 #include "gpio2vci_iface.h"
2

3 void write_gpio2vci(int data, char name[]) {
4 int * wr_ptr;
5 wr_ptr = (int*)get_address(name);
6 *wr_ptr = data;
7 }
8

9 int read_gpio2vci(char name[]) {
10 int * rd_ptr;
11 rd_ptr = (int*)(get_address(name)+4);
12 return *rd_ptr;
13 }

Listing 5.13: gpio2vci_iface.h implementation file from the libsyscams library.

gpio2vci_address.h: The file shown in Listing 5.14 defines the get_address function,
which as seen above, receives a name parameter, which corresponds again to the name of
the SystemC-AMS TDF cluster from which the address needs to be obtained.

gpio2vci_address.c: The implementation of the get_address function is done here.
This file is generated dynamically when the code of the software design level is generated.
An example of this file is given in Listing 5.15, which was generated specifically for the
two TDF clusters from Figures 5.2 and 5.3 of the model. In line 4, the name parameter
is being compared to the name of the first TDF cluster Cluster0. If the names match,
then the address of the GPIO2VCI component connected to that TDF cluster is returned
in line 5 (Refer the assignment of segments of the mapping table from Listing 5.6 and the
Net-List in Listing 5.9). If not, in line 6 the name is compared against the second TDF
cluster, returning its address if the names match (line 7). If the name does not match to
any of the TDF clusters from the model, then an error message will be printed to the
TTY console of the model (line 9).

55

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

#ifndef GPIO2VCI_ADDRESS_H
#define GPIO2VCI_ADDRESS_H
#include <string.h>
#include <stdio.h>

int get_address(char name[]);

#endif //GPIO2VCI_ADDRESS_H

Listing 5.14: gpio2vci_address.h definition file from the libsyscams library.

1 #include "gpio2vci_address.h"
2

3 int get_address(char name[]) {
4 if(strcmp(name, "Cluster0") == 0) {
5 return 0xc0200000;
6 } else if(strcmp(name, "Cluster1") == 0) {
7 return 0xc1200000;
8 } else {
9 printf("ERROR getting address for cluster: \"%s\"\n", name);

10 return -1;
11 }
12 }

Listing 5.15: gpio2vci_address.c implementation file from the libsyscams library, dynami-
cally generated.

libsyscams.config: This configuration file configures the libsyscams library. For this,
also the file config_noproc was modified to include the CONFIG_LIBSYSCAMS variable.

Makefile: A Makefile was created to include the output objects from the two library
files.

To generate the gpio2vci_address.c implementation file during the embedded software
code generation, the following .java file was created.

Gpio2VciAddress.java: This file uses the information from the TDF clusters created in
the SystemC-AMS Component Diagrams, in order to retrieve their addresses and names.

Figure 5.5 shows the C code that was written manually to the readCluster1 state block.
It shows how the read_gpio2vci function can be used to communicate with a specific
cluster by passing only its name as a parameter. In this way the memory addresses of
the clusters are abstracted to the final user.

Finally, in order to be able to compile the SystemC-AMS generated code, the SoCLib gen-
erated code, and the embedded software generated code all together using the soclib-cc
commands, and to build the virtual prototype of the model, the following Makefile was
modified.

Makefile.forsoclib: This Makefile copies all the necessary files that SoCLib needs in
order to build the platform and runs the required compilation commands for this. The
new files that are being generated as part of this work were added to this Makefile, so
that the platform can be created and executed correctly.

56

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

Figure 5.5: C code for the readCluster1 state block.

Figure 5.6: Simulation output of console from the host machine

Once the virtual platform is created, it can be executed directly from TTool. In Figure 5.6
the output of the simulation from the console of the host machine is presented. It shows
the print messages from the AMS Sink module (module B1), who is printing the values
generated by the Sine Source (module A1) to the console of the local host machine. Note
that the values are 0, but in time 913207 ns, a value of 17 is written to the GPIO2VCI
component. After that, the Sine Source starts generating a sine wave of amplitude 17,
which can be seen in the next lines of this output. In Figure 5.7 the output of the TTY

57

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

component from the model is shown. The first lines correspond to debugging messages
from the CPU component. Note that in line 8, a message “Entering state + setAmplitude”
is shown. Then the value 17 which was sent to the GPIO2VCI component in this state
block is written. In the next line a message “Entering state + readCluster1” is printed.
This means that the state block readCluster1 will execute its code shown in Figure 5.5.
In the next lines we see that three values from the Sine Source are read and printed in
the TTY console component from the SoCLib modules.

Figure 5.7: Simulation output of the terminal from the TTY component of the model.

5.3. Synchronization of SystemC-AMS and SoCLib modules in TTool

Since the SystemC-AMS simulation kernel runs a TDF simulation time (tTDF) which
is independent from the DE simulation time (tDE) of the SystemC simulation kernel,
synchronization of both simulation times is required. As explained in Chapter 4, time
synchronization issues may occur and generate causality problems when dealing with
multi-rate TDF blocks that are connected to DE blocks by means of TDF converter
ports. As it was showed, these issues may happen only when there was an access to an
input converter port that advanced the tDE further than the tTDF of the actual output
converter port that is being accessed.

The synchronization between the DE and TDF MoCs should be validated before the
SystemC-AMS code is generated. In other words, this task should be carried out during
the design of the TDF model of the AMS components, in the SystemC-AMS Component
Diagram.

The graphical interface was augmented to include a new panel, named Validation, inside
the code generation window, as it is shown in Figure 5.8. By clicking the start button,
the validation of the TDF model will be performed. This new panel was added in
JDialogSysCAMSExecutableCodeGeneration.java under the initComponents method.
This file is used to handle the functions of the Executable Code Generation dialog window
for the SystemC-AMS Component Diagrams.

Some preliminary tasks should be performed before the actual synchronization between
the DE and TDFMoCs can be done. Each of the TDF and DE ports from the TDF cluster
should be connected to another port. This task should be validated as an initial step. This
is done inside the run method in JDialogSysCAMSExecutableCodeGeneration.java. If

58

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

Figure 5.8: Validation panel and error for unconnected ports.

any port is not connected, an error message will be shown in the Validation panel of the
code generation window, as it is shown in Figure 5.8

After validating that each port is connected to another port, the next step is to perform
the TDF modules and ports timestep assignment and propagation. Figure 5.9 shows an
example of how timestep propagates, as it is explained in [13, p. 11 f]. In this example
all the port rates have been set to 1. The dotted blue arrows represent the timestep
progpagations. Starting from the input port of module C, a Port-Timestep Tp = 10 ms
(in black) has been assigned to it. The first propagation occurs to the Module-Timestep
Tm of module C (number 1), which is set to 10 ms. Then, the input port Timestep from
module C is propagated to the output port of module B (number 2), whose Tp is set to
10 ms. After this, the Tp of the output port of B propagates to the Module-Timestep
Tm of module B (number 3), which is set to 10 ms. Then this Tm is propagated to the
input port of B (number 4), whose Tp is set to 10 ms. Next, the timestep Tp of the input
port of module B is propagated to the output port of module A (number 5), whose Tp
is set to 10 ms. Finally the Tp of the output port of A propagates to the Tm of module
(number 6).

A B C

Tm=10msTm=10msTm=10ms

Tp=10msTp=10ms Tp=10ms

Tp=10ms

Tp=10ms

1

2

3

14

5

6

Figure 5.9: Timestep propagation (Adapted from [13, p. 11]).

As mentioned in [13], a consistency check should be made between the existing timesteps
of the ports and modules, their rates, and the propagated timesteps. Two connected ports
should have the same Port-Timesteps (Tp). And the Module-Timestep (Tm) should be
consistent with the rate (R) and Tp of each of the ports that belong to that module. For

59

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

example, using module B from Figure 5.9, Equation 5.1 shows how timestep consistency
should be checked for all its ports.

TmB = TpB.in ·RB.in = TpB.out ·RB.out (5.1)

In the method run from JDialogSysCAMSExecutableCodeGeneration.java, the method
propagateTimestep is called. This method initiates the timestep propagation of the TDF
modules, and checks for consistency between the existing timesteps of the ports and
modules, and the propagated timesteps. If there are any consistency errors, a message
will be printed in the Validation panel from the code generation window, indicating
the names of the blocks and ports where the consistency check failed, as it is shown in
Figure 5.10

Figure 5.10: Timestep propagation error.

In order to validate the synchronization between the TDF and DEMoCs, a static schedule
of the TDF cluster model needs to be computed first, as it was explained in Section4.3.
Since the TDF MoC is based on the SDF modelling formalism, it can use the process of
the SDF MoC to compute the static schedule. According to [25], the following elements
are needed before the computation of the static schedule can be performed:

A topology matrix Γ needs to be built, where the number of columns of the matrix
correspond to the number of TDF modules or nodes of an SDF graph; and the number
of rows correspond to the number of signals connecting the TDF modules or arcs in an
SDF graph. The entries of the matrix correspond to the rates of the ports of a module.
If it is an output port, the entry is positive. If it is an input port, the entry is negative.

A buffer vector b(i) represents the data available in the arcs of the graph in time i. The
size of the buffer is the number of arcs of the graph. Note that b(0) would represent the
delays of the ports of the TDF modules, since at time i = 0 the delay samples will be
available in the buffer.

The column vector q represents the number of executions of a node. In order to find the
number of times that a node needs to be executed, the Matrix Equation 5.2 needs to be
solved for q, and find the smallest positive integer solution.

Γ · q = 0 (5.2)

60

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

The sequential scheduling algorithm proposed in [25] is used to compute a static schedule
of the TDF cluster. Listing 5.16 shows this algorithm.

1: procedure computeStaticSchedule
2: Solve for the smallest positive integer vector q
3: Form an ordered list L of the nodes (α) of the model.
4: for each node α do
5: if α is runnable then
6: Schedule α
7: end if
8: end for
9: if each node α has been scheduled qα times then

10: STOP
11: else if no node could be scheduled then
12: DEADLOCK
13: else GO to 4
14: end if
15: end procedure

Listing 5.16: Sequential Scheduling algorithm (Adapted from [25]).

In the run method in JDialogSysCAMSExecutableCodeGeneration.java, the method
buildTopologyMatrix is called, which builds the topology matrix Γ and initiates the
buffer vector b(0). Then, the method solveTopologyMatrix is called, which solves the
Matrix Equation 5.2 and provides the smallest positive integer solution for the equation.
These steps correspond to line 2 of the algorithm. For line 3, an ordered list of nodes
already exists for the modules of the TDF cluster. The method computeSchedule im-
plements the steps from lines 4 - 14 of the algorithm. Note that in line 5, a node is
considered runnable, if it has not run q times and it will not cause the buffer b(i) to go
negative. In line 12, a DEADLOCK implies that a schedule could not be found, because
feedback loops exist in the graph and delays need to be added in order to find a schedule.

The computeSchedule method will detect if a deadlock is produced, and will compute
a suggested delay (Dsug) that will solve the deadlock. The Dsug is calculated based on
the last node α that tried to be scheduled and that made the buffer bα to go negative.
Equation 5.3 shows how the Dsug is calculated. It will use the current delay Dcur of the
port associated to the buffer and subtract it from the value of buffer bα. Remember that
the buffer bα was negative, so in this way a new delay will be calculated, which will make
bα to stop being negative. Once a delay is calculated, the scheduling algorithm from
Listing 5.16 will run again to make sure that no other deadlocks exist.

Dsug = Dcur − bα (5.3)

At this point, if the schedule cannot be computed, an error message will be shown in
the Validation panel of the code generation window. The suggested delays for the TDF
modules and ports that will make the model schedulable will be printed. The model
shown in Figure 5.11 was created to show how a deadlock is detected and a delay to fix it
is suggested. A loop exists between modules A and B. The port rates were set to 1 and
no delays were introduced. The output of the Validation panel of the code generation
window is shown in Figure 5.12.

61

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

Figure 5.11: Unschedulable model due to missing delays in the loop.

Figure 5.12: Suggested loop delays.

Now that a static schedule for a TDF cluster is computed, the synchronization between
the DE and TDF MoCs can be performed. Note that in lines 4 and 5 from the schedul-
ing algorithm of Listing 5.16, the algorithm is checking for each node if the node can be
scheduled. This step will be used to call the procedure to detect time synchronization
issues. A method syncTDFBlockDEBlock was created in SysCAMSTBlockTDF.java. This
method is called from the computeSchedule method when a node has been found to be
schedulable. The syncTDFBlockDEBlock method implements the proposed solution algo-
rithm to detect time synchronization issues presented in Section 4.3, Listing 4.1. When a
causality error is detected, a suggested delay is calculated. Then, the computeSchedule
method is executed again using this new delay to verify if other causality problems exist.
In this way, the computeSchedule method will run until all the time synchronization
issues are resolved. If any causality problem occurs, an error message will be displayed in
the Validation panel of the code generation window, showing the required delays for the
TDF modules and ports that need to be added in order to solve the causality problems
of the model.

The model presented in Chapter 4, was modeled in TTool to show the behavior of the
implemented solution. Figure 5.13 shows the TDF cluster of the model in the SystemC-
AMS Component Diagram. The first time it is validated, the model has no delays in
any port. Figure 5.14 shows the output of the Validation panel of the code generation
window. A message is printed suggesting that a delay should be inserted to solve the
time synchronization issues. A delay of 1 in port out_de from module B is suggested.
This is the same delay that was calculated in Section 4.2 for the same model. After the

62

5. INTEGRATION OF SYSTEMC-AMS AND SOCLIB MODULES INTO TTOOL

suggested delay is inserted in the required port, the validation can be run again and then
the SystemC-AMS code can be generated.

Figure 5.13: TDF cluster for time synchronization validation.

Figure 5.14: Time synchronization issues and suggested delays.

The integration of the SystemC-AMS modules into the SoCLib modules presented in
this Chapter, allows the generation of virtual prototypes of heterogeneous embedded
systems composed of digital and analog hardware, that can run embedded software using
the MutekH OS. Moreover, it validates the correctness of the TDF models before the
SystemC-AMS code is generated, giving suggestions to avoid problems in case that the
model is unschedulable or if there is a chance for time synchronization issues to occur.

63

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

6. Case studies and comparison between TTool,
SystemC-AMS and SystemC-MDVP

6.1. Case studies

6.1.1. Introduction

The following two case studies will be used to show the behavior of the implemented
solution for the integration of SystemC-AMS and SoCLib modules into TTool. The
first case study focuses on the generation of an heterogeneous virtual prototype of an
embedded system that consists of digital and analog hardware components, and that can
run software and an OS. The second case study focuses on the generation of an AMS
virtual prototype in TTool starting from a TDF model, and comparing it with the results
obtained from simulating the same model using the SystemC-AMS and SystemC-MDVP
simulators.

6.1.2. Case study 1: Rover

The first case study is a rover system which is meant to assist rescuers to find victims in
debris. The model consists of digital and analog components. A pure digital model built
in [22] was modified.

Figure 6.1: Deployment Diagram model of the rover

On the SoCLib part, a MIPS32 architecture CPU, a 1 MB RAM memory and a TTY
terminal are modeled. On the analog part a distance sensor and a temperature sensor are
modeled as two independent TDF clusters. Figure 6.1 shows the Deployment Diagram
of the rover system where the SoCLib modules and TDF clusters are interconnected
through a SoCLib interconnect component. In Figures 6.2 and 6.3, the temperature and
distance sensor cluster models from the SystemC-AMS Component Diagram panels are
shown.

The temperature sensor cluster shown in Figure 6.2, is composed of one TDF module
modelling a temperature sensor unit. The behavior of this module, which is a simplifica-
tion of the actual behavior of a temperature sensor, is described as SystemC-AMS code
and shown in Listing 6.1. It depends on the value received on its input port in, which is

64

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

Figure 6.2: Temperature sensor model

connected to the digital components of the system via a GPIO2VCI component. A value
of 0, means that the temperature sensor should be turned off, and no measure should be
made (the module will print to the local host console a message stating that it is off).
If a value different than 0 is received, then the temperature sensor will generate random
integer values from 0 to 30, which represent the temperature measured from an object.
This values are written to the output port out of the module which is connected to the
GPIO2VCI component. Hence, the values will be available to be read by the digital
components of the system. The temperature sensor will operate in timesteps of 10 µs.

1 void processing() {
2 if(in.read() != 0) {
3 out.write(rand() % 30);
4 }
5 else {
6 cout << "Temp sensor is off. @ " << this->get_time() << endl;
7 }
8 }

Listing 6.1: Temperature sensor behavior.

Figure 6.3: Distance sensor model

65

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

The distance sensor cluster shown in Figure 6.3, is composed of three TDF modules,
which model an ultrasonic sensor unit each one; each of them connected to the same
DE module, which models the distance sensor controller. This controller module reads
values from each of the three ultrasonic sensors and writes a value to the GPIO2VCI
component, depending on the value from its input port in that it receives from the
digital components of the system via the GPIO2VCI component, as it shown in List-
ing 6.2. A value of 0 makes it read from the ultrasonic_sensor_left. A value of 1
makes it read from the ultrasonic_sensor_front. A value of 2 makes it read from the
ultrasonic_sensor_right. Each ultrasonic sensor produces values in timesteps of 100
ns. The behavior of this cluster is a simplification of the behavior of a real distance sensor,
since the interest of this work is mainly in the communication between the modules.

1 void read_sensor() {
2 if(in.read() == 0) {
3 out.write(in_left.read());
4 }
5 else if(in.read() == 1) {
6 out.write(in_front.read());
7 }
8 else if(in.read() == 2) {
9 out.write(in_right.read());

10 }
11 }

Listing 6.2: Distance sensor controller behavior.

The ultrasonic sensor TDF modules simply generate an output random value from 0
to 12, which represents the distance to an object that is measured, as it is shown in
Listing 6.3.

1 void processing() {
2 out.write(rand() % 12);
3 }

Listing 6.3: Ultrasonic sensor behavior.

Figure 6.4: Block diagram for the rover

From the software side of the model, two blocks have been created to represent the
MotorControl and the MainControl as shown in Figure 6.4. Both blocks communicate

66

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

with each other through a signal motorCommand which is sent by the MainControl to the
MotorControl and contains two parameters for the right and left velocity to control the
motor. The blocks also contain and initialize internal variables that the tasks of each
block use.

The state machine of the MotorControl block, shown in Figure 6.5, has only one state
startMotor. It receives the two velocity parameters from the motorCommand signal and
waits for some random time between 10 and 20 clock cycles. This state machine only
represents the actions that a motor controller would take to control the motor depending
on the velocity parameters that it receives, but it actually does not have any functional
behavior programmed, since the motor component is not modelled here.

Figure 6.5: Motor control state machine.

The state machine of the MainControl block is shown in Figure 6.6. Below, a more
detailed description from the states, specially from the ones that interact with the TDF
clusters, is provided.

(a) (b)

Figure 6.6: Main control state machine.

During the first state startController, the variable sensorOn which was initialized to
0 in the MainControl block shown in Figure 6.4, is written to the GPIO2VCI component

67

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

connected to the temperature sensor cluster. This is done by the C code written to
the startController state shown in Figure 6.7. This will turn the temperature sensor
unit module off. Figure 6.9 shows that the temperature sensor is already off, because no
value is written yet to its input. Anyway, at 1581390 ns a value of 1 is written to the
GPIO2VCI component, turning the temperature sensor unit off.

Figure 6.7: startController code.

In the next state readDistanceSensor, each ultrasonic sensor is selected by writing a
different value to the distance sensor cluster, then the sensor output is read and the
read value is printed to the TTY component of the model, as shown in the code from
Figure 6.8. First, a value of 1 is written to read the front ultrasonic sensor. Then, a
value of 0 is written to read the left ultrasonic sensor. Finally, the right ultrasonic sensor
is read by writing a value of 2.

Figure 6.8: readDistanceSensor code.

Figure 6.9: Rover simulation output from the host machine console.

68

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

In the local host console from Figure 6.9, it is shown that at time 1638127 ns a value of
1 is written and then a value of 2 is read. At time 1657999 ns a value of 0 is written and
then a value of 7 is read. Finally at time 1689322 ns a value of 2 is written and a value
of 9 is read.

The simulation output printed in the TTY component of the model also shows the
three values that were read from the distance sensor. This can be seen in the lines
inside the red square of Figure 6.10, where after entering the startController and
readDistanceSensor states, a value of 2 is read from the front ultrasonic sensor; a value
of 7 is read from the left ultrasonic sensor; and a value of 9 is read from the right
ultrasonic sensor.

Figure 6.10: Rover simulation output from the TTY component console - startController
and readDistanceSensor states.

After this, the next state calculateDistance simulates how the velocity of the rover is
calculated based on the front distance that was read as shown in the state diagram of
Figure 6.6a. If the distance was large (greater than 8), the state condition will lead to
state0 and a normal speed would be set (a value of 5). If the distance was between
3 and 8, it would go to state1 and a low speed (a value of 2) would be set. In this
case, since the front distance was 2, the calculateDistance state condition will lead to
state2, since the distance is less than 3. Here the state variable is set to 2. Then it
goes to the controlTempSensor state. Here depending on the state variable value, the
sensorOn variable will be set. Since state = 2, sensorOn will be set to 1. Then the
state machine goes to the setTempSensor state.

In the setTempSensor state, the temperature sensor unit will be turned on or off. This is
done by writing to the temperature sensor cluster the value of the sensorOn variable as
shown in the code from Figure 6.11. In the output from the local host machine, shown in
Figure 6.12, at time 3196116 ns a value of 1 is written to the GPIO2VCI component. At
this point the temperature sensor unit is turned on. We can see that the "Temp sensor
is off" message in the local host machine console is not printed anymore.

Figure 6.11: setTempSensor code.

In the following states shown in the state diagram from Figure 6.6b, the rover will measure
the temperature and turn if it is close to an obstacle. Depending on the state variable,

69

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

Figure 6.12: Rover simulation output from the host machine console.

the turnDecision state will decide if the rover needs to turn or not. If the distance is
greater or equal than 3, then the state variable will be 0 or 1, and the rover will not
measure tempreature or turn. In this case the distance is 2 and the state variable is 2,
so it goes to the next state measureTemp.

In the measureTemp state, the temperature sensor cluster is read and the temperature is
printed to the TTY component of the model, as shown in the code from Figure 6.13. In
the local host console from Figure 6.12, at time 3935019 ns a value of 21 is read. Then,
the output printed in the TTY component is showing that the temperature value that
was read is 21, as shown in the lower red rectangle from Figure 6.14.

Figure 6.13: measureTemp code.

Figure 6.14: Rover simulation output from the TTY component console - setTempSensor and
measureTemp state.

The dodgeObstacle state will calculate if it needs to turn left or right, based on the
distance measured from the left and right ultrasonic sensors. To do this, it will set
the velocity of the left or right motors accordingly. After turning left or right, the
motorCommand signal will be sent to the motor control state machine, so that it can
adjust the velocity of the motors of the rover. Finally, the main control state machine
will loop again to the readDistanceSensor state to start a new cycle.

The generation of an heterogeneous virtual prototype that includes analog and digital
hardware components has been demonstrated with this case study. The generated plat-

70

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

form consists of a digital SoC based on SoCLib components connected to analog hardware
components, which are modeled using SystemC-AMS code. The virtual prototype is ca-
pable of running software and the MutekH OS. By calling software functions, the CPU
of the platform is able to write or read values from the analog components.

6.1.3. Case study 2: Vibration sensor

The second case study is based on a vibration sensor model taken from the TDF model
examples provided in the SystemC-MDVP simulator. The model of the vibration sensor
is shown in Figure 6.15. It consists of six TDF modules and one DE module as described
below.

SRC SENSOR

CTRL

R
out

= 1
D

out
= 0

Tm
ADC

= 10us

R
out

= 1
D

out
= 0

inout out in

x_sig v_sig
R

in
= 1

D
in

= 0

PGA

R
in

= 1
D

in
= 0

R
out

= 1
D

out
= 0

R
kin

= 1
D

kin
= 0

vamp_sig

ADC
R

in
= 10

D
in

= 0

TDF2DE
R

in
= 1

D
in

= 0
R

out
= 1

D
out

in

adc_sig

AAVG

R
clk

= 1
D

clk

R
in

= 64
D

in
= 0

amp

in

out

kin

k_sig

in
R

out
= 1

D
out

= 0

out out

R
amp

= 1
D

amp

clk

amp_sig

clk_sig

clk

in
out

out_sig

Figure 6.15: Vibration sensor model (Adapted from [7]).

The SRC module represents the vibration source, which is modeled as a generator of
harmonic sinusoidal wavelets which represent a displacement signal (x_sig) caused by
the vibration.

The SENSOR module represents a vibration sensor. It takes as an input the dis-
placement signal (x_sig) and gives as an output a voltage signal (v_sig) which is
proportional to the vibration velocity.

The PGA module represents a programmable gain amplifier, that amplifies the voltage
input signal (v_sig) by a factor of 2k, where k is the input value from signal k_sig.
This signal is controlled by the gain controller DE module CTRL. As an output, it gives
an amplified voltage signal vamp_sig.

The ADC module represents an analog to digital converter with Nbits resolution of
5. The ADC has a rate of 10 in its input port in. Hence, it takes 10 samples from
the amplified voltage signal vamp_sig and produces a digitized integer value of N-bits
(adc_sig) where the most significant bit corresponds to the sign. The Module-Timestep
is assigned to this module as 10µs.

The TDF2DE module is a converter module from the TDF signal adc_sig to a DE
signal out_sig. Note that the delay Dout, written in red, of its output converter port
out has not been set yet.

The AAVG module represents an absolute amplitude averager. It calculates and out-
puts to the amp_sig the absolute average amplitudes of the received samples from the
adc_sig. As it can be seen, its input port in has a rate of 64, meaning that it will receive
64 samples to calculate the absolute average amplitude. This module also generates a

71

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

clock signal clk_sig at its output port clk, which has a rate of 2, meaning that a clock
edge will be generated twice per activation of the module. Note that the delays Dclk and
Damp, written in red, of its output converter ports have not been set yet.

The CTRL DE module represents the gain controller. This controller is modelled based
on the state machine diagram shown in Figure 6.16. It will control the output signal
k_sig based on the calculated absolute average amplitude given by amp_sig, and two
given thresholds low_threshold and high_threshold, whose values are calculated as shown
in Equations 6.1 and 6.2.

low_threshold = 0.2 · 2Nbits−1 (6.1)

low_threshold = 0.8 · 2Nbits−1 (6.2)

decrease_gainkeep_gain

increase_gain

low_threshold <= amp_sig < high_threshold

amp_sig < low_threshold

amp_sig < high_threshold

amp_sig >= high_threshold

amp_sig >= high_threshold

amp_sig < high_threshold

amp_sig >= high_threshold

Figure 6.16: CTRL module state machine.

The vibration sensor was modelled in TTool, as shown in Figure 6.17. For a first valida-
tion, the three output converter port delays (in red) from Figure 6.15, were set to 0. In
Figure 6.18 the output of the Validation panel of the code generation window is shown.
Here, the time synchronization issues for this model were found and three suggested
delays to solve the causality problems are shown.

Figure 6.17: Vibration sensor model in TTool.

72

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

Figure 6.18: Suggested delays for the vibration sensor in TTool.

The vibration sensor model is already included in the SystemC-MDVP simulator, as part
of the model examples. The model was simulated without providing any delays for its
output converter ports. Figure 6.19 shows the output of the simulator. It suggests the
same three delays as the ones suggested by TTool to solve the causality problems.

Figure 6.19: Suggested delays for the vibration sensor in SystemC-MDVP.

Finally, the SystemC-AMS model taken from a Master’s course in context of the H-
Inception project was modified to include the same parameters as the ones used in TTool
and SystemC-MDVP—i.e. the same port rates and ADC resolution. The simulation was
executed without assigning any delays to the output converter ports. As it is shown in
Figure 6.20, synchronization issues are detected by the simulator each time the simulation
is run, and delays referring to time units are suggested to solve the causality problems.
For the first time the simulation was run, a delay of 9 µs in port tdf2de.out is suggested
as it is shown in Figure 6.20b. This delay corresponds to a delay of 1 since the propagated
timestep of this port is 10 µs. After setting this delay, the simulation was run again.
This time another synchronization problem was found, and a delay of 639 µs is suggested
to the aavg.clk port, as Figure 6.20b shows. Since the timestep of this port is of 320 µs,
a delay of 2 is needed. Finally, after setting this new delay, the simulation was run for
the third time. This time, another causality problem was detected, and a delay of 639
µs is suggested to the port aavg.amp. The timestep of this port is of 640 µs, so a delay
of 1 is required.

All the suggested delays by SystemC-AMS simulator are the same as the ones suggested
by TTool and the SystemC-MDVP simulator, as shown in Table 6.1. The big difference is
that in TTool, the causality problems can be found at the design level before any code is

73

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

(a)

(b)

(c)

Figure 6.20: Suggested delays for the vibration sensor in SystemC-AMS.

generated. In SystemC-MDVP, the synchronization issues are found in the pre-simulation
phase. That means that the SystemC-MDVP model needs to be executed only once to
find any synchronization problems. In SystemC-AMS, these issues are found during the
simulation phase, meaning that the simulation needs to be executed once per causality
problem that is found. In this case, it needed to be executed three times.

Port TTool SystemC-MDVP SystemC-AMS
TDF2DE.out 1 1 1
AAVG.amp 1 1 1
AAVG.clk 2 2 2

Table 6.1: Comparison of the suggested delays between TTool, SystemC-MDVP and SystemC-
AMS for the vibration sensor model.

Once all the delays are set, the validation in TTool is run again, and no more issues
were found. After this, the code generation can be executed. A simple SoC model was
created as shown in Figure 6.21, where one SystemC-AMS Cluster block representing
the vibration sensor was created. The code was generated with the tracing functionality
enabled, so that it can generate a trace file of the vibration sensor signals. Finally the
code was executed to run the SystemC simulation.

Figure 6.21: Deployment Diagram model including the vibration sensor TDF cluster.

In SystemC-AMS and SystemC-MDVP, all the delays were set as well, and the simula-
tion was run, creating a trace file of the model’s signals too, so that the three results
could be compared. Figure 6.22 shows the analog waveforms in blue, resulting from

74

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

the simulation of the SystemC-AMS model. Figure 6.23 shows the analog waveforms in
green, resulting from the simulation of the SystemC-MDVP model. Figure 6.24 shows
the analog waveforms in red, resulting from the simulation of the SystemC model cre-
ated from TTool. It can be seen that the three outputs match, specially for the fourth
signal, which corresponds to the digitized output from the ADC component. The first
waveform corresponds to the signal x_sig which carries the output of the harmonic si-
nusoidal wavelets generator SRC, simulating a vibration source. The second waveform
is from the signal v_sig, which is the voltage output from the vibration sensor module
SENSOR. The third waveform corresponds to the v_amp signal, which is the signal
being amplified by the PGA module. The fourth signal adc_sig is the digitized output
from the ADC module. The fifth signal amp_sig corresponds to the output of the
absolute amplitude averager AAVG module which is connected to the DE controller
CTRL. This controller gives the sixth signal k_sig which carries the factor that will
be used by the PGA module to amplify the voltage signal v_sig. The last signal is the
clk_sig used as clock signal for the controller CTRL module.

Figure 6.22: Vibration sensor trace signal generated from SystemC-AMS’ simulation.

Figure 6.23: Vibration sensor trace signal generated from SystemC-MDVP’s simulation.

75

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

Figure 6.24: Vibration sensor trace signal generated from TTool’s simulation.

Note that the amp_sig and k_sig signals from the SystemC-MDVP simulation look
different, but this is due to the generated trace file that didn’t created values when they
were the repeated values. So only the value changes are shown, but still they correspond
to the outputs from the other traces.

This second case study demonstrates that the solution implemented in TTool to detect
time synchronization issues gives the same results as the ones suggested by the SystemC-
AMS and the SystemC-MDVP simulators. Moreover, the time synchronization issues
detection is performed at the design level, before the virtual prototype or the software
code are generated. The case study also shows that the generated SystemC-AMS plat-
form from TTool throws the same results as the models built directly in SystemC-AMS
or in SystemC-MDVP.

6.2. Comparison between TTool, SystemC-AMS and SystemC-MDVP
simulators

6.2.1. Model 1

The following model shown in Figure 6.25, will be used to compare the behavior of the
three simulators using a model containing feedback and multiple DE components con-
nected to a TDF module. This model was obtained from the SystemC-MDVP example
models.

Note that only the Module-Timestep for module A is given. Regarding the port param-
eters, all the delays are set to 0. The Rate of the TDF ports and converter ports are
shown below:

• A.out = 2
• B.in_tdf1 = 3
• B.in_tdf2 = 2
• B.out_tdf = 3
• B.in_de1 = 1

76

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

A B

G

Tm
A
= 4ms

in_tdf1out

out_tdf
C

D
out

in

out

E

F

outin

out

out_de1

in_de1

out_de2

in out

in_de2

in_tdf2

Figure 6.25: Model with feedback and multiple DE components connected to a TDF module.

• B.in_de2 = 3
• B.out_de1 = 6
• B.out_de2 = 1
• C.in = 2
• C.out = 4
• D.in = 3
• D.out = 1

The model was built as a TDF cluster in TTool, as it shown in Figure 6.26. After
validating it, TTool found that the model could not be scheduled due to delays missing
in the feedback loop, and also time synchronization issues occur within the converter
ports of module B. This can be seen in the output from the Validation panel of the code
generation window in Figure 6.27, where the necessary delays to solve these problems
are suggested.

Figure 6.26: Model built in TTool.

77

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

Figure 6.27: Suggested delays from TTool’s model.

The same model was simulated in SystemC-MDVP, without including any delays. The
results from the simulation are shown in Figure 6.28, where missing delays in the feedback
loop and delays to solve causality problems are suggested.

Figure 6.28: Suggested delays from SystemC-MDVP model’s simulation.

Note that the suggested delays are different in both simulation outputs, as shown in
Table 6.2. According to TTool’s validation output from Figure 6.27, the suggested delays
to B.out_de_1 = 4 and B.out_de_2 = 1, are needed to solve time synchronization
issues. The SystemC-MDVP’s simulation output from Figure 6.28 shows that these
delays match. So the difference is between the delays that are suggested to make the
model schedulable due to missing delays in the feedback loop. TTool suggests to insert
a delay of 3 in the B.in_tdf_2 port, while the SystemC-MDVP simulator suggests to
insert one delay of 3 in the C.in port and one delay of 1 in the D.out port.

Port TTool SystemC-MDVP
B.out_de_1 4 4
B.out_de_2 1 1
B.in_tdf_2 3 –
C.in port – 3
D.out – 1

Table 6.2: Comparison of the suggested delays between TTool and SystemC-MDVP.

The difference on the suggested delays lies in the static schedule that each tool produces.
In the case of TTool, the static schedule produced for this model is

A-A-B-A-C-D-B-C-D-C-D-D

78

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

While in SystemC-MDVP the static schedule produced is

C-D-A-A-B-A-C-D-C-D-B-D

The static schedule from TTool shows that module A will be executed 2 times, and
then module B will try to be executed. Since module B requires 2 samples in its port
B.in_tdf2 to be executed, a delay of 2 is needed. The next time that module B needs
to be executed, module D has only delivered 1 sample to B, so module B needs another
delay of 1, in total it needs a delay of 3 in its input.

Now looking at the static schedule from SystemC-MDVP, module C needs to be executed
first. Hence, it needs a delay of 3 in its input port C.in. Module D executes and delivers
1 sample to module B. But again, when module B needs to execute, it still needs one
extra sample, so a delay in D.out of 1 is suggested.

The same model was created in SystemC-AMS without inserting any delays and simu-
lated. Since there are missing delays in the feedback loop, the SystemC-AMS simulator
output gives an error as shown in Figure 6.29, stating that the model cannot be scheduled,
but no delays are suggested to fix the problem.

Figure 6.29: Simulation of the model in SystemC-AMS, not schedulable.

To fix the unschedulable model problem, the suggested delays given by TTool were added
to the SystemC-AMS model. The simulation was run again, and now the simulator found
the time synchronization issues, as it is shown in the outputs from Figure 6.30, where the
simulator was run twice. Figure 6.30a shows that the simulator suggests a delay of 4 ms
in the output port B.out_de_1, whose timestep is of 1 ms, hence a delay of 4 is needed.
Then in Figure 6.30b, a delay of 4 ms is suggested in the output port B.out_de_2, whose
timestep is of 6 ms, hence a delay of 1 is needed. These are the same delays suggested
by TTool and the SystemC-MDVP simulator. In this case, the static schedule produced
by the SystemC-AMS simulator is

A-B-C-D-A-B-C-D-C-D-D-A

which is also different to both static schedules from TTool and SystemC-MDVP.

As a second test, the suggested delays given by the SystemC-MDVP simulator were added
to SystemC-AMS model. The simulation was run, and the same time synchronization
issues were found, giving the same delay suggestions to solve them. The only difference
is that the static schedule produced by the SystemC-AMS simulator, was again different
using these delays:

79

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

(a)

(b)

Figure 6.30: Suggested delays for time synchronization issues in SystemC-AMS.

A-C-D-A-B-C-D-A-C-D-B-D

Anyway, we can conclude that both delay suggestions given by TTool and the SystemC-
MDVP simulator are equally valid, since they both solve the unschedulable model prob-
lem that exists when delays are missing in a feedback loop.

As a final test, the delays suggested by the SystemC-MDVP simulator were used in the
TTool model. The model was validated correctly, without finding any other issues. Only,
the static schedule from the TTool model changed to

C-D-A-A-B-A-C-D-C-D-B-D

Note that now this static schedule is the same as the one that the SystemC-MDVP
simulator produces.

Finally, the delay suggestions given by the TTool validation were used now in the
SystemC-MDVP model. In this case, the SystemC-MDVP simulator could not finish
the simulation, since it seems it entered into a deadlock state.

From this model, it can be seen that when a model has feedback loops, the delay sug-
gestions given by the SystemC-MDVP simulator and by TTool can be different between
each other. They depend on the static schedule computed by each simulator. Anyway,
both suggestions were found to be valid when they were used in the model created in
SystemC-AMS. An interesting finding is that the delay suggestions given by TTool, could
not be implemented in the SystemC-MDVP simulator.

6.2.2. Model 2

In this section, the model shown in Figure 6.31 is used to compare and explain the
different delays suggested when the model is designed and validated in TTool. In the
previous section it was shown that there are differences between the suggested delays for
feedback loops given by TTool and the SystemC-MDVP simulator. These difference are
due to the fact that the static schedules are computed in different ways in each tool.

As it was explained in Section 5.3, in order to build the static schedule, TTool uses the
sequential scheduling algorithm of [25]. The algorithm uses an ordered list of the nodes
to generate the schedule. TTool builds this ordered list based on the order in which the
TDF blocks are created. Hence, this order will have an effect on the final static schedule
and on the suggested delays to solve either the unschedulable model problems or the time
synchronization issues.

80

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

C

A

Bout_c

D

in_d

out_a

in_a

out_d

in_bin_b

out_a out_b

in_c

R=1 R=4R=1

R=2

R=3

R=2

R=1

R=3

R=2

R=1

R=3

Tm=1 s

Figure 6.31: TDF model with two feedback loops (Adapted from [26]).

For example, the model was build first in TTool by creating the TDF blocks in this order:
A-B-C-D. After validating the model, suggested delays of C.in_b = 3 and D.in_b = 12
were given, as shown in Table 6.3. In this case, the static schedule was built as follows:

C-D-D-A-B-D-D-A-B-B

A second model was built by creating the TDF blocks in this order: D-C-B-A. The
model was validated and it suggested delays of A.in_d = 3 and A.in_c = 2 to solve the
unschedulable problems. The computed static schedule for this test was:

A-B-D-A-B-D-B-D-C-D

A third model was created with the TDF blocks being inserted in the order: A-D-C-
B. After validating the mode, a delay of B.in_a = 6 was suggested. For this test, the
computed static schedule was:

B-D-B-D-B-D-C-A-D-A

Order of creation
of the TDF blocks Suggested delays

A-B-C-D C.in_b = 3
D.in_b = 12

D-C-B-A A.in_d = 3
A.in_c = 2

A-D-C-B B.in_a = 6

Table 6.3: Suggested delays by TTool depending on the order of creation of the TDF blocks.

The three different scenarios produce valid schedules, and the suggested delays solve the
unschedulable model problems. The model was created in SystemC-AMS, but as it was
mentioned before, the simulator does not give any suggestion to fix the unschedulable

81

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

Figure 6.32: Model simulated in SystemC-AMS with no delays.

model issue, as it is shown in Figure 6.32. But any of the delay suggestions made the
model schedulable in SystemC-AMS.

Finally the model was built in the SystemC-MDVP simulator without introducing any
delays. In this case, when the simulation was run, the simulator ended in an error as
shown in Figure 6.33, and no delays could be suggested. And similar to the previous
section, if the suggested delays from TTool are used, the simulator enters into a deadlock
state.

Figure 6.33: Model simulated in SystemC-MDVP with no delays.

This model showed that the computed static schedule in TTool depends on the order
that the TDF blocks are created. As it was explained with Model 1, the static schedule
will influence the suggested delays given when the model is unschedulable because it con-
tains feedback loops. Anyway, all the given suggestions will make the model schedulable.
Comparing the results for this specific model, it was showed that TTool can give differ-
ent delay suggestions to make the model schedulable. SystemC-AMS doesn’t give any
suggestions and the SystemC-MDVP simulator could not compute the model to present
a valid suggestion.

6.2.3. Model 3

For this section, the model presented in Section 6.2.1 was extended to include some
extra DE modules as shown in Figure 6.34. It will be used to show the effects on the
suggested delays to solve time synchronization issues, when having different computed
static schedules.

The Module-Timestep for module A is given as 4 ms. Regarding the port parameters,
all the delays are set to 0. The Rate of the TDF ports and converter ports are shown
below:

• A.in_de = 2
• A.out = 2
• B.in_tdf1 = 3
• B.in_tdf2 = 2
• B.out_tdf = 3
• B.in_de1 = 1
• B.in_de2 = 3

82

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

A B

G

Tm
A
= 4ms

in_tdf1out

out_tdf
C

D
out

in

out

E

F

outin

out

out_de1

in_de1

out_de2

in out

in_de2

in_tdf2

H

out

in_de

I

in

out_de

Figure 6.34: Extended Model 1 with extra DE modules.

• B.out_de1 = 6
• B.out_de2 = 1
• C.in = 2
• C.out = 4
• C.out_de = 1
• D.in = 3
• D.out = 1

The SystemC-MDVP model was modified to include the new extra DE modules. The
model was simulated, and the output of the simulator shown in Figure 6.35, gives new
suggestions on required delays to solve synchronization issues and to make the model
schedulable.

Figure 6.35: Suggested delays from the simulation in SystemC-MDVP.

As it was noted before, the delay suggestions in the ports C.in and D.out correspond to
the necessary delays to make the model schedulable. These two delays are used in the
models created for SystemC-AMS and TTool.

The same model was created in SystemC-AMS. In Figure 6.36, the outputs from the
simulation suggesting delays to solve time synchronization issues are shown.

During the first run of the simulation, a delay of 2 ms in C.out_de is suggested as shown
in Figure 6.36a. Since its timestep is of 4 ms, a delay of 1 is required. On the second run
of the simulation, a delay of 6 ms is required on the port B.out_de1. Since its timestep

83

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

(a)

(b)

(c)

Figure 6.36: Suggested delays from the simulation in SystemC-AMS.

is of 1 ms, a delay of 6 is needed. Finally, in the third run of the simulation, a delay
of 6 ms is suggested for port B.out_de2. Its timestep is of 6 ms, hence a delay of 1 is
required for this port. From these delays, it can be seen that they are the same delays
that were suggested by the SystemC-MDVP simulator, as shown in Table 6.4.

Finally, the model was built in TTool as a TDF cluster. When the model was validated,
the output from Figure 6.37, shows the suggested delays given by TTool in the Validation
panel from the code generation window.

Figure 6.37: Suggested delays from the Validation panel in TTool.

The suggested delays for the ports B.out_de1 and B.out_de2 are the same as the ones
suggested by SystemC-AMS and SystemC-MDVP simulators. But the delay suggested
for port C.out_de is different. In TTool a delay of 2 is suggested, while in the other
simulators a delay of 1 is suggested. The delay will for sure solve the time synchronization
issues, even if it is not the optimal delay for this scenario. The reason for this difference,
as mentioned before, is due to the static schedules that each simulator computes for the
model.

Port TTool SystemC-MDVP SystemC-AMS
C.out_de 2 1 1
B.out_de1 6 6 6
B.out_de2 1 1 1

Table 6.4: Comparison of the suggested delays to solve time synchronization issues between
TTool, SystemC-AMS and SystemC-MDVP.

For SystemC-AMS, the static schedule is:

84

6. CASE STUDIES AND COMPARISON BETWEEN TTOOL, SYSTEMC-AMS
AND SYSTEMC-MDVP

A-C-D-A-B-C-D-A-C-D-B-D

For SystemC-MDVP the computed static schedule is:

C-D-A-A-B-C-D-C-D-A-B-D

And for TTool, the static schedule was computed as:

C-A-D-A-B-A-C-D-C-D-B-D

The three of the schedules are different, and if they are compared to the schedules
computed from Section 6.2.1, they are also different. From the model on Figure 6.34,
observe that the module A accesses an input converter port, and the module C accesses
an output converter port. These two modules are of our interest because they change their
execution position in the three schedules; specially, they change their position relative
to each other. Even if module B also accesses input and output converter ports, in the
three schedules it keeps its position, and its position relative to the other two modules
does not change.

In other words, when B is scheduled, in the three schedules it gets executed for the first
time after 2 executions of A and 1 execution of C occur. Then, the second time B is
executed, it appears after 1 more execution of A and 2 more executions of C, in the
three schedules. For that reason it is said that B will not affect the causality even if the
three schedules are different.

In the SystemC-AMS schedule, module C is always scheduled after one execution of mod-
ule A. These means that module A will access its input converter port once, advancing
the tDE, and then module C will access its output converter port once, requiring a delay
of 1 to solve the causality problems.

In the case of the SystemC-MDVP simulator, we see that module C is executed first,
which causes no issues, because an access to an output converter port will not advance
the tDE, it will only advance its own tTDF. Then the module A is accessed twice. This
will advance tDE twice. Later, module C will be executed. At this moment, module C
only requires a delay of 1, since it was already executed before once and its tTDF already
advanced once. Finally, module C is executed again, advancing its tTDF. Finally, when
module A is executed for the last time, no more synchronization issues can occur.

In the case of TTool, we can observe that module C executes first, advancing its own
tTDF without advancing the tDE. But then module A executes three times before the
next execution of module C. This will make the tDE to advance three times. So the
next time module C is executed, a delay of 2 is needed to solve the time synchronization
issues.

From this model, it can be concluded that TTool’s delay suggestions to solve time syn-
chronization issues also depend on the computed static schedule. Therefore in some
specific scenarios, the delay suggestions given by TTool may not be the most efficient, if
they are compared to the ones given by SystemC-AMS or SystemC-MDVP. Anyway, the
given delay suggestions will solve the time synchronization issues between the DE and
TDF MoCs.

85

7. CONCLUSION AND PERSPECTIVES

7. Conclusion and perspectives

7.1. Conclusion

In this thesis, the integration of SystemC-AMS and SoCLib modules into TTool was im-
plemented. This integration allows the generation of virtual prototypes of heterogeneous
embedded systems, composed of SystemC-AMS models of analog hardware and a digital
MPSoC platform based on SoCLib components. The generated virtual prototype can
run embedded software and the MutekH OS.

The integration was developed in two stages. During the first stage, the SystemC-AMS
and SoCLib components were integrated outside TTool. The GPIO2VCI SoCLib com-
ponent was developed to cover the need of having a generic adaptor that could work as
an interface between the SystemC-AMS and SoCLib components. Through this adaptor
the SystemC-AMS components can be connected to the VCI interconnect component
from SoCLib, allowing the integration of analog and digital components. At the end of
this stage, a virtual prototype including analog components and a SoC platform, which
could run software without using an OS, was generated.

In the second stage, the SystemC-AMS and SoCLib components were integrated into
TTool. This stage was based on the previous work from [4], where SystemC-AMS TDF
models could be created in TTool, using the SystemC-AMS Component diagrams, and
SystemC-AMS code code be generated to simulate these models without any SoCLib
digital component. To perform the integration, the generated SystemC-AMS code was
modified so that the TDF clusters could be instantiated in the generated SoCLib topcell,
and connected to the SoCLib interconnect component using the GPIO2VCI component.
Since the generated virtual prototype should be able to run software and the MutekH OS
to interact with the newly integrated AMS components, a MutekH library was created
to give the software developers write and read functions to allow communication with
the TDF clusters. At the end of this state, an heterogeneous virtual prototype com-
posed of SystemC-AMS analog components and an MPSoC platform based on SoCLib
components, able to run software and the MutekH OS, could be generated.

The SoCLib components code is generated in SystemC, which is based on the DE MoC.
The analog components are modeled based on the TDF MoC. As it was explained,
when there are interactions between the DE and TDF MoCs, time synchronization issues
that generate causality problems may occur. One of the findings regarding the time
synchronization issues, is that they can only occur when there is a read synchronization
operation before a write synchronization operation. A solution for these issues has been
proposed and implemented into TTool during the second stage of the integration. Also,
when feedback loops exist in a TDF model and delays are not inserted within the loop, the
model will become unschedulable. A solution to suggest which delays will make the model
schedulable has also been implemented. Following TTool’s philosophy, these solutions
allow to validate the TDF models at the design level, before any code is generated.

It is important to note that the suggested delays to solve time synchronization issues and
to make a model with feedback loops schedulable, are based on the computed static sched-
ule. The static schedule computation implemented in TTool is based on the sequential
scheduling algorithm proposed by [25]. The delays being suggested by the SystemC-AMS
and the SystemC-MDVP simulators may be different to the ones proposed by TTool,

86

7. CONCLUSION AND PERSPECTIVES

since their computed static schedules are different too. Anyway, the results show that
the suggested delays by TTool are also valid, although they may not be the most efficient
in every scenario. On the other side, it was shown that TTool gives suggestions to solve
missing delays in feedback loops, which is not done by the SystemC-AMS simulator and
in some specific models it leads to failures on the SystemC-MDVP simulator.

7.2. Perspectives

In this work, a library was created to provide read and write functions to the GPIO2VCI
component, that can be used in the State Machine Diagrams from TTool in the software
design level. To use these functions, manual C code needs to be written in the state
blocks of the diagram. In the future, specific GPIO2VCI read and write state blocks
can be implemented so that manual code is avoided, and correct-by-construction code is
generated.

The GPIO2VCI component only allows single read and write communication with one
TDF module per TDF cluster. If future models require to connect more than one module
of a TDF cluster to the SoCLib components of an MPSoC platform, then the GPIO2VCI
component will need to be extended to support multi-ports.

The AMS hardware components are considered to be targets inside the MPSoC platform.
In the future, it may be required that these components act also as initiators, or they
may need to support sending interruption requests to the CPUs.

The computed static schedule in TTool can be optimized, so that the suggested delays
to solve time synchronization issues or to make a model with feedback loops schedulable
are minimum. Another option is to compute the static schedule in a similar way as the
SystemC-AMS simulator does, since the analog virtual platform code is being generated
to be run by the SystemC-AMS simulator.

The graphical interface of TTool has been augmented to support the creation of ELN
models as part of the work of [4]. The integration of the ELN MoC can be carried out
in a future project.

The work developed during this thesis will be used in a master’s project aimed to start
on January 2019, which is part of the larger “EchOpen” project [27].

87

A. Appendix: Source codes

1 #ifndef GPIO2VCI_H
2 #define GPIO2VCI_H
3

4 #define sc_register sc_signal
5

6 #include <signal.h>
7 #include <stdlib.h>
8 #include <systemc.h>
9 #include "caba_base_module.h"

10 #include "vci_target.h"
11 #include "mapping_table.h"
12

13 namespace soclib {
14 namespace caba {
15

16 template <typename vci_param>
17 class Gpio2Vci
18 : public soclib::caba::BaseModule {
19

20 sc_register< typename vci_param::data_t > r_rdata_ams, r_wdata_ams;
21 sc_register<int> r_fsm_state, r_buf_eop;
22

23 enum fsm_state_e {
24 TARGET_IDLE = 0,
25 TARGET_WRITE,
26 TARGET_READ,
27 };
28

29 const soclib::common::Segment m_segment;
30

31 protected:
32 SC_HAS_PROCESS(Gpio2Vci);
33

34 public:
35 //Ports
36 sc_in<bool> p_clk;
37 sc_in<bool> p_resetn;
38 soclib::caba::VciTarget<vci_param> p_vci;
39 sc_in< typename vci_param::data_t > p_rdata_ams;
40 sc_out< typename vci_param::data_t > p_wdata_ams;
41

42 Gpio2Vci(sc_module_name insname,
43 const soclib::common::IntTab &index,
44 const soclib::common::MappingTable &mt);
45

46 ~Gpio2Vci();
47

48 private:
49 void transition();
50 void genMoore();
51

52 };
53

54

55 }
56 }
57

58 #endif // GPIO2VCI_H

Listing A.1: GPIO2VCI definition code gpio2vci.h.

88

1 #include "../include/gpio2vci.h"
2 #include <iostream>
3

4 namespace soclib {
5 namespace caba {
6

7 #define tmpl(x) template<typename vci_param> x Gpio2Vci<vci_param>
8

9 tmpl(/**/)::Gpio2Vci(sc_module_name insname,
10 const soclib::common::IntTab &index,
11 const soclib::common::MappingTable &mt)
12 : soclib::caba::BaseModule(insname),
13 m_segment(mt.getSegment(index)),
14 p_clk("p_clk"),
15 p_resetn("p_resetn"),
16 p_vci("p_vci"),
17 p_rdata_ams("p_rdata_ams"),
18 p_wdata_ams("p_wdata_ams") {
19 std::cout << " - Building Gpio2Vci " << insname << std::endl;
20

21 SC_METHOD(transition);
22 sensitive << p_clk.pos();
23 SC_METHOD (genMoore);
24 sensitive << p_clk.neg();
25 }
26

27 tmpl(/**/)::~Gpio2Vci(){}
28

29 tmpl(void)::transition() {
30 if(p_resetn == false) {
31 r_fsm_state = TARGET_IDLE;
32 }
33 else {
34 switch(r_fsm_state) {
35 case TARGET_IDLE:
36 if(p_vci.cmdval.read()) {
37 r_buf_eop = p_vci.eop.read();
38 if (p_vci.cmd.read() == vci_param::CMD_WRITE) {
39 r_wdata_ams = p_vci.wdata.read();
40 r_fsm_state = TARGET_WRITE;
41 }
42 else { //VCI_CMD_READ
43 r_rdata_ams = p_rdata_ams.read();
44 r_fsm_state = TARGET_READ;
45 }
46 }
47 break;
48

49 case TARGET_WRITE:
50 case TARGET_READ:
51 if(p_vci.rspack.read()) {
52 r_fsm_state = TARGET_IDLE;
53 }
54 break;
55 }
56 }
57

58 }
59 tmpl(void)::genMoore() {
60 switch (r_fsm_state) {
61 case TARGET_IDLE:
62 p_vci.rspNop();
63 break;
64 case TARGET_WRITE:
65 p_vci.rspWrite(r_buf_eop.read());
66 p_wdata_ams.write(r_wdata_ams);
67 break;
68 case TARGET_READ:
69 p_vci.rspRead(r_buf_eop.read(), r_rdata_ams);
70 break;
71 }

89

72 // We only accept commands in Idle state
73 p_vci.cmdack = (r_fsm_state == TARGET_IDLE);
74 }
75 }
76 }

Listing A.2: GPIO2VCI implementation code gpio2vci.cpp.

1 # -*- python -*-
2 Module('caba:gpio2vci',
3 classname = 'soclib::caba::Gpio2Vci',
4 tmpl_parameters = [
5 parameter.Module('vci_param', default = 'caba:vci_param'),
6],
7 header_files = ['../source/include/gpio2vci.h',],
8 implementation_files = ['../source/src/gpio2vci.cpp',],
9 ports = [

10 Port('caba:clock_in', 'p_clk', auto = 'clock'),
11 Port('caba:bit_in', 'p_resetn', auto = 'resetn'),
12 Port('caba:vci_target', 'p_vci'),
13],
14 uses = [
15 Uses('caba:base_module'),
16 Uses('common:mapping_table'),
17 Uses('caba:vci_target'),
18],
19 instance_parameters = [
20 parameter.IntTab('ident'),
21 parameter.Module('mt', typename = 'common:mapping_table', auto = 'env:mapping_table'),
22],
23)

Listing A.3: Code for the gpio2vci.sd Metadata file.

1 # -*- python -*-
2 todo = Platform('caba', 'top.cpp',
3 uses = [
4 Uses('caba:vci_xcache_wrapper', iss_t = 'common:mips32el'),
5 Uses('caba:vci_ram'),
6 Uses('caba:vci_multi_tty'),
7 Uses('caba:vci_vgmn'),
8 Uses('common:elf_file_loader'),
9 Uses('caba:gpio2vci'),

10],
11 cell_size = 4,
12 plen_size = 6,
13 addr_size = 32,
14 rerror_size = 1,
15 clen_size = 1,
16 rflag_size = 1,
17 srcid_size = 8,
18 pktid_size = 1,
19 trdid_size = 1,
20 wrplen_size = 1
21)

Listing A.4: Platform Description File platform_desc for the SoCLib SoC model.

90

1 # -*- python -*-
2 import os
3 syscams = os.getenv('SYSTEMC_AMS')
4 assert syscams, ValueError("Must set $SYSTEMC_AMS")
5 sysc = os.getenv('SYSTEMC')
6 assert sysc, ValueError("Must set $SYSTEMC")
7

8 config.systemc_ams = Config(
9 base = config.systemc,

10 cflags = ['-Iinclude',
11 '-I'+sysc+'/include',
12 '-I'+syscams+'/include'
13],
14 libs = ['-Wl,-rpath='+sysc+'/lib-linux64', '-L'+sysc+'/lib-linux64',
15 '-Wl,-rpath='+syscams+'/lib-linux64', '-L'+syscams+'/lib-linux64',
16 '-lsystemc-ams', '-lsystemc', '-lm'
17],
18)
19 config.ams = Config(
20 base = config.default,
21 systemc = config.systemc_ams,
22 repos = "./obj/soclib-cc",
23)
24 config.default = config.ams

Listing A.5: Code for the soclib.conf Configuration file.

91

1 # -*- python -*-
2

3 # SOCLIB environment definition
4 def mkname():
5 try:
6 import os
7 import pwd
8 return pwd.getpwuid(os.getuid())[0]
9 except OSError:

10 try:
11 import os
12 return os.environ["LOGNAME"]
13 except KeyError:
14 return 'unknown'
15

16 config.toolchain_64 = Toolchain(
17 parent = config.toolchain,
18 max_processes = 3,
19 cflags = config.toolchain.cflags+['-m64'],
20)
21

22 config.systemc_22_64 = Library(
23 parent = config.systemc,
24 dir = "/users/outil/systemcams/systemc-2.3.1/",
25 cflags = config.systemc.cflags,
26 os = "linux64",
27)
28

29 config.systemc_ams = Library(
30 parent = config.systemc,
31 dir = "/users/outil/systemcams/systemc-ams-2.1",
32 cflags = ['-Iinclude',
33 '-I/users/outil/systemcams/systemc-ams-2.1/include'
34],
35 libs = ['-Wl,-rpath=/users/outil/systemcams/systemc-2.3.1/lib-linux64',
36 '-L/users/outil/systemcams/systemc-2.3.1/lib-linux64',
37 '-Wl,-rpath=/users/outil/systemcams/systemc-ams-2.1/lib-linux64',
38 '-L/users/outil/systemcams/systemc-ams-2.1/lib-linux64',
39 '-lsystemc-ams', '-lsystemc', '-lm'
40],
41)
42

43 # Definition of a new build environments, which can be referenced with 'soclib-cc -t'
44

45 # SystemC 64bits environment
46 config.systemc_64 = BuildEnv(
47 parent = config.build_env,
48 repos = "/dsk/l1/misc/%s/tmp/soclib_repos_64"%mkname(),
49 toolchain = config.toolchain_64,
50 libraries = [config.systemc_22_64, config.systemc_ams],
51)
52

53 config.default = config.systemc_64

Listing A.6: Code for the global.conf Configuration file of SoCLib for TTool.

92

B. Appendix: Directory tree of source code and generated
files

In this section, the directory tree of all source files modified for this project and all the
generated files is shown. Listing B.1 shows the location of the automatically generated
files from TTool. The SystemC-AMS generated files for the TDF clusters are stored
under the generated_CPP/ directory, and the generated files for the TDF modules are
stored under the generated_H/ directory. The generated source code files for the software
of the virtual prototype are stored under the generated_src/ directory. The generated
topcell is stored in the generated_topcell/ directory.

$HOME/TTool/
SysCAMSGenerationCode/

generated_CPP/
*_tdf.h

generated_H/
*_tdf.h

MPSoC/
generated_src/

main.c
Block0.c

generated_topcell/
top.cc

Listing B.1: Generated code files directories.

The GPIO2VCI component was created under the connectivity_component/ directory,
as shown in Listing B.2

$HOME/TTool/MPSoC/soclib/soclib/module/connectivity_component/gpio2vci/caba/
metadata/

gpio2vci.sd
source/include/

gpio2vci.h
source/src/

gpio2vci.cpp

Listing B.2: GPIO2VCI component directories.

93

Listing B.3 shows the java files that were modified or created as part of the integration
of the SystemC-AMS modules and SoCLib modules into TTool.

$HOME/TTool/src/main/java/
ui/

window/
JDialogSysCAMSExecutableCodeGeneration.java
JDialogSysCAMSBlockDE.java
JDialogSysCAMSBlockTDF.java
JDialogSysCAMSPortConverter.java
JDialogSysCAMSPortDE.java
JDialogSysCAMSPortTDF.java

AvatarDeploymentPanelTranslator.java
syscamstranslator/

toSysCAMSCluster/
ClusterCode.java
Header.java
PrimitiveCode.java
TopCellGeneratorCluster.java

SysCAMSTBlockTDF.java
SysCAMSSpecification.java
SysCAMSTPortDE.java
SysCAMSTPortTDF.java
SysCAMSTPortConverter.java
SysCAMSValidateException.java

ddtranslatorSoclib/
toSoclib/

Gpio2VciAddress.java
TaskFileSoclib.java
TasksAndMainGenerator.java

toTopCell/
Declaration.java
Header.java
MappingTable.java
NetList.java
Platforminfo.java
Signal.java
TopCellGenerator.java

AvatarAmsCluster.java
AvatarddSpecification.java

Listing B.3: Java files created or modified for the integration of SystemC-AMS and SoCLib
modules.

94

The libsyscams library created to provide interface functions for communication with
the GPIO2VCI component is shown under Listing B.4.

$HOME/TTool/MPSoC/mutekh/libsyscams/
gpio2vci_address.c
gpio2vci_address.h
gpio2vci_iface.c
gpio2vci_iface.h
libsyscams.config
Makefile

Listing B.4: libsyscams library source files.

Listing B.5 shows other files that were modified as part of the integration tasks.

$HOME/TTool/MPSoC/
Makefile.forsoclib
generated_topcell/

config_noproc

Listing B.5: Other modified files for the integration tasks.

95

C. Appendix: Static schedule computation of model from
Section 4

To compute the static schedule of the TDF modules shown in Figure C.1, the static
scheduling algorithm proposed in [25] and shown in Listing C.1 can be used.

A B

Tm
A
= 6 ms Tm

B
= 4 ms

R
out

= 3

Tp
out

= 2 ms
D

out
= 0

inout

sig1

R
in

= 2

D
in

= 0
Tp

in
= 2 ms

Figure C.1: TDF model from Section 4

1: procedure computeStaticSchedule
2: Solve for the smallest positive integer vector q
3: Form an ordered list L of the nodes (α) of the model.
4: for each node α do
5: if α is runnable then
6: Schedule α
7: end if
8: end for
9: if each node α has been scheduled qα times then

10: STOP
11: else if no node could be scheduled then
12: DEADLOCK
13: else GO to 4
14: end if
15: end procedure

Listing C.1: Sequential Scheduling algorithm (Adapted from [25]).

The topology matrix Γ for this TDF cluster is formed by one row that represents the
signal sig1 and two columns representing the modules A and B respectively. Output
TDF port rates will add a positive value to an element of the matrix, while input TDF
port rates will add a negative value to that element. For this TDF cluster, the matrix Γ
is:

Γ =
[
3 −2

]
And solving:

Γ · q = 0[
3 −2

]
·
[
qA
qB

]
= 0

for the smallest positive integer vector q, we have:

qA = 2

96

qB = 3

This vector q represents the number of times that each module should be executed.

The list L of nodes will be {A, B}. Module A is runnable because it is not waiting for
any TDF samples, so it is scheduled first, and produces 3 samples. So the schedule so
far is:

A

At this point the next node B in the list is runnable because there are 3 samples available
in its input port. So it is scheduled and consumes 2 samples. The schedule is now:

AB

Since A needs to be executed 2 times, and it is runnable, it can be scheduled again,
producing 3 more samples. The schedule is:

ABA

The next node in the list is B. Since there are 4 samples available and this node needs
to be executed 3 times, it will be scheduled twice. So the schedule is:

ABABB

Each node has been scheduled q times, so the scheduling algorithm is completed. The
final schedule for one period of this TDF cluster is ABABB.

97

D. Appendix: TTool’s usage scenario

For this usage scenario, the TDF model shown in Figure D.1 will be modeled and sim-
ulated in TTool. Module A will write a value of 2 to module B. Module B will read
that value, multiply it by the last value received from the GPIO2VCI component, and
transmit the result to the GPIO2VCI component which will be connected to the SoCLib
interconnect component of an SoC platform.

A B

SoC
SoCLib
Model

R= 1
D= 0

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

GPIO2VCI

Figure D.1: TDF Cluster model

Before installing TTool, a global.config file should be created under $HOME/.soclib/.
This file can found in Listing A.6. In order to install and execute TTool, run the following
commands under the $HOME/TTool/ directory:

> make ttool
> make install
> ./ttool.exe

After opening TTool, go to File>New Model. Right click on the design area and select
“New SystemC-AMS Block Diagram”. A new SystemC-AMS panel will open. Right click
on the panel and select New SystemC-AMS Diagram. A new SystemC-AMS Component
Diagram panel will open. In the same way, several SystemC-AMS Component Diagrams
can be created inside the SystemC-AMS panel.

Figure D.2: TDF Cluster creation in the SystemC-AMS Component Diagram panel.

Inside the SystemC-AMS Component Diagram panel TDF clusters can be created. To
create a TDF cluster click on the “Cluster” button, number 1 of Figure D.2, and click
anywhere inside the SystemC-AMS Component Diagram panel to place the TDF Cluster
block. Double-click to change the name of the TDF cluster. The size of the TDF cluster
can be adjusted.

98

To add TDF module blocks, click on the “TDF Block” button, number 2 of Figure D.2,
and click anywhere inside the TDF Cluster block to place the TDF Module block. To add
a DE module block follow the same procedure, just start by clicking on the “DE Block”
button, number 3 of Figure D.2. To add a GPIO2VCI block, click on the “GPIO2VCI
block” button, number 4 of Figure D.2. GPIO2VCI blocks should be placed outside of
the TDF Cluster block.

The properties of the TDF module blocks can be set by double-clicking the block. A
new window will open, as shown in Figure D.3. In the Attributes panel the name and
module timestep (Tm) including time units can be set, as Figure D.3a shows. In the
Parameters panel, seen in Figure D.3b, the parameters of a TDF module such as its
internal variables or template parameters can be also set up. In the Process Code panel,
the processing() function of the module can be set, as Figure D.3c shows. Finally, if
constructor code needs to be added, it can be done in the Constructor Code panel. The
attributes of the DE module blocks can be modified in the same way. The GPIO2VCI
block has no attributes to be modified.

(a) Attributes panel (b) Parameters panel

(c) Process Code panel

Figure D.3: TDF module block attributes window.

When the required modules have been created they need to be connected through their
ports. The TDF ports and converter ports can be added to the TDF module blocks.
Click on the “TDF port” button, number 5 of Figure D.2, to add a TDF port. Click
on the “Converter port” button, number 6 of Figure D.2, to add a TDF converter port.
DE ports can be added to the DE blocks and to the GPIO2VCI block by clicking on the
DE port button, number 7 of Figure D.2. The attributes of the ports can be modified
by double-clicking a port, as shown in Figure D.4. The name, timestep (Tp) along with
the time units, rate, delay, type and origin of the port can be modified. Note that if a
TDF module or a DE module will be connected to the GPIO2VCI component, the type

99

Figure D.4: Setting port attributes.

sc_uint<32> should be selected as shown in Figure D.4. For DE ports, the port can be
added to the sensitivity list of the module by enabling the Sensitive field and selecting
if the port will be sensitive to a positive or negative edge of the incoming signal or null
for any incoming signal change. To connect the blocks, click the “Connector” button,
number 8 of Figure D.2, and then click an output port to connect it with an input port.

Once a TDF cluster model has been created. The next step is to validate the correctness
of the model. This is done by clicking on the “Generate SystemC-AMS code” button, as
shown in number 9 from Figure D.2. This will open a new window, where validation of
the model and code generation can be made. Click on the “Start” button to start the
validation of the model, as shown in Figure D.5a. The Validation panel will display a
message stating if there is an error with the model and make suggestions on how to fix
it. If the model is valid, then a success message will be displayed and the Generate Code
panel will open, as shown in Figure D.5b. Click on the “Start” button again to generate
the SystemC-AMS code for the model.

(a) Validation panel (b) Generate Code panel

Figure D.5: Validation and code generation window.

In parallel, the Software Design and the Deployment Diagrams can be created. Right
click on the tabs section of the design area and select “New Design” to create a new
Software Design panel. A Block diagram can be created there, as shown in Figure D.6.
Click on the “Block” button, number 1 of Figure D.6, to add a new block. Note that
a new panel is created automatically, with the name of the block. Go to the Block0

100

panel. Here, state machine diagrams that allow to design the software can be created, as
shown in Figure D.7. For this model, one state will be added by clicking on the “State”
button, number 1 of Figure D.7, and placing it in the panel. A stop block can be added
by clicking the “Stop” button, number 2 of Figure D.7. Finally the states should be
connected by clicking the “Connect” button, number 3 of Figure D.7.

Figure D.6: Software design Block Diagram panel.

Figure D.7: Software design State Machine Diagram panel.

By double-clicking the state block, C code can be entered manually in the Prototyping
tab. Here is where the functions to communicate to the GPIO2VCI component can be
added as shown in Figure D.8. For the software of this model, a value of 5 will be
written to the GPIO2VCI component. This value will be transmitted to the TDF cluster
components. Then the output from the TDF cluster will be read and printed to the TTY
component of the model. The code is shown in Listing D.1.

Figure D.8: State block Prototyping panel .

101

tmp = read_gpio2vci("TDF_Cluster");
printf("Value read from TDF Cluster: %d\n", tmp);
write_gpio2vci(5, "TDF_Cluster");
tmp = read_gpio2vci("TDF_Cluster");
printf("Value read from TDF Cluster: %d\n", tmp);

Listing D.1: State block code.

Note that the code is using a variable tmp. To create the variable in the Block Diagram
panel, double click Block0 to open the attributes window for the block, as shown in
Figure D.9. In the Attributes panel, new variables can be added by giving an identifier
name, an initial value and a type.

Figure D.9: Block diagram’s Block attributes.

Once that the software design is complete, the MPSoC model needs to be created in
the Deployment Diagram. Here, the user can insert SoCLib components and the TDF
clusters. To insert a CPU click the “CPU” button, number 1 of Figure D.10. Double
click the CPU block and setup the necessary attributes. To add a RAM memory click on
the “RAM” button, number 2 of Figure D.10. Double click the RAM block and set up its
attributes. To add a TTY console click on the “TTY” button, number 3 of Figure D.10.
Finally an interconnect component needs to be added, by clicking the “VGMN” button,
number 4 of Figure D.10. To map the software blocks from the Block Diagram into a
specific CPU, click the “Map and AVATAR block” button, number 5 of Figure D.10, and
place it under the CPU. Double click the block inside the CPU and select the name of
the block that is mapped to that CPU.

Figure D.10: Adding SystemC-AMS Clusters to the Deployment Diagram.

102

In order to include the TDF clusters into the MPSoC model, they need to be added as
SystemC-AMS Cluster blocks in the Deployment Diagram. To add a new SystemC-AMS
Cluster block, click on the “Cluster” button, number 6 of Figure D.10, and place the block
in the Deployment Diagram panel. The name of the SystemC-AMS Cluster block should
be the same name provided in the SystemC-AMS Component diagram. All the blocks
should be connected to a SoCLib interconnect component using a connector, number 7 of
Figure Figure D.10. Once the necessary SystemC-AMS Cluster blocks have been added,
the topcell from the Deployment Diagram model can be generated. In the Deployment
Diagram Panel, click on the “Syntax analysis” button, number 8 of Figure D.10. This will
open a new window to verify the syntax of the model, as shown in Figure D.11. Click on
the “Check syntax” button. If there are any syntax errors, a message will be displayed,
otherwise we can proceed to the generation of the topcell.

Figure D.11: Check syntax window.

Figure D.12: Code generation window.

Click on the “Generate Deploy SoCLib” button in the Deployment Diagram panel, num-
ber 9 of Figure D.10. A new window will be opened where the topcell code can be
generated, compiled and executed. In Figure D.12, the Generate Code panel is shown,
where several option can be chosen, including the tracing capabilities and debugging
information. Click “Start” to generate the topcell top.cc code and the software code.

103

Then in the Compile panel, click “Start” to compile the code. Finally in the Execute
panel, click “Start” to begin the simulation of the virtual prototype of the model.

Figure D.13 shows the TTY console from the model. In the last lines, the values being
read from the TDF cluster are printed. The first value is 0, since nothing have been
written to the TDF cluster. The last value is 10, since a value of 5 was written to the
TDF cluster, and it is being multiplied by the value 2 generated from the TDF module
A.

Figure D.13: Simulation output from the TTY component of the model.

104

E. Appendix: Lists

List of Figures

2.1 SystemC-AMS extensions. (Adapted from [12].) 4

2.2 TDF Cluster . 5

2.3 Equivalent CPN of a TDF module. (Reprinted from [7, p. 60] with per-
mission.) . 7

2.4 Equivalent CPN of a TDF signal. (Reprinted from [7, p. 62] with permis-
sion.) . 7

2.5 TTool’s different levels for model-based design and development of em-
bedded systems. (Adapted from [22]). 8

2.6 Toolchain for the software design level (Adapted from [3]). 9

2.7 TTool’s augmented graphical interface with SystemC-AMS Component
Diagram. 10

2.8 Setting TDF module’s attributes in TTool. 11

3.1 Integration of SoCLib and SystemC AMS components. 13

3.2 GPIO2VCI component. 14

3.3 Model integrating SystemC-AMS and SystemC SoC components. 16

3.4 Simulation output from the the host machine console of the integration of
SystemC-AMS and SystemC SoC components. 19

3.5 Model integrating SystemC-AMS and SoCLib components. 20

3.6 Simulation of the integration of SystemC-AMS and SoCLib SoC components. 24

4.1 TDF-DE model accessing input converter port before accessing output
converter port. (Adapted from [7]). 26

4.2 SystemC-AMS simulation of model accessing input converter port before
accessing output converter port. 26

4.3 TDF-DE model accessing output converter port before accessing input
converter port. (Adapted from [7]). 28

4.4 SystemC-AMS simulation of model accessing output converter port before
accessing input converter port. 28

4.5 TDF-DE model accessing output converter port before accessing another
output converter port. (Adapted from [7]). 31

4.6 SystemC-AMS simulation of model accessing output converter port before
accessing another output converter port. 31

105

4.7 TDF-DE model accessing input converter port before accessing another
input converter port. (Adapted from [7]). 33

4.8 SystemC-AMS simulation of model accessing input converter port before
accessing another input converter port. 34

4.9 SystemC-AMS simulation of model accessing input converter port before
accessing output converter port using a delay to solve causality problems. 37

4.10 Parameters of the TDF module and its converter ports. 40

5.1 Deployment Diagram with two SystemC-AMS Cluster blocks. 46

5.2 blockGPIO2VCI in the SystemC-AMS Component Diagram for Cluster1. . 47

5.3 SystemC-AMS Cluster0 from the model shown in Figure 5.1. 48

5.4 Block Diagram and State Diagram for Cluster1. 54

5.5 C code for the readCluster1 state block. 57

5.6 Simulation output of console from the host machine 57

5.7 Simulation output of the terminal from the TTY component of the model. 58

5.8 Validation panel and error for unconnected ports. 59

5.9 Timestep propagation (Adapted from [13, p. 11]). 59

5.10 Timestep propagation error. 60

5.11 Unschedulable model due to missing delays in the loop. 62

5.12 Suggested loop delays. 62

5.13 TDF cluster for time synchronization validation. 63

5.14 Time synchronization issues and suggested delays. 63

6.1 Deployment Diagram model of the rover 64

6.2 Temperature sensor model . 65

6.3 Distance sensor model . 65

6.4 Block diagram for the rover . 66

6.5 Motor control state machine. 67

6.6 Main control state machine. 67

6.7 startController code. 68

6.8 readDistanceSensor code. 68

6.9 Rover simulation output from the host machine console. 68

106

6.10 Rover simulation output from the TTY component console - startController
and readDistanceSensor states. 69

6.11 setTempSensor code. 69

6.12 Rover simulation output from the host machine console. 70

6.13 measureTemp code. 70

6.14 Rover simulation output from the TTY component console - setTempSensor
and measureTemp state. 70

6.15 Vibration sensor model (Adapted from [7]). 71

6.16 CTRL module state machine. 72

6.17 Vibration sensor model in TTool. 72

6.18 Suggested delays for the vibration sensor in TTool. 73

6.19 Suggested delays for the vibration sensor in SystemC-MDVP. 73

6.20 Suggested delays for the vibration sensor in SystemC-AMS. 74

6.21 Deployment Diagram model including the vibration sensor TDF cluster. . 74

6.22 Vibration sensor trace signal generated from SystemC-AMS’ simulation. . 75

6.23 Vibration sensor trace signal generated from SystemC-MDVP’s simulation. 75

6.24 Vibration sensor trace signal generated from TTool’s simulation. 76

6.25 Model with feedback and multiple DE components connected to a TDF
module. 77

6.26 Model built in TTool. 77

6.27 Suggested delays from TTool’s model. 78

6.28 Suggested delays from SystemC-MDVP model’s simulation. 78

6.29 Simulation of the model in SystemC-AMS, not schedulable. 79

6.30 Suggested delays for time synchronization issues in SystemC-AMS. 80

6.31 TDF model with two feedback loops (Adapted from [26]). 81

6.32 Model simulated in SystemC-AMS with no delays. 82

6.33 Model simulated in SystemC-MDVP with no delays. 82

6.34 Extended Model 1 with extra DE modules. 83

6.35 Suggested delays from the simulation in SystemC-MDVP. 83

6.36 Suggested delays from the simulation in SystemC-AMS. 84

107

6.37 Suggested delays from the Validation panel in TTool. 84

C.1 TDF model from Section 4 . 96

D.1 TDF Cluster model . 98

D.2 TDF Cluster creation in the SystemC-AMS Component Diagram panel. . 98

D.3 TDF module block attributes window. 99

D.4 Setting port attributes. 100

D.5 Validation and code generation window. 100

D.6 Software design Block Diagram panel. 101

D.7 Software design State Machine Diagram panel. 101

D.8 State block Prototyping panel . 101

D.9 Block diagram’s Block attributes. 102

D.10 Adding SystemC-AMS Clusters to the Deployment Diagram. 102

D.11 Check syntax window. 103

D.12 Code generation window. 103

D.13 Simulation output from the TTY component of the model. 104

108

List of Tables

4.1 TDF and DE simulation time tracking for model accessing input converter
port before accessing output converter port. 26

4.2 TDF and DE simulation time tracking for model accessing output con-
verter port before accessing input converter port. 29

4.3 TDF and DE simulation time tracking for model accessing output con-
verter port before accessing another output converter port. 31

4.4 TDF and DE simulation time tracking for model accessing input converter
port before accessing another input converter port. 35

4.5 TDF and DE simulation time tracking for model accessing input converter
port before accessing output converter port using a delay to solve causality
problems. 38

4.6 Execution of model without delay and computation of DE and TDF sim-
ulation times. 42

4.7 Execution of model with delay and computation of DE and TDF simula-
tion times. 44

6.1 Comparison of the suggested delays between TTool, SystemC-MDVP and
SystemC-AMS for the vibration sensor model. 74

6.2 Comparison of the suggested delays between TTool and SystemC-MDVP. 78

6.3 Suggested delays by TTool depending on the order of creation of the TDF
blocks. 81

6.4 Comparison of the suggested delays to solve time synchronization issues
between TTool, SystemC-AMS and SystemC-MDVP. 84

109

List of Listings

3.1 GPIO2VCI ports definition. 14

3.2 GPIO2VCI registers definition. 14

3.3 GPIO2VCI transtion() function implementation. 15

3.4 GPIO2VCI genMoore() function implementation. 15

3.5 Mapping table for the SystemC SoC model. 17

3.6 Instantiation of the SystemC SoC model components. 17

3.7 Net-List of the SystemC SoC model. 18

3.8 Sine Source processing() function. 18

3.9 Sink processing() function. 18

3.10 Assembler instructions hard-coded in RAM memory of the SystemC model. 19

3.11 Mapping table for the SoCLib SoC model. 21

3.12 Instantiation of the SoCLib SoC model components. 22

3.13 Net-List of the SoCLib SoC model components. 22

3.14 C code of the main function from the SoCLib SoC Software. 23

4.1 Algorithm to detect time synchronization issues. 41

5.1 Class and ports of the SystemC-AMS code generated for module A0. . . . 49

5.2 Class, ports and modules of the SystemC-AMS code generated for Cluster0. 50

5.3 Constructor SC_CTOR of the SystemC-AMS code generated for Cluster0. . 50

5.4 Trace function of the SystemC-AMS code generated for Cluster0. 50

5.5 #include list of the top.cc topcell. 51

5.6 Segments of the mapping table of the top.cc topcell. 51

5.7 Instantiation of clusters and GPIO2VCI component of the top.cc topcell. 52

5.8 Signals of the top.cc topcell. 52

5.9 Net-List of the top.cc topcell. 52

5.10 Tracing for the AMS components of the top.cc topcell. 53

5.11 Tracing for the GPIO2VCI SystemC signals of the top.cc topcell. 53

5.12 gpio2vci_iface.h definition file from the libsyscams library. 55

5.13 gpio2vci_iface.h implementation file from the libsyscams library. . . . 55

110

5.14 gpio2vci_address.h definition file from the libsyscams library. 56

5.15 gpio2vci_address.c implementation file from the libsyscams library,
dynamically generated. 56

5.16 Sequential Scheduling algorithm (Adapted from [25]). 61

6.1 Temperature sensor behavior. 65

6.2 Distance sensor controller behavior. 66

6.3 Ultrasonic sensor behavior. 66

A.1 GPIO2VCI definition code gpio2vci.h. 88

A.2 GPIO2VCI implementation code gpio2vci.cpp. 90

A.3 Code for the gpio2vci.sd Metadata file. 90

A.4 Platform Description File platform_desc for the SoCLib SoC model. . . . 90

A.5 Code for the soclib.conf Configuration file. 91

A.6 Code for the global.conf Configuration file of SoCLib for TTool. 92

B.1 Generated code files directories. 93

B.2 GPIO2VCI component directories. 93

B.3 Java files created or modified for the integration of SystemC-AMS and
SoCLib modules. 94

B.4 libsyscams library source files. 95

B.5 Other modified files for the integration tasks. 95

C.1 Sequential Scheduling algorithm (Adapted from [25]). 96

D.1 State block code. 102

111

List of Abbreviations

analog/mixed signal AMS . 1

Coloured Petri Nets CPN . 6

Consejo Nacional de Ciencia y Tecnología, México CONACyT 1

cycle-accurate bit-accurate CABA . 10

Deployment Diagrams DD . 9

Discrete Event DE . 2

Electrical Linear Networks ELN . 4

Finite State Machines FSM . 13

general-purpose input/output GPIO . 13

hardware HW . 1

Institute for Experimental Software Engineering IESE 1

Instruction Set Simulator ISS . 16

Laboratoire d’Informatique de Paris 6, France LIP6 1

Linear Signal Flow LSF . 4

Models of Computation MoC . 2

Multi-Disciplinary Virtual Prototyping MDVP 2

multi-processors system on chip MPSoC . 1

Operating System OS . 1

radio frequency RF . 1

software SW . 1

Synchronous Data Flow SDF . 5

Timed Data Flow TDF . 2

112

timed-Coloured Petri Nets timed-CPN . 6

Transaction Level Modeling TLM . 6

Virtual Component Interface VCI . 6

virtual generic micro-network VGMN . 6

virtual generic system bus VGSB . 6

113

References

[1] Päivi Parviainen, Juha Takalo, Susanna Teppola, and Maarit Tihinen. Model-Driven
Development. Processes and practices. Number 114 in VVT Working Papers. VTT
Technical Research Centre of Finland, February 2009.

[2] Ludovic Apvrille. TTool, an open-source toolkit for the modeling and verification
of embedded systems. http://ttool.telecom-paristech.fr/. As of: October 4,
2018.

[3] Daniela Genius and Ludovic Apvrille. Virtual Yet Precise Prototyping: An Auto-
motive Case Study. In Proceedings of the 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), pages 691–700, TOULOUSE, France.,
January 2016. 8th European Congress on Embedded Real Time Software and Sys-
tems.

[4] Irina Lee. TTool/SystemC AMS : Interface Graphique et Génération de Plateforme.
Master 1 Project. (Unpublished). Université Pierre et Marie Curie, 2018.

[5] SoCLib. http://www.soclib.fr/. As of: October 4, 2018.

[6] Alexandre Becoulet. MutekH. http://www.mutekh.org/. As of: October 25, 2018.

[7] Liliana Andrade. Principles and implementation of a generic synchronization in-
terface between SystemC AMS models of computation for the virtual prototyping of
multi-disciplinary systems. PhD thesis, Université Pierre et Marie Curie, 2016.

[8] CATRENE (CA701) H-INCEPTION. Heterogeneous Inception. https://www-soc.
lip6.fr/trac/hinception, 2015. As of: October 5, 2018.

[9] Accellera Systems Initiative. SystemC. http://www.accellera.org/downloads/
standards/systemc. As of: October 4, 2018.

[10] IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std 1666-
2011 (Revision of IEEE Std 1666-2005), pages 1–638, January 2012.

[11] Edward Ashford Lee. Modeling concurrent real-time processes using discrete events.
Annals of Software Engineering, 7(1-4):25–45, October 1999.

[12] Martin Barnasconi, Karsten Einwich, Christoph Grimm, Torsten Maehne, and Alain
Vachoux. Standard SystemC AMS extensions 2.0 Language Reference Manual. Ac-
cellera Systems Initiative, March 2013.

[13] Martin Barnasconi, Christoph Grimm, Markus Damm, Karsten Einwich, Marie-
Minerve Louërat, Torsten Maehne, François Pecheux, and Alain Vachoux. SystemC
AMS extensions User’s Guide. Open SystemC Initiative (OSCI), March 2010.

[14] Edward Ashford Lee and David G. Messerschmitt. Synchronous data flow. Proceed-
ings of the IEEE, 75(9):1235–1245, September 1987.

[15] Alain Greiner. Writing efficient Cycle-Accurate, Bit-Accurate SystemC simulation
models for SoCLib. http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba,

114

http://ttool.telecom-paristech.fr/
http://www.soclib.fr/
http://www.mutekh.org/
https://www-soc.lip6.fr/trac/hinception
https://www-soc.lip6.fr/trac/hinception
http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/systemc
http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba

September 2017. As of: October 16, 2018.

[16] John Aynsley. OSCI TLM - 2.0 Language Reference Manual. Open SystemC Ini-
tiative (OSCI), July 2009.

[17] VSI Alliance. Virtual Component Interface Standard (OCB 2 2.0). Technical report,
VSI Alliance, August 2000.

[18] Cédric Ben Aoun. Principles and Realization of a Virtual Prototyping Environment
for Composable Heterogeneous Systems. PhD thesis, Université Pierre et Marie
Curie, 2017.

[19] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets. Modelling and Validation
of Concurrent Systems. Springer, 2009.

[20] José-Inácio Rocha, Luís Gomes, and Octávio Páscoa Dias. Dataflow model property
verification using Petri net translation techniques. In 2011 9th IEEE International
Conference on Industrial Informatics, pages 783–788, July 2011.

[21] Liliana Andrade, Torsten Maehne, Alain Vachoux, Cédric Ben Aoun, François
Pêcheux, and Marie-Minerve Louërat. Pre-simulation symbolic analysis of synchro-
nization issues between discrete event and timed data flow models of computation.
In 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pages
1671–1676, March 2015.

[22] Daniela Genius, Marie-Minerve Louërat, François Pêcheux, Ludovic Apvrille, and
Haralampos Stratigopoulos. Modeling Heterogeneous Embedded Systems with
TTool. DUHDe 2018 - 5th Workshop on Design Automation for Understanding
Hardware Designs. (Unpublished), March 2018.

[23] SoCLib tools documentation. http://www.soclib.fr/doc/. As of: October 18,
2018.

[24] Markus Damm, Christoph Grimm, Jan Haase, Andreas Herrholz, and Wolfgang
Nebel. Connecting SystemC-AMS models with OSCI TLM 2.0 models using tempo-
ral decoupling. In 2008 Forum on Specification, Verification and Design Languages,
pages 25–30, September 2008.

[25] Edward Ashford Lee and David G. Messerschmitt. Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing. IEEE Transactions on Comput-
ers, C-36(1):24–35, January 1987.

[26] Stephen A. Edwards. Dataflow Languages. [PowerPoint presentation]
2001. http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/
presentations/dataflow.pdf. As of: November 05, 2018.

[27] EchOpen project: Designing an Open Source and Low-Cost Echo-Stethoscope.
http://www.echopen.org/. As of: November 05, 2018.

115

http://www.soclib.fr/doc/
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.pdf
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.pdf
http://www.echopen.org/

	Introduction
	Context
	Objective
	Thesis organization

	Related work
	SystemC and SystemC-AMS
	SoCLib
	SystemC-MDVP and timed-CPNs
	TTool
	SystemC-AMS graphical interface and platform generation in TTool

	Integration of SystemC-AMS and SoCLib components
	Development of the GPIO2VCI SoCLib component
	Integration of SystemC-AMS modules with a pedagogic SoCLib model
	Integration of SystemC-AMS modules with a full SoCLib model

	Time synchronization between TDF and DE MoCs
	Detection of time synchronization issues
	Access to input converter port before an access to output converter port
	Access to output converter port before an access to input converter port
	Access to output converter port before an access to another output converter port
	Access to input converter port before an access to another input converter port
	Preliminary conclusions

	Avoidance of time synchronization issues
	Proposal for detection and avoidance of time synchronization issues

	Integration of SystemC-AMS and SoCLib modules into TTool
	Integration decisions to augment the graphical interface of TTool
	Integration of SystemC-AMS and the SoCLib modules in TTool
	Synchronization of SystemC-AMS and SoCLib modules in TTool

	Case studies and comparison between TTool, SystemC-AMS and SystemC-MDVP
	Case studies
	Introduction
	Case study 1: Rover
	Case study 2: Vibration sensor

	Comparison between TTool, SystemC-AMS and SystemC-MDVP simulators
	Model 1
	Model 2
	Model 3

	Conclusion and perspectives
	Conclusion
	Perspectives

	Appendix: Source codes
	Appendix: Directory tree of source code and generated files
	Appendix: Static schedule computation of model from Section 4
	Appendix: TTool's usage scenario
	Appendix: Lists
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations

	References

