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Abstract & Résumé

In this manuscript I present an experi-
mental investigation of the dynamics of an
ultracold gas of bosonic ytterbium loaded
into optical lattices and exposed to resonant
light. The interaction between atoms and
light makes it possible to study the coherence
properties of the gas. The resonant driving is
performed on the relevant optical transitions
featured by alkaline-earth-like atoms such as
ytterbium. Specifically, I use the clock tran-
sition, which has no spontaneous emission, to
coherently manipulate the internal degrees of
freedom of the atoms. I also use the so-called
intercombination transition, the spontaneous
emission rate of which is tunable, to produce
a controllable dissipation.

On the one hand, I demonstrate the co-
herent driving of the internal state of the
atoms on the clock transition, the excited
state of which is metastable and cannot spon-
taneously decay, thus preserving the coher-
ence of the gas. The temporal internal dy-
namics in a deep lattice allows me to measure
the collisional properties at low temperature
for both clock states.

On the other hand, I use the sponta-
neously emitted photons of the intercombi-
nation transition excited level to induce a
coupling to the external degrees of freedom
of the atoms. I present the momentum dif-
fusion of a superfluid excited on this tran-
sition. Strong interactions between atoms
slow down the decoherence and lead to an
anomalous sub-diffusive relaxation. A sim-
ple model comprising atomic motion, inter-
actions and dissipation accounts for our ob-
servations. A theoretical study of the dis-
sipative dynamics in optical lattices sheds
light on complementary phenomena such as
induced dipole-dipole interactions or collec-
tive effects in spontaneous emission.

Dans ce manuscrit je décris une série
d’études expérimentales portant sur la dy-
namique d’un nuage d’atomes d’ytterbium
bosonique dégénérés chargés dans un
réseau optique et soumis à de la lumière
résonante. L’interaction atome-lumière per-
met d’étudier les propriétés de cohérence
quantique du gaz. Pour ces études j’utilise
la structure électronique de l’ytterbium
qui possède des transitions optiques bien
adaptées, à savoir une transition d’horloge
sans émission spontanée et une transi-
tion dite d’intercombinaison dont le taux
d’émission spontanée est ajustable.

Dans un premier temps, je démontre la
manipulation cohérente de l’état interne des
atomes sur la transition d’horloge, dont l’état
excité est métastable et ne peut pas émettre
de photons spontanément, protégeant ainsi
la cohérence du gaz. La dynamique tem-
porelle de l’état interne d’atomes chargés
dans un réseau optique profond permet
de mesurer les propriétés collisionelles à
basse température pour les états horloges de
l’ytterbium.

Dans un second temps, j’utilise
l’émission spontanée associée à la transi-
tion d’intercombinaison, ce qui permet un
couplage aux degrés de liberté externes des
atomes. Je présente l’étude de la diffu-
sion en impulsion d’un superfluide excité sur
cette transition. Les fortes interactions en-
tre atomes conduisent à l’observation d’une
décohérence ralentie aux temps longs et car-
actérisée par un régime sous-diffusif. Un
modèle simple de type Bose-Hubbard inclu-
ant la dissipation permet de rendre compte
de ces observations. Une étude théorique des
effets à N -corps dans l’interaction atome-
lumière vient en compléter l’analyse.

Cover picture designed with Marion Bouganne.
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Matthias Scholl, dont la prononciation bien à lui des mots finissant en -il ou -ille me fait
encore sourire; Quentin Beaufils, dont les ressemblances de caractère avec Fabrice sont
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Glossary

Constants and notations

Throughout the manuscript I use a number of physical constants:

• the speed of light in vacuum c,
• the Boltzmann constant kB,
• the vacuum permittivity ε0,
• Planck’s constant h,
• reduced Planck’s constant ~ = h/(2π),
• the Bohr radius a0,
• the Bohr magneton µB.

If not otherwise mentioned, t refers to the time variable and M to the atomic mass of
174Yb. The square root of -1 is noted i, hermitian conjugate is noted h.c., δi,j is the
Kronecker delta and δ(n) is the Dirac delta distribution in dimension n. The Cauchy
principal value of an integral is noted PV. Error bars are provided in parentheses and
refer to the last relevant digit.

Acronyms

AEL Alkaline-earth-like,
AOM Acousto-optic modulator,
BEC Bose-Einstein condensate,
CCD Charge-coupled device,
DT Dipole trap,
EOM Electro-optic modulator,
MI Mott insulator,
MOT Magneto-optical trap,
PD Photo-diode,
PDH Pound-Drever-Hall,
PSD Power spectral density,
RAM Residual amplitude modulation.
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0
Introduction

Atomic quantum gases exemplify a possible leitmotiv for natural sciences: To render our-
selves the lords and possessors of nature, as the philosopher René Descartes expressed
in his treaty on reason and the seek of truth in science (Descartes 1637). Indeed they
represent one of the most controlled though elaborate systems found in physics labora-
tories and are now routinely realised in many places around the world. Quantum gases
host a very rich variety of physical phenomena, they belong to this class of devices which
are built from ‘simple’ building blocks, and that yet constitute complex interacting quan-
tum systems with which one can explore the intriguing properties of quantum matter.
The tremendous scientific progress of the last fifty years, supported by equally impor-
tant technological advances, has made possible the realisation of many of such devices
comprised of neutral atoms, ions, photons, electrons, or superconducting circuits among
others (Georgescu et al. 2014). Many of these systems were initially studied for their own
sake, but it has soon been realised that they can also be used to understand many more
physical processes spanning a wide range of research topics.

The last decade of research with quantum gases has been focusing on the simulation
of many-body problems. For instance, the analogy between interacting atomic gases in
light potentials and electrons in solids is such that the former can be used to simulate the
latter (Bloch 2005) and provide answers to fundamental challenges of solid-state physics.
Implementation of Hubbard models (Greiner et al. 2002b), spin Hamiltonians (Struck
et al. 2011) or disordered systems (Billy et al. 2008; Roati et al. 2008) were carried out
with quantum gases. The general motivation stems from the high level of experimen-
tal control over quantum gases, which makes it possible to engineer and inspect models
of condensed matter phenomena with greater ease. This analogy illustrates vividly the
more general quantum simulation paradigm, the original idea of which being expressed
in the words: Let the computer itself be built of quantum mechanical elements which obey
quantum mechanical laws (Feynman 1982). The design of quantum simulators, which I
referred to above as complex interacting quantum systems, is based on a bottom-up ap-
proach consisting in assembling elementary building blocks and coupling them together.
Numerous implementations of quantum simulators are now achieved in laboratories. Neu-
tral atoms can be trapped and addressed in optical lattices (Bloch et al. 2012) or optical
tweezers (Weimer et al. 2010; Nogrette et al. 2014). Trapped ions constitute one of the
most advanced platform for quantum computing (Blatt et al. 2012). Another promis-
ing platform for the development of quantum information processing is superconducting
circuits (Devoret et al. 2013), which are particularly promising to foresee applications
outside a physics laboratory. The range of problems that these systems can explore go
from condensed-matter physics to quantum chaos or cosmology (Georgescu et al. 2014).
Other tracks are being explored in parallel, even though they are not as developed as
the previous ones. For example, the control of single spins in semiconductors (Hanson
et al. 2008) is now extended to build arrays of quantum dots (Awschalom et al. 2013) or
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0. Introduction

nitrogen-vacancy centers (Childress et al. 2013). Finally, photons can also be manipulated
and made to interact in photonic circuits (Aspuru-Guzik et al. 2012).

Many of these quantum simulators or quantum computers face the problem of deco-
herence (Zurek 2002; Haroche et al. 2006), i.e. the irreversible leak of information into an
uncontrolled environment that blurs out quantum interference phenomena. Decoherence
is a limiting factor for these experiments aiming at controlling many-body quantum sys-
tems for long times. However, the process by which quantum coherences spread out is a
highly non-trivial problem and lacks complete theoretical description and understanding
(Laloë 2001; Zurek 2002). More precisely, the question of how the coupling to an en-
vironment or inter-particle interactions affect the time evolution of quantum coherences
is an ongoing though intense research topic (Zurek 2003; Choi et al. 2016; Kaufman et
al. 2016). Such an interaction can happen in many different ways, e.g. coupling to the
electro-magnetic field vacuum, losses in the system, finite temperature effects, collisions
and more. The case of non-interacting particles has been addressed in the last twenty
years and experiments aiming at exploring decoherence have been successfully performed
with microwave cavities (Haroche et al. 2006; Haroche 2013) or ions (Myatt et al. 2000;
Turchette et al. 2000; Wineland 2013). When systems are made up of many particles,
the decoherence is usually expected to be hastened by interactions but in general the
dynamics can be more sophisticated. Understanding the processes by which many-body
systems interact with their surroundings is thus paramount. In that respect, an impor-
tant feature of quantum gases is their good degree of isolation and thus protection from
dissipative processes, in comparison with solid-state devices where dissipation channels
are numerous. This makes it possible to engineer and control the degree of coupling to an
external reservoir, which is a very appealing feature to study decoherence with quantum
gases. The effect of light on the atomic motional degrees of freedom has been extensively
studied in the framework of laser cooling (Wineland et al. 1979; Gordon et al. 1980; Chu
1998; Cohen-Tannoudji 1998; Phillips 1998), a process at the genesis of quantum gases.
Ironically, one can also use spontaneous emission to study decoherence. Theoretical stud-
ies for many-body atomic systems (Milonni et al. 1974; Ellinger et al. 1994; Pichler et al.
2010) suggest that interactions can affect substantially the relaxation dynamics.

This thesis work has been conducted in this context and aims at understanding better
the coherence properties of a quantum gas in optical lattices. The advent of quantum
gases started in 1995 after the first observation of Bose-Einstein condensation in dilute
atomic vapours (Anderson et al. 1995; Bradley et al. 1995; Davis et al. 1995), followed a
few years later by the creation of degenerate Fermi gases (DeMarco et al. 1999; Schreck
et al. 2001; Truscott et al. 2001). All this was achieved after two decades of intense efforts
to manipulate the motion of atoms using light and magnetic fields (Hänsch et al. 1975;
Wineland et al. 1979). Laser cooling and trapping techniques were developed to slow
down atoms, making the most of spontaneous emission to extract entropy from the gas
and lower its temperature. However the randomness of spontaneous emission provides
a limit to the achievable temperatures, in the range of the microkelvin, which was still
too high to observe quantum mechanical statistics on a macroscopic scale. The criterion
for the observation of Bose-Einstein condensation is that the phase-space density nλ3

T of
the gas1 exceeds a threshold on the order of one. At that time, phase-space densities
around 10−5 were achieved using laser cooling. The decisive idea to cross the transition
point relies on inter-particle interactions and is called evaporative cooling2 (Hess 1986;

1n is the gas density and λT ∝ 1/
√
T is the thermal wavelength with T the temperature of the gas.

2While this technique was first designed to cool down atomic hydrogen, condensation via evaporative

12



Masuhara et al. 1988). Essentially, the mechanism works as follows: Atomic collisions
preferentially expel the most energetic atoms from the trap and simultaneously allow the
remaining ones to thermalise. The mean energy of the system is then lowered, and so is its
temperature. Facilitating the removal of the hottest atoms with a time-dependent ramp
on the trap depth makes it possible to reach the regime of Bose-Einstein condensation.
Nowadays, other routes are explored (or re-explored) and Bose-Einstein condensates have
been realised without evaporative cooling (Stellmer et al. 2013; Hu et al. 2017).

The beauty of quantum gases lies in their exceptional physical properties. For in-
stance, a Bose-Einstein condensate is a coherent, macroscopic matter wave, with which
one can observe matter wave interferences (Andrews et al. 1997) or long-range phase co-
herence (Bloch et al. 2000). Another striking aspect of quantum gases is their superfluid
behaviour, which made possible the observation of vortices (Matthews et al. 1999; Madi-
son et al. 2000) and metastable currents (Ramanathan et al. 2011; Moulder et al. 2012).
Furthermore, these systems offer great flexibility with the capacity to change their dimen-
sionality, to mimic periodic potentials using optical lattices and to tune the inter-particle
interactions using Fano-Feshbach resonances (Bloch et al. 2008). These features were
central for the observation of a wealth of phenomena among which the superfluid-Mott
insulator quantum phase transition with bosons (Greiner et al. 2002b), or the crossover
between a Bose-Einstein condensate of weakly-bound molecules to a superfluid of Cooper
pairs with fermions (Regal et al. 2004).

While quantum gases were originally achieved with alkali atoms, many other ele-
ments have been laser cooled and brought to quantum degeneracy [for instance ytterbium
(Takasu et al. 2003)]. Among these, the family of alkaline-earth-like atoms helped to
design a new generation of optical atomic clocks, owing to the very high quality factor
of the ultranarrow optical transitions present in the low-lying energy structure of these
atoms (Ludlow et al. 2015). Such clocks beat by many orders of magnitude the frequency
standards based on a microwave transition of alkali atoms such as caesium or rubidium.
Optical clocks already reach 10−18 fractional frequency precision or below. At this level,
they should be capable of testing general relativity (Chou et al. 2010). While most of
these clocks operate with thermal atoms, recent experiments have started to explore the
degenerate regime, demonstrating 100 µHz precision in relative frequency measurement
and showing new prospects for metrology (Marti et al. 2018). Another emergent but very
active field is the study of dipolar quantum gases, which started with the condensation
of chromium (Griesmaier et al. 2005) and gained a fresh impetus with the condensation
of open-shell lanthanide species (Lu et al. 2011; Aikawa et al. 2012), which feature a
high permanent magnetic moment. As an illustration, these dipolar quantum gases have
recently allowed for the observation of a roton-like instability3 (Chomaz et al. 2018) and
quantum droplets4 (Ferrier-Barbut et al. 2016).

Along the lines of what has been discussed so far, a more specific opportunity of-
fered by quantum gases is the simulation of charged particles in strong magnetic fields.
This is of particular interest to reach a regime where experiments with condensed matter
samples are extremely challenging due to the high magnitude required for the magnetic
field ∼ 1000 T. The observation of quantized plateaus in the Hall conductance of a two-

cooling was first successful with alkali atoms.
3Such an instability, corresponding to an elementary excitation forming a minimum of energy at finite

momentum, is reminiscent of the roton mode in 4He.
4These droplets are a direct manifestation of quantum fluctuations, which imply corrections to the

mean-field description and mechanically protect the otherwise unstable droplets.
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0. Introduction

dimensional gas of electrons is the integer quantum Hall effect (von Klitzing 1986). When
inter-particle interactions come into play, additional plateaus located not at integer but
at fractional values of the quantum of conductance also appear (Tsui et al. 1982; Laughlin
1983). In such a regime, strongly correlated phases of matter are predicted to form. Using
quantum gases to simulate such systems requires to mimic the Lorentz force a charged
particle feels in a magnetic field. This can be achieved using the Coriolis force on rapidly
rotating quantum gases (Schweikhard et al. 2004). The Coriolis force MΩ × v, with Ω
the angular velocity vector and v the speed, has the same structure as the Lorentz force
ev×B, with e the electric charge and B the magnetic field. Another method consists in
using the coherent coupling between atoms and a laser beam, where the exchange of pho-
tons can be tailored to induce momentum change orthogonal to the atomic motion. Many
experiments have already explored the single-particle and mean-field regimes with this
technique (Goldman et al. 2014), but beyond mean-field effects remain elusive to observa-
tion due to technical limitations inducing heating of the atomic sample. The experimental
apparatus of this thesis work, based on the proposal in Gerbier et al. (2010), has been
designed to overcome such limitations and reach a regime where bosonic counterparts of
the quantum Hall states could be observable (Cooper et al. 2018).

In this manuscript I explain an original work carried out over the last three years in
laboratoire Kastler Brossel at Collège de France. I present an experimental investigation
of the dynamics of ultracold ytterbium gases loaded into optical lattices and subjected
to a near-resonant laser light field. In that respect, two series of experiments have been
performed. I first looked at the internal dynamics of atom pairs in the coherent driving
regime using the ‘clock’ transition, the excited state of which is metastable. Then I studied
the external dynamics of a superfluid in the dissipative regime using the ‘intercombination’
transition, with a controllable spontaneous emission rate. This investigation sheds light
on the internal and external coherence properties of quantum gases in optical lattices.

The manuscript is arranged as follows:

Chapter 1 provides the background this thesis work relies on. Relevant attributes of
alkaline-earth-like atoms are given with an emphasis on ytterbium. Then a reminder
of the physics of ultracold atoms in optical lattices is presented. In a broader
perspective, the intended purpose of the experiment is outlined.

Chapter 2 describes the experimental apparatus. It focuses on four major facets: the
realisation of Bose-Einstein condensates, the detection method, the preparation of
degenerate gases in optical lattices and the laser driving the clock transition.

Chapter 3 explains the optical ‘clock’ spectroscopy of interacting atoms in deep optical
lattices. It shows how the coherent driving of atoms and atom pairs allows to
characterise the population distribution in the system as well as measure all relevant
scattering properties of the clock states.

Chapter 4 demonstrates anomalous momentum diffusion in a superfluid subjected to
dissipation. The loss of coherence in the gas is shown to be drastically slowed down
at long times. This behaviour is interpreted as a signature of strong inter-particle
interactions and quantitatively reproduced with a model of continuous measurement.

Chapter 5 develops a theoretical framework to understand the observations of the pre-
ceding chapter. It shows why predictions from a single-particle master equation are
not sufficient and elaborates preliminary evaluations of the many-body effects in
light-matter interactions.
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1
Ultracold alkaline-earth-like gases in

optical lattices

Alkaline-earth-like (AEL) atoms refer to all atomic species which have complete internal
shells and a complete outer s-shell with two electrons. This includes all alkaline-earth
elements (Be, Mg, Ca, Sr, Ba and Ra), as well as those from the d-block (Zn, Cd and Hg)
and from the f -block (Yb and No). This does not include He, which also has a complete
outer s-shell, since the useful state for laser cooling and trapping is not the ground state
but a metastable state1. So far only Be, Zn and No have not been laser cooled2.

AEL atoms have recently attracted a lot of theoretical and experimental interest owing
to their specific internal structure. Combining their features to the powerful platform pro-
vided by optical lattices (Bloch 2005) opens many avenues and prospects for fundamental
research as well as possible long term applications. For instance, the ability to address
distinctively two metastable states and manipulate them with different optical potentials,
along with the presence of well-isolated spin degrees of freedom make AEL atoms a good
platform for quantum information processing (Daley et al. 2008; Gorshkov et al. 2009).
The optical ‘clock’ transition combined with a ‘magic’ wavelength made possible the con-
struction of clocks with unprecedented precision (Bloom et al. 2014; Ludlow et al. 2015;
Marti et al. 2018), making a redefinition of the SI second standards possible in the near
future. The very high quality factor of these clock transitions is also key in the develop-
ment of new ultra-narrow linewidth lasers (Bohnet et al. 2012; Norcia et al. 2018a). From
the strong decoupling between nuclear spin and electronic angular momentum emerges
a SU(N) symmetry suitable for simulating high-spin magnetism or impurity problems
(Gorshkov et al. 2010; Martin et al. 2013; Cazalilla et al. 2014; Riegger et al. 2018). As a
final example, AEL atoms are good candidates for simulating quantum Hall systems with
their intriguing topological properties (Jaksch et al. 2003; Gerbier et al. 2010; Mancini
et al. 2015; Livi et al. 2016; Cooper et al. 2018).

In this chapter I review the tools and theoretical concepts essential for our experi-
ments and required in the later chapters to understand the measurements and analysis
performed. I start by presenting the useful features of AEL atoms, among which the
‘clock’ transition and the ‘magic’ wavelength. Then I explain what optical lattices are,
focusing on the celebrated many-body superfluid-Mott insulator phase transition. Com-
bining AEL atoms and optical lattices, I finally describe the experimental implementation
of artificial magnetic fields and charges for neutral atoms as envisioned in our experiment.

1The true ground state of He has transitions in the ultraviolet, a region of the electro-magnetic
spectrum where no lasers are available, which makes it technically out of reach for radiative cooling. This
feature is shared by all noble gases. The study of degenerate gases of metastable He* provides other very
interesting opportunities though, such as single-atom detection, and we refer the reader to the review
Vassen et al. (2012).

2Be and Zn ions have been laser cooled though.
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1. Ultracold alkaline-earth-like gases in optical lattices

1.1 Structure of AEL atoms

The distinctive features of AEL atoms mostly arise from their filled two-valence-electron
shell (for ytterbium the electronic structure is [Xe]4f 146s2). The two outer electrons can
pair in a spin-singlet state (with total electronic spin s = 0) or spin-triplet states (with
s = 1). Figure 1.1 shows a sketch of the low-lying states of an AEL atom.

In this section, I introduce the most prominent features of AEL atoms which attract at-
tention for new research prospects: ultra-narrow ‘clock’ transitions associated to long-lived
metastable states, state-dependent atom-light interactions and spin-independent inter-
atomic collisions. I first show the electronic structure of AEL atoms with a focus on the
narrow transitions. I then present the state-dependent electric polarisability for the clock
states, with the existence of specific interesting wavelengths for trapping potentials. I
finally discuss the decoupling between electronic spin degrees of freedom and the nuclear
spin. Throughout the section, I provide numerical values for ytterbium atoms.

1.1.1 Energy levels

The low-energy physics of AEL atoms being determined mostly by the two outer electrons,
we adopt the spectroscopic notation 2s+1LJ with s the total electronic spin, L the total
electronic orbital momentum and J = L + s the total electronic angular momentum. The
nuclear spin I is always zero for bosonic isotopes, and non-zero for fermionic isotopes.

The ground state is the spin-singlet state 1S0. It has zero total electronic angular
momentum, which means no hyperfine structure and thus no possibility for sub-Doppler
cooling mechanisms (Metcalf et al. 1999). The total angular momentum F is therefore
given by the nuclear spin. Bosonic isotopes all have F = 0 and are thus insensitive to
magnetic fields.

Neglecting spin-orbit coupling and the fine structure of the atom, the only dipole-
allowed transitions from the ground state (from selection rules ∆L = 1 and ∆s = 0)
connect it to states in the spin-singlet manifold. The closest transition from the ground
state is the 1S0–1P1 transition. Such a transition is broad (radiative linewidth of about
2π× 30 MHz for ytterbium) and usually used for laser cooling and magneto-optical trap-
ping. In the case of ytterbium, the transition is not exactly closed and the excited state
can decay via relay states to metastable states of the spin-triplet manifold, limiting the
loading of a magneto-optical trap to small atom number without repumping light (Honda
et al. 1999).

Transitions linking the spin-singlet and spin-triplet manifolds are forbidden in the
dipole approximation (Foot 2004). They become ‘weakly’ allowed because of perturbations
to the atomic structure, for example due to spin-orbit coupling. This gives rise to the
prominent features of narrow optical transitions. The so-called intercombination 1S0–3P1

transition is one of these weak transitions. The radiative linewidth of such a transition is
narrower than the dipole-allowed transition (about 2π× 200 kHz for ytterbium), and can
be used for efficient Doppler cooling in magneto-optical traps down to low temperatures,
on the order of 10 µK or below3. Interestingly, such a narrow intercombination line has
been recently used in novel cooling schemes, for example to reach degeneracy with all-

3For the lightest AEL atoms (Mg and Ca) the radiative linewidth of the intercombination transition
is much smaller and laser cooling requires other experimental schemes (Prudnikov et al. 2016; Mills et al.
2017).
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1.1. Structure of AEL atoms

optical cooling (Stellmer et al. 2013) or to allow efficient and fast cooling with small
spontaneous emission rate (Norcia et al. 2018b).

The simpler electronic structure provided by AEL atoms, as compared to the hyperfine
structure of alkali atoms, is attractive for exploring light scattering from atomic ensembles
(Bromley et al. 2016). In particular the J = 0 → J = 1 intercombination transition has
been used to study the weak localisation regime in light scattering from a cold strontium
cloud (Bidel et al. 2002), providing a much stronger signal than with rubidium (Labeyrie
et al. 1999). In Chapter 4 we use the intercombination line to study momentum diffusion
in a Bose-Hubbard gas.

Figure 1.1: Sketch of the low-lying electronic structure of AEL atoms. The indicated
values are given for the ytterbium atom. The cyan arrows denote the possible decay
channels from the 1P1 state. Figure designed with Marion Bouganne.

1.1.2 Clock transitions

The two remaining states 3P0 and 3P2 of the spin-triplet manifold are metastable, both
transitions linking them to the ground state are forbidden by the selection rule ∆J = 1.
The ultranarrow magnetic quadrupole transition 1S0–3P2 is usually not considered for a
frequency standard because of the non-zero total electronic angular momentum J = 2 of
the 3P2 state4, giving sensitivity to magnetic fields and to trapping light polarisation.

In the following I focus on the 1S0–3P0 clock transition that we use in our experiment.
This transition is doubly-forbidden because it does not conserve the electronic spin (∆s 6=
0) and violates the triangle selection rule (J = 0 → J = 0 is forbidden). For fermions,
hyperfine interactions mix the triplet states, and a small but finite dipole moment emerges
(Porsev et al. 2004). This transition is already widely used in optical clocks due to its very
high quality factor (Ludlow et al. 2015). For bosons the nuclear spin is zero and as a result
there is no hyperfine coupling to open up the transition. A magnetic mixing technique,
described below, can be used to overcome this. In Chapter 3, we use the clock transition
to perform spectroscopy of 174Yb atoms in deep optical lattices. Additionally, the long-
lived excited 3P0 state associated with this transition is now considered as a promising
intermediate state for various experiments. For instance, a second clock transition can

4This is actually questionable (Yamaguchi et al. 2010), and has been recently discussed in Dzuba
et al. (2018).
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1. Ultracold alkaline-earth-like gases in optical lattices

be reached from the 3P0 state, allowing tests on possible variations of the fundamental
constants (Safronova et al. 2018).

Furthermore, transitions in the infrared (λ ∼ 2 µm) accessible from the 3P0 state,
combined with a near ultra-violet ‘magic’ wavelength (see below), make it possible to
reach a regime where the light-induced interaction length scale is much bigger than the
mean inter-particle spacing (Olmos et al. 2013; Zhu et al. 2015). Such a scheme where
the emitted photon wavelength is bigger than the inter-particle distance is also expected
to exhibit non-trivial topological properties (Perczel et al. 2017).

1S0–
3P0 transition for bosons

In order to allow single-photon excitation on the 1S0–3P0 clock transition, Taichenachev
et al. (2006) proposed to mix a controllable fraction of the 3P1 state into the 3P0 state
with a static magnetic field B = B0ez. Figure 1.2 shows a sketch of the concept.

Figure 1.2: Sketch of the 1S0–3P0 clock transition broadening. A static magnetic field
mixes the 3P0 and 3P1 states and allows one-photon excitation. Figure designed with
Marion Bouganne.

The coupling matrix element introduced by the magnetic field B is (Taichenachev
et al. 2006)

ΩB =
1

~
〈3P0| µ̂ ·B |3P1〉 =

√
2

3

µB

~
B0, (1.1)

where µ̂ is the magnetic-dipole operator. The eigenstates of the atomic and Zeeman
Hamiltonian are given in first-order perturbation theory by (denoted with a ′):

|1S0
′〉 ≈ |1S0〉 , (1.2)

|3P0
′〉 ≈ |3P0〉+

ΩB

∆
|3P1,m = 0〉 , (1.3)

where ∆ ≈ 2π × 21 THz is the fine structure splitting between the triplet states 3P0 and
3P1. The expression for the perturbed states is justified when |ΩB/∆| � 1. The Rabi
frequency for the transition is defined by

~Ωcl = 〈1S0
′| d̂ ·E |3P0

′〉 =
ΩB

∆
〈1S0| d̂ ·E |3P1,m = 0〉 , (1.4)
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1.1. Structure of AEL atoms

where d̂ is the electric-dipole operator and E the electric field. We recognise the Rabi
frequency for the 1S0–3P1 transition ~ΩL = 〈1S0| d̂ · E |3P1,m = 0〉. The transition only
couples to the m = 0 state of 3P1, and thus can only be excited by light linearly polarised
along the magnetic field, which we assume from now on. We thus rewrite:

Ωcl =
ΩBΩL

∆
= αB0

√
Icl, (1.5)

where Icl is the light intensity on the atom and α a constant given by:

α =

√
4πc2Γgµ2

B

~3ω3
g∆2

≈ 2π × 18.7 mHz/G/(mW/cm2)1/2. (1.6)

Here ωg and Γg are the frequency and radiative linewidth of the 3P1 state, respectively.
The first experimental demonstration of this magnetically-induced transition is pre-

sented in Barber et al. (2006). For achievable magnetic fields and light intensities in our
laboratory, typically B0 ≈ 180 G and Icl = 2.5× 105 mW cm−2 (corresponding to 10 mW
focused on 50µm), we are able to achieve Ωcl ≈ 2π × 1.7 kHz.

Spontaneous emission rate

The small admixture of 3P1 also implies a broadening of the forbidden clock transition, i.e.
a finite lifetime for the excited clock state. The magnetically-induced radiative linewidth
is given by5:

Γcl = Γg
Ω2

B

∆2
≈ 2π × 535 pHz× B2

0

1 G2 . (1.7)

Spontaneous decay from the clock state can thus be safely neglected for reasonable mag-
netic fields around B0 ≈ 180 G. In Chapter 3, this absence of spontaneous emission is
key for the achievement of coherent driving of the atomic gas. In that respect, an impor-
tant ingredient to permit long interrogation times is to spatially trap the atoms. This is
discussed in the following.

1.1.3 State-dependent optical potentials

The dispersive interaction between atoms and far-detuned light creates either attractive
or repulsive conservative potentials: the optical dipole traps (Grimm et al. 2000). Optical
dipole traps rely on the dispersive interaction between atom and light, which is described
by the energetic potential, or light shift:

V (r) = − 1

2ε0c
α(λ)I(r), (1.8)

where I is the light intensity and α the real part of the dynamic polarisability of the atom.
Attractive dipole traps verify V < 0 (α > 0) and are called ‘red-detuned’ traps whereas
repulsive dipole traps verify V > 0 (α < 0) and are called ‘blue-detuned’ traps. The value
of α depends on the wavelength of the trapping light but also on the internal state of
the atom. As such, optical trapping potentials can be different for the two clock states.
Figure 1.3 shows the calculated real part of the dynamic polarisability for the clock states

5Power broadening is negligible for the experimentally achievable intensities.
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1. Ultracold alkaline-earth-like gases in optical lattices

of ytterbium [computation performed with data extracted from the calculation published
in Dzuba et al. (2010)].

Among all possibilities, three are of interest for the trapping of both clock states.

• Wavelengths for which polarisabilities are equal are called magic. This happens for
ytterbium at around λm ≈ 759.35 nm and was precisely measured in Barber et al.
(2008). These wavelengths are of particular importance for avoiding differential
light shifts between the clock states introduced by the trapping potential, and thus
crucial for the operation of optical clocks (Ludlow et al. 2015).
• Wavelengths for which polarisabilities are equal in magnitude but opposite in sign

are called anti-magic. This happens for ytterbium at around λam ≈ 617 nm and
λam,2 ≈ 1122 nm. At these wavelengths one internal state is attracted by light while
the other one is repelled. This is at the heart of state-dependent optical lattices
where internal states are trapped in different regions of space (Gorshkov et al. 2009;
Gerbier et al. 2010; Cooper 2011).
• Wavelengths for which polarisabilities are very different in magnitude. This happens

for ytterbium for instance at around λK ≈ 987 nm, where the polarisability in the
metastable state vanishes. For lattices created at such wavelengths, in which internal
states have very different spatial mobilities, implementations of the Kondo lattice
model or other impurity models have been suggested (Gorshkov et al. 2010; Foss-
Feig et al. 2010b; Foss-Feig et al. 2010a), and experiments have started to explore
this regime (Riegger et al. 2018).
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Figure 1.3: Absolute value of the real part of the dynamic polarisability for the 1S0

ground state and 3P0 metastable state of ytterbium, in units of the atomic polarisability
α0 = 4πε0a

3
0. Solid lines denote positive values, whereas dashed lines denote negative

values. The magic wavelength at λm ≈ 759.35 nm is indicated by a circle. Anti-magic
wavelengths at λam ≈ 617 nm and λam,2 ≈ 1122 nm are indicated by stars. Thin vertical
lines indicate divergences due to transitions to excited states: around 555.8 nm for the
6s2 1S0–6s6p 3P1 transition and around 649.1 nm for the 6s6p 3P0–6s7s 3S1 transition.

Optical dipole traps are usually realised using simple Gaussian laser beams. More
advanced beam-shaping can be achieved using spatial light modulators and gives the
ability to design light potentials at will. This has allowed recent developments such as
optical micro-traps (Nogrette et al. 2014), uniform box potentials (Gaunt et al. 2013;
Chomaz et al. 2015; Ville et al. 2017) or to address single atoms at a time (Zupancic et al.
2016; Barredo et al. 2016; Endres et al. 2016).
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1.2. Optical lattices

1.1.4 Protected spin degrees of freedom

An important feature of fermionic AEL atoms is the decoupling between electronic an-
gular momentum and nuclear spin degrees of freedom. The absence of electronic angular
momentum J = 0 in the ground 1S0 and metastable 3P0 states makes the nuclear spin
degree of freedom I the only angular momentum degree of freedom, isolated inside the
nucleus. The angular degree of freedom of the atom is thus decoupled from the dynamics
happening at the electronic level. This is potentially interesting for quantum computing
(Gorshkov et al. 2009) and precision metrology (Boyd et al. 2006).

Moreover, spin-changing collisions are expected to be suppressed and collisional prop-
erties between atoms in the clock states should be independent from the nuclear spin.
This leads to a high SU(N = 2I + 1) [SU stands for special unitary group] symmetry in
the interaction potential for fermions (for example I = 5/2 for 173Yb). The interaction
parameters between atoms with different nuclear spins are in principle as numerous as the
number of nuclear spin states. The description of interactions is thus drastically simplified
in SU(N) symmetric systems for which the interaction parameters are all equal. Fermionic
many-body systems with N > 2 are rare in nature, the case N = 2 (corresponding to an
electron) being already well-studied, in particular using alkali atoms. AEL atoms offer
numerous prospects since the nuclear spin of most fermionic isotopes is bigger than 1/2
(with I up to 9/2 for 87Sr). This offers interesting perspectives in studying Fermi liq-
uid instabilities or poorly understood condensed matter problems (Cazalilla et al. 2009;
Gorshkov et al. 2010; Scazza et al. 2014; Cazalilla et al. 2014).

1.2 Optical lattices

While standing waves of light were first introduced as a mean to cool down atoms (Gryn-
berg et al. 2001), they rapidly became an important tool to study degenerate quantum
gases (Bloch 2005). Standing light wave conservative potentials are called optical lattices,
in reference to the crystal-like spatial structure they provide. As such, ultracold degener-
ate quantum gases loaded in these periodic potentials are often considered as one of the
most versatile tools to simulate condensed matter problems, for example by realising the
celebrated Bose- and Fermi-Hubbard Hamiltonians (Lewenstein et al. 2007; Bloch et al.
2008). The first milestone in that respect was the observation of the superfluid-Mott
insulator transition for bosons (Greiner et al. 2002b), followed a few years later by the
identification of Mott-like phases for fermions (Jördens et al. 2008; Schneider et al. 2008).
Many more experiments have been exploring the physics of degenerate quantum gases in
optical lattices since then [see for example Gross et al. (2017)].

More recently, the advent of quantum gas microscopy (Bakr et al. 2010; Sherson et al.
2010; Cheuk et al. 2016a; Greif et al. 2016) allowed unprecedented control over lattice-
based quantum gases. A quantum gas microscope is able to image a two-dimensional
optical lattice with single-site resolution6. Important achievements with this approach
have recently been carried out. For instance spatial spin correlations between neighbour-
ing sites were accurately measured (Boll et al. 2016; Cheuk et al. 2016b; Parsons et al.
2016; Brown et al. 2017). The Fermi-Hubbard anti-ferromagnet with doping was realised

6Note that the light used for fluorescence measurement induces binary collisional losses (DePue et al.
1999), incidentally leaving zero or one atom in the sites depending on the initial parity of the occupation.
This prevents from differentiating empty and doubly-occupied sites for example. Nevertheless, technical
solutions have been found to bypass this problem (Preiss et al. 2015).
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1. Ultracold alkaline-earth-like gases in optical lattices

(Mazurenko et al. 2017). Also, many-body localisation in two-dimensions was studied by
Choi et al. (2016).

In this section, I recall fundamental results about the physics of degenerate gases in
optical lattices. Most of what is discussed here can be found in a more complete form in
Ashcroft et al. (1976), Greiner (2003) and Bloch et al. (2008).

1.2.1 Optical lattice potentials

Optical lattices result from the interference of overlapping laser beams with near-equal
wavelengths. Using the phase, frequency and wavevector orientation degrees of freedom,
all possible Bravais lattice geometries can in principle be derived from a few laser beams
(Grynberg et al. 2001). The most simple optical lattice is obtained by overlapping two
counter-propagating laser beams with the same frequency. The resulting optical potential
varies sinusoidally in space and is the building block for the simplest optical lattices in
one-, two- and three-dimensions. In this thesis, we focus on the cubic lattice, obtained by
superimposing three 1D optical lattices at right angles, with equal wavelength λ (wavevec-
tor k = 2π/λ). By choosing orthogonal polarisations, we ensure that the three 1D lattices
do not interfere with each other. The potential experienced by the atoms is therefore well
approximated by:

VOL(r) = Vx(r) cos2 (kx) + Vy(r) cos2 (ky) + Vz(r) cos2 (kz) . (1.9)

This creates a cubic optical lattice with spatial periodicity d = λ/2 in all three directions of
space, with the lattice sites at the zeros of VOL. The Gaussian envelope of the laser beams
entails a Gaussian envelope on the optical lattice, resulting in slowly varying external
trapping potentials Vα=x,y,z(r). The size of the atomic sample is usually much smaller
than the waist of the laser beams creating the optical lattices so that the external trapping
potentials vary almost quadratically with position Vα(r) ∝ r2. In turn the potential
experienced by the atoms is captured by the simpler form:

VOL(r) = V0,x cos2 (kx)+V0,y cos2 (ky)+V0,z cos2 (kz)+
M

2

(
Ω2
xx

2 + Ω2
yy

2 + Ω2
zz

2
)
. (1.10)

The maxima of the potential V0,α in each direction of space are called the lattice depths
and Ωα are the external trapping frequencies associated with the quasi-quadratic potential
induced by the Gaussian profiles of the laser beams. The natural energy scale is the recoil
energy ER = ~2k2/(2M), which corresponds to the kinetic energy an atom would acquire
by absorbing a photon from one of the laser beams constituting the optical lattices.

Band structure of a 1D lattice

The Hamiltonian for an atom in a 3D cubic lattice is separable in the spatial coordinates,
so that it is sufficient to study the problem in one dimension and deduce the result for
higher dimensions. In the following, we study the spectrum and eigenfunctions of an
atom trapped in a uniform 1D optical lattice VOL(x) = V0 cos2 (kx). According to Bloch’s
theorem (Ashcroft et al. 1976), the eigenvectors |n, q〉 (also called Bloch waves) are given
by the product of a spatially periodic function (with the same period as the optical lattice)
and of a plane wave with quasimomentum q. Due to the periodicity of the problem, it
is sufficient to define q in the so-called first Brillouin zone q ∈] − π/d, π/d] (Ashcroft
et al. 1976). At finite lattice depth, the eigenenergies of the system group in energy bands
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1.2. Optical lattices

separated by band gaps that grow with the lattice depth. These energy bands are labelled
with an integer n starting from the lowest energy band, also called fundamental band. As
the lattice depth is increased, the bands become flatter with a curvature increasing with
the band index. Only bands with energies smaller than the lattice depth provide states
trapped in the lattice potential (bound states).

Wannier basis

Bloch waves describe quantum states that are delocalised over the entire lattice, analogous
to plane waves in the continuum. They are defined up to a constant global phase. For
the upcoming discussion, it is convenient to set up a new basis of localised states: the
Wannier basis. Wannier functions wni (band n and site i) are constructed by Fourier
transformation of the Bloch waves with respect to q (Wannier 1937):

wnj =

√
d

2π

∫ π/d

−π/d
dq |n, q〉 e−ijdq. (1.11)

All Wannier functions can be deduced from each other through a simple translation by a
lattice vector:

wnj (x) = wn0 (x− jd). (1.12)

The Wannier functions depend on the choice of the global phase factor of the Bloch waves
used to construct them. For a symmetric potential V (−x) = V (x) with a local minimum
at the origin, there exists for every energy band n a unique Wannier function wn0 which
is (Kohn 1959):

1. real-valued,
2. symmetric or anti-symmetric with respect to the origin,
3. and which falls off exponentially with the distance.

Very deep lattices: disconnected harmonic wells

While Wannier functions do not possess an analytical expression in general, the case of
very deep lattice depth (V0 � ER) provides an interesting limit. In such a case, the
potential can be approximated by an array of disconnected harmonic potentials centred
near the lattice sites in xi = id (see Figure 1.4a):

VOL(x ≈ xi) ≈
V0�ER

M

2
ω2

ho(x− xi)2, (1.13)

with ~ωho = 2
√
V0ER. The bands are approximately flat and centred around the energies

En ≈ ~ωho(n+1/2). The Wannier functions are well approximated by their corresponding
harmonic oscillator wave functions. For instance, the fundamental band Wannier function
is given by (see Figure 1.4b):

w0
i (x) ≈

V0�ER

1

π1/4
√
σho

e−(x−xi)2/(2σ2
ho), (1.14)

with σho =
√

~/(Mωho).
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Figure 1.4: (a) Sketch of the sinusoidal optical lattice potential (solid line) and of the
harmonic approximation near the bottom of each site (dashed lines). (b) Wannier wave
function centred on the site x0 = 0, in the fundamental band of a V0 = 15ER optical
lattice (solid line), computed numerically from (1.11). Harmonic oscillator approximation
from (1.14) (dashed line).

Higher dimensions

The extension to 2D or 3D is readily obtained from the previous discussion, owing to
the separability of the Hamiltonian. The energies sum up and are labelled by the band
index n = (nx, ny, nz). The eigenvectors |n, q〉 are labelled by their quasimomentum q
and constructed as the product of the 1D wave functions.

1.2.2 Bose-Hubbard Hamiltonian

We now turn to the description of interacting bosons in an optical lattice potential, for
which we need the suitable formalism of second quantisation. We thus rewrite the non-
interacting Hamiltonian Ĥ0 = p̂2/(2M) + VOL(r̂), where p̂ = −i~∇ is the momentum
operator, in the second quantised form:

Ĥ0 =

∫
d3r Ψ̂†(r)

{
− ~2

2M
∇2 + VOL(r)

}
Ψ̂(r), (1.15)

where Ψ̂(r) is the field operator for a particle in r. We expand this operator on the
Wannier basis Ψ̂(r) =

∑
i,nw

n
i (r)âni with âni the annihilation operator on site i and band

n. Thus:

Ĥ0 = −
∑
i,j,n

Jn
|i−j|â

n†
i â

n
j , (1.16)

Jn
|i−j| =

∫
d3r [wn

i (r)]∗
{
− ~2

2M
∇2 + VOL(r)

}
wn

j (r). (1.17)

The quantity Jn
|i−j| can be interpreted as a matrix element quantifying the coherent tun-

nelling between the sites i and j. The magnitude of this tunnelling energy increases with
band index and decreases with site distance |i− j|.

Tight-binding limit and single-band approximation

For sufficiently high lattice depths, typically V0,α=x,y,z ≥ 5ER, tunnelling energies to
distant neighbours (|i − j| > 1) becomes negligible compared to nearest-neighbour tun-
nelling. One can therefore keep only the terms that couple sites to their nearest-neighbours
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1.2. Optical lattices

(tight-binding approximation). Moreover, in most experimentally relevant cases only the
fundamental band is populated (single-band approximation). Under both assumptions,
we can write:

Ĥ0 ≈ −J
∑
〈i,j〉

â†iâj + h.c., (1.18)

where we defined J = J0
|i−j|=1 and âi = â0i . The summation 〈·〉 is performed on the

nearest-neighbour pairs, each pair being counted once.

Interaction energy

We can now include interactions in the model (we restrict their description to low-energy
s-wave terms). Under the single-band approximation, the Hamiltonian describing inter-
actions is given by:

Ĥint =
1

2

∑
i,j,k,l

Uijklâ
†
iâ
†
j âkâl, (1.19)

Uijkl = g

∫
d3r

[
w0

i (r)
]∗ [

w0
j (r)

]∗
w0

k(r)w0
l (r), (1.20)

with g = 4π~2a/M the s-wave coupling constant for low-temperature collisions captured
by the scattering length a (Ketterle et al. 1999). Due to the localised nature of the Wannier
functions, the prevailing term in the summation is purely local: i = j = k = l. Higher-
order terms are at least two orders of magnitude smaller than the on-site interaction
energy U = U0000, and we neglect them in the following. We can thus write:

Ĥint ≈
U

2

∑
i

â†iâ
†
iâiâi =

U

2

∑
i

n̂i (n̂i − 1) , (1.21)

with n̂i = â†iâi.

Bose-Hubbard Hamiltonian

This discussion leads us to the Bose-Hubbard Hamiltonian which describes interacting
bosons in a uniform, single-band, tight-binding optical lattice (Fisher et al. 1989; Jaksch
et al. 1998):

ĤBH = Ĥ0 + Ĥint = −J
∑
〈i,j〉

(
â†iâj + â†j âi

)
+
U

2

∑
i

n̂i (n̂i − 1) . (1.22)

The ground state of this Hamiltonian undergoes a phase transition from a superfluid
phase when U → 0 to a Mott insulator phase when J → 0 (Fisher et al. 1989; Jaksch
et al. 1998; Greiner et al. 2002b; Zwerger 2003). The ratio U/J between the two relevant
energy scales of the system governs the physics. As shown in Figure 1.5, U increases with
lattice depth and J falls off exponentially with lattice depth, as a result the ratio U/J is
easily spanned over orders of magnitude and the transition can be observed by changing
only the lattice depth.
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Figure 1.5: Bose-Hubbard parameters J and U versus lattice depth V0 of an isotropic cubic
lattice at λ = 760 nm, calculations are performed for 174Yb. Next-nearest-neighbour tun-
nelling energy Jnnn = Jn=0

|i−j|=2 and nearest-neighbour interaction energy Unn = U000(1,0,0)

are shown for comparison.

1.2.3 Phase diagram

The Bose-Hubbard Hamiltonian is not analytically solvable in general, but its phase
diagram has been extensively studied using quantum Monte Carlo simulations (Pollet
2012) or other numerical techniques. In particular, the phase boundary at the transition
superfluid-Mott insulator is well known for one-, two- and three-dimensional cubic lattices
with integer filling fractions n̄ = N/Ns = 1 [N is the number of atoms and Ns the number
of sites in the lattice] (Capogrosso-Sansone et al. 2007; Capogrosso-Sansone et al. 2008;
Ejima et al. 2011). In the following I discuss the phase diagram of the Bose-Hubbard
model (1.22) for a uniform system.

In the non-interacting limit U → 0, the ground state is an ideal BEC where all atoms
are in the q = 0 Bloch state of the lowest band, well-described by a product of coherent
states over the sites (Zwerger 2003):

|ΨSF〉 =
∏
i

|α =
√
n̄〉i with |α〉i = e−|α|

2/2

∞∑
n=0

αn√
n!
|n〉i . (1.23)

In the atomic limit J → 0, the ground state is given by a product of Fock states over
the sites (Zwerger 2003):

|ΨMI〉 =
∏
i

|n̄〉i . (1.24)

For arbitrary U/J there is no simple analytical expression for the ground state. Noting
that in both aforementioned limits, the ground state is simply a product over all sites, an
approximate method consists in postulating the existence of such a factorised state for
every U/J :

|ΨG〉 =
∏
i

|φ〉i , (1.25)

|φ〉i =
∞∑
n=0

c(n) |n〉i . (1.26)

This factorised ansatz [called Gutzwiller wave function (Rokhsar et al. 1991)] is exact in
the two limits U → 0 (|φ〉 = |α =

√
n̄〉) and J → 0 (|φ〉 = |n̄〉). The approximated ground
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state is calculated using a variational method, minimising the free energy G:

G = 〈ΨG| ĤBH − µ
∑
i

n̂i |ΨG〉 , (1.27)

where µ is the chemical potential, i.e. the energy required to add one particle to the
system. For a uniform system this takes on the following expression:

G
Ns

= −zJ |ā|2 +
U

2
〈n̂2〉 −

(
µ+

U

2

)
n̄, (1.28)

ā = 〈φ|â|φ〉 =
∞∑
n=0

√
n+ 1c∗(n)c(n+ 1), (1.29)

n̄ = 〈n̂〉 =
∞∑
n=0

n|c(n)|2. (1.30)

z is the number of nearest-neighbours, n̄ is the filling fraction or mean number of atoms
per lattice site. The expectation value of the annihilation operator ā = 〈φ|â|φ〉 represents
the superfluid order parameter and vanishes only for a Mott insulator state. |ā|2 gives
the condensate fraction. The solution of the numerical minimisation is given in Figure
1.6. The approximated phase boundaries for the superfluid-Mott insulator transitions are
depicted with thick black lines.

Figure 1.6: Bose-Hubbard phase diagram for an isotropic cubic lattice (z = 6). The phase
boundaries at the superfluid-Mott insulator transition are depicted with thick black lines.
(a) Filling fraction n̄ on a lattice site versus chemical potential and ratio zJ/U . In the
atomic limit zJ/U → 0, we find a staircase with integer filling fractions. For increasing
tunnelling energy, Mott plateaus with integer fillings are separated by increasing superfluid
regions, until they completely disappear. (b) Superfluid order parameter ā versus chemical
potential and ratio zJ/U . ā vanishes in the Mott insulating regions.

Density distribution for a non-uniform trapping potential

The external trapping potentials Vx,y,z(r) provided by the Gaussian envelope of the lattice
beams breaks the discrete translational symmetry. In this situation, band theory (and
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1. Ultracold alkaline-earth-like gases in optical lattices

the ensuing discussion) is strictly speaking not valid any longer. However, when the
external confinement varies slowly on the scale of the lattice spacing d, the local density
approximation holds and one can define a local chemical potential

µloc(r) = µ− V (r), (1.31)

given by the chemical potential of the whole gas with an offset set by the external trapping
potential. The density profile of a gas trapped with an external potential is therefore
given by n(r) = n̄[zJ/U, µloc(r)]. One can find the radial density profile by considering a
straight line at a given zJ/U ratio in Figure 1.6a, starting from the chemical potential in
the center of the cloud µ = µ0, the density profile is given by the line which goes downhill
towards µ = −zJ where the density vanishes. Such cuts through the phase diagram are
shown in Figure 1.7 for various energy ratios U/(zJ).

In typical experiments, the external trapping potential is well approximated by a
harmonic potential varying as κr2 [see 1.10]. In the atomic limit J → 0, the Mott
insulator phase n̄ ∈ N atoms per site is reached when µloc = Un̄. This corresponds to the
radii

rn̄ =

√
U

κ

√
µ0

U
− n̄ with n̄ ∈ N. (1.32)

Mott phases with given integer filling fraction n̄ are also called Mott shells, due to the
shell-like spatial structure of the Mott plateau in two- and three-dimensions.
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Figure 1.7: Radial density profiles for an isotropic cubic lattice (z = 6), the chemical
potential is fixed to µ0 = 2.5U . (a) Mott insulator regime with U/(zJ) = 170. The
integer filling plateaus are well defined. (b) Intermediate regime with U/(zJ) = 10, the
plateau with n̄ = 1 is still well defined but the plateau with n̄ = 2 is gone. (c) Superfluid
regime with U/(zJ) = 4. In all plots, the vertical dashed lines indicate the expected radii
rn̄ for n̄ = 1, 2, 3.

1.2.4 Correlations for many-body systems

The various observables of interest in a many-body system can all be expressed in terms
of correlation functions. Usually only few-body correlation functions are considered. For
example, the one-body density matrix

ρ̂(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 , (1.33)

28



1.3. Towards artificial gauge fields

describes spatial phase correlations. The atomic density can be retrieved with n(r) =
ρ̂(1)(r, r). For a Bose-Einstein condensate we get ρ̂(1)(r, r′) ≈ N |φ0|2, where N is the
number of particles in the condensate and φ0 is the wave function of the condensate.
As such, Bose-Einstein condensates possess infinite long-range phase correlations. In
optical lattices, the superfluid phase possess long-range phase correlations but in the Mott
insulator phase ρ̂(1)(r, r′) decays exponentially. Quantum coherence is however not absent
but hidden in second-order correlations: density-density correlations. See for example the
experiments in Fölling et al. (2005) with bosons or Rom et al. (2006) with fermions.

Higher-order density matrices ρ̂(i) (with i up to N for N particles) can be constructed
using 2i field operators in normal order:

ρ̂(i)(r1, · · · , r2i) = 〈Ψ̂†(r1) · · · Ψ̂†(ri)Ψ̂(ri+1) · · · Ψ̂(r2i)〉 . (1.34)

In optical lattices, where the field operators can be expanded in the Wannier Basis Ψ̂(r) =∑
i,nw

n
i (r)âni , spatial correlations between sites are given by the correlators:

Cn1,··· ,nk
i1,··· ,ik = 〈ân1†

i1
· · · ânkik 〉 . (1.35)

Such correlators can be directly measured with quantum gas microscopes (Boll et al. 2016;
Cheuk et al. 2016b; Parsons et al. 2016; Brown et al. 2017).

In practice, the one-body density matrix can be evaluated using momentum distribu-
tions measured in time-of-flight experiments (Bloch et al. 2008). As long as interactions
do not perturb the expansion of the atoms (Pedri et al. 2001; Gerbier et al. 2007), the
momentum distribution is proportional to the Fourier transform of the one-body density
matrix. Other methods use interferences (Andrews et al. 1997) or Bragg spectroscopy
(Stenger et al. 1999).

Density-density correlations can be revealed through noise correlations on momentum
distributions (Fölling et al. 2005; Rom et al. 2006). Third-order correlation was measured
using metastable He* (Hodgman et al. 2011). Second- and third-order correlations have an
effect on loss rates (Burt et al. 1997; Kinoshita et al. 2005). Higher-order correlations are
difficult to measure in experiments (Bloch et al. 2008; Schweigler et al. 2017). However,
one-body spatial correlations are usually the first to decay when a many-body system is
subject to a loss of coherence. Therefore, in general, spatial coherence of a many-body
system is well captured by the first- and/or second-order density matrices.

1.3 Towards artificial gauge fields

Combining both previously described ingredients, AEL atoms and optical lattices, opens
fruitful and vast opportunities for research. Among all these opportunities, we are inter-
ested in the possibility to simulate artificial magnetic fields and charges for neutral atoms
with laser light (Dalibard et al. 2011; Goldman et al. 2014). Under suitably tailored laser
light fields combined with the proper atomic structure, atomic motion becomes analogous
to the motion of a charged particle in a magnetic field. The main ingredient to realise
these artificial gauge fields is a geometric phase: the Berry phase, which is the analogous
of the Aharonov-Bohm phase for charged particles. A handful of experimental techniques
have already been proposed [see Goldman et al. (2016) and Aidelsburger (2018) for a re-
view], some of them already realised in laboratories. For instance with state-dressing (Lin
et al. 2009), super-lattices (Atala et al. 2013; Aidelsburger et al. 2015), shaken lattices
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1. Ultracold alkaline-earth-like gases in optical lattices

(Jotzu et al. 2014; Fläschner et al. 2016) or synthetic dimensions (Mancini et al. 2015;
Stuhl et al. 2015).

In this section, I describe a specific implementation using laser-induced tunnelling in
optical lattices. Following a proposal in Jaksch et al. (2003), the idea is to engineer a state-
dependent optical lattice in which motion is induced and controlled by laser light. The
net force exerted by the laser can be made orthogonal to the induced motion, thereby
mimicking the Lorentz force. The experimental scheme has been adapted to alkaline-
earth-like atoms in Gerbier et al. (2010) and I present it here.

1.3.1 Gauge potential and geometric phase

We consider here a particle with mass M and charge e, moving in space under a magnetic
field B(r̂). The quantum-mechanical description of the dynamics (which would be given
by the Lorentz force F = ev × B in the classical case, with v = 〈r̂〉 the speed of the
particle) is given by the Hamiltonian:

Ĥ =
[p̂− eA(r̂)]2

2M
, (1.36)

where r̂ and p̂ = −i~∇ are the position and momentum operators. The vector potential
A is associated to the magnetic field B:

∇×A(r̂) = B(r̂). (1.37)

As such A is only defined up to a gauge transformation.
In the following we consider a static magnetic field in the vertical direction B = Bez.

The energy spectrum of the system is given by equally spaced energy levels called Landau
levels (Landau 1930):

En = ~ωc

(
n+

1

2

)
with ωc =

eB

M
, (1.38)

where ωc is the cyclotron frequency of the particle in the magnetic field B. A length scale
emerges from this problem, called the magnetic length:

`B =

√
~
eB

, (1.39)

which corresponds to the smallest cyclotron orbit of the particle.
The degeneracyD of the Landau levels is macroscopic and roughly given by the number

of cyclotron orbits fitting in the sample area S:

D =
S

2π`2
B

=
Φ

Φ0

, (1.40)

with Φ = BS the magnetic flux through the sample and Φ0 = h/e the flux quantum.

Aharonov-Bohm phase

Here we switch to a semi-classical description, where the motion of the particle is not
quantised any more. The Lagrangian of a free particle in a magnetic field is L(r,v) =
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1.3. Towards artificial gauge fields

Mv2/2+ev ·A. When the particle moves during an infinitesimal time dt, its wave function
acquires a phase given by the action along its path δr divided by ~:

δφ =
1

~
L(r,v, t)dt =

M

2~
v2dt+

e

~
A · δr. (1.41)

The first term is usually referred to as the dynamical phase and depends on how the
particle moves (here its speed). The second term defines a purely geometric phase. If the
particle moves around a closed loop in space C, besides the dynamical phase it acquires a
phase φAB, the Aharonov-Bohm phase (Aharonov et al. 1959), given by:

φAB =
e

~

∮
C
A(r) · dr =

e

~

∫
S
B(r) · dS = 2π

Φ

Φ0

, (1.42)

where we used the Stokes theorem to define the integral over the surface S defined by
the closed contour C. The Aharonov-Bohm phase is a purely geometric quantity and is
gauge-independent: A→ A+ ∇f will not change the value of the phase φAB.

Landau gauge

Among all possible gauge choices for A, a simple choice is the Landau gauge, defined as:

A(r) = −Byex. (1.43)

This gauge breaks the rotational symmetry around the z-direction. This is a suitable gauge
for the description of gauge fields in an optical lattice, where the rotational symmetry is
broken anyway.

1.3.2 Realising the Harper Hamiltonian

We are interested in realising artificial magnetic fields for atoms in optical lattices, for
which the continuum description given so far is not adequate. Nevertheless, the previous
description for the dynamics of a charged particle in the continuum can be mapped to
a discretised space using the Peierls substitution (Peierls 1933). It consists in allowing
tunnelling matrix elements between nearest-neighbours of a tight-binding lattice to be
complex. The phase acquired on hopping should thus be related to the Aharonov-Bohm
phase in order to describe the same dynamics in the continuum limit of vanishing lattice
spacing. The phase of the tunnelling matrix element between nearest-neighbour sites i
and j is given by:

φ(i→ j) =
e

~

∫ rj

ri

A(r) · dr. (1.44)

The tight-binding Hamiltonian including these modified tunnelling matrix elements is
called Harper Hamiltonian and reads:

ĤHarper = −J
∑
〈i,j〉

eiφ(i→j)â†j âi. (1.45)

We now consider a two-dimensional square lattice in the xy-plane, with period d and
sites labelled by indices (m,n), as sketched in Figure 1.8. In the Landau gauge we have:

φ[(m,n)→ (m+ 1, n)] = − e
~
Bd2n, (1.46)

φ[(m,n)→ (m,n+ 1)] = 0, (1.47)
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1. Ultracold alkaline-earth-like gases in optical lattices

so that the Harper Hamiltonian becomes:

ĤHarper = −J
∑
m,n

e−iχnâ†m+1,nâm,n + â†m,n+1âm,n + h.c., (1.48)

χ =
eBd2

~
=

(
d

`B

)2

= 2π
Φ

Φ0

. (1.49)

Figure 1.8: Illustration of the Harper Hamiltonian. When a particle performs a counter-
clockwise closed loop around a square cell of the lattice it acquires the phase +χ. Figure
designed with Marion Bouganne.

When the particle performs a counter-clockwise closed loop around a square cell of the
lattice (see Figure 1.8), it acquires the phase +χ, the equivalent of the Aharonov-Bohm
phase in the continuum. Useful magnetic field values thus make χ vary between 0 and 2π,
or equivalently the magnetic flux through a unit cell Φ = Bd2 varies between 0 and 1 flux
quantum. In a semi-classical picture, this can be understood as the regime of cyclotron
orbit radii `B as small as the size of a unit cell, below which the discrete nature of the
lattice makes it irrelevant.

Topology

The band structure of the Harper Hamiltonian possesses a distinctive feature related to
the complex-valued tunnelling coefficients: it is topological. This was first understood by
Thouless et al. (1982) in the frame of the quantum Hall effect, they calculated the Hall
conductivity of a band insulator of non-interacting electrons in a Harper lattice. They
showed that when the Fermi energy lies in a gap, the Hall conductivity σH divided by the
conductance quantum e2/h is a sum of integers:

σH =
e2

h

∑
n

Cn, (1.50)

where the sum runs over the filled bands n. The integer Cn is the so-called Chern number,
a topological invariant which characterises the band n. The fact that Chern numbers can
only take integer values provides a certain robustness of the band structure properties
under perturbations. The Chern number associated to a band can change if and only
if a gap separating it from another one closes. Such robustness is at the heart of many
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1.3. Towards artificial gauge fields

systems, including quantum Hall systems, which are referred to as ‘topological insulators’
(Hasan et al. 2010; Qi et al. 2011; Bernevig et al. 2013).

An important concept deeply connected to topology is the bulk-edge correspondence,
which arises when considering finite size samples. In such a case robust states appear in
the gap between two topological bands, these states are called edge states due to their
spatial localisation on the boundaries of the sample. We provide an illustration of this
in the next paragraph. For a good introduction to the topic we refer the reader to the
discussion in Livi (2018), or for more in-depth information to a recent review concerning
topology with ultracold atoms (Cooper et al. 2018).

1.3.3 Energy spectrum and edge states in the rational case

In general, the translational symmetry of the lattice problem is lost due to the complex
phase of the tunnelling coefficients. A periodicity is however recovered when the flux ratio
χ/(2π) = Φ/Φ0 is a rational χ/(2π) = p′/p. In that case, the Harper Hamiltonian in the
Landau gauge (1.48) becomes periodic along y with an elongated period pd. The new unit
cell of the lattice, called the magnetic cell, now contains p sites, which provides p energy
bands in the spectrum.

Energy spectrum

Diagonalising the Harper Hamiltonian leads to the iconic Hofstadter butterfly (Hofstadter
1976), which is shown in Figure 1.9.

Figure 1.9: (a) Example of a unit cell of the Harper Hamiltonian in the Landau gauge
for the flux χ/(2π) = 1/3. (b) Hofstadter butterfly: energy spectrum of the Harper
Hamiltonian, calculated for rational values of the flux ratio χ/(2π) = p′/p between 0 and
1, with p and p′ integers smaller than 50. Simple rational values in 1/p clearly show p
different bands. Figure designed with Marion Bouganne.

The numerical computation of the energy spectrum is performed using Bloch’s theorem
on the magnetic lattice, whose first Brillouin zone is ]−π/d,+π/d]×]−π/(pd),+π/(pd)].
We find the energy spectrum by diagonalising the p-dimensional Hamiltonian for each

33
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quasimomentum q (Bernevig et al. 2013):

Ĥp(q) = −J


2c0 1 0 0 eipdqy

1
. . . 1

. . . 0
0 1 2cn 1 0

0
. . . 1

. . . 1
e−ipdqy 0 0 1 2cp−1

 with cn = cos (dqx + χn) . (1.51)

The matrix elements of Ĥp(q) can be understood in terms of the real space nearest-
neighbour couplings:

• Couplings between sites inside the magnetic cell are given by J , those are situated
in Ĥp(q) on the secondary diagonals.
• Couplings between two magnetic cells in the vertical direction link both extremities

of magnetic cells and are given by Jeipdey ·q, situated in the corners of Ĥp(q).
• Couplings between two magnetic cells in the horizontal direction link similar sites

and are therefore situated on the principal diagonal of Ĥp(q), the n-th site in the
magnetic cell is coupled to similar sites with a complex tunnelling and hence 2cn =
ei(dex·q+2πnp′/p) + e−i(dex·q+2πnp′/p).

Figure 1.10: Energy bands for the Harper Hamiltonian in the Landau gauge: (a) χ/(2π) =
1/3 with 3 bands, (b) χ/(2π) = 1/4 with 4 bands.

The energy bands of Ĥp are shown for two specific values of the magnetic flux in Figure
1.10. The p bands are separated by gaps. The Hofstadter butterfly in Figure 1.9 is
obtained by collapsing the energy bands on a vertical line.

Edge states

The previous discussion relied on Bloch’s theorem, which assumes infinite periodic sys-
tems. What happens if we break translational symmetry by imposing open boundary
conditions? This can be looked at by considering periodic boundary conditions along
x and open boundary conditions along y. The momentum space diagonalisation of the
Harper Hamiltonian can be done along the x direction only. The resulting Hamiltonian
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for a system with Ns sites along the y direction is thus:

ĤNs(q) = −J


2c0 1 0 · · · 0

1
. . . 1

. . .
...

0 1 2cn 1 0
...

. . . 1
. . . 1

0 · · · 0 1 2cNs−1

 with cn = cos (dq + χn) . (1.52)

The energy spectrum of ĤNs is shown in Figure 1.11a for χ/(2π) = 1/3 and Ns = 40. The
black energy bands are the bulk levels and correspond to the infinite situation considered
in the last paragraph. The Chern numbers associated to these bands are +1, -2 and
+1, in ascending order (Thouless et al. 1982). The intermediate levels appear because
of the open boundary conditions and cross the gaps. These levels provide edge states
as seen in Figure 1.11b-c, where we plot the spatial probability distribution |ψ|2 of the
eigenvectors corresponding to the energy levels indicated by dashed lines in Figure 1.11a.
The ‘Hall conductivity’ of the states is related to the sum of the Chern numbers of the
lower bands. This is highlighted with the color code red/blue, with which we see that
the quasi-momenta associated to each side of the sample are inverted with respect to the
band gap (the lower band gap has a ‘Hall conductivity’ ∝ +1, the upper band gap has a
‘Hall conductivity’ ∝ +1− 2 = −1).

Figure 1.11: Edge states in the Harper Hamiltonian for χ/(2π) = 1/3. (a) Energy spec-
trum of the Harper Hamiltonian in the Landau gauge for open boundary conditions in one
direction (Ns = 40). (b) Spatial probability distribution |ψ|2 of the eigenvectors corre-
sponding to the energy E ≈ 1.3 J and q ≈ ±0.67 π/d. (c) Spatial probability distribution
|ψ|2 of the eigenvectors corresponding to the energy E ≈ −1.3 J and q ≈ ±0.33π/d.

1.3.4 Many-body physics with orbital magnetism

So far our discussion has been restricted to single-particle effects, which already exhibit
very rich possibilities for exploration with quantum gases (Goldman et al. 2014; Cooper
et al. 2018). Understanding the influence of interactions in systems subject to orbital
magnetism is the crux for many condensed matter problems. The fundamental pro-
cess by which an interacting system remains in the ground state under the influence of
orbital magnetism is the nucleation of vortices (Bloch et al. 2008). This was experi-
mentally demonstrated with rapidly rotating Bose-Einstein condensates (Madison et al.
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2000; Schweikhard et al. 2004), for which the Coriolis force mimics the role of the Lorentz
force. In the weakly interacting regime, the nucleated vortices all carry a unit charge
and repel each other. In the continuum, the vortices arrange in a triangular structure
called Abrikosov lattice, which can be modified using additional potentials such as optical
lattices that pin the vortices (Tung et al. 2006).

This description of the ground state in terms of vortex lattices is well suited in the
limit of weak interactions, where the number of vortices is small compared to the number
of atoms. In that case a mean-field approach is expected to hold. When interactions get
stronger, and the number of vortices exceeds the number of atoms, the vortex lattice is
predicted to melt and undergo a phase transition to incompressible phases with strong
inter-particle correlations (Cooper 2008). Numerous strongly correlated phases of matter
are predicted in that context (Bloch et al. 2008). An iconic example is the Laughlin states,
which are predicted to be the ground states of the Harper Hamiltonian with inter-particle
interactions. These states are at the heart of the fractional quantum Hall effect.

The experimental realisation of these incompressible phases is of paramount impor-
tance and within reach of experiments7 (Cooper et al. 2018). As already mentioned,
fractional quantum Hall states for bosons could be explored for the first time. Addition-
ally, anyonic excitations or non-Abelian phases are predicted.

1.3.5 Experimental limitations

Most experimental realisations of artificial gauge fields using ultracold atomic systems
are limited by heating mechanisms that prevent the observation of the aforementioned
ground states. Here I briefly review the current experimental limitations, and conclude
about the chances offered by our experimental solution.

In the case of rotating atomic gases, going beyond the mean-field regime prescribes
drastic experimental conditions on the external trapping potential, which are extremely
challenging to realise in practice and if not fulfilled could lead to heating (Bloch et al.
2008; Cooper 2008).

In the case of shaken lattices or time-dependent super-lattices, the time modulation
of the optical potential combined with inter-atomic collisions induces band transfers and
heating, which has precluded the observation of many-body effects8 (Bilitewski et al.
2015).

Finally, the implementations using Raman transitions with alkali atoms suffer from
relatively high spontaneous emission rates associated to the fine structure of the energy
levels (Lin et al. 2009; Wang et al. 2012; Aidelsburger et al. 2015). This has prevented
the stabilisation of vortices in the Abrikosov lattice for example (Lin et al. 2009).

These heating limitations can be bypassed by considering implementations with the
narrow lines of lanthanides (Dreon 2017; Cooper et al. 2018) or AEL atoms (Gerbier et al.
2010), for which the spontaneous emission rates are negligible.

1.3.6 Implementation with ytterbium atoms

A direct implementation of the Harper Hamiltonian is possible using the clock states of
AEL atoms in state-dependent optical lattices. While the initial proposal was given in

7Note that a first result combining orbital magnetism with two-body interactions has been published
recently (Tai et al. 2017), but the system consists of two particles.

8See also the discussion in the thesis of Alexandre Dareau (2015).
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Jaksch et al. (2003) for alkali atoms, here I describe the extension of Gerbier et al. (2010)
to AEL atoms which we plan to implement on the experiment. Throughout this section,
I label the clock states g ≡ 1S0 and e ≡ 3P0.

State-dependent lattice

The essential ingredient of the Harper Hamiltonian are the complex tunnelling terms,
which provide a non-zero phase when hopping around a unit cell of the lattice. In the
Landau gauge, for instance, the complex tunnelling terms all lie in one spatial direction
while in the orthogonal one the tunnelling is regular. Complex tunnelling coefficients can
be obtained by imprinting a tailored laser phase on the wave function of the atom. The
building block is thus a pair of sites which can trap g atoms on one side and e atoms on
the other side (see Figure 1.12a). Tunnelling between the two sites can be induced using
a resonant photon which transfers the atom from one state to the other. Let us consider
such a pair of sites oriented in the x-direction, separated by dx. The effective tunnelling
rate inside the pair is given by:

Jg→e = (Je→g)
∗ =

~Ωcl

2
eikcl·R

∫
d2r w0

e(r − dxex/2)eikcl·rw0
g(r + dxex/2), (1.53)

where Ωcl, kcl are the Rabi frequency and wavevector of the resonant photon and R is
the central position of the site pair. The Wannier functions in the fundamental band
have been chosen real and even, so that the integral in (1.53) is real, but the tunnelling
coefficient remains complex due to the phase term evaluated in the center of the site pair.

Figure 1.12: (a) Pair of g-e sites, the building block of the state-dependent lattice. (b)
State-dependent lattice, with a staggered flux along the x-direction. Figure designed with
Marion Bouganne.

We can now extend this to create a two-dimensional state-dependent optical lattice,
which consists in staggered columns of g and e trapping sites (see Figure 1.12). The
optical lattice in the y-direction has a period dy with regular nearest-neighbour tunnelling.
The optical lattice in the x-direction has a period 2dx and tunnelling between nearest-
neighbours follows the previous description. We label the site positions by the integers
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(m,n), with the choice of g sites on even m. The Peierls phases are:

φ[(m,n)→ (m+ 1, n)] = (−1)mkcl

[(
m+

1

2

)
dx cos θ + ndy sin θ

]
, (1.54)

φ[(m,n)→ (m,n+ 1)] = 0, (1.55)

where θ is the angle between kcl and the x-axis (see Figure 1.12). The total phase
accumulated around a closed counter-clockwise square loop encompassing four closest
sites is:

χloop = φ[(m,n)→ (m+ 1, n)]− φ[(m,n+ 1)→ (m+ 1, n+ 1)] (1.56)

= (−1)m+1kcldy sin θ. (1.57)

This accumulated phase is a geometric phase, similar to the Aharonov-Bohm phase, and
corresponds to a magnetic flux piercing through the lattice, as shown in Section 1.3.2.
However, the flux is homogeneous in the y-direction but staggered in the x-direction.
Achievable positive fluxes are:

χ

2π
=
|χloop|

2π
=
kcldy
2π

sin θ =
dy
λcl

sin θ, (1.58)

which ranges from 0 to dy/λcl, adjustable with the angle θ. Before discussing how to
rectify the flux to make it homogeneous in both directions, let us discuss the actual
implementation with ytterbium.

Two-color lattice

Figure 1.13: Illustration of the two-color lattice in the anti-magic direction. Both links
g → e and e→ g are addressed with the same laser beam with frequency ω0 and wavevec-
tor kcl, leading to the staggered flux configuration of Figure 1.12. Figure designed with
Marion Bouganne.

Three building blocks are required to generate the previously described scheme:

1. a trapping potential for confining atomic motion in two dimensions,
2. a one-dimensional optical lattice trapping g and e atoms similarly in one direction,
3. a one-dimensional optical lattice trapping g and e atoms separately in the other

direction.
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The first building block can be realised using a light sheet at the magic wavelength,
which freezes the vertical motion of the atoms irrespective of their internal state. We
plan to use one anti-node of a one-dimensional optical lattice at the magic wavelength λm

propagating vertically. The experimental difficulty lies in the loading of a unique anti-
node from a Bose-Einstein condensate. The second building block can be realised using
a one-dimensional lattice at the magic wavelength λm propagating along the y-direction.
The lattice period is dy = λm/2. The third building block can be realised using a one-
dimensional lattice at the anti-magic wavelength λam propagating along the x-direction
(see Figure 1.13). The lattice period is 2dx = λam/2.

The achievable fluxes with this configuration are:

χ

2π
=

λm

2λcl

sin θ ≈ 0.65 sin θ, (1.59)

which allows in principle to scan all relevant values of the flux from 0 to 1/2 by tuning
the angle θ.

Validity conditions The Harper Hamiltonian with staggered flux is implemented if
the tight-binding and single-band approximations hold.

The single-band approximation holds if the laser induces negligible inter-band tran-
sitions. This requires that the Rabi frequency of the coupling is small compared to the
band gap between the fundamental and the first excited band of the lattice:

~Ωcl � ∆gap. (1.60)

Figure 1.14b shows the band gap ∆gap in units of the recoil energy ER,am ≈ h × 3 kHz.
The condition (1.60) is largely fulfilled for reasonable Rabi frequencies Ωcl ∼ 2π × 1 kHz.

The tight-binding approximation can be satisfied easily in the y-direction by consid-
ering lattice depths & 5ER, which restricts tunnelling to the nearest-neighbour terms.
In the x-direction, the tight-binding approximation holds if the laser-induced tunnelling
between g and e sites prevails over the natural tunnelling terms between two consecutive
g or e sites. The condition reads:

|Jg→e| � Jg→g, Je→e, (1.61)

where Jg→g, Je→e are the natural tunnelling amplitudes along the x-direction. In Fig-
ure 1.14a we compare these tunnelling amplitudes. For lattice depths & 20ER,am, the
condition (1.61) is fulfilled.

Super-lattice: flux rectification

The simple scheme presented in the last paragraph creates a staggered magnetic flux in
the x-direction of the lattice. This allows to realise the Harper Hamiltonian (1.48) for only
two specific values of the flux χ/(2π) = 0 or χ/(2π) = 1/2 (π is equivalent to −π). For
arbitrary values of the flux χ/(2π) one needs to rectify the flux and make it homogeneous.

The underlying idea behind the flux rectification is to use two different laser beams
to address the two tunnelling events g → e and e → g. By making the two laser beams
counter-propagating, the second tunnelling event acquires a minus sign with respect to
the first one (θ → θ + π), thereby compensating for the sign change due to the internal
state inversion.
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Figure 1.14: (a) Comparison between laser-induced tunnelling Jg→e and natural tun-
nellings Jg→g and Je→e for a typical Rabi frequency Ωcl = 2π × 1 kHz. The red shaded
area represents the possible values taken by Jg→e when varying the flux χ/(2π) from 0
to 1/2. (b) Band gap ∆gap between the fundamental and the first excited band of the
lattice.

Figure 1.15: Illustration of the rectified two-color lattice in the anti-magic direction, where
an optical super-lattice shifts every other sites leading to a doubled periodicity of 4 sites.
Links g → e and e → g are now addressed with two different laser beams: the first and
third links are addressed with two beams with wavevectors +kcl and frequencies ω0 or ω2,
the second and fourth links are addressed with a single beam with wavevector −kcl and
frequency ω1. This leads to a uniform flux configuration. Figure designed with Marion
Bouganne.

In order to spectrally separate the tunnelling events, and address them with different
frequencies, Gerbier et al. (2010) proposed to superimpose along the x-direction an ad-
ditional optical lattice with a spatial period λam, equal to twice the spatial period of the
main anti-magic lattice9,10 (see Figure 1.15). By choosing the depth of the super-lattice
smaller than the main anti-magic lattice one, the trapping potential remains unchanged
for the two internal states but the degeneracy of the transition frequencies is lifted. The
unit cell of the lattice is doubled, and one needs to consider four consecutive sites along
the x-direction, associated to four different transition frequencies. This scheme thus re-
quires a priori two counter-propagating laser beams with four different frequencies. A
careful choice of the relative phase between the anti-magic lattice and the super-lattice

9In the actual implementation, the anti-magic lattice laser is derived by second-harmonic generation
in a non-linear crystal, as a result the super-lattice wavelength is readily at hand.

10A similar implementation has been realised with alkali atoms, the tunnelling being restored by
Raman transitions (Aidelsburger et al. 2015).
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allows to reduce the number of frequencies to three [see the exhaustive discussion in the
thesis of Matthias Scholl (2014)], this situation is sketched in Figure 1.15.

Validity conditions The flux rectification introduces an energy shift ∆mod between
successive sites. This additional modulation helps to further suppress natural tunnelling,
but must remain small compared to ∆gap in order to prevent resonant tunnelling between
bands. This new condition reads:

~Ωcl � ∆mod � ∆gap. (1.62)

For an anti-magic lattice depth ∼ 10ER,am and a super-lattice modulation ∆mod ≈
3ER,am, the previous condition is fulfilled [see the benchmark values given in the the-
sis of Alexandre Dareau (2015)].

Other technical issues regarding the experimental implementation of the Harper Hamil-
tonian must be contemplated:

• inelastic collisions involving the metastable state e which lead to losses and heating,
• the Gaussian profile of the lattice laser beams, which entail spatially varying detun-

ing between sites that can reduce the laser-induced tunnelling along x or the natural
tunnelling along y,
• and the required power level and stability for the lattice lasers to reach the inter-

esting regime of the Harper Hamiltonian.

These points have been addressed extensively in the thesis of Matthias Scholl (2014),
where the selected technical solutions are also described in details.

1.4 Summary

In this chapter, I have outlined the context of this thesis work and covered the essen-
tial material required to understand the content of later chapters. Firstly, I introduced
the specific features of AEL atoms arising from their electronic structure. The pair of va-
lence electrons provide narrow transitions with interesting state-dependent polarisabilities.
These features make AEL atoms advantageous for the exploration of various fundamental
research prospects, ranging from quantum information processing to many-body physics.
Secondly, I recalled the framework of ultracold atoms in optical lattices, with an emphasis
on the Bose-Hubbard Hamiltonian and the superfluid-Mott insulator transition. I stressed
how one can measure many-body correlations as a way to characterise the system. I finally
presented the experimental perspective when combining AEL atoms with optical lattices,
namely the realisation of artificial gauge fields for neutral atoms. I indicated why this is
crucial for the exploration of strongly correlated phases of matter in a magnetic field and
explained the envisioned implementation in our laboratory.
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2
Experimental apparatus

The importance of laboratory development can be hidden behind scientific achievements;
yet, a significant piece of work lies in the careful construction and daily maintenance of the
experimental apparatus. This delicate machinery which provides beautiful observations
still occasionally undergoes imponderables of experimental science. In this chapter I
summarise the status of the apparatus used for the experiments described in the remainder
of the manuscript, and survey its main characteristics and properties. A sketch of the
vacuum system and laser beams shone on the atoms is given in Figure 2.1.

Figure 2.1: Sketch of the vacuum system and laser beams. During an experimental
sequence, atoms go from left to right, from the oven to the science chamber. They travel
less than two meters in fifteen seconds, but their temperature drops down by ten orders
of magnitude. Magneto-optical trapping happens in the MOT chamber, and evaporation
leading to condensation occurs in the science chamber. Figure designed with Marion
Bouganne.

First, I present how we realise Bose-Einstein condensation of 174Yb in an optical trap.
Secondly, I describe our detection method, based on absorption imaging, which allows
to probe selectively both clock states. Thirdly, I report on the successful loading of a
quantum degenerate gas in a three-dimensional optical lattice. Finally, I characterise the
laser used to drive the 1S0–3P0 clock transition of ytterbium.
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2.1 Bose-Einstein condensation of 174Yb in a

crossed optical dipole trap

In this section I describe how we experimentally realise the Bose-Einstein condensation
of 174Yb. Condensation is the starting point of almost all the studies presented in this
manuscript. Hence a reliable and stable production of Bose-Einstein condensates (BEC)
is paramount. This is achieved through several cooling stages. We first decelerate an
atomic beam in a Zeeman slower, operating on the 1S0–1P1 transition. The slowed-down
atoms are then captured and cooled in a magneto-optical trap (MOT), operating on the
intercombination 1S0–3P1 transition. Cooled atoms are then loaded into a far-off resonant
dipole trap and subsequently transported by moving the focus of the laser beam into a
neighbouring vacuum chamber. There, a second orthogonal laser intersects the first and
creates a high-density cloud of atoms in the crossing region. The last step, evaporative
cooling, is performed by lowering the power of the dipole traps to reach Bose-Einstein
condensation. The experiment, depicted in Figure 2.1, consists of four main parts: the
oven, the Zeeman slower, the MOT chamber and the science chamber. More details about
the content of this section are given in the theses of Matthias Scholl (2014) and Alexandre
Dareau (2015).

2.1.1 Atomic flux generation

Atomic beam

Cold atomic samples are very fragile, and specially sensitive to collisions with the back-
ground gas. The lifetime of the samples is greatly reduced if these collisions are too
numerous. Preventing such a detrimental effect over the duration of experiments (a few
seconds to one minute) requires to work in the so-called ultra-high vacuum (UHV) regime,
around or below 10−11 mbar. In order to achieve such extremely low pressures, the vacuum
enclosure of the experiment is continuously pumped with various ion and non-evaporable
getter pumps.

Ytterbium is loaded into an oven in small lumps of metal of about 1 mm3. The melting
point of ytterbium is 824 ◦C at the standard pressure. The temperature required to
produce a high enough vapour pressure to provide sufficient atomic flux is around 500 ◦C,
well below the melting point. At this temperature, the pressure in the vicinity of the oven
reaches about 3× 10−8 mbar. The resulting ytterbium vapour is collimated by a narrow
tube at the oven output, providing an atomic flux with a divergence of around 10 mrad.
This is the starting point of the experiment. A succession of two differential pumping
stages are used to protect the MOT and science chambers from ytterbium contamination
and bring down the pressure to around 10−10 mbar in the MOT chamber and less than
10−11 mbar in the science chamber.

Zeeman slower

The hot atomic beam exiting the oven tube goes through a Zeeman slower, where it
is decelerated by a counter-propagating laser beam at λb ≈ 399 nm. The design and
operation of our Zeeman slower is thoroughly described in the thesis of Alexandre Dareau
(2015), the essence of which lies in the radiation pressure exerted by a resonant light beam
(Metcalf et al. 1999). Briefly, the laser beam frequency is set close to resonance with the
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2.1. Bose-Einstein condensation of 174Yb in a crossed optical dipole trap

1S0–1P1 transition of ytterbium at 399 nm. A magnetic field gradient shifts the Zeeman
sublevels in order to compensate for the varying Doppler shift along the atoms’ path and
to keep the atoms near resonance with the laser beam. The Zeeman beam is focused so
that its divergence matches the calculated divergence of the atomic beam.

The laser used to drive the imaging transition is based on the frequency doubling
technique. The fundamental wavelength at 798 nm is derived from a commercial tapered
amplifier1 delivering about 2 W of infrared light. This light is frequency doubled in a
non-linear ppKTP2 crystal of 1 cm length. In order to enhance the output power, the
crystal is placed inside a bow-tie cavity. The achieved output power is around 200 mW,
which is far from the ideal situation, owing to the occurrence of blue-induced infrared
absorption (Tjörnhammar et al. 2015), but still sufficient for our experimental purposes.

Frequency locking

The frequency reference for the laser operating on the imaging transition is obtained
via modulation transfer spectroscopy on a hollow cathode lamp. Previously, a standard
saturated absorption spectroscopy was performed on the same lamp, but the error signal
offset was drifting, shifting away the lock frequency from its set-point. These deviations
imposed a regular re-optimisation of the laser frequency for the Zeeman slower, which was
detrimental for a proper day-to-day performance of the experiment.

We implemented a modulation transfer spectroscopy set-up because it is much less
sensitive to perturbing offset signals than standard saturated absorption spectroscopy
(Shirley 1982; Camy et al. 1982). The principle of operation is the following one. Two
counter-propagating beams (a pump and a probe) overlap inside the hollow cathode lamp.
The pump beam is frequency modulated with an electro-optic modulator (EOM). Both
beams interact with the ytterbium atomic vapour inside the lamp and create a non-linear
polarisation in the medium. Four-wave mixing processes then yield a modulation sideband
in the probe beam itself. This sideband can be detected and demodulated to provide an
error signal free of undesired offsets.

Figure 2.2: Optical set-up for the modulation transfer spectroscopy on a hollow cathode
lamp (HCL) of ytterbium. Figure designed with Marion Bouganne.

The optical set-up is depicted in Figure 2.2. About 10 mW of blue light drawn from
the output of the doubling cavity are split into a pump beam of 8 mW and a probe beam of

1TA-Pro, Toptica.
2Periodically poled potassium titanyl phosphate, Raicol crystals.

45



2. Experimental apparatus

2 mW. The pump beam goes through an EOM modulated at 20.8 MHz. The probe beam
is frequency shifted in an acousto-optic modulator (AOM) by 80 MHz. The two beams
are sent counter-propagating in the hollow cathode lamp, with circular polarisations, and
the probe beam is subsequently detected with a photodiode (PD). A lock-in amplifier
then performs the demodulation. The resulting error signal has a signal-to-noise ratio of
about 10 and no long-term drift of the offset.

2.1.2 Magneto-optical trapping

MOT operation

Slow atoms coming from the Zeeman slower then reach the MOT chamber, where they get
trapped using the intercombination transition at λg ≈ 556 nm. A detailed presentation
of the MOT is done in the thesis of Matthias Scholl (2014). Briefly, a magneto-optical
trap is the combination of optical molasses and a quadrupole magnetic field. The optical
molasses, created by three orthogonal counter propagating laser beams with circular po-
larisation, slow down the atoms via Doppler cooling. The quadrupole magnetic field adds
a position dependence on the effective cooling force, resulting in a net confinement of the
atoms at the center of the quadrupole.

An important feature of a MOT operating on the intercombination transition (Γg =
2π × 182 kHz) is a very low Doppler temperature

TD =
~Γg

2kB

≈ 4.4 µK, (2.1)

which is sufficiently small to achieve efficient direct loading into an optical dipole trap.
This is important for bosonic isotopes of ytterbium, which are difficult to cool below the
Doppler limit (Maruyama et al. 2003). Indeed, in contrast with alkali atoms or fermionic
ytterbium, the absence of ground state internal structure prevents sub-Doppler cooling
mechanisms (Metcalf et al. 1999),

The laser used to drive the intercombination transition of ytterbium is based again on
frequency doubling. The fundamental wavelength at 1112 nm is derived from a commercial
fiber laser3 delivering about 2.5 W of infrared light. This light is frequency doubled in
a non-linear ppSLT4 crystal of 2 cm length. In order to enhance the output power, the
crystal is placed inside a bow-tie cavity. The achieved output power is around 900 mW.

The frequency reference for the intercombination transition is obtained via standard
saturated absorption spectroscopy on a molecular iodine cell. Details about this spec-
troscopy device, the frequency lock and the MOT optimisation procedures are given in
the thesis of Alexandre Dareau (2015).

Loading the MOT with atoms

The MOT loading can be understood as the competition between two processes. On the
one hand, slowed down atoms constantly come from the Zeeman slower to enter the MOT.
On the other hand, depletion mechanisms (for example one-body losses, resonant light
absorption from the Zeeman beam or excited state collisions) empty the MOT. Assuming

3Orange One, Menlo Systems.
4Periodically poled stoichiometric lithium tantalate, Covesion.
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constant loading characterised by a rate R and a one-body loss rate κ, the differential
equation describing the evolution of the atom number N in the MOT is:

dN

dt
= R− κN, (2.2)

the solution of which is N(t) = (1 − e−κt)R/κ. We typically load 108 atoms in the
MOT with a loading rate R ≈ 107 s−1 and a one-body lifetime κ−1 ≈ 30 s (extracted
from loading curves as in Figure 2.4). A further cooling step is then performed (Scholl
2014), and the achieved final temperature is around 50µK. Colder temperatures (down
to about 10 µK) can be achieved but the final temperature was chosen to maximise the
atom number transferred to the optical dipole trap.

2.1.3 Condensation by evaporation

Dipole trap loading and transport

Atoms in the MOT are transferred into a far-off resonant optical dipole trap by superim-
posing the MOT center on the focus of a high-intensity laser beam, that I label transfer
dipole trap (TDT) in the remainder. The latter is derived from the output of a fiber
laser5 at λTDT ≈ 1070 nm. The measured power impinging on the atoms is P0 ≈ 45 W
focused to a calibrated waist6 w0 ≈ 40 µm. The focus of the dipole trap is moveable for
subsequent transport of the atoms. The dipole trap depth is given by

U0 =
1

ε0c
αg(λTDT)

P0

πw2
0

≈ kB × 660 µK, (2.3)

where αg is the ground state polarisability (Grimm et al. 2000), which is 164α0 at 1070 nm
(α0 = 4πε0a

3
0 is the atomic unit of polarisability). This depth, about ten times higher

than the MOT temperature, is sufficient for efficient trapping.
We measured the axial trap frequency ωax =

√
2U0λ2

TDT/(Mπ2w4
0) and the radial trap

frequency ωrad =
√

4U0/(Mw2
0) using the atomic cloud response to an external perturba-

tion. The large difference between ωax and ωrad requires two different measurement meth-
ods. First, displacing the focus of the laser beam along its direction of propagation induces
oscillations of the center-of-mass of the cloud in the harmonic potential along the axial
direction of the trap. Second, parametric excitations induced by modulating the dipole
trap power cause atom losses at twice the radial trapping frequency, and also possibly at
integer sub-harmonics (Friebel et al. 1998). Both measurements are presented in Figure
2.3. A damped oscillation fit on the center-of-mass movement gives ωax = 2π× 8.0(1) Hz.
A fit by two equidistant Gaussian functions on the parametric excitation resonances gives
ωrad = 2π × 1.42(1) kHz. The small value of ωax prescribes the method of center-of-mass
oscillations because parametric excitations are not easily performed at such low frequen-
cies. In the kilo-hertz regime, cloud oscillation measurement becomes inaccurate due to
the finite imaging time resolution, and parametric excitations are more precise.

If we assume a total power P0 ≈ 45 W, then the radial frequency measurement gives a
value to the waist w0 ≈ 40 µm, which coincides with our independent calibration with a
CCD7 camera. The calculated axial trapping frequency ωax ≈ 2π × 8.5 Hz also coincides

5YLR-50-LP-AC-Y12, IPG Photonics.
61/e2 diameter.
7Charge-Coupled Device.
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Figure 2.3: Measurement of the transfer dipole trap frequencies. Solid lines are fits to the
data (see text). (a) Center-of-mass oscillations give ωax = 2π× 8.0(1) Hz. (b) Parametric
excitation resonances lead to ωrad = 2π × 1.42(1) kHz.

with the measured value. Using a time-of-flight expansion of the cloud, we measured the
temperature of the cloud

T = 40(5) µK. (2.4)

This justifies the harmonic approximation (implicit when speaking of trap frequencies)
for the trap since the condition Rth � w0 (Rth being the cloud size), or equivalently
kBT � U0, is well satisfied.

After optimisation of the loading parameters, we transfer slightly less than 107 atoms
into the dipole trap (see Figure 2.4a), which corresponds to an efficiency of about 10 %.
Such a low transfer efficiency is typical and expected for our parameters (Kuppens et al.
2000). It could be enhanced by changing the geometry of the dipole trap, for example
by increasing its waist. This would lead to a less confined cloud, and potentially create
problems for the subsequent transport and evaporation. Here we actually saturate the
dipole trap in atom number, which is an advantage since it suppresses shot-to-shot atom
number fluctuations present in the MOT. An experimental image in Figure 2.4b shows
atoms trapped in the dipole trap, and the remaining untrapped atoms from the MOT
falling underneath.

Crossed dipole trap and evaporation

Good optical access is crucial to realise optical lattices and artificial gauge fields, as
described in Section 1.3. It would be difficult to combine all the laser beams in all the
required directions in the MOT chamber directly. Instead, we chose to move the atoms
to a science chamber8 where the optical access is much better.

Atoms are transported over 20 cm in 1 s. This is performed by displacing the focus
of the laser beam using a retro-reflecting corner cube mounted on a translation stage.
Details on this step can be found in the thesis of Matthias Scholl (2014). After transport,
almost 80 % of the atoms are still in the trap. We intersect the focus of the TDT with
a second, orthogonal and horizontal dipole trap, labelled fixed dipole trap (FDT), with

8Spherical octagon, Kimball.
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Figure 2.4: (a) Loading curves for the magneto-optical trap and transfer dipole trap. Solid
lines are fit to the data using (2.2), loading rates for the MOT and TDT are respectively
107 s−1 and 3× 106 s−1. Saturation of the dipole trap loading is manifest. (b) Picture
of trapped atoms in the dipole trap after a 1 ms time-of-flight expansion, and falling
untrapped atoms underneath. Gravity points to the bottom of the picture.

initial power of about 1 W and focused to a waist of 16 µm. In the intersecting region of
the crossed dipole traps, the attractive force is much stronger than in the first dipole trap
alone, leading to a much higher atomic density. The light used to create the second trap
is derived from a commercial source9 at 532 nm.

Forced evaporative cooling is performed by ramping down the dipole traps power. As
the power is lowered, the phase-space density of atoms in the crossing region increases,
see Figure 2.5 for an illustration. The power ramp on the FDT is performed controlling
the radio-frequency amplitude of an AOM in the path. Since the required final power is
about 1 % of its initial value, it is controlled with a standard feedback loop on the AOM
driver, with the laser power measured on a standard photodiode. Ramping down the TDT
power is more involved for two reasons. First, the high power levels (∼ 50 W) incited us
not to use an AOM because of possible thermal drifts (Fröhlich et al. 2007). Instead, we
can tune the output laser power by changing the laser pump power with an analog input.
This leads us to the second difficulty; when the pump power is reduced to less than 10 %
of its maximal value, the laser stops operating properly and output light consists mostly
of amplified spontaneous emission from the fiber. The required dynamic range for power
control (about 1000) is too large to directly implement the loop on the analog input of the
laser. Instead, we use a feed-forward signal sent to a rotating waveplate combined with
a Glan-Taylor prism that perform the biggest part of the power reduction. The output
laser power is then regulated around this feed-forward ramp with the analog input. In
this way the pump power of the laser never drops below the lasing threshold. More details
on this servo-loop can be found in the thesis of Matthias Scholl (2014).

At the end of the 4 s long evaporation ramp, phase-space density has crossed the
condensation threshold. We obtain a Bose-Einstein condensate of typically 6 to 8× 104

atoms, with no discernible thermal fraction. Typical shot-to-shot fluctuations of the atom

9Verdi V-6, Coherent.
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Figure 2.5: Cloud profiles after time-of-flight expansion during evaporation. As the
crossed dipole trap power is lowered, evaporation leads to condensation (emergence of
a peak in the momentum distribution). (a) Integrated profiles of the atomic cloud ver-
sus condensed fraction. The dashed line indicates the remaining thermal fraction, which
provides a value for the temperature of the cloud. (b) Pictures of atomic clouds.

number are on the order of 5 %. The trap frequencies of the crossed dipole trap at the
end of the evaporation ramps were measured using collective mode oscillations of a BEC:
{ωx, ωy, ωz} = 2π × {60 Hz, 230 Hz, 260 Hz}, and ω̄ = (ωxωyωz)

1/3 = 2π × 153 Hz. This

gives a length aho =
√
~/(Mω̄) ≈ 600 nm for the harmonic oscillator. With Nat =

6× 104 atoms, the chemical potential is µ = 0.5~ω̄(15Nata/aho)2/5 ≈ h × 2.8 kHz. The
scattering length a describes low-energy s-wave scattering between two atoms, and has
been measured in Kitagawa et al. (2008) and Borkowski et al. (2017): a =105 a0 with a0 the
Bohr radius. When neglecting the contribution of kinetic energy, the spatial distribution of
trapped condensates is an equilibrium between repulsive inter-atomic interactions and the
trapping potential. This so-called Thomas-Fermi regime is legitimate when the interaction
energy dominates (Ketterle et al. 1999): µ � ~ωx,y,z. Thomas-Fermi cloud radii Ri =√

2µ/(Mω2
i ) are {Rx, Ry, Rz} = {9.5 µm, 2.5 µm, 2.2 µm} and the central density in the

harmonic trap is n0 = 15Nat/(8πRxRyRz) = 7.0× 1014 cm−3. At these density levels,
three-body recombination starts to become important. When three atoms collide, two of
them can form a molecule and the binding energy is converted into kinetic energy that
expels both the molecule and the third atom out of the trap. The typical time scale for
such recombinations is roughly given by 1/(n2

0L3) ≈ 0.3 s with L3 ≈ 7× 10−30 cm6 s−1

(Fukuhara et al. 2009). This sets strong limitations on the achievable total atom number
in an optical trap but also on the lifetime of the BEC.

A crucial point to perform efficient evaporation ramps and proper atom number sta-
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bility is the alignment of the dipole traps. This alignment, on a micro-meter scale, is
very sensitive to temperature variations and day-to-day operation of the experiment. The
TDT is derived from the output of a fiber laser and the propagation path to the atoms is
larger than two meters, with a lever arm from the last mirror of about half a meter. If we
include the fact that the retro-reflecting corner cube is mounted on a moving translation
stage, we understand that the focus position is likely to move over time. The FDT comes
from the output of a fiber clamped close to the science chamber, and is therefore not
as sensitive as the TDT. In order to solve the issue of foci misalignment, we installed
a position monitoring and feedback loop for the laser foci position10. The foci are both
imaged on two separate position sensitive photo-detectors which provide an error signal
to motorised mirror mounts. These mounts then correct the position of the foci to a fixed
point in space. In practice, this servo loop is mainly turned off and switched on twice a
day on average to correct slow, presumably thermal, drifts.

2.2 Detection and optical imaging

In this section I describe an essential tool to measure atomic samples, namely absorption
imaging. This technique relies on the resonant absorption of photons by the atoms and is
the only detection tool that we use to probe them (Ketterle et al. 1999). The original idea
is fairly simple, a large and resonant beam of light is cast on the atoms, and subsequently
recorded on a CCD camera. The atoms absorb part of the incoming light and thus leave a
shadow in the beam. This shadow carries information about the atomic density integrated
along the line of sight. I first present the theory and the experimental implementation
for the ground 1S0 atoms. I then explain how we are able to image also the metastable
excited 3P0 state. Finally, I describe an algorithm used to enhance the quality of the
images, leading to better information about the atomic distribution.

2.2.1 Absorption imaging

Theoretical background

Absorption imaging is performed on the 1S0–1P1 transition with angular frequency ωb =
2πc/λb and width Γb = 2π × 29 MHz. Although it would also be possible to use the
intercombination transition, we did not implement it so far. The imaging transition is a
simple J = 0 to J = 1 transition with large Γb, allowing for efficient cycling. Cooperative
events in light absorption or emission and multiple scattering effects can be neglected when
the gas density n is sufficiently small, n[λb/(2π)]3 � 1 (Labeyrie et al. 2003; Araújo et al.
2016). While this condition typically does not hold for in-situ BEC (n0[λb/(2π)]3 ∼ 1), it
becomes well-fulfilled for time-of-flight expansions of a few milliseconds where the density
is reduced by orders of magnitude. The density of atoms in the cloud is related to the
light intensity absorption through the Beer-Lambert law, at resonance it reads

dI

dz
= −nσ0

I

1 + I/Isat,0

, (2.5)

where σ0 = 3λ2
b/2π is the resonant absorption cross section, I the light intensity, z the

coordinate along the direction of propagation of the laser beam and Isat,0 = ~Γbω
3
b/(12πc2)

10Aligna 4D, TEM Messtechnik.
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the saturation intensity of the transition. After integration, it gives the optical depth
OD = σ0

∫
ndz, which can be formulated as

OD = − ln

(
If

Ii

)
+
Ii − If

Isat,0

, (2.6)

where If (resp. Ii) is the light intensity in a plane after (resp. before) the atomic cloud.
For low-intensity absorption imaging (I � Isat,0), this reduces to the standard formula
for the optical density OD|I�Isat,0 = − ln(If/Ii).

Absorption imaging in the laboratory

The intensities Ii and If are actually recorded on the same CCD camera, positioned after
the atomic cloud in the laser beam path. A first image is taken with the atoms, giving If .
This image destroys the sample, and after a few milliseconds of free fall, the atoms are
not in the camera field of view any longer. A second image is then taken, giving Ii. In
practice, various effects need to be taken into account in order to measure faithfully the
optical depth of the cloud and compute the atomic density.

First, for a generic atomic species, the laser beam might not perfectly address the
atomic transition, because of polarisation imperfections, resonance detuning, structure of
the ground and excited states or magnetic field fluctuations. In this respect, the case of
bosonic ytterbium is relatively simple. The absence of hyperfine structure in the ground
state (in contrast with fermionic isotopes or alkali atoms) makes the 1S0–1P1 transition
a J = 0 → J = 1 transition for which all Clebsch-Gordan coefficients are equal to 1.
Additionally, the transition is broad, so that magnetic field fluctuations are negligible in
practice. Therefore, as long as polarisation is well-controlled and the frequency of light
set to resonance, one can use (2.6) with confidence.

Second, the optical set-up needs to be characterised in order to relate accurately the
count levels of the camera to the light intensity at the atomic position. The parameters
that enter in the proportionality factor are: photon losses on the path β, quantum effi-
ciency of the detector qe, bit depth of the analog-to-digital conversion 2d, magnification
of the optical set-up m, pixel size ps and pulse duration tp. In the recorded images (with
bit resolution 2r), a pixel level Nlevel is related to the intensity in the atomic plane I by

Nlevel =
2r−dqeβp

2
s tp

~ωbm2
I. (2.7)

On the one hand, in the limit of low-intensity (I � Isat,0), the optical density can be
computed with only a ratio of measured intensities, directly accessible from the images.
On the other hand, if the second term of (2.6) can not be neglected, one must calibrate the
coefficient Nlevel/I. The coefficient β ∼ 1 can be estimated with power measurements, we
assume it be 1. The magnification m needs to be calibrated (see the following paragraph)
and all other coefficients are in principle accessible from camera specifications.

Calibration of the magnification

An important quantity to calibrate is the magnification m of the optical imaging set-up.
It gives access to the atomic density from the measurement of the optical depth. This
calibration is often impossible to do via purely optical means since the object plane lies
inside a vacuum chamber. Fortunately, the atoms provide a way to measure it, with

52



2.2. Detection and optical imaging

various alternatives. A first option is to use the dependency of the Thomas-Fermi radius
of a BEC on the total atom number, but the weak scaling (∝ N1/5) does not provide much
accuracy. If the camera line of sight is not along gravity, one can use the free fall of the
atomic cloud to measure the magnification. This option can be done with condensates
but also with thermal clouds and provides a good calibration. Both options are, however,
not as convenient as the following one.

The simplest to interpret and probably most accurate technique of calibration uses
the matter-wave diffraction of a condensate on an optical grating (light standing wave).
The diffracted atomic wavepackets have a velocity related to the wavevector of the light
forming the grating. One can measure accurately the wavepackets spacing after a time-
of-flight propagation and deduce the magnification based on an accurate knowledge of the
properties of the optical grating. We used this option in the experiment to calibrate our
imaging system. Specific details about such diffraction patterns is given in Section 2.3.2,
but we can draw here a simple argument based on wave-particle duality.

The diffraction of light with wavelength λ0 on a diffraction grating with slit spacing d
gives diffraction peaks at angles sin θ = nλ0/d, where n is an integer. After a propagation
distance L = ct from the grating, the diffraction orders are separated by the distance

∆x = L sin θ =
cλ0

d
t. (2.8)

The diffraction of an atom by an optical grating should behave similarly if we interchange
the roles of matter and light. We assume the atom to be a plane matter wave, to which
we assign a wavelength equal to its de Broglie wavelength λ0 7→ λdB = h/(Mv), where v
is the atomic mean velocity. The slit spacing of the optical grating is d 7→ λ/2, where λ is
the light wavelength. After propagation on a distance L = vt, the diffraction orders are
separated by

∆x =
vλdB

λ/2
t = 2

~k
M
t, (2.9)

where k = 2π/λ is the light wavenumber. Relative uncertainties on t and m∆x are better
than 10−3 and relative uncertainties on k and M are negligible. We conclude that the
magnification can be measured up to three significant digits.

2.2.2 A repumping laser for the clock state

So far I described how we can image the ground state of ytterbium using absorption imag-
ing on a broad and closed transition. Such a transition does not exist for the metastable
clock state. Still, we can measure excited atoms with a two-step procedure. First, we
repump them to the ground state with an auxiliary laser, and then we image them with
the 1S0–1P1 transition as described above.

Principle of operation

The metastable excited state can be repumped with the 3P0–5d6s 3D1 transition at λr ≈
1389 nm (see Figure 2.6), with width Γr = 2π × 430 kHz (Bowers et al. 1996). The upper
5d6s 3D1 state decays to the 3PJ states (J = 0, 1 and 2). Atoms in the 3P1 state decay
back to the ground state by emitting a photon at 556 nm. The 3P2 state is a metastable
state (Yamaguchi et al. 2010). However, the branching ratio from the 5d6s 3D1 state
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Figure 2.6: Relevant energy levels and transitions for the repumping from the metastable
3P0 state to the ground state. Figure designed with Marion Bouganne.

is small (Porsev et al. 1999). Therefore, cycling on 3P0–5d6s 3D1 transition leads to a
repumping efficiency ηe from 3P0 to 1S0 close to unity.

Strictly speaking, this repumping transition may also be used to perform direct ab-
sorption imaging, with the drawback of not being a closed transition, and at the expense
of using a camera sensitive to infrared light. Having only one detection system for both
ground and metastable states is easier to operate. Also, the 3P0–6s7s 3S1 transition can
also be used as a repumper to the ground state (Scazza 2015), but this option requires
two different lasers to operate properly since the branching ratio to the metastable 3P2

state is important.

Experimental implementation

The source used to drive the repumping 3P0–5d6s 3D1 transition is a commercial laser
diode11 with an output power around 20 mW. We illuminate the atoms with a 5 mW
collimated beam of about 500 µm waist. For a two-level atom this would lead to a broad-
ening of the transition by saturation to a width of about 100 MHz. In practice, the line
is also broadened by excitation time (repumped atoms do not participate in the dynam-
ics any longer) and we observe efficient repumping on a frequency span of about 1 GHz,
coinciding with the prediction of optical Bloch equation calculations, as shown in Figure
2.7.

We carefully stabilised the temperature of the diode such that its frequency drift over
a day would not be larger than the broadened transition width, thus a frequency lock
was not needed. After locating the resonance with the atoms, we only had to keep the
laser running around this frequency with a precision accessible by a wavelength meter.
The one we have in the laboratory only works in the visible to near infrared spectrum12,
which prevents direct measurement on the laser output. Therefore we chose to frequency
double the light at 1389 nm to bridge the gap to the sensitive span of the meter13.

The repumping efficiency ηe from the metastable state to the ground state was mea-
sured to be around 80 % for a 500 µs-long pulse, as shown in Figure 2.7. During such

11NEL Laser Diode, NTT Electronics.
12WS5, High Finesse.
13Details about the actual optical set-up and temperature stabilisation is given in the thesis of Manel

Bosch Aguilera (2019).
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Figure 2.7: Characterisation of the repumping laser. (a) Spectrum of the repumping tran-
sition with 500 µs-long pulses, the solid line is a calculation using optical Bloch equations
for the 5-level system shown in Figure 2.6. (b) Efficiency of the repumping versus pulse
duration.

a pulse, atoms in the ground state are far off-resonant and hardly affected by the light.
This allows us to measure the total population in the ground and metastable states.

In order to selectively address the metastable excited atoms, we apply a removal pulse
of light on the imaging transition to remove all ground state atoms prior to repumping.
With a few µW focused on 40µm, we are able to get rid of all ground state atoms in 5µs.

2.2.3 Improving the quality of the images

Limitations on absorption imaging

Absorption imaging parameters must be restricted if one wants to faithfully measure the
density distribution of atoms and not only the total atom number. Indeed, absorption
imaging can induce substantial modification of the atomic density and velocity distribu-
tions through photon recoil. Here I would like to stress some limitations on the number
of absorbed photons by the atomic sample.

First, absorbed photons modify the longitudinal speed of the atoms and induce a
Doppler shift that should remain smaller than the width of the imaging transition. I call
Nabs the number of photons absorbed by an atom during an image. Then the Doppler
shift is roughly ∆ω ≈ Nabs~k2

b/M . We want ∆ω . Γb which means

Nabs .
MΓb

~k2
b

≈ 2100. (2.10)

With optical depths on the order of 1, this means about Ninc ≈ 103 incident photons
(Nabs/Ninc ≈ 1 − e−OD). Second, spontaneously emitted photons lead to momentum
diffusion in the transverse plane (Metcalf et al. 1999). This momentum spread ∆p ≈
~kb

√
Nabs/3 must induce a displacement during the image time tp smaller than the pixel

size ps

Nabs ≤

(√
3Mps

~kbtp

)2

≈ 600, (2.11)
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with tp = 25 µs and ps = 2 µm. This is the same order of magnitude as before. With
typical imaging beam waists of about 1.5 mm, and magnification between 2 and 5, this
limits the saturation parameter of the imaging beams to a value slightly bigger than 1.
All images taken for this thesis work were obtained with saturation parameters of 1 or
less.

A final limitation on the quality of the images is the dead time between the two
images taken by the camera. In our experiment, the dead time is about 150 ms, limited
by the image transfer from the camera to the computer. This makes the optical depth
computation very sensitive to intensity variations during the dead time. In order to get rid
of artefacts coming from these fluctuations (background shift or fringes), I implemented
a post-treatment algorithm of our images, as described below.

Best-reference picture algorithm

Two images are recorded in a sequence, an image S with atoms and a reference image R
without atoms. The reproducibility of the intensity pattern shone on the atoms for S and
R is crucial in order to determine faithfully the optical depth. Any intensity fluctuation
between the two images in a sequence results in an artificial optical depth. Many technical
reasons can create those intensity fluctuations: fluctuation of laser power or polarisation,
fluctuation of AOM diffraction efficiency or mechanical vibrations. The dead time be-
tween the two images must therefore be reduced to the minimum. While global intensity
fluctuations are quite easy to get rid of by simply subtracting a background value on the
optical depth, fringes or speckle patterns are very detrimental and not straightforward to
remove. This is where the best-reference picture algorithm comes into play.

The basic idea is to construct a best-reference picture Q by linear combination of a
set of reference pictures in such a way that S and Q are identical in a region with no
atoms (Ockeloen-Korppi et al. 2010; Frapolli 2017). The main assumption is that the
background signal of S in the region with atoms is also identical to Q. We decompose Q
on the R images set

Q =
∑
j

cjRj, (2.12)

where the sum typically runs over 50 images. We want to minimise the quantity
∑

x(Sx−
Qx)2, where the sum runs over all the pixels x for which there is no atomic signal. Setting
partial derivatives with respect to the cj to zero, we get a linear system of equations, for
all j: ∑

k

ckbjk =
∑
x

Rj,xSx = aj, (2.13)

where bij =
∑

xRi,xRj,x. B = (bij) is a square matrix, A = (ak) and C = (ck) are
column vectors. In order to solve the linear system A = BC, we split B using the (LU)
decomposition: we can always write B = PLU where P is a permutation matrix, L a
lower triangular matrix and U an upper triangular matrix. We then compute C using a
two-step linear solver, first we solve LD = P−1A in order to find D = UC. Then we solve
UC = D in order to find C.

Linear algebra packages allow for the fast computation of the (LU) decomposition
and solving of linear systems with triangular matrices. For a given set of images, the
(LU) decomposition of B can be calculated once, and C is then calculated for each image
S. This is an efficient post-processing algorithm that allows to enhance the quality of
the images. A quantitative study of the performance of the algorithm can be found
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2.3. Quantum gas of ytterbium in 2D optical lattices

in Appendix A.1. In this thesis, I applied the algorithm to all images concerning the
decoherence study of a superfluid in Chapter 4. In Chapter 3, we are only interested in
integrated atom numbers for which the algorithm is not necessary.

2.3 Quantum gas of ytterbium in 2D optical lattices

In this section I report on the experimental achievement of quantum degeneracy in two-
dimensional (2D) optical lattices (see Section 1.2 for some theoretical background). This
is performed by adiabatic loading of a BEC into three-dimensional optical lattices. The
detrimental effect of gravity prescribes a specific loading sequence that I describe in detail.
It leads to the realisation of a stack of 2D optical lattices. I then present the characterisa-
tion of the trapping potential created by the lattice beams, both the on-site lattice depth
and the external harmonic confinement. As a benchmark of our system, the achievement
of the quantum phase transition from a superfluid to a Mott insulator is shown. Finally,
I describe a collapse and revival experiment that allows for a direct calibration of the
on-site interaction strength.

2.3.1 Loading sequence

The laser source used to create the optical lattices is a Ti:Sapphire laser14 operating at
the magic wavelength λm ≈ 759.35 nm, and pumped by a 16 W commercial 532 nm laser
source15. We split the 4 W output of the laser into three different paths. Each of them
goes through an AOM for power regulation and frequency shifting. The outgoing beams
are sent through optical fibers to the experiment and focused in the science chamber where
they intersect at right angles. In addition to the frequency shifts provided by the AOMs16,
polarisations are orthogonal to each other in order to minimise mutual interferences. After
passing through the chamber, each beam is collimated by a lens and retro-reflected by a
mirror. The overlapping forward- and retro-beams create a standing wave. Optical lattice
beam waists in the chamber can be found in Table 2.1.

Adiabatic transfer into optical lattices

Before discussing our actual transfer sequence, I want to stress the relevant adiabaticity
timescales prescribed by the loading into optical lattices, where atomic confinement near
a lattice site is much stronger than in dipole traps. The lattice beams must be ramped
up slowly enough to ensure that the gas remains close to the many-body ground state.
A necessary condition is that the transfer must not induce inter-band transitions. If this
is achieved and the atoms occupy the lowest band, the loading must not create density
excitations in the gas.

The first criterion is the adiabaticity with respect to the band structure of the lattice.
It can be grasped in a single-particle picture by considering the general adiabatic criterion
applied to one particle in a one-dimensional lattice. For vanishing lattice depth V0, we
assume that the condensate occupies the fundamental band of the lattice (n = 0) with
close-to-zero quasi-momentum (q ≈ 0). The relevant adiabaticity criterion is given in

14SolsTiS, M Squared.
15Finesse, Laser Quantum.
16The frequency difference between the beams must be much larger than all energy scales in the

system, typically we set the difference to few MHz, such that any residual interference averages out.
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Ben Dahan et al. (1996), for sufficiently shallow lattices and quasi-momenta far from the
Brillouin zone edges, it reads∣∣∣∣ 1

ER

∂V0

∂t

∣∣∣∣� 32
√

2
ER

~
≈ 5.6× 105 s−1, (2.14)

with ER ≈ h × 1973 Hz. Adiabaticity is therefore easily fulfilled with ramps in the
millisecond regime.

The second criterion is the adiabaticity with respect to the density distribution of the
cloud. Power ramps must be slow enough to ensure reshaping of the atomic distribution
keeping a constant chemical potential. Three relevant energy scales describe the physics
in optical lattices:

1. the tunnelling energy J ,
2. the on-site interaction energy U ,
3. the external harmonic confinement frequency Ω.

When increasing the lattice depth, U and Ω increase slowly, whereas J falls off exponen-
tially. For a weakly interacting system forming a condensate, the adiabaticity criterion
roughly quantifies the ability for the atomic distribution to match the instantaneous equi-
librium Thomas-Fermi distribution through tunnelling. If the ramps are too fast, atoms
do not have time to redistribute spatially, which leads to an increase of entropy and to
heating of the atomic sample. Following Gericke et al. (2007), a criterion can be given as

A = max
~|J̇ |
J2
� 1. (2.15)

We use the actual experimental ramps to compute A (as seen in Figure 2.8) and find
that the critical value for which this parameter gets smaller than unity happens for ramps
longer than 80 ms, close to our experimental optimisation time.
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Figure 2.8: Adiabatic criterion for lattice loading up to 20ER. (a) Value of the parameter
A with respect to ramp duration. The critical value Ac = 1 is reached for a ramp duration
of 80 ms. (b) Time evolution of ~|J̇ |/J2 during a 100 ms ramp (solid line). The dashed
line shows the lattice depth ramp profile.
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2.3. Quantum gas of ytterbium in 2D optical lattices

Importance of gravity

In our situation, realising an adiabatic transfer of the condensate from the crossed dipole
trap to the three-dimensional optical lattices becomes delicate because of gravity. Indeed,
gravity tilts the trapping potential in the vertical direction, reducing potential depth and
displacing the minimum of the potential felt by the atoms. This displacement, called sag
is ∆z ≈ 4 µm in the optical dipole trap whereas in the external harmonic potential of the
optical lattice it would be ∆z ≈ 230 µm. During the transfer this can induce motion in
the vertical direction (Morsch et al. 2006) and possibly undesired heating or atom loss.
Gravity could in principle be compensated for. While magnetic trapping is impossible
for bosonic ytterbium, the dipole force of a beam with linearly varying intensity could be
used. This solution requires rather high power17 and was not pursued. We chose instead
to adapt the loading sequence to account for this.

Figure 2.9: Time sequence for loading the optical lattices. A deep vertical lattice is first
ramped-up in 20 ms. Then the crossed dipole trap is smoothly extinguished in 200 ms to
let atoms redistribute in the planes. Finally, horizontal lattices are adiabatically turned
on in 100 ms. Figure designed with Marion Bouganne.

Our loading sequence is made of three steps, which are summarised in Figure 2.9,

1. a fast ramp-up of the vertical lattice (VL) to its maximum depth,
2. a slow extinction of the crossed optical dipole trap (CDT),
3. an adiabatic increase of the horizontal lattices (HL).

The first step is a 20 ms exponential ramp of the vertical lattice, superimposed on the
crossed dipole trap. It essentially freezes vertical motion and prevents detrimental effects
from gravity. It is however long enough to avoid inter-band transitions. In a second step
we smoothly ramp down the crossed optical trap potential in 200 ms, allowing atoms to
expand horizontally. This creates a stack of two-dimensional condensates in the vertical
lattice potential. This step has the additional benefit to lower the density, which mitigates
the rate of three-body recombination processes. In a final step, we adiabatically ramp up
the horizontal lattices in 100 ms to their final values.

17With the side of a Gaussian beam at λm focused to 70 µm, 1 W is required.
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2.3.2 Optical lattice characterisation

The loading sequence used in the experiment creates a stack of independent 2D Bose-
Hubbard lattices. In order to describe quantitatively our system we characterised the
optical lattice beams using collective mode oscillations of a condensate and Kapitza-Dirac
diffraction.

External trap frequencies

The external trap frequencies originate from the Gaussian shape of the optical lattice laser
beams [see (1.10) in Section 1.2]. We characterised them by recording collective mode
oscillations of a condensate in a crossed dipole trap as was described in Section 2.1.3. In
order to hold atoms against gravity, we had to use either the TDT or the FDT along with
the lattice beams. Therefore calibrations were done in crossed dipole traps formed by one
forward lattice beam along with either the TDT or the FDT. Data are consolidated in
Table 2.1.

Lattice depth calibration

An efficient tool to calibrate lattice depths is Kapitza-Dirac diffraction, namely matter-
wave diffraction by an optical grating. This phenomenon is named after Kapitza and
Dirac who first proposed in Kapitza et al. (1933) to reflect electrons from a standing
wave of light. The first observation of matter-diffraction by light was performed with a
beam of sodium atoms in Gould et al. (1986), and the observation with electrons was only
demonstrated in Freimund et al. (2001).

Kapitza-Dirac diffraction on a BEC consists in pulsing an optical lattice on the conden-
sate for a given duration, and observing the momentum distribution after a time-of-flight
expansion. The condensate is modelled as a plane matter wave with zero momentum (and
therefore zero quasi-momentum). The sudden illumination by an optical lattice projects
this plane wave in the Bloch wave basis, where each Bloch component evolves during the
exposition time. Besides, because of quasi-momentum conservation, these components
all have zero quasi-momentum but different band indices. The sudden suppression of
the lattice then ‘projects’ back the wave function on the set of plane waves. Again quasi-
momentum is conserved and the decomposition only contains terms with integer multiples
of 2~k, where k is the wavevector associated with the light creating the optical lattice.
This can also be viewed as a virtual process of photon absorption from one light beam
and stimulated emission in the opposite beam, leading to the momentum difference 2~k.
It also coincides with the simple wave-particle picture from Section 2.2.1.

The non-trivial evolution for the populations of the diffraction orders can be computed
numerically, and only depends on the lattice depth V0 (Gadway et al. 2009). A fit of the
experimental data then yields an accurate value for the lattice depth. An example of such
a calibration is shown in Figure 2.10. Data for our actual lattice implementation are given
in Table 2.1.

2.3.3 Superfluid to Mott insulator quantum phase transition

A typical benchmark experiment for the successful loading of an optical lattice with a
degenerate quantum gas is the observation of the superfluid to Mott insulator transition.
A Mott insulator originally describes a condensed matter material which exhibits collective
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Figure 2.10: Calibration of the lattice depth via Kapitza-Dirac diffraction. (a) Pictures
after a time-of-flight expansion with respect to the pulse duration. Diffracted orders are
separated in momentum by integer numbers of 2~k. (b) Relative populations of the
diffracted orders versus pulse duration. Lines are a fit to the data using a numerical
integration of the Schrödinger equation yielding V0 = 28.5(2)ER.

x-axis y-axis z-axis

AOM frequency shift [MHz] +80 -80 +110
Maximum power [mW] 410 400 610
Trap frequency Ω [2π × Hz] 42 38 33
Waist w [µm] 115 125 150
Typical lattice depth V0 [ER] 24 25 27

Table 2.1: Trap frequencies and depths for the optical lattice beams.

localisation of its would-be conducting electrons due to their Coulomb repulsion. In other
words, in such a material, Coulomb interactions favour the localisation of the electrons,
in competition with their kinetic energy, which tends to delocalise them to create a Fermi
sea. The Bose-Hubbard Hamiltonian for cold atoms in optical lattices reproduces the same
physics. The electrons and their spin are replaced by spin-less bosons, with an arbitrary
on-site filling number. The competition between kinetic energy and on-site interactions
leads to a quantum phase transition. It was first proposed for cold atomic systems in
Jaksch et al. (1998) and observed in Greiner et al. (2002b). An insightful review of this
experiment is done in Zwerger (2003).

With our system we realise two-dimensional systems which can be described by the
following 2D Bose-Hubbard Hamiltonian

Ĥ = −
∑
〈i,j〉⊥

J⊥(â†i âj + â†j âi) +
∑
i⊥

U

2
n̂i (n̂i − 1) +

∑
i⊥

M

2
(Ω2

xx
2
i + Ω2

yy
2
i )n̂i. (2.16)
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The notation i⊥ refers to all lattice sites at positions ρi = (xi, yi) in a plane, and 〈i, j〉⊥
denotes nearest-neighbour pairs. In-plane tunnelling is captured by the kinetic energy J⊥.
Tunnelling along the gravity direction between adjacent systems is neglected. The on-site
energy U is given by

U =
4π~2a

M

∫
dzd2ρ

∣∣∣wz(z)w⊥(ρ− ρi)
∣∣∣4, (2.17)

where ρ denotes a two-dimensional vector in the x− y plane and where wz (respectively
w⊥) are the Wannier functions for the vertical (resp. horizontal) lattice potential, in the
fundamental band.

The superfluid to Mott insulator transition in two dimensions was observed with ul-
tracold gases in Spielman et al. (2007). At zero-temperature, these systems are well
understood (Bloch et al. 2008; Jiménez-Garćıa et al. 2010). For uniform systems with in-
teger filling fraction, Monte-Carlo simulations predict zero-temperature phase transition
critical values (U/J⊥)c given in Table 2.2 (Capogrosso-Sansone et al. 2008; Teichmann
et al. 2009). The corresponding horizontal lattice depths are also indicated. In the fol-
lowing, N designates the total atom number, Ns the number of occupied lattice sites and
n̄ = N/Ns the average filling fraction, or average number of atoms per lattice site.

n̄ = 1 n̄ = 2 n̄ = 3

(U/J⊥)c 16.9 28.7 40.4
V0,x = V0,y [ER] 9.1 10.9 12.2

Table 2.2: Critical value for the Mott transition in uniform 2D systems with integer filling
fraction. We also indicate the corresponding horizontal lattice depths for our parameters.

On the one hand, for shallow lattices where U/J⊥ � 1, the kinetic energy term in
(2.16) dominates and the ground-state energy is minimised for a delocalised wave function
over the entire lattice. In the case of a homogeneous system and for vanishing U , the
many-body state can be described by a factorised ansatz (see Section 1.2.3),

|ΨSF〉 ∝

(∑
i⊥

â†i⊥

)N

|0〉. (2.18)

The system is in a superfluid phase where all atoms are in the q = 0 Bloch wave in the
lowest band. Long-range phase coherence extends across the whole lattice, the spatial
correlation function is non-zero 〈â†i âj〉 = n̄, for all i, j. This is detectable in time-of-flight,
where momentum distribution exhibits sharp diffraction peaks.

On the other hand, for deep lattices where J⊥/U � 1, the interaction term dominates
in (2.16) and one expects atoms to be localised on the lattice sites. In the homoge-
neous case with integer filling fraction and for vanishing J⊥, the many-body state can be
described by a product of local Fock states (see Section 1.2.3),

|ΨMI〉 ∝
∏
i⊥

(
â†i⊥

)n̄
|0〉. (2.19)

Atom number fluctuations on a site are suppressed, long-range phase coherence is lost at
the benefit of strong occupation number correlations. In time-of-flight this can be revealed

62



2.3. Quantum gas of ytterbium in 2D optical lattices

through noise correlations (Bloch et al. 2008; Spielman et al. 2007) in the momentum
distribution. The third term in (2.16) is caused by the smooth harmonic trap provided
by the Gaussian envelope of the lattice beams. This external trapping potential leads
to the characteristic wedding cake density profiles for Mott insulator phases, i.e. density
plateaus with integer filling fraction, the denser plateau occurring near the center of the
trap [see Section 1.2.3 and Bloch et al. (2008)].

A signature of the transition is the loss of long-range order in the one-particle density
matrix ρ(1)(r, r), the Fourier transform of which can be captured to a good approximation
by time-of-flight expansion of the cloud [see Gerbier et al. (2008) for a discussion of the
limitations]. Figure 2.11 shows pictures of the atomic distribution after a 20 ms time-of-
flight, and the visibility of the resulting interference pattern. The visibility is calculated
following the procedure of Gerbier et al. (2005), and vanishes while crossing the transition.
Still, this is strictly speaking not a proof of the superfluid to Mott insulator transition.
One would need in principle to probe the incompressibility of the Mott state, observe the
density plateaus, or measure the gap opening in the band structure. We checked that
the loss of coherence was not caused by heating of the atomic sample using a short ramp
back in the superfluid regime (linear ramp of about 10 ms duration), and observed the
reappearance of the sharp peaks.
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Figure 2.11: Superfluid to Mott insulator transition in 2D Bose-Hubbard systems. The
loss of long-range phase coherence is visible in time-of-flight expansion of the cloud. The
transition occurs at depths compatible with theoretical predictions from Capogrosso-
Sansone et al. (2008) and Teichmann et al. (2009).

2.3.4 Collapse and revival

As a further characterisation of the system, one can measure the on-site interaction energy
U using a collapse and revival experiment. This was first realised in Greiner et al. (2002a).

The quantum gas is prepared in the superfluid phase in a shallow lattice and suddenly
quenched to a depth where tunnelling is negligible. This essentially freezes the on-site
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atom number distribution. After some evolution time in the deep lattices, a time-of-
flight expansion is performed to reveal the momentum distribution. Due to the non-linear
dependence of the interaction energy on the atom number, the diffraction pattern in
time-of-flight shows a beautiful collapse and revival behaviour.

The exact description of a superfluid state given in (2.18) corresponds to the projection
of a coherent state product on the subspace with fixed atom number. In the limit of large
N , where atom number fluctuations are negligible, we can approximate (2.18) by a product
of coherent states |αi〉 (Bloch et al. 2008). Besides, in the limit of deep lattices, the system
essentially reduces to a collection of decoupled sites, where the prevailing term in (2.16)
is the interaction Hamiltonian Un̂(n̂ − 1)/2. The Fock states |n〉 are eigenstates of this
interaction Hamiltonian with energies Un(n − 1)/2. The time evolution of a coherent
state after the quench is then easily calculated

|α〉(t) = e−|α|
2/2
∑
n

αn√
n!

e−iUn(n−1)t/(2~)|n〉. (2.20)

At t = 0, the system is in a coherent state. The non-linear dependence of the phase factors
in the Fock basis rapidly leads to destructive interferences, and the visibility vanishes.
Nonetheless, at integer multiples of the revival time h/U , the phases all get equal modulo
2π, and the coherent state is recovered along with good visibility. These collapses and
revivals can be observed in time-of-flight where the visibility of the diffraction pattern is
proportional to the superfluid order parameter 〈â〉. Using (2.20) one can write,

〈â〉2 = n̄ exp

{
n̄

[
cos

(
Ut

~

)
− 1

]}
. (2.21)

The time evolution of (2.21) exhibits collapses and revivals with periodicity h/U . The
collapse time depends on the average filling, and thus on the atom number distribution
on a lattice site (Greiner 2003).

In a non-uniform system, like in the experiment, the revival frequency is solely given
by U , which can be taken uniform over the lattice within good approximation. However,
the revivals are washed out by the inhomogeneous dephasing due to the external harmonic
confinement (Will et al. 2010), and by deviations from the approximation by a coherent
state (2.20) due to interactions or finite temperature (Greiner et al. 2002a). Data are
shown in Figure 2.12, the solid line is a fit using equidistant Gaussian functions. This
allows for a precise determination of the on-site interaction energy U = h× 1475(25) Hz.

2.4 A laser to address the clock transition

In this section I describe the essential tool to probe the 1S0–3P0 transition of ytterbium,
namely the clock laser operating at 578 nm. This laser is fundamental for inducing co-
herent tunnelling in the two-state lattices (see Section 1.3), thereby realising the artificial
gauge fields scheme. The required laser coherence time should then be at least on the or-
der of a tunnelling time [an estimation in the thesis of Matthias Scholl (2014) gives about
10 ms]. Typical laser linewidth should then be on the order of few tens of hertz to one
hundred hertz. This condition can be relaxed if the Rabi frequency of the driving is much
bigger than the laser linewidth, which can be done in the experiment. With this in mind,
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Figure 2.12: Collapses and revivals of a condensate in optical lattices. (a) Experimental
images of the interference pattern at different hold times after quenching the horizontal
lattices. (b) Visibility of the interference pattern undergoing collapse and revival dy-
namics. The period of the revivals is given by the on-site interaction energy U . The
solid line is a phenomenological fit using a sum of equidistant Gaussian functions giving
U = h × 1475(25) Hz. Lattice depths are V0,x = V0,y ≈ 26ER and V0,z ≈ 27ER. Figure
reproduced from Bouganne et al. (2017).

I shall omit many details on the exact technical implementation18 but stress the perfor-
mance of the laser in terms of frequency stability. After presenting the frequency chain
used to derive a stable output to the atoms, I present a characterisation of the frequency
lock. Then I detail important features regarding the stability of the laser frequency with
respect to temperature.

2.4.1 Frequency chain

The clock laser operating at λ0 ≈ 578 nm, results from the frequency sum of two infrared
laser sources at 1030 nm19 and 1319 nm20. Sum-frequency generation is realised in a non-
linear ppLN21 crystal of 2 cm length. We get around 70 mW of yellow light after a single
pass in the crystal. This light goes through a first AOM used for intensity and frequency
locking, then couples into an optical fiber reaching the experimental table. As described
in Figure 2.13, the out-going light is split into two arms. The first arm goes to the science
chamber through a second AOM used to control the frequency seen by the atoms. The
second arm is fiber-coupled and sent to an ultra-stable cavity where the laser frequency is
locked via Pound-Drever-Hall modulation. Phase-noise cancellation is performed on this
arm using a third AOM and a Michelson interferometer with a fast photodiode22.

18The interested reader can find them in the thesis of Alexandre Dareau (2015).
195 W Amplified fiber laser, Koheras Boostik Y10, NKT Photonics.
200.5 W Nd:Yag laser, Mephisto, Coherent.
21Periodically poled lithium niobate, Coherent.
22FPD310-FV, Menlo Systems.
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Figure 2.13: Frequency chain of the clock laser. Figure designed with Marion Bouganne.

The cavity is used as a stable relative frequency reference. It is a 50 mm long plano-
concave Fabry-Perot cavity with very high reflectivity mirrors, separated by a spherical
ultra-low expansion (ULE) glass body23. Dareau et al. (2015) measured the free spectral
range ∆FSR = 2π × 3 144 366(2) kHz, and the finesse F ≈ 257 000. The cavity peak
width is therefore ∆ωcav = ∆FSR/F ≈ 2π × 12 kHz, which permits efficient frequency
locking. Nevertheless, the absolute frequency of the cavity is slowly drifting with time
because of the cavity length evolution. Indeed, the ageing of the ULE glass leads to a
slow shrinkage of the cavity spacer (Dubé et al. 2009). An absolute frequency reference
is therefore essential to find the atomic resonance. In this respect, the absolute frequency
of the cavity can be measured against a molecular iodine reference, this is described in
detail in the thesis of Alexandre Dareau (2015). This comparison provides a frequency
calibration with a typical accuracy of 40 kHz, sufficient to find the atomic resonance with
the laser.

In order to minimise all perturbations from the environment on the reference cavity,
the latter is carefully isolated in a cocoon. The cavity is mounted inside a thermal shield
whose temperature is regulated with a Peltier cooler. Both are assembled inside a vacuum
chamber at around 10−8 mbar, efficiently reducing thermal and acoustic noise24. A vibra-
tion isolation platform25 supports the vacuum chamber and the surrounding optics. This
platform sits inside a wooden box, itself placed inside an soundproof box26. All these
insulating layers stabilise the absolute frequency to a few tens of kilo-hertz over a few
days. The equilibrium temperature of the opto-mechanical system is largely decoupled
from room temperature (the relaxing time is about 3 days), but the residual coupling
has a measurable impact on the kilo-hertz scale. Indeed, as discussed at the end of this
section, the air temperature around the platform and vacuum chamber has an effect on
the cavity length. We therefore stabilise it with a chill plate cooled by circulating water
from a thermo-regulated chiller27. Moreover, the plate helps to remove heat generated by

23ATF-6301, Advanced Thin Films.
24Stable Laser Systems.
25Nano-K 50 BM-10, Minus K Technology.
26Custom-made, Keoda.
27ThermoCube, SSCS.
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2.4. A laser to address the clock transition

electrically powered components inside the box.

2.4.2 Pound-Drever-Hall lock

The quality of the frequency lock on the reference cavity determines the short-term spec-
trum of the clock laser. The Pound-Drever-Hall (PDH) method (Drever et al. 1983; Black
2000) provides a very sensitive error signal on the cavity frequency. It uses the intensity
reflection from the optical cavity input mirror. This reflection is a coherent superposition
between the directly reflected field on the input mirror and the leaking intra-cavity field,
which vanishes on resonance, allowing a fast response to phase fluctuations of the laser
field. The input field is modulated with an EOM at 4 MHz, a frequency much larger
than the cavity resonance width, in such a way that the resulting sidebands are totally
reflected. The reflection from the cavity is sent on a photodiode and the beatnote between
the sidebands and the reflected carrier is demodulated with a commercial servo control28

to yield the error signal with a slope

pPDH = 4π
∆V

∆ωcav

≈ 1 mV Hz−1 with ∆V ≈ 6 V. (2.22)

The error signal is fed back to the laser system in two ways. First the servo output
goes to a frequency synthesiser that drives the first AOM frequency and corrects the fast
fluctuations. Second, the servo output is further integrated to derive a slow signal fed to
the 1319 nm laser piezo, this allows to regulate the long term drifts of the laser frequency.

We characterised the behaviour of the frequency lock by measuring the power spectral
density (PSD) of the error signal. This error signal is an in-loop quantity and therefore
does not reflect directly the PSD of the laser itself. It only tells how tight the lock responds.
We measured the detector noise (no light impinging on the PDH photodiode, and servo
off), the amplitude noise (light impinging on the PDH photodiode, servo off), and the
error signal noise (light impinging on the PDH photodiode, servo on). Measurements were
done using both the AC and DC error monitor outputs of the servo box. Frequencies
from 1 Hz to 10 kHz were acquired using the DC error output with a digital oscilloscope29

(15 measurements of 1 s duration at 909 kS). Frequencies from 10 kHz to 1 MHz were
acquired using the AC error output with a spectrum analyser30 (spectra averaged over 15
realisations, resolution bandwidth of 1 kHz). Results are presented in Figure 2.14.

In what follows I discuss the results by giving the root-mean square (RMS) deviation
of the signals. It is calculated taking the square-root of the integral of the PSD from zero
to a cut-off frequency that we choose to be 100 kHz. This is a very conservative choice
because atoms are not sensitive to fluctuations over such a wide frequency range. First,
the detector noise floor (blue line) is low enough to ensure no direct contribution to the
laser linewidth broadening (RMS gives about 1 Hz). Out of lock (red line), the dominant
contribution of the noise lies under 1 kHz, above which the signal reaches the detector noise
floor. The action of the lock is dramatic (black line), the noise is completely removed under
10 kHz, above which a typical noise bump is observed. This bump should not contribute
significantly to the laser linewidth [see the discussion in the thesis of Alexandre Dareau
(2015)]. As seen by the black curve going under the blue curve, the lock re-injects part
of the detector noise into the loop, but this contribution is also negligible. This type of

28D2-125, Vescent Photonics.
29PicoScope 4262, Pico Technology.
30MS2830A, Anritsu.
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Figure 2.14: Power spectral densities of the error signal for the PDH lock.

noise curve is similar to what was observed in the optical clocks community (Westergaard
2010). The RMS of the locked error signal is about 36 Hz. Altogether, the PDH lock
seems to work nicely with no significant contribution to frequency broadening. In order
to faithfully describe the laser frequency noise, one would need to compare it with an
independent but similar source, which we do not have at hand.

At longer time scales, residual amplitude modulation (RAM) of the light impinging
on the cavity can introduce offset fluctuations of the PDH error signal. This can degrade
the laser frequency stability. When the signal impinging on the PDH photodiode has
amplitude modulation, it creates oscillating interferences with the sidebands and can give
rise to noise modulated at the PDH modulation frequency. This noise would hence be
demodulated by the servo box and introduce a fluctuating offset of the error signal. This
fluctuating offset is fed back to the laser but does not originate from actual frequency
fluctuations present in the light going to the atoms. We did two types of measurements:
a short-term measurement of the intensity modulation of the light at 4 MHz, and a long-
term measurement of the offset fluctuations of the error signal.

1. The former is done by measuring the light intensity modulation at 4 MHz on a
photodiode with servo on. We used the intensity lock photodiode signal for that
purpose. We measured 0.016 % of RAM on this photodiode, which results in fre-
quency fluctuations of about 2 Hz.

2. The latter is done by measuring the DC error output offset with servo off. This is
realised using a digital oscilloscope and a low-pass filter (160 Hz). Again, frequency
fluctuations are about 3 Hz.

2.4.3 Zero-crossing point

The frequency reference is given by the cavity, and the short-term linewidth of the laser is
inherited from the frequency lock on the cavity. Therefore the absolute frequency of the
cavity must not fluctuate beyond the linewidth achieved by the lock. The main source
of cavity frequency fluctuations is cavity length modifications from mechanical vibrations
and thermal expansion or contraction. The impact of the latter can be minimised using the
so-called zero-crossing point of the ULE glass. At a specific temperature TZC, the thermal
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2.4. A laser to address the clock transition

expansion coefficient of the cavity vanishes. Therefore, at TZC the cavity length is minimal
(Legero et al. 2010), and the frequency maximal. Setting the cavity temperature close to
this point ensures a reduced sensitivity to temperature variations.

We systematically compared the laser frequency with the iodine reference while tuning
the cavity temperature set-point. Results are consolidated in Figure 2.15. A striking ob-
servation is the hysteresis in the temperature loop, which might come from mechanical con-
straints on the cavity itself. The two branches are fitted using parabolas and yield a mean
zero-crossing temperature TZC = 4.13(2) ◦C, with a curvature κ = 2π× 350(20) kHz K−2.
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Figure 2.15: Zero-crossing point of the reference cavity. Set-point temperature was
changed following the direction indicated by the markers.

Measurements performed on the cavity temperature servo loop indicate frequency
fluctuations of about a few hertz. Still, the temperature of the cavity itself is not sufficient
to achieve long-term frequency stability, as described in what follows.

2.4.4 Temperature stabilisation

Time-of-flight spectroscopy on the clock transition (Dareau et al. 2015) provides frequency
calibration at the kilohertz precision. Using this technique, we monitored the absolute
frequency of the cavity ωcav with time as well as the ambient temperature T in the
soundproof box. Results are presented in Figure 2.16. Temperature data points result
from an average over one hour.

Frequency measurements show a clear correlation with the ambient temperature even
though the temperature of the cavity itself was maintained constant throughout the days.
A simple empirical model can account for such a behaviour. We assume that both the
instantaneous cavity frequency and its ageing slope have a linear dependence on the
ambient temperature. The cavity resonance then reads

ωcav(t) = ωcav(0) + pinst [T (t)− T (0)] + page

∫ t

0

dt′ [T (t′)− Tage] . (2.23)

A fit of this phenomenological model to the data gives a rather good prediction of
the absolute cavity frequency with parameters pinst ≈ 2π × 43.5 kHz K−1, page ≈ 2π ×
0.432 kHz K−1 day−1 and Tage ≈ 35.0 ◦C. A similar fit without the ageing term is much
less accurate. Note that this crude model does not describe well frequency variations over
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Figure 2.16: Correlation between the absolute cavity frequency ωcav and the ambient
temperature T in the soundproof box over 30 days. Frequency is measured with time-
of-flight spectroscopy of a BEC (Dareau et al. 2015), yellow circles. The solid line shows
a fit using the empirical model (2.23) and the grey line is a fit without the ageing term.
During day 10, the temperature set-point of the chiller was lowered by 3 degrees.

times longer than about a month. Also, the ageing parameters are purely phenomenolog-
ical, and one should not conclude from their specific values that the ageing of the cavity
would vanish at 35.0 ◦C.

Ambient temperature impacts can be mitigated using an efficient temperature stabil-
isation of the surrounding air. So far, this stabilisation is performed with a chill plate
cooled by circulating water from a thermo-regulated chiller. We achieve a constant tem-
perature of about 26.7 ◦C, with variations of less than 0.1 ◦C over a day, leading to a
stable ageing slope of about 3.6 kHz day−1. Nevertheless, long-term fluctuations of the
temperature still happen because the chiller is coupled to the room temperature of the
laboratory. A possible solution would use a Peltier cooler to finely regulate the air in the
soundproof box. A neat design needs to be found to evacuate the heat produced by these
coolers (Cappellini et al. 2015).

2.5 Summary

In this chapter, I have presented the experimental platform used to study atom-light
interactions in ultracold atomic ensembles. This apparatus has been used to perform
the measurements presented in later chapters. Firstly, I presented how we achieve Bose-
Einstein condensation of bosonic 174Yb in an optical dipole trap. Secondly, I detailed the
detection method used throughout this thesis work to probe the atoms, namely optical
imaging through resonant absorption. Thirdly, I explained how we prepare degenerate
quantum gases in two-dimensional optical lattices, realising the Bose-Hubbard Hamilto-
nian. Finally, I described the important experimental tool used to coherently manipulate
the atoms: the laser for the clock transition.
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bosons in deep optical lattices

Manipulation of atomic external degrees of freedom can be realised with internal transi-
tions. For example, Raman transitions between two hyperfine states was used to selec-
tively address a narrow velocity class of sodium atoms (Kasevich et al. 1991). Doppler-
free two-photon optical spectroscopy was crucial to observe Bose-Einstein condensation
of spin-polarised atomic hydrogen (Killian et al. 1998; Fried et al. 1998). Optical Bragg
spectroscopy on a Bose-Einstein condensate was devised to measure the dynamic structure
factor with sub-recoil resolution (Stenger et al. 1999; Zambelli et al. 2000).

Coherent control on the internal degrees of freedom of 174Yb can be performed using the
1S0–3P0 clock transition. The recoil associated with the photon absorption, necessary to
reach the metastable state, couples the internal degrees of freedom with the external ones
through the Doppler effect. We performed spectroscopy on the clock transition in a bulk
BEC, where this Doppler effect is not negligible. A detailed study of this investigation is
given in the thesis of Manel Bosch Aguilera (2019). Briefly, the interplay between Doppler
effect and inelastic interactions (related to collisional losses) gives rise to a beautiful and
non-trivial time evolution of the system. This leads to the observation of a non-linear
relaxation dynamics, which can be understood as the evolution of two classical fields (one
for each clock state ensembles) coupled by atom-light interaction as well as elastic and
inelastic interactions (Bosch Aguilera et al. 2018).

Figure 3.1: (a) Sketch of the experiment and of the level scheme of the clock transition.
The clock laser wavevector kcl lies in the horizontal plane at 45◦ with respect to the
lattice axes. The polarisation εcl is set along the vertical direction parallel to the applied
magnetic field B. (b) Excitation spectrum in a deep lattice of depth ∼ 25ER. The Rabi
frequency is Ω ≈ 2π × 1450 Hz and the clock pulse time is t = π/Ω ≈ 350 µs. The solid
line is the excitation probability for a single atom from (3.7).
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3. Optical spectroscopy of degenerate bosons in deep optical lattices

When the external confinement of the atoms is much stronger than the recoil energy
associated with the photon absorption, the internal dynamics decouples from the external
ones and recoil is suppressed: this is the Lamb-Dicke effect (Ludlow et al. 2011). In
this chapter, I report on high-resolution optical spectroscopy of interacting bosonic 174Yb
atoms in deep optical lattices, where this decoupling is effective. We prepare an array of
Fock states with one or two atoms per site using the superfluid-Mott insulator transition
(as presented in Section 2.3.3). The final lattice depth is high enough to neglect tunnelling
between sites. The resulting array of singly- and doubly-occupied isolated sites is probed
using the 1S0–3P0 clock transition (see Figure 3.1). Atoms in singly-occupied sites undergo
long-lived Rabi oscillations, whereas atoms in doubly-occupied sites are strongly affected
by interatomic interactions. By measuring inelastic decay rates and energy shifts in these
latter sites we obtain all relevant collisional parameters involving both clock states, which
were previously unknown. Similar measurements were independently performed at LENS
in parallel (Franchi et al. 2017).

Firstly, I present the optical setup and a characterisation of the atom-light interaction
in optical lattices at the single-particle level. Secondly, I analyse the temporal evolution
of Rabi oscillations for Mott insulator (MI) phases with varying total atom number. This
analysis also provides a characterisation of the Mott shell populations. Finally, I present
the measurements of the doubly-occupied site lifetime and energy shift due to interactions.
Throughout this chapter, I label the clock states g ≡ 1S0 and e ≡ 3P0.

3.1 Quasi-adiabatic preparation of Mott insulator

phases

In Section 2.3.1 I presented the loading procedure of a degenerate quantum gas of 174Yb
in a 3D magic optical lattice. Due to the external confinement provided by the Gaussian
shape of the lattice laser beams, the atomic density is inhomogeneous. In this section, I
model the loading procedure to predict the density distribution in the atomic limit, where
the lattice depth is high enough to neglect tunnelling. The preparation of MI phases
consists in three steps:

1. fast ramp-up of the vertical lattice to its maximum depth,
2. slow extinction of the crossed optical dipole trap,
3. adiabatic increase of the horizontal lattices up to their maximal depth.

We model the first phase of this loading sequence using a sudden approximation, hence
the name quasi-adiabatic. The initial atomic distribution for a BEC in the crossed optical
dipole trap is projected on a periodic potential of period d = λm/2 much smaller than the
initial Thomas-Fermi half-length L of the BEC. For a BEC in the Thomas-Fermi regime
(Dalfovo et al. 1999), this results in a distribution

Niz ≈
15Natd

16L

[
1−

(
izd

L

)2
]2

Θ
[
1− (izd/L)2] , (3.1)

for the number of atoms in each plane of the vertical lattice at the altitude z = izd (the
integers iz label the planes), with Θ the Heaviside function. At the end of the first step,
the system is a stack of 2L/d planes, with each plane forming a quasi-2D BEC with Niz

atoms.
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3.1. Quasi-adiabatic preparation of Mott insulator phases

From there, the second and third steps are assumed adiabatic. Using the distribution
Niz , we assume a zero entropy sample in each plane, determined as the ground state of
the 2D Bose-Hubbard model with Niz atoms, in the so-called atomic limit,

Ĥiz =
∑
i⊥

Ugg
2
n̂i (n̂i − 1) +

M

2
(Ω2

xx
2
i + Ω2

yy
2
i )n̂i, (3.2)

which is the same as (1.22) where we have neglected tunnelling (J⊥ ≈ 0) due to the
high values of the final horizontal lattice depth. The notation i⊥ refers to all lattice
sites at positions ρi = (xi, yi) in the plane at altitude z = izd. Unless mentioned oth-
erwise, all experiments described in this chapter are performed with final lattice depths
{V0,x, V0,y, V0,z} = {24(0.5), 25(0.5), 27(0.5)}ER. The corresponding external trapping fre-
quencies are {Ωx,Ωy,Ωz} = 2π × {42, 38, 33}Hz.

Introducing a chemical potential µ ≥ 0, the spatial structure in the local density
approximation and the atomic limit is given by

n(ρi) = Int

[
µ− M

2
(Ω2

xx
2
i + Ω2

yy
2
i )

Ugg

]
+ 1, (3.3)

where Int(x) denotes the integer part of x. For finite temperatures and/or tunnelling (still
small compared to Ugg), the overall density profile remains similar but with smoother edges
than predicted by (3.3) (Zwerger 2003). We compute n in each plane iz by finding the
proper chemical potential µ which gives the correct atom number in the plane Niz .

The relative weight of the shell with n atoms can be characterised by its population
Nn normalised to the total atom number Nat,

Nn =
Nn

Nat

. (3.4)

Figure 3.2 shows the weights Nn for total atom numbers up to 9× 104, calculated from
(3.3). The chemical potential is determined self-consistently to match the total atom num-
ber. For sufficiently small atom number, we predict a MI phase with only singly-occupied
sites. For higher atom numbers, filling fractions of two and three are also populated.
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Figure 3.2: (a) Evolution of the Mott shell relative populations Nn versus total atom
number. Radial density profile n(x, 0, 0) for (b) Nat = 8× 103, (c) Nat = 8× 104.
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3.2 Single-particle spectra in optical lattices

According to the previous model, we can prepare a MI phase with only singly-occupied
sites. This collection of isolated atoms can then be coherently excited on the clock tran-
sition using a resonant laser beam. In this section, I give an overview of the experimental
set-up used to perform this coherent driving. I start by presenting the optical configura-
tion and the achievable Rabi frequencies. I then show single-particle spectra for various
driving frequencies, which allows to validate the calibration of the laser beam parameters.
I finally discuss the spectroscopy of the band structure of the optical lattice, which is
revealed by the observation of motional sidebands (Ludlow et al. 2011).

3.2.1 Coherent driving on the clock transition

As sketched in Figure 3.1a, a laser beam resonant on the g → e transition at λ0 =
2πc/ω0 ≈ 578.4 nm is sent on the atoms. The laser beam propagates in the horizontal
plane along the ex + ey direction at 45◦ with respect to the horizontal lattice axes. The
beam is linearly polarised along the vertical direction ez and focused on the atoms with a
waist wcl ≈ 70 µm1. With the optical setup described in Section 2.4.1 we can send up to
Pcl ≈ 18 mW of resonant light on the atoms. The clock laser detuning δ from the atomic
resonance ω0 is δ = ωcl − ω0.

Effective coupling strength

We use a static magnetic field B = B0ez with B0 ≈ 182 G to enable the doubly-forbidden
electric dipole transition, as described in Section 1.1.2. The effective coupling strength on
the internal degrees of freedom is given by (Barber et al. 2006; Taichenachev et al. 2006):

Ωcl = αB0

√
Icl, (3.5)

where Icl = 2Pcl/(πw
2
cl) is the intensity of the clock laser light on the atoms and α ≈

18.7 mHz/G/(mW/cm2)1/2. With the maximum available power this results in an achiev-

able coupling strength Ω
(max)
cl ≈ 2π × 1600 Hz.

Motional degrees of freedom

The excitation by the clock laser is performed on atoms loaded in optical lattices, the
transition is thus |g,n = 0, q〉 → |e,n = 0, q + kL〉2. The complete transition rate from
the ground to the excited state is modified by the overlap between the motional states
(Ludlow et al. 2015):

Ω = 〈w0
⊥|eikcl·R̂|w0

⊥〉Ωcl, (3.6)

where w0
⊥ denotes the Wannier function in the fundamental band of the horizontal di-

rections of the lattice. At V⊥ = 24ER the overlap factor between the Wannier states is
〈w0
⊥|eikcl·R̂|w0

⊥〉 ≈ 0.92. The transition rate is therefore limited to Ω(max) ≈ 2π × 1500 Hz.
In the following and in Figure 3.1 the rate Ω is called Rabi frequency.

1The waist is measured with a CCD camera outside the vacuum chamber.
2In the atomic limit, all quasi-momentum states are populated with equal probability and the quasi-

momentum notation becomes irrelevant.
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3.2.2 Spectra in deep lattices

For an isolated two-level atom without spontaneous emission, the excitation probability
after a time t under a driving of strength Ω and detuning δ is given by (Foot 2004):

Pe(δ) =
Ω2

Ω2 + δ2
sin2

(√
Ω2 + δ2

2
t

)
. (3.7)

The sinc2 lineshape in (3.7) corresponds to the Fourier transform of the square-shaped
light pulse and has a full-width at half-maximum (FWHM) ≈ 0.8Ω/π.

We prepare a MI with unit filling fraction [Nat ≈ 8× 103, see Section 3.1] and probe it
with the clock laser beam. We measure Pe as a function of the laser detuning δ by counting
the number of excited state atoms e after a light pulse of duration t = π/Ω, with Ω the
calculated Rabi frequency for a given laser power Pcl computed from (3.6). Figure 3.3a-c
shows experimental spectra for three different Rabi frequencies. The lineshape is well
reproduced for high enough Rabi frequencies (as in Figure 3.3b-c). For Rabi frequencies
around Ω ≈ 2π × 100 Hz or smaller, the lineshape is distorted (as in Figure 3.3a). This
point is further addressed in Section 3.4. Figure 3.3d shows the fitted FWHM using (3.7)
with Ω as a free parameter. Best-fit parameters are close to the expected values ≈ 0.8Ω/π.
This validates the calibration of the Rabi frequency from the measured waist wcl and laser
power Pcl.
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Figure 3.3: (a)-(c) Excitation spectra on ground state atoms for Rabi frequencies
Ω/(2π) = 110 Hz, 330 Hz and 1450 Hz. The vertical lattice depth is V0,z ≈ 27ER and
the horizontal lattice depth is V⊥ ≈ 24ER. The solid line is the theoretical excitation
probability (3.7) for a single atom. (d) Full-width at half-maximum of the measured spec-
tra with respect to Ω. The solid line is the expectation ≈ 0.8Ω/π from our calibrations.
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3.2.3 Band spectroscopy

The clock transition is a powerful tool to characterise the energy levels in the system
using spectroscopy. For instance, it can be used to probe the band structure arising from
the optical lattice. In this section only, we also probe the system at shallow horizontal
lattice depths. As described in Section 2.3, we prepare a degenerate cloud of atoms in
the fundamental band of a stack of two-dimensional optical lattices. The vertical lattice
depth is set to V0,z = 27ER. The horizontal lattice depths are set equal within a few
percent and tuned to three different values V⊥ = 6.5ER, 14ER and 28ER. The laser
Rabi frequency is set to Ω ≈ 2π × 1450 Hz. We illuminate the atoms with a pulse of
clock laser light of duration t ≈ 350 µs, corresponding to a π-pulse for a single atom. We
measure the number of atoms in the ground state by absorption imaging after a time-of-
flight expansion of 10 ms. Figure 3.4a shows the resulting spectra when varying the laser
detuning with respect to the atomic transition.
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Figure 3.4: (a) Excitation spectra on ground state atoms at various horizontal lattice
depth V⊥. The vertical lattice depth is V0,z ≈ 27ER. The second peak on the blue side of
the central resonance corresponds to the excitation of an atom to the excited state and
to the first excited band of the lattice. The solid line is a fit by the sum of two Gaussian
functions. The curves at V⊥ = 14ER and 28ER are shifted vertically by 0.3 and 0.6,
respectively, for clarity. The Rabi frequency is Ω ≈ 2π × 1450 Hz. (b) Position of the
excited band peak versus lattice depth. The solid line is the theoretical prediction given
by (3.8) and the dashed line is the prediction for a harmonic oscillator. (c) Amplitude
of the excited band peak versus lattice depth. The solid line is the theoretical prediction
given by (3.9) and the dashed line is the prediction for a harmonic oscillator.

The main peak at zero detuning corresponds to the transition |g,n = 0〉 → |e,n = 0〉.
The observed blue-detuned sidebands at positive detuning correspond to the transitions
|g,n = 0〉 → |e,n = (1, 0, 0)〉 and |g,n = 0〉 → |e,n = (0, 1, 0)〉 where the excited atom
has acquired one quanta of motion in one of the horizontal directions of the lattice. As the
coupling laser propagates in the horizontal direction, higher motional levels in the vertical
direction are not excited. In principle, one would expect two sidebands corresponding to
each horizontal degrees of freedom, but the choice of almost equal horizontal lattice depths
makes the sidebands indistinguishable with our resolution. In the following we therefore
drop the 3D notation and keep only one motional degree of freedom. We prepare g atoms

76



3.2. Single-particle spectra in optical lattices

in the fundamental band, hence the symmetrical sidebands to the red side of the central
peak corresponding to the transition |g, n = 1〉 → |e, n = 0〉 are not observed.

We extract the position and amplitude of the sidebands from a fit to the data by a
sum of two Gaussian functions. In the following I show how the position and amplitude
evolve with respect to the horizontal lattice depth.

Sideband position

The frequency gap ∆0→1 between the central peak and the motional sideband, measured
as the separation between the centres of the two Gaussian functions, is plotted in Figure
3.4b. The gap increases with the lattice depth with a slope around 0.7 in logarithmic
scale. The excitation laser wavevector kcl is oriented along ex +ey and as such the lowest
excitation corresponds to the promotion of an atom to the first excited band of the lattice
either along the ex or the ey direction. The absorption of a laser photon therefore induces
a shift in quasi-momentum equal to ∆q = kcl/

√
2. The sideband position is given by the

energy difference between the states |n = 0, q〉 to |n = 1, q + ∆q〉. For small lattice depths
V⊥ ≤ 11ER, where the system is in the superfluid phase, all atoms are in the q = 0 Bloch
wave in the lowest band. For higher lattice depths and in the Mott insulator regime, the
ground and first excited bands are flat enough so that quasi-momentum is not relevant
any more. The frequency gap is thus well captured for arbitrary lattice depth by:

~∆0→1 = E(n = 1,∆q)− E(n = 0, 0). (3.8)

The prediction (3.8) is plotted as a solid line in Figure 3.4b and matches the data very
well.

In the deep lattice limit (V⊥ � 100ER), where the energy bands are close to the energy
levels of the harmonic oscillator, the band gap between fundamental and first excited band
is given by ∆0→1 ≈ 2

√
V⊥ER (see Section 1.2). This prediction agrees only roughly with

the observed values, which stems for the relatively low values of the lattice depths that
we explored.

Sideband amplitude

The amplitude P 0→1 of the motional sideband, measured as the amplitude of the Gaus-
sian function for the sideband, is plotted in Figure 3.4c. The amplitude decreases with
the lattice depth with a slope around −0.5 in logarithmic scale. At resonance with the
motional sideband, the clock laser induces Rabi oscillations between the states |g, n = 0〉
and |e, n = 1〉. The Rabi frequency associated with this transition is Ω′ = ηΩcl where

η = 〈w1
⊥|eikcl·R̂|w0

⊥〉 describes the motional overlap between the involved states (w1
⊥ de-

notes the Wannier function in the first excited band). The excitation probability is there-
fore given by (Ludlow et al. 2015):

P 0→1 = sin2

(
Ω′t

2

)
. (3.9)

The prediction (3.9), plotted as a solid line in Figure 3.4c, and agrees very well with the
data.

In the deep lattice limit (V⊥ � 100ER), η is roughly equal to kclσ⊥ where σ⊥ ∝ V
−1/4
⊥

is the spatial extension of the Wannier function. Since η is smaller than one, we have
P 0→1 ≈ η2(Ωclt/2)2 at short times and we get a scaling P 0→1 ∝ V

−1/2
⊥ , similar to what is

measured experimentally.
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3. Optical spectroscopy of degenerate bosons in deep optical lattices

3.3 Rabi oscillations in deep lattices

In this section, I present the experimental observation of Rabi oscillations between the
clock states in deep lattices. I first discuss the case of Rabi oscillations for a MI phase
with unit filling fraction, which discards the effect of interactions. Secondly, I present
Rabi oscillations for MI phases with filling fractions of one and two. In the latter case,
the temporal dynamics at early times differ strongly from the single-particle expectation.
An analysis of this temporal evolution, compatible with a calculation based on our loading
model described in Section 3.1, allows us to measure the Mott shell populations.

3.3.1 Single-particle Rabi oscillations

For atoms confined in singly-occupied isolated sites, the time evolution under the driving
by the clock laser consists of textbook Rabi oscillations between g and e (Foot 2004),
described by the Hamiltonian

Ĥ
(n=1)
eff =

 0
~Ω

2
~Ω

2
−~δ

 , (3.10)

with δ the laser detuning and Ω the Rabi frequency, as introduced before. We start from
a sample in the ground state and switch on the coupling laser. The atomic populations
then oscillate between g and e at the frequency

√
Ω2 + δ2, according to (3.7).

Figure 3.5: Single-particle Rabi oscillations. The coupling by the clock laser is turned on
at time t = 0. (a) Sketch of the experiment, the atomic sample is a MI phase with unit
filling fraction (Nat ≈ 8× 103). (b) Coherent driving on the clock transition with Rabi
frequency Ω ≈ 2π × 1400 Hz and zero detuning, measuring the number of excited state
atoms. We observe long-lived oscillations up to 10 ms before the contrast diminishes. The
solid line is a sinusoidal fit to the data. Figure adapted from Bouganne et al. (2017).

Figure 3.5 shows Rabi oscillations for a MI phase with unit filling fraction (Nat ≈
8× 103). We observe long-lived Rabi oscillations with full contrast up to 10 ms. However,
dephasing seems to blur the oscillations for times & 8 ms.

3.3.2 Rabi oscillations for higher filling fraction

We now perform the same experimental procedure on a system with a larger atom number
(Nat ≈ 8× 104). Figure 3.6 presents the experimental result.
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3.3. Rabi oscillations in deep lattices

Figure 3.6: Rabi oscillations for high atom number. The driving by the clock laser is
turned on at time t = 0. (a) Sketch of the experiment, the atomic sample consists of
MI phases with filling fractions of one and two (Nat ≈ 8× 104). (b) Coherent driving on
the clock transition with Rabi frequency Ω ≈ 2π × 1450 Hz and zero detuning. Closed
(respectively open) symbols represent the remaining total atom number (resp. the pop-
ulation in the ground state g). We observe an initial decay at early times followed by
long-lived oscillations. Figure adapted from Bouganne et al. (2017).

The temporal dynamics at early times differ strongly from the Rabi oscillations ex-
pected for isolated atoms, as presented in Section 3.3.1. In the limit of disconnected sites,
we can attribute the early decay to the depletion of multi-occupied sites due to inelastic
decay via principal quantum number changing collisions (Traverso et al. 2009), leaving
only singly-occupied sites after ∼ 1 ms. The long-time asymptote of the total population
thus reflects the initial fraction Nn=1 of atoms in singly-occupied sites.

Determination of Mott shell populations

Figure 3.7 shows the measured values of the asymptotic value of the total population
for various total initial atom numbers3. For the parameters of our experiment, there
are typically 2L/d ≈ 10 occupied planes, with occupation numbers in a deep MI phase
ranging from n = 1 to n = 3. For the lowest atom numbers explored in this chapter
[Nat ≈ 8 × 103], we find only a plateau with n = 1, in agreement with Figure 3.5. For
the largest atom numbers [Nat ≈ 8× 104], we find plateaus with normalised populations
Nn={1,2,3} = {0.25, 0.39, 0.36}. The prediction of this loading model for the normalised
population Nn=1, shown in Figure 3.7 as a dashed line, agrees with the measured values
only for low atom numbers Nat . 4× 104.

We attribute the marked difference for higher atom numbers to three-body inelastic
processes. We estimate a lifetime τ3B for triply-occupied sites using the three-body rate
constant L3B ≈ 7× 10−30 cm6 s−1 measured in Fukuhara et al. (2009):

τ3B ≈
1

6L3B

∫
d3r|w0

0(r)|6
≈ 100 ms, (3.11)

where w0
0 is the Wannier function in the fundamental band of the lattice and the factor

6 accounts for the occupation factor n(n − 1)(n − 2) on a lattice site with n = 3. The
lifetime is comparable to the loading time in the horizontal lattice. We extend the model

3For this experiment, the FDT was left on at its smallest value during the lattice loading, leading to
a slightly higher external confinement {Ωx,Ωy} ≈ 2π × {47, 47}Hz than given previously.
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Figure 3.7: Normalised population Nn=1 in the shell with unit filling fraction as a function
of total initial atom number in the lattice. Open symbols show the measurements using
the asymptotic value of the total population after many Rabi oscillations as presented in
Figure 3.6b. The dashed line is the prediction from our loading model without three-body
losses. The solid line accounts phenomenologically for three-body recombination processes
which prevent sites with triple occupancy. Figure adapted from Bouganne et al. (2017).

of Section 3.1 in a simple way, by assuming that triply-occupied sites decay during the
loading, and that adiabatic loading only prepares singly- and doubly-occupied sites (the
model predicts negligible population of sites with occupancy n > 3, and we neglect them
in our discussion, see Figure 3.2). For the largest atom numbers [Nat ≈ 8 × 104], the
normalised populations become Nn={1,2,3} = {0.36, 0.64, 0}. The prediction of this lossy
loading model, shown in Figure 3.7 as a solid line, agrees well with the measured values
and suggests that the in-trap density distribution is close to the predicted one. However,
the approximation of complete decay of triply-occupied sites is probably not very accurate.
This could also point towards the fact that the lattice loading is not adiabatic for high
atom numbers.

3.4 Sources of dephasing

In Figure 3.3a, the agreement between the expected and the measured spectrum is fair
but not as good as for higher Rabi frequencies. Actually, for Rabi frequencies smaller
than 100 Hz, the FWHM of the spectra stays constant around 150 Hz and the shape is
very deformed with substantial shot-to-shot variations. This could be explained by shot-
to-shot fluctuations of the clock laser frequency with a standard deviation around 100 Hz.
Moreover, Rabi oscillations at high atom numbers presented in Figure 3.6b exhibit loss
of contrast after ∼ 6 ms whereas in the low atom number case presented in Figure 3.5
such a loss was not observed. In this section, I present possible dephasing mechanisms to
explain our observations.

3.4.1 Magic wavelength deviation

If the wavelength of the laser creating the optical lattice is not set to the exact magic
wavelength λm ≈ 759.353 74(7) nm (Barber et al. 2008) the differential light shift between
the clock states created by the optical potential causes a frequency shift of the atomic
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3.4. Sources of dephasing

resonance across the atomic cloud. The laser detuning becomes inhomogeneous over the
cloud and this leads to a broadening of the resonance. Barber et al. (2008) measured the
slope of the differential polarisability ∆α = αg − αe around the magic wavelength:

d∆α

dλ

∣∣∣∣
λm

= 11.4 HzER
−1 nm−1. (3.12)

We use a parabolic approximation for the Gaussian profile of the lattice beams, which
gives a differential laser intensity between the center of the cloud and its edge

∆I = 2IclR
2/w2

latt, (3.13)

where R is the cloud radius. We estimate R ≈ 16 µm for the highest atom number
Nat ≈ 8× 104 explored in this experiment using our loading model (see Section 3.1).
wlatt ≈ 130 µm is the mean waist of the lattice beams.

For the highest powers explored in this experiment, the total optical potential on the
atoms is 75ER. A rough estimation of the clock transition shift over the cloud given by
a mismatch of 0.1 nm on the magic wavelength is:

∆ω0 ≈ 2π × 2.6 Hz. (3.14)

In the experiment we take care to keep the lattice wavelength within ±0.01 nm of
the magic wavelength using a commercial wavelength meter4. The effect of wavelength
deviation from the magic wavelength can therefore be neglected in the present work.

3.4.2 Frequency or intensity fluctuations

Fluctuations in the laser frequency or intensity can result in an effective damping of the
Rabi oscillations over time. The time scale tfluc associated with these fluctuations shall
be compared with the experiment duration t ∼ 1 ms. On the one hand, if tfluc � t,
fluctuations average the signal within each realisation. This leads to the observation
of Rabi oscillations with a decaying contrast over time. On the other hand, if tfluc &
t, fluctuations translate in a random detuning or Rabi frequency constant during an
experiment but randomly changing from shot to shot. In that case, it generally leads to a
loss of contrast. When frequency fluctuations are much smaller than the Rabi frequency,
it only leads to the observation of Rabi oscillations with full contrast but randomised
phase.

Such fluctuations can be modelled in a simplified way by a Gaussian noise on either the
detuning or the Rabi frequency. There is no a priori fundamental reason why noise on the
frequency or Rabi frequency should be Gaussian, but analytical results can be obtained
easily. We thus consider two separate Gaussian noises, with root-mean-square widths
γdet for the detuning and γamp for the Rabi frequency. One can analytically calculate the
average excitation probability Pe after a time t in both cases.

Intensity fluctuations The average excitation probability at zero detuning is given by

Pe
∣∣
δ=0

(t) =
1

2

[
1− cos(Ωt)e−γ

2
ampt

2/2
]
. (3.15)

4WS5, High Finesse.
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3. Optical spectroscopy of degenerate bosons in deep optical lattices

A fit to the data in Figure 3.5b using this expression yields γamp = 2π× 12 Hz. This Rabi
frequency noise is related to the laser intensity noise by

γamp = δΩ =
Ω

2

δIcl

Icl

, (3.16)

which gives a relative laser intensity noise δIcl/Icl ≈ 2 %. Monitoring the laser intensity
with a photodiode shows that actual intensity fluctuations are below 1 % and cannot fully
explain the observed dephasing.

Frequency fluctuations The average excitation probability at fixed Rabi frequency is

Pe
∣∣
Ω

(t) =
1

2

{
1− cos [Ωt+ tan−1(γ2

dett/Ω)]

[1 + (γ2
dett/Ω)2]

1/4

}
+
γ2

det

2Ω2

{
cos [Ωt+ 3 tan−1(γ2

dett/Ω)]

[1 + (γ2
dett/Ω)2]

3/4
− 1

}
.

(3.17)
A fit to the data in Figure 3.5b using this expression yields γdet = 2π × 150 Hz. This is
compatible with the narrowest spectra observed in the experiment (see Section 3.2.2).

3.4.3 Inhomogeneous broadening

A remarkable feature of the Rabi oscillations at high atom number shown in Figure 3.6b
is their dephasing time ∼ 6 ms, significantly shorter than for the oscillations at small
atom number presented in Figure 3.5b. This can be understood as a consequence of
inhomogeneous broadening due to the Gaussian profile of the clock laser beam. The cloud
size increases with total atom number in such a way that inhomogeneous broadening is
more pronounced as atom number increases.

The Gaussian profile of the clock laser beam entails a non-uniform Rabi frequency,
but also induces a position-dependent differential light shift (Barber et al. 2008), leading
to a non-uniform detuning. Inhomogeneities cause a dephasing over time between atoms
in the center and atoms at the edge of the cloud, and thus to an apparent damping when
averaging over the whole cloud. We use our loading model to calculate the cloud radii:
R ≈ 8.9 µm for Nat ≈ 8× 103 and R ≈ 16 µm for Nat ≈ 8× 104.

Non-uniform Rabi frequency Using a parabolic approximation for the Gaussian pro-
file of the coupling beam, the Rabi frequency at the edge of the cloud is Ω′ = Ω(1−R2/w2

cl).
We estimate a dephasing time τamp = 1/|Ω − Ω′| ≈ w2

cl/(ΩR
2). We find τamp ≈ 7 ms for

Nat ≈ 8× 103 and τamp ≈ 2 ms for Nat ≈ 8× 104. These crudely estimated dephasing
times τamp ∝ 1/R2 give a lower limit since the dephasing rate is certainly lower than the
value given here. They are compatible with our observations in both cases.

Non-uniform detuning Using a parabolic approximation for the Gaussian profile of
the coupling beam, the differential light shift between the center and the edge of the cloud
is ~∆ω0 = [αg(λ0) − αe(λ0)]IclR

2/(ε0cw
2
cl). The Rabi frequency at the edge of the cloud

is therefore Ω′′ =
√

Ω2 + ∆ω2
0. We estimate a dephasing time τdet = 1/|Ω−Ω′′|. We find

τdet ≈ 45 ms for Nat ≈ 8× 103 and τdet ≈ 5 ms for Nat ≈ 8× 104. These crudely estimated
dephasing times τdet ∝ 1/R4 give a lower limit for the actual ones. The calculated values
indicate that non-uniform detuning is not sufficient to account for our observations.
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3.5. Interacting atoms driven on the clock transition

Beam alignment Note that a misalignment of the clock laser beam with respect to the
atomic cloud is very detrimental as the inhomogeneity easily gets much bigger than what
is estimated here. In particular, the parabolic expansion does not hold any more but a
linear expansion would be more reliable. However, such a misalignment also leads to a
reduction in the maximum achievable Rabi frequency, and is therefore easily detectable
experimentally. We can rule it out for the measurements presented here.

3.4.4 Conclusion

We finally conclude that the observed dephasing of the Rabi oscillations in Figure 3.6b
is probably mostly caused by an inhomogeneous Rabi frequency over the cloud, which
is much less pronounced for small atom number, compatible with almost no decay in
Figure 3.5b. For coupling times t & 10 ms and at small atom numbers, Rabi oscillations
seem to keep full contrast but with a randomised phase. Along with the observation
of deformed spectra at low Rabi frequencies, this points towards shot-to-shot frequency
fluctuations of the clock laser. A further study of the laser frequency fluctuations using
Ramsey fringes is presented in the thesis of Manel Bosch Aguilera (2019). While we do not
have experimental evidence yet, fluctuations of the resonance frequency of the reference
cavity is a possible cause (see Section 2.4). In particular, the strong correlation between
the ambient temperature and the resonance frequency suggests that thermal effects might
play an important role.

3.5 Interacting atoms driven on the clock transition

So far I have mainly discussed single-particle phenomena. However, the dynamics of
doubly-occupied sites, as shown in Figure 3.6b, are very different. In this section I study
the behaviour of atoms in doubly-occupied sites under the driving by the clock laser.
Interatomic interactions strongly modify the dynamics expected for isolated atoms. Af-
ter presenting a microscopic model used to analyse singly- and doubly-occupied sites
evolving under the driving by the clock laser, I present the measurements of the scat-
tering parameters involving both clock states. First, inelastic interactions lead to atom
losses characterised by rates γαβ. Second, elastic interactions lead to energy shifts of the
on-site interaction strength Uαβ. These parameters depend on the internal state of the
atoms present on a same site α, β = g, e. Two atoms in the ground state are stable
against losses, γgg = 0, and we calibrated the energy shift due to contact interaction
Ugg = h× 1475(25) Hz by a collapse and revival experiment (see Section 2.3.4). We thus
need to determine the unknown quantities γeg, γee, Ueg and Uee. Most of the material in
this section is reproduced from Bouganne et al. (2017).

3.5.1 Model

The dynamics of doubly-occupied sites driven by the clock laser differs from singly-
occupied sites in several aspects. First, due to bosonic enhancement, the coupling strength
is
√

2 times higher for double than for single occupancy. Second, the three possible sym-
metric states |gg〉, |eg〉 and |ee〉 have in general different interaction energies, characterised
by Hubbard parameters Ugg, Ueg and Uee. Finally, the states |eg〉 and |ee〉 are prone to
inelastic losses. We model this inelastic process by adding an imaginary term −i~γeα/2 to
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the Hamiltonian, with α = e, g. This results in a dynamics captured by a non-hermitian
effective Hamiltonian

Ĥ
(n=2)
eff =


0

~Ω√
2

0

~Ω√
2

Ueg − Ugg − i
~γeg

2
− ~δ

~Ω√
2

0
~Ω√

2
Uee − Ugg − i

~γee
2
− 2~δ

 , (3.18)

in the {|gg〉 , |eg〉 , |ee〉} basis.
We numerically solve the generalised Schrödinger equation using the effective Hamil-

tonian (3.18) with initial condition |ψ(2)〉 = |gg〉. We also solve the Schrödinger equation
for singly-occupied sites using the Hamiltonian (3.10) with initial condition |ψ(1)〉 = |g〉.
We extract from the solutions the transition probabilities denoted P

(1)
α = | 〈α|ψ(1)〉 |2 with

α = g, e and P
(2)
β = | 〈β|ψ(2)〉 |2 with β = gg, eg, ee. We then sum the contributions of

singly- and doubly-occupied sites to obtain the average populations N g and N e:

N g

Nat

= Nn=1P
(1)
g +Nn=2

(
P (2)
gg +

1

2
P (2)
eg

)
, (3.19)

N e

ηeNat

= Nn=1P
(1)
e +Nn=2

(
P (2)
ee +

1

2
P (2)
eg

)
. (3.20)

3.5.2 Lifetime of doubly-occupied sites: two-body decay rates

Here I present a series of experiments measuring the inelastic loss rates γee and γeg from
lifetime measurements of samples containing doubly-occupied sites.

Excited-excited pairs

We first investigate the part of e-e inelastic collisions: two atoms in the excited state
collide and are expelled from the trap. This loss dynamics is described by (Syassen et al.
2008; Garćıa-Ripoll et al. 2009):

d 〈Ψ̂†eΨ̂e〉
dt

= −βee 〈Ψ̂†eΨ̂†eΨ̂eΨ̂e〉 . (3.21)

We write the field operator on the Wannier basis Ψ̂e(r) = w0
0(r)ê, with ê the annihilation

operator for an atom in the excited state, and thus

〈Ψ̂†eΨ̂e〉 =

∫
d3r|w0

0(r)|2 〈ê†ê〉 = 〈ê†ê〉 = 〈n̂e〉 , (3.22)

〈Ψ̂†eΨ̂†eΨ̂eΨ̂e〉 =

∫
d3r|w0

0(r)|4 〈ê†ê†êê〉 =

∫
d3r|w0

0(r)|4 〈n̂e(n̂e − 1)〉 . (3.23)

Here we recognise the integral of the fourth power of the Wannier function, which is
proportional to Ugg [see (2.17)]. We define

γee = βee
UggM

4π~2agg
, (3.24)
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and thus
d 〈n̂e〉

dt
= −γee 〈n̂e(n̂e − 1)〉 . (3.25)

The occupation probability P
(2)
ee (t) for two atoms in the excited state thus evolves as:

dP
(2)
ee

dt
= −γeeP (2)

ee (t). (3.26)

Singly-occupied sites do not decay, but doubly-occupied sites decay exponentially with a
rate γee.

State preparation The procedure to measure the loss rate γee is presented in Figure
3.8. We first apply a clock laser pulse of area Ωt ≈ π [Ω ≈ 2π × 1450 Hz] in order to
obtain a substantial population of |ee〉. Then we get rid of the ground state atoms with
a removal pulse on the 1S0–1P1 transition (see Section 2.2.1). We are then left with a
collection of singly- and doubly-occupied sites where all atoms are in the excited state e.

Figure 3.8: Time sequence used to measure the excited-excited loss rate γee. Figure
designed with Marion Bouganne.

After a variable hold time t, we measure the population in the excited state which
evolves as

N e(t)

ηeNat

= Nn=1P
(1)
e (0) +Nn=2P

(2)
ee (0)e−γeet. (3.27)

Figure 3.9 shows the measured lifetime of this sample. We detect a fast exponential
decay at short times which we interpret as the consequence of inelastic e-e collisions.
For longer times, we observe a plateau corresponding to the remaining e atoms in singly-
occupied sites. The exponential decay rate is a direct measurement of γee = 9300(100) s−1,
which gives βee = 2.5(1)× 10−11 cm3 s−1.

Ground-excited pairs

We now look at the part of e-g inelastic collisions: an atom in the excited state collides
with an atom in the ground state and both are expelled from the trap. This loss dynamics
is described by:

d
(
〈Ψ̂†eΨ̂e〉+ 〈Ψ̂†gΨ̂g〉

)
dt

= −2βeg 〈Ψ̂†eΨ̂†gΨ̂eΨ̂g〉 , (3.28)
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Figure 3.9: Lifetime measurement for a sample with only atoms in e. Doubly-occupied
sites decay exponentially through inelastic collisions. The inset shows the plateau of
remaining singly-occupied sites for longer times. The solid line is an exponential fit to
the data, with the shaded area reflecting 68 % confidence interval. Figure adapted from
Bouganne et al. (2017).

which implies [with γeg = βegMUgg/(4π~2agg)]

d (〈n̂e〉+ 〈n̂g〉)
dt

= −2γeg 〈n̂en̂g〉 . (3.29)

The occupation probability P
(2)
eg (t) for one atom in the ground state and one atom in the

excited state thus evolves as
dP

(2)
eg

dt
= −γegP (2)

eg (t). (3.30)

State preparation The procedure to measure the loss rate γeg is presented in Figure
3.10. We apply a clock laser pulse of area Ωt ≈ π/2 [Ω ≈ 2π× 1450 Hz] in order to obtain
a substantial population of |eg〉.

Figure 3.10: Time sequence used to measure the excited-ground loss rate γeg. Figure
designed with Marion Bouganne.

After a variable hold time we measure the population of ground state atoms which
evolves as

N g(t)

Nat

= Nn=1P
(1)
g (0) +Nn=2P

(2)
gg (0) +Nn=2

P
(2)
eg (0)

2
e−γegt. (3.31)
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Figure 3.11 shows the measured lifetime of this sample. We detect almost no decay up
to 1 s, a time after which coherent tunnelling can start to play a role. An exponential fit to
the data, with a rate γ as the only free parameter, yields γ ≈ 0.5 s−1. We measure a similar
lifetime for atoms in g in the absence of the clock laser excitation. Hence the measured
damping rate γ only provides an upper bound for γeg, and thus βeg ≤ 10−15 cm3 s−1.
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Figure 3.11: Absence of inelastic collisions involving g and e. The dashed line shows the
asymptote expected for a complete decay of e-g pairs. The solid line is an exponential fit
to the data, with the shaded area reflecting 68 % confidence interval. Figure adapted from
Bouganne et al. (2017).

3.5.3 Spectroscopy of elastic interactions: scattering lengths

Having characterised inelastic collisions, I now show experiments measuring the elastic
energy shifts Ueg and Uee. To this end, we perform spectroscopic experiments probing
doubly-occupied sites.

Ground-excited pairs

The determination of the ground-excited energy shift Ueg is best performed in a pertur-
bative limit, where the pulse area and the population of |ee〉 remain small. In that case,
the evolution of |ψ(2)〉 reduces to that of a two-level system resonant for

~δ = Ueg − Ugg. (3.32)

Such a resonance can be resolved provided that the Rabi frequency of the driving is smaller
than the shift (Ueg − Ugg)/~ from the zero-detuning resonance of singly-occupied sites.
This is shown illustratively in Figure 3.12a.

Excited-excited pairs

In order to extract the interaction strength Uee, one could in principle use a two-photon
resonance directly linking |gg〉 and |ee〉. This requires a weak enough Rabi frequency
Ω� ∆ and δ′ � ∆, where ~∆ = Ueg−(Uee+Ugg)/2 is an interaction shift and where δ′ =
δ−(Uee−Ugg)/(2~) is the two-photon detuning. Under these conditions, the intermediate
state |eg〉 can be adiabatically eliminated, and the dynamics reduces to that of an effective
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Figure 3.12: Determination of Ueg. (a) Illustration of the method. The number of atoms
in g is plotted with respect to the detuning δ of the clock laser, with a pulse area Ωt = π.
Singly-occupied sites are excited on the single-atom resonance at δ = 0. Interactions shift
the resonance for doubly-occupied sites to (Ueg − Ugg)/~. This interaction sideband can
be resolved for a sufficiently weak Rabi frequency Ω . |Ueg − Ugg|/~. For illustrative
purposes, Ω = 2π× 70 Hz and Ueg = 0.8Ugg in this plot. (b) Experimental determination
of Ueg with Ωt ≈ π. The shoulder near δ = −2π × 300 Hz indicates the excitation of
doubly-occupied sites. Figure adapted from Bouganne et al. (2017).

two-level system. The difference (Uee − Ugg)/2 can therefore be directly measured from
the location of the two-photon resonance. Practically, this idealised experiment is difficult
to perform for weak coupling due to the strong loss rate γee, which gives a substantial
width to the two-photon resonance.

In order to circumvent this issue, we perform the experiment at a larger Rabi frequency,
and make use of the losses by measuring the total population after a clock pulse of area
Ωt = 2π. The background signal from singly-occupied sites is minimised near resonance,
whereas doubly-occupied sites show a pronounced feature due to e− e losses located at

~δ ≈ Uee − Ugg
2

. (3.33)

This is shown illustratively in Figure 3.13a. Even for large Rabi frequencies, we find that
the loss spectral feature in the total signal is only weakly affected by the intermediate
|eg〉 state (inset of Figure 3.13a).

The experimental results are presented in Figures 3.12b and 3.13b. Data are re-centred
so that δ = 0 corresponds to the single-atom resonance. The measurement of Ueg (Figure
3.12b) is done with a weak Rabi frequency Ωweak ≈ 2π × 150 Hz and displays a shoulder
near δ ≈ −2π×300 Hz. This corresponds to the signal from doubly occupied sites. On the
other hand, the measurement of Uee (Figure 3.13b), performed at strong Rabi frequency
Ωstrong ≈ 2π × 1500 Hz, shows a loss peak almost coincident with δ ≈ 2π × 0 Hz, or
equivalently Uee ≈ Ugg.

Fit procedure

To extract quantitative values, we fit the prediction of the model from Section 3.5.1 to
the experimental spectra (solid and dashed lines in Figures 3.12b and 3.13b). We fix the
normalised populations Nn=1,2, the loss rates γee, γeg and the initial atom number Nat to

88



3.5. Interacting atoms driven on the clock transition

−2 0 2 4 6
Detuning [Ugg/h]

A
to
m

nu
m
be

r
[a
.u
.]

Uee−Ugg
2h

(a)

g

g + e

−0.4 0.0 0.4
Uee/Ugg − 1

0.6

1.0

1.4

U
e
g
/
U
g
g

-0.4

0.0

0.4

Peak shift [Ugg/2h]

−6 −4 −2 0 2 4 6
Detuning [kHz]

0

1

2

3

4

5

6

7

A
to
m

nu
m
be

r
[1

04 ]

(b)

g

g + e

e

Figure 3.13: Determination of Uee. (a) Illustration of the method. For strong Rabi
frequencies and pulse area Ωt = 2π, the total population of doubly occupied sites has
decreased due to inelastic losses (black solid line). This loss resonance is shifted with
respect to the single-atom resonance (dashed blue line, pulse area Ωt = π) by (Uee −
Ugg)/(2~), with weak dependence on Ueg (see inset). For illustrative purposes, Ω =
2π × 1500 Hz and Uee = 2.5Ugg in this plot. (b) Experimental determination of Uee.
The open symbols show the population in g (circles) and e (diamonds) for the reference
measurement with Ωt ≈ π locating the single-atom resonance. The closed ones correspond
to the total population for the loss measurement with Ωt ≈ 2π. The loss curve is almost
centred on the single-atom resonance. Figure adapted from Bouganne et al. (2017).

their measured values and leave the Rabi frequencies Ωweak, Ωstrong, the interaction energies
Uee, Ueg and the repumping efficiency ηe as free parameters. The repumping efficiency
ηe from the metastable 3P0 state (see Section 2.2.2) is assumed to be independent from
the filling fraction for simplicity. The prediction of the model has been further convolved
with a Gaussian function to account phenomenologically for single-particle damping (see
the discussion in Section 3.4), taking the root-mean-square width σ of the Gaussian as an
extra free parameter.

We obtain Ωweak = 2π × 145(13) Hz, Ωstrong = 2π × 1470(70) Hz and ηe = 68(6) %,
consistent with our calibrations. The width of the convolving Gaussian σ = 100(40) Hz,
is consistent with the narrowest spectrum we could observe, as discussed in Section 3.3.1.
Finally we extract

Uee − Ugg = h×−40(340) Hz, (3.34)

Ueg − Ugg = h×−270(120) Hz, (3.35)

in agreement with the qualitative discussion above. The error bars represent statistical
68 % confidence intervals on the optimal values of Ueg and Uee, obtained by the bootstrap
method (Bohm et al. 2010). This method consists in constructing virtual data sets using
the residuals of the best fit performed on the actual data set. Virtual data sets are
constructed by adding the randomly shuffled residuals to the actual data. A bootstrap
re-sampling set is the best fit parameters set obtained from these virtual sets. Figure 3.14
shows the histograms of 1000 bootstrap re-sampling sets. We find histograms centered on
the best-fitted values on the actual data set, their widths give the experimental error in
the determination of the parameters.
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Figure 3.14: Determination of errors bars on the energy shifts (a) Uee and (b) Ueg, given
as the standard deviation on the histograms. The histograms are constructed by the
bootstrap method [see text and Bohm et al. (2010)].

3.5.4 Collisional parameters

From the previous measurements we are able to extract all relevant collisional parameters
involving both clock states. For this we use our calibration of the on-site interaction
energy in the ground state Ugg = h × 1475(25) Hz. The ratio of the elastic interaction
energies Ueg and Uee to Ugg is equal to the ratio of the respective scattering lengths, thus

aeg − agg = −19(11) a0, (3.36)

aee − agg = −3(25) a0. (3.37)

The error bars represent statistical 68 % confidence intervals and do not take into account
possible systematic errors.

Bouganne et al. (2017) Franchi et al. (2017)

aeg [a0] 86(11) 94.7(16)
aee [a0] 102(25) 126.7(23)
βeg [cm3 s−1] ≤ 10−15 ≤ 10−14

βee [cm3 s−1] 2.5(1)× 10−11 1.3(7)× 10−11

Table 3.1: Comparison between intra- and inter-state scattering lengths and two-body
loss rates as published in Bouganne et al. (2017) and Franchi et al. (2017).

Combining our measurements with the measurement of the scattering length in the
ground state agg = 105 a0 (Kitagawa et al. 2008; Borkowski et al. 2017), we obtain the
scattering lengths aeg and aee. We also give an upper bound for βeg and the value of
βee. We compare in Table 3.1 our measurements to very similar and independent ones
performed at LENS in Florence (Franchi et al. 2017). The measured scattering lengths
agree within the error bars. Still, the determination of the scattering lengths is more
precise in Franchi et al. (2017) owing to their ability to resolve better the interaction peak
[the linewidth and frequency jitter of their laser was characterised to be smaller than 50 Hz
(Cappellini et al. 2015)]. The inelastic loss rate in the excited state are however slightly
different, our measurement providing a smaller uncertainty. Franchi et al. (2017) could
not reach the range of Rabi frequencies required to substantially populate the state |ee〉
and performed the measurement in a 1D lattice, with a substantial fraction of thermal
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atoms. Moreover, the analysis of the temporal evolution of the atom number required a
more complex modelling, potentially leading to systematic errors.

We thus find all scattering lengths involving the clock states of 174Yb equal within 20 %.
This is somewhat surprising and these observations differ markedly from the fermionic
173Yb isotope, where the equivalent scattering lengths have been found quite different
from one another (Cappellini et al. 2014; Scazza et al. 2014) [for example aee ≈ 1.5agg
and a+

eg ≈ 15agg]. The inelastic loss rates are compatible with previous measurements on
the fermionic 171Yb and 173Yb isotopes (Ludlow et al. 2011; Scazza et al. 2014) or bosonic
88Sr (Traverso et al. 2009).

3.6 Conclusion

In this chapter, I have demonstrated coherent control on the clock transition of degen-
erate atoms loaded in optical lattices. This coherent control can be used to probe the
band structure of the lattice, to prepare coherent superpositions of the clock states or to
measure the relative populations of the Mott insulator phases with unit and double filling
fractions. For sufficiently high lattice depths, such Mott phases can be considered as a
collection of independent singly- and doubly-occupied sites, whose dynamics are simple
to understand and analyse. In that respect I showed the measurement of the previously
unknown scattering lengths and two-body loss rate coefficients involving the clock state
of the bosonic 174Yb isotope, published in Bouganne et al. (2017). Similar measurements
were independently performed at LENS in parallel (Franchi et al. 2017).

The inelastic loss rate between two atoms in the excited state is substantial and con-
stitutes a threat to experiments where such collisions can happen. Several solutions exist
to get around this effect. First, in the case of bosons, one can finely tailor the external
trapping potential of the optical lattice to be able to prepare only a Mott phase with unit
occupancy, even for large atom numbers, thereby preventing inelastic losses to happen.
This also works naturally with a polarised gas of fermions, where double occupancies are
suppressed by the Pauli principle (Jördens et al. 2008; Campbell et al. 2017). Secondly,
one could use an interaction blockade, where transitions to the states |eg〉 and |ee〉 are
always off-resonant and thus inefficient. The near-equality of the intra- and inter-state
scattering lengths for 174Yb restricts this method to very low Rabi frequencies. However
this should be usable for the fermionic 173Yb isotope where the shifts are large. Finally,
the large value of the inelastic loss rate suggests that a quantum Zeno suppression of
losses (Syassen et al. 2008; Barontini et al. 2013; Zhu et al. 2014; Sponselee et al. 2018)
could occur in our system. Strong losses project the system to a lossless subspace, in a
similar way as repeated measurements freezes the evolution of a system. For a suitable
initial state and weak enough coupling, an adiabatic preparation of a state belonging to
the lossless subspace should be possible.
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4
Anomalous momentum diffusion in

an open Bose-Hubbard gas

So far I have shown that the driving of internal states can be made coherent when the
motional degrees of freedom are unaffected as in deep optical lattices (Bouganne et al.
2017). The observed long coherence times between the clock states stems from the use
of the ultra-narrow transition linking them, relying on the absence of spontaneous emis-
sion in the excited state. Even in these experiments we could observe various dephasing
mechanisms, either technical (laser frequency fluctuations, spatial inhomogeneities of the
coupling...) or more fundamental (inelastic losses in the metastable state, atomic mo-
tion...). When the motional degrees of freedom come into play, as in a bulk BEC (Bosch
Aguilera et al. 2018), the dynamics enrich but spatial coherence remains. Coherence can
however disappear due to various dissipative processes, as realised in quantum gases by
atom losses or spontaneous emission for example. The information carried by the ex-
pelled particles or by the spontaneously emitted photon is lost, interrupting the coherent
dynamics.

A simple but illuminating example of how quantum information is lost through the
coupling to an environment is the ‘standard model’ of quantum optics, i.e. a two-level
atom coupled to an electro-magnetic field. See for instance the lectures of Claude Cohen-
Tannoudji (1989), where the density matrix1 helps to describe the spatial coherences
of the atom in a bath of photons. In this work, the use of a master equation with
quantum jump operators1 was crucial to describe the decoherence processes (Haroche
et al. 2006). However, when systems are made up of many particles, the decoherence
dynamics is generally expected to be hastened by interactions. This corresponds for
example to interaction broadening in spectroscopy.

Recent experiments with quantum gases have shown that the dynamics are strongly
altered and that interactions are generally not degrading coherence. Light scattering was
used to inhibit coherent tunnelling in an optical lattice (Patil et al. 2015), the sponta-
neously emitted photon acting as a measurement device. Also, the robustness of localised
many-body states subjected to dissipation and thermalisation was studied (Lüschen et al.
2017). One-body losses were realised using an electron beam aiming at a Bose-Einstein
condensate, with which a suppression of atom losses was observed (Barontini et al. 2013).
A delay of the Mott insulator melting with dissipation was investigated (Tomita et al.
2017) using two-body losses from photo-association resonances. Interestingly, dissipation
induced by collisional losses can help to prepare highly-correlated states, as was per-
formed with cold molecular gases in a 1D optical lattice (Syassen et al. 2008) or in the
Fermi-Hubbard model (Sponselee et al. 2018).

1See also Appendix B.1 for a reminder of this concept.
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Figure 4.1: Dissipation in a superfluid. (a) Sketch of the experiment and of the level
scheme of the intercombination transition. The red arrows denote optical lattice beams,
the green arrow denotes the dissipation laser beam with wavevector kL propagating verti-
cally with a polarisation εL parallel to the applied magnetic field B along the x+y direc-
tion. The dissipation laser drives the intercombination transition with Rabi frequency ΩL,
detuning δL and spontaneous emission rate Γsp. (b) Absorption images taken after 20 ms
expansion for various dissipation times tdiss, the line of sight is vertical. In this experiment
the parameters are V⊥ = 8.8ER, Γsp = 250 s−1, δL = +15Γg and ΩL = 2π × 81 kHz.

In this chapter, I present an experimental study of the decoherence dynamics of a
superfluid under dissipation, as sketched in Figure 4.1. The dissipation is caused by
spontaneous emission events, which destroy the spatial coherence naturally present in the
initial superfluid state. However, the dynamics at long times is changed in a rather sur-
prising way: interactions slow down decoherence. The interplay between dissipation and
inter-atomic interactions leads to an unconventional relaxation dynamics that I investigate
both experimentally and theoretically.

First, I recall fundamental results about the effect of spontaneous emission on spatial
coherences for a single particle. Secondly, I present the experimental observation of a
drastic slowdown in the relaxation of a superfluid. Thirdly, I detail a model for the
dissipation in optical lattices which I use to shed light on the slowdown behaviour. I
finally present two complementary analysis of this relaxation dynamics.

4.1 Dissipation with spontaneous emission for a

single atom

In this section I introduce the context to describe the dissipative dynamics of an atom
continuously excited by a laser but decaying back to its ground state by spontaneous
emission. I first consider the spontaneous decay of an atom in free space, and show how
spatial coherences are destroyed down to a size set by the photon wavelength. Then
I turn to the case of many successive photon scattering events, close to what happens
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4.1. Dissipation with spontaneous emission for a single atom

for an atom continuously excited by a resonant laser field. I show the importance of
momentum diffusion and how it is related to the destruction of spatial coherences. The
relaxation dynamics due to spontaneous emission is shown to be exponential in time.
Furthermore, the momentum and position distributions undergo Brownian motion and
display a standard diffusive behaviour, i.e. the variance of the distribution increases
linearly with time. This section introduces the main elements required to understand the
remainder of the chapter, but is not meant to cover the topic in a comprehensive way.

4.1.1 Spontaneous emission and momentum diffusion in free
space

Quantum description of spontaneous emission

The description of spontaneous emission requires us to consider a Markovian environment
surrounding the atom, i.e. the vacuum of photons. In other words, we consider a sys-
tem {atom} coupled to an environment {the electro-magnetic field} taken in its vacuum
state, which constitutes a memory-less reservoir or bath. The denomination Markovian or
memory-less is equivalent to saying that the relaxation time of the environment is much
shorter than the relaxation time of the system. This separation of time scales is a very
good approximation for atomic systems and is called Born-Markov, or short memory time
approximation. It allows to trace out the environment numerous and unobserved degrees
of freedom, and to only look at what happens to the system of interest.

We first consider an atom in free space, the internal structure of which is described
by two levels a and b: |a〉 is the ground state with zero energy and |b〉 is the excited state
with radiative linewidth Γ and energy ~ω0. The atomic density matrix is written ρ̂. In
the remainder of this thesis, I call populations the diagonal elements of ρ̂ and coherences
the off-diagonal elements of ρ̂. The dynamics of the system is generally described by a
master equation written in the Lindblad form2 (Haroche et al. 2006)

∂ρ̂

∂t
=

1

i~

[
Ĥ, ρ̂

]
+ Γ

∫
S1

d2uN(u)

{
Ĉ(u)ρ̂Ĉ†(u)− 1

2
Ĉ†(u)Ĉ(u)ρ̂− 1

2
ρ̂Ĉ†(u)Ĉ(u)

}
,

(4.1)
where Ĥ is the Hamiltonian describing the unitary evolution of the system and Ĉ quantum
jump operators. In the case of spontaneous emission we choose Ĉ(u) = e−ik0u·R̂ |a〉 〈b|
(Dalibard et al. 1985; Marte et al. 1993) which describes the decay of the atom from b to a
by spontaneous emission of a photon with wavenumber k0 = ω0/c and direction given by
the unit vector u. R̂ is the position operator and N(u) is a directional factor that weighs
the spontaneous emission direction u over the unit sphere S1. We take this equation as
a starting point for the discussion, it will be justified later in Chapter 5.

The atom is initially in the excited state with well-defined momentum p = 0. The
probability density to find the atom at a given position is uniform in space. The initial
spatial coherences are infinitely long-range in the excited state and zero in the ground
state: ρbr′,r′′(0) = 〈b, r′| ρ̂(0) |b, r′′〉 ∼ 1 and ρar′,r′′(0) = 〈a, r′| ρ̂(0) |a, r′′〉 = 0. The master
equation (4.1) allows one to derive the time evolution of the spatial coherence ρar′,r′′(t).
We have

∂ρar′,r′′

∂t
= Γ

∫
d2uN(u)eik0u·(r′′−r′)ρbr′,r′′ . (4.2)

2See Appendix B.1 for a reminder of the derivation of this equation.
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We consider an isotropic directional factor for simplicity N(u) = 1/(4π) so that∫
d2uN(u)eik0u·(r′′−r′) =

sin (k0|r′′ − r′|)
k0|r′′ − r′|

, (4.3)

and
∂ρar′,r′′

∂t
= Γ

sin (k0|r′′ − r′|)
k0|r′′ − r′|

ρbr′,r′′ . (4.4)

After a time t � Γ−1 the atom has decayed to the level a with high probability.
The growth of spatial coherences in the ground state is limited to a spatial extension set
by the cardinal sine function in (4.4), which is a peaked function around |r′′ − r′| = 0
with a spatial extension ∼ λ0 = 2π/k0. This shows that a spontaneous emission event
destroys infinitely-long range spatial coherences, shrinking them down to a length set by
the wavelength of the emitted photon.

Photon scattering and random walk

The previous treatment of spontaneous emission applies to the average over many realisa-
tions of single spontaneous emission events. It can be extended to the situation where the
atom experiences many successive photon recoils through absorption-spontaneous emis-
sion cycles. Experimentally, this is performed with a resonant laser field continuously
exciting the atom from the ground to the excited state. Due to the inherent randomness
of spontaneous emission in free space, the atom performs a random walk in momentum
space with steps ~(kL − k0u), with kL the laser wavevector and u a random direction
prescribed by a directional factor N(u). This momentum diffusion is characterised by a
diffusion coefficient D that describes the rate of increase of the momentum variance ∆p2

(Cohen-Tannoudji 1989). In one dimension it reads

∆p2 = 2Dt. (4.5)

Interestingly, the momentum distribution P and the spatial coherences are intimately
linked. We define a global spatial coherence function F

F(u) =

∫ +∞

−∞
dx 〈x+ u/2| ρ̂ |x− u/2〉 , (4.6)

which is the sum of the spatial coherences between all points separated by a distance
u. F is the Fourier transform of the momentum distribution P , and its width gives the
coherence length `c ∼ ~/∆p of the system (Cohen-Tannoudji 1989). A broadening of
the momentum distribution is therefore equivalent to a reduction of the coherence length.
Hence the scattering of photons, which leads to momentum diffusion through spontaneous
emission, destroys spatial coherences.

Moreover, the time evolution of spatial coherences is given by (Cohen-Tannoudji 1989)

∂

∂t
〈r′| ρ̂ |r′′〉 = − D

3~2
|r′′ − r′|2 〈r′| ρ̂ |r′′〉 . (4.7)

The relaxation dynamics of spatial coherences on a distance r is therefore exponential
with a rate proportional to the diffusion coefficient D and the square of the distance r2.
The same behaviour applies to coherent superpositions of spatially separated wave-packets
undergoing spontaneous emission (Cohen-Tannoudji 1989).
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4.1. Dissipation with spontaneous emission for a single atom

Continuous limit of many events

The randomness of spontaneous emission is key to understanding the principle of laser
cooling. A resonant beam exerts a net force (the radiation pressure force) on the atom
proportional to the rate of spontaneous emission times ~k0. With two resonant counter-
propagating beams, the net force vanishes but the velocity dependence of the detuning
(Doppler effect) creates a friction force that can slow down the atom. This force is
characterised by a friction coefficient γ describing the rate of change of the atom average
momentum 〈p〉

∂〈p〉
∂t

= −γ〈p〉. (4.8)

Momentum diffusion corresponds to the fluctuations of the friction force around the aver-
age value −γ〈p〉. The equilibrium between friction and diffusion prescribes a limit to the
achievable temperatures in the system, kBTeq = D/γ. This relation was first discovered by
Einstein in his study of the Brownian motion (Einstein 1905; Einstein 1917). For Doppler
cooling, this limit evaluates to kBTD = ~Γ/2 (Cohen-Tannoudji et al. 1992; Metcalf et al.
1999).

In the limit of many spontaneous emission processes, the dynamics of the momentum
distribution P follows a Fokker-Planck equation (Cohen-Tannoudji 1989), which describes
Brownian motion. In one dimension it reads(

∂

∂t
− γ ∂

∂p
p

)
P(p, t) = D

∂2

∂p2
P(p, t). (4.9)

In this case the ‘heavy’ Brownian particle is the atom and the ‘light’ particles are the
photons. This type of equation can be solved analytically (Cohen-Tannoudji 1989) and
one can show that at long times, both momentum and position distribution variances
broaden linearly with time

∆p2 = 2Dt and ∆x2 = 2
D

M2γ2
t. (4.10)

In conclusion, dissipation induced by many spontaneous emission events has three
important consequences:

1. it destroys spatial coherences with an exponential time dependence, the rate of
which is proportional to the diffusion coefficient and to the square of the distance
[see (4.7)],

2. it localises spatial coherences on a scale set by the wavelength of the emitted photon
[see (4.4)], the relaxation time of which decreases with dissipation strength Γ,

3. it freezes the motion of the atom [see (4.10)], with a relaxation time increasing with
dissipation strength Γ.

4.1.2 Resonant scattering and momentum diffusion in an
optical lattice

Momentum diffusion for an atom trapped in an optical lattice is not much different from
the free space case considered in Section 4.1.1. This point is further addressed in the next
chapter (see Section 5.2.1) and I summarise here the main results:
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1. The time evolution of the variance of the position distribution ∆x2 shows a crossover
between a ballistic expansion at short times, characterised by a quadratic depen-
dence with time, and a Brownian diffusion for time t & Γ−1

sp , characterised by a
linear dependence with time (Γsp is the rate of spontaneous emission events). The
ballistic expansion stems from coherent tunnelling between nearest-neighbour sites
while Brownian diffusion is caused by spontaneous emission, as described in Section
4.1.1, which dominates the long time evolution.

2. Spatial coherences are destroyed exponentially with time, as seen in the decay of
the coherence length of the system.

3. The fraction of atoms at zero quasi-momentum decreases exponentially with time.
4. Finally, spontaneous emission can induce inter-band transitions.

The remainder of this chapter shows how inter-atomic interactions modify the previous
statements (valid for a single atom) and lead to the observation of anomalous sub-diffusion.
This is explored both experimentally and theoretically.

4.2 Dramatic change in the relaxation of a

superfluid under dissipation

We now turn to the case of many interacting particles trapped in an optical lattice. Inter-
actions are essential to understand the dynamics at play, and they can modify substantially
what was stated for the single-particle case. In this section, I present an experimental
study of the relaxation dynamics for a superfluid submitted to dissipation by spontaneous
emission. The system of interest is a degenerate gas of 174Yb adiabatically loaded in
a 2D optical lattice, close to the ground state of a 2D Bose-Hubbard system, as already
discussed in Section 2.3. Dissipation is induced using a near-resonant laser beam that trig-
gers spontaneous emission. As mentioned in the previous section, spontaneous emission
destroys the long-range coherence initially present in the many-body system. However,
the dynamics at long times are observed to be very different from the exponential relax-
ation expected in the single-particle case. In this section I address the question of how
the system evolves under dissipation. After depicting the experimental procedure used
to look at the relaxation dynamics, I present the observation of a dramatic change in
the relaxation from an exponential to an algebraic decay. In a preliminary analysis, the
dependences of this decay on the lattice depth and the dissipation rate are shown.

4.2.1 Experimental procedure

The experiment starts with a BEC of about 7× 104 ytterbium atoms with no discernible
thermal fraction, adiabatically loaded into 2D optical lattices at the magic wavelength λm

with variable depth V⊥ (this procedure is described in Section 2.3). The dissipation laser
beam is sent in the vertical direction ez, along with the vertical lattice. As before, we set
the vertical lattice depth to V0,z ≈ 27ER. Horizontal lattice beams propagate along ex
and ey, and we set their depth equal to V⊥, which can vary in the range 3.5–13ER. The
corresponding relevant Bose-Hubbard parameters are indicated in Table 4.1.

After the preparation of 2D Bose-Hubbard systems, we turn on dissipation by illu-
minating the atoms with the near-resonant laser for a given duration tdiss. Atoms are
then released from the optical lattices and expand for 20 ms before an absorption image
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Horizontal lattice depth V⊥ [ER] 3.5 13

On-site interaction strength U [h× Hz] 410 980
In-plane tunnelling energy J⊥ [h× Hz] 190 20
Ratio U/J⊥ 2.1 50

Table 4.1: Bose-Hubbard parameters for the extremal values of the horizontal lattice
depth V⊥ explored in this section.

is taken. A sketch of the experimental system is depicted in Figure 4.1a, absorption im-
ages after various dissipation times are shown in Figure 4.1b. We clearly see the loss of
coherence by the disappearance of the interference peaks in time-of-flight.

Dissipation laser

Dissipation is induced by a laser beam with a frequency close to the inter-combination
transition at λg ≈ 556 nm. The frequency detuning is fixed to δL = ωL − ωg = +15Γg,
where ωL is the laser angular frequency. The laser polarisation is linear and parallel to the
applied magnetic field [εL = (ex+ey)/

√
2] and with it being so we excite the π-transition

from |J = 0,m = 0〉εL to |J = 1,m = 0〉εL (see Figure 4.1a). The beam propagates
vertically, with a waist wL ≈ 1 mm and a maximum power around 1 mW. We call ΩL the
resonant Rabi frequency of the atom-laser interaction. For a laser power P and intensity
I = 2P/(πw2

L) we have

ΩL = Γg

√
I

2Isat

≈ 2π × 2.77 MHz×
√

P

1 mW
. (4.11)

Here Isat = ~Γgω
3
g/(12πc2) = 0.14 mW cm−2 is the saturation intensity of the inter-

combination transition. We calibrated the Rabi frequency in the experiment using Rabi
oscillations on a BEC. The rate of spontaneous emission Γsp can be estimated from the
steady-state solution of the optical Bloch equations,

Γsp =
Γg

2

s

1 + s
with s =

Ω2
L/2

δ2
L + Γ2

g/4
. (4.12)

The saturation parameter s is 0.5 for a power P = 1 mW. Experimentally, the power P is
controlled by the radio-frequency driving amplitude of an AOM in the laser beam path.
In most experiments described in this chapter, the saturation parameter is much smaller
than one, and the spontaneous emission rate is proportional to the laser power

Γsp ≈
s�1

2π × 46.2 Hz× P

1 µW
. (4.13)

With our experimental parameters we are able to scan Γsp over four orders of magnitude
from 10 s−1 to 105 s−1 (~Γsp/U ranges from 10−2 to 102).

4.2.2 Crossover from exponential to algebraic decay

From the absorption images of the cloud taken after time-of-flight expansion (see Figure
4.1b), we can extract various quantities. The total atom number Nat is obtained from the
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas

full Npix×Npix = 400×400 pixels squared region centred on zero momentum. This region
of interest spans 4 Brillouin zones in reciprocal space3. A simple observable that captures
the coherence properties of the atomic sample is the fraction of atoms at zero momentum
Pk=0. We compute it by counting the total atom number Npeak in a small central square
region of 25× 25 pixels, and calculate Pk=0 = Npeak/Nat.

Figure 4.2: (a) Time evolution of the fraction of atoms at zero momentum Pk=0, the lines
are fits using (4.14) with parameters G ≈ 0.18, γ ≈ 2.7, A ≈ 0.038 and α ≈ 0.6.(b)
Determination of the crossover time tcross. χ2 values for the exponential (circles) and
power-law (squares) fits. The crossover time, shown with the vertical dashed lines, is
chosen as the minimum of the total χ2 value. The experimental parameters for this
experiment are V⊥ = 3.5ER and Γsp = 520 s−1.

A typical experimental result is given in Figure 4.2a. The time evolution of the pop-
ulation at zero-momentum shows a drastic change, initially as a fast initial decay up to
times ∼ 0.15 Γ−1

sp , and as a slower decay afterwards. The logarithmic scale on both axes
of Figure 4.2a indicates that the slow decay follows a power-law.

Fitting model

In order to describe quantitatively our observations, we call tcross the crossover time be-
tween the two regimes: fast exponential decay for early times and algebraic decay for
longer times. For each data set, we perform a fit using an exponential function for
tdiss ≤ tcross and a power-law for tdiss > tcross,

Pk=0(tdiss) =

{
Ge−γΓsptdiss for tdiss ≤ tcross,

A(Γsptdiss)
−α for tdiss > tcross.

(4.14)

From this fit we extract a global χ2 as the sum of the χ2 values in the exponential and
in the power-law windows normalised to the number of degrees of freedom4. We choose
tcross to minimise the global χ2 and find typically tcross ≈ 0.15 Γ−1

sp . See Figure 4.2b for an
illustrative determination of the crossover time.

3One pixel represents a square of 1.2 µm size. The first Brillouin zone has a width of 2km = 4π/λm,
corresponding to 120 µm for a time-of-flight of 20 ms.

4The number of degrees of freedom is meant in the statistical sense, it is equal to the number of data
points minus the number of fitting parameters.
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Choice of observable

The choice of Pk=0 to characterise the coherence of the atomic sample can be motivated
from a simple model of the density distribution after a time-of-flight expansion. In the
single-band approximation, and assuming that interactions do not perturb the expansion
(Gerbier et al. 2008), the density distribution after time-of-flight can be written as the
product of two terms ntof(k) ' S0(k)W0(k). W0 is a smooth envelope function given
by the Fourier transform of the on-site Wannier function in the fundamental band. S0 is
a structure factor, given by the Fourier transform of the first-order correlation function
C(i, j) = 〈â†i âj〉 (omitting the band index n = 0 for clarity). We therefore have

Pk=0 =
W0(0)

Nat

∑
i,j

〈â†i âj〉. (4.15)

The time evolution of Pk=0 therefore characterises the evolution of the spatial coher-
ences 〈â†i âj〉 in the sample. Other observables such as the visibility of the interference
pattern or the cloud radius could also capture the evolution of coherence of the atomic
sample. We have considered them but they both exhibit the same qualitative behaviour
as Pk=0, hence I do not show them in the manuscript.

4.2.3 Dependence on horizontal lattice depth

In a first series of experiment, we varied the horizontal lattice depth V⊥ from 3.5ER to
13ER for a fixed spontaneous emission rate Γsp = 520 s−1. The time evolution of Pk=0 is
plotted in Figure 4.3. The presence of two regimes in the decay is very clear. Fitting by
an exponential at the beginning can be discussed, because we mostly see the initial linear
behaviour, but the crossover to an algebraic regime with power-law decay is manifest. For
all lattice depths, the product Γsptcross is roughly 0.1 without any obvious dependence on
the lattice depth. The decrease in the initial value of Pk=0 with increasing V⊥ is purely
caused by the broadening of the momentum distribution when approaching the Mott-
insulating regime (the transition occurs around V⊥ ≈ 11ER). The fitting parameters are
shown in Figure 4.4.

1. In Figure 4.4a, we observe that the algebraic decay exponent α decreases with
lattice depth. The amplitude of the power-law behaves similarly, as shown in Figure
4.4b. The algebraic depletion of the k = 0 component of the cloud seems therefore
controlled mainly by U and/or J⊥.

2. In Figure 4.4c, the normalised exponential decay rate γ is higher than one. Besides,
the normalised decay rate seems to converge to unity as lattice depth increases. The
amplitude is also reduced as lattice depth is increased.

We conclude that increasing the lattice depth slows down the relaxation dynamics, both
in the exponential and the algebraic regimes. We also performed the same measurements
with Γsp = 73 s−1 and Γsp = 2200 s−1, but results are essentially the same and are not
shown here for clarity.

4.2.4 Dependence on dissipation rate

In a second series of experiment, we varied the spontaneous emission rate by changing the
dissipation laser power, fixing the horizontal lattice depth to V⊥ = 3.5ER (U/J⊥ ≈ 2).
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Figure 4.3: Time evolution of the fraction of atoms at zero momentum Pk=0 under dissi-
pation with varying V⊥ and fixed Γsp = 520 s−1. Dashed lines are exponential fits, solid
lines are algebraic fits, according to (4.14).
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Figure 4.4: Fitted parameters on the dissipative time evolution of Pk=0 for varying V⊥
and fixed Γsp = 520 s−1. α and A are respectively the exponent and the amplitude
characterising the evolution of Pk=0 in the algebraic regime. γ and G are respectively the
normalised decay rate and the amplitude for Pk=0 in the exponential regime.

The time evolution of Pk=0 under dissipation is plotted in Figure 4.5. The presence of two
regimes in the decay is again very clear. For all spontaneous emission rates, the product
Γsptcross is roughly 0.2 without any obvious dependence on the spontaneous emission rate.
The rightmost data points show the behaviour of Pk=0 without dissipation, a decay is
observed after 100 ms, probably due to heating from laser intensity fluctuations of the
lattice beams or three-body losses. This demonstrates that decay at shorter times can be
attributed to the dissipation laser. The fit parameters are shown in Figure 4.6.

1. In Figure 4.6a, the algebraic decay exponent α is almost constant around 0.7 and
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Figure 4.5: Time evolution of the fraction of atoms at zero momentum Pk=0 with varying
Γsp and fixed V⊥ = 3.5ER. Dashed lines are exponential fits, solid lines are algebraic fits,
according to (4.14). The rightmost points correspond to the bare lattice heating with no
resonant light.

slightly increases towards 1 as dissipation gets dominant over U and J⊥. This
confirms our previous conjecture that the algebraic depletion of the k = 0 component
of the cloud is controlled mostly by the Bose-Hubbard parameters U and/or J⊥. A
similar behaviour is observed for the amplitude, as seen in Figure 4.6b.

2. In Figure 4.6c, we see that the normalised exponential decay rate γ is again higher
than one and we observe a peculiar behaviour with respect to the spontaneous
emission rate, with a minimum corresponding to ~Γsp/U ≈ 0.1. The amplitude of
the initial exponential decay is however almost constant (Figure 4.6d).

4.2.5 Atom losses

The dissipation induced by the near-resonant laser not only destroys spatial coherences,
it also induces atom losses in the system. Figure 4.7 shows a typical time evolution of
the total atom number during dissipation. In order to characterise these losses, we fit the
time evolution of the total atom number Nat using an ad hoc function,

Nat(tdiss) =
N0

1 + (Γsptdiss/B)β
. (4.16)

This function provides an asymptotic exponent β for the decay. The coefficient B is a
normalised lifetime. The fit function captures well the dynamics, as shown in Figure 4.7.

The fit parameters for the experiments described in the last two sections, (Sections
4.2.3 and 4.2.4) are shown in Figure 4.8. The asymptotic exponent β decreases slightly
with lattice depth (Figure 4.8a), however no clear correlation is observed with the sponta-
neous emission rate (Figure 4.8c). The lifetime B decreases with the lattice depth (Figure
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Figure 4.6: Fitted parameters on the time evolution of Pk=0 for varying Γsp and fixed
V⊥ = 3.5ER. α and A are respectively the exponent and the amplitude characterising the
evolution of Pk=0 in the algebraic regime. γ and G are respectively the normalised decay
rate and the amplitude for Pk=0 in the exponential regime.
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Figure 4.7: Time evolution of the normalised total atom number Nat/N0. The solid line
is an empirical fit using (4.16). The dashed line shows the crossover time between the
exponential and the algebraic regimes. Parameters for this figure are identical to those in
Figure 4.2.

4.8b) and with the spontaneous emission rate (Figure 4.8d), and is close to unity. This
indicates that the losses are driven by the near-resonant laser and the spatial confinement
of the atoms.

The observation that the lifetime of the atomic sample is close to Γ−1
sp when dissipation

or atomic confinement are strong enough confirms that light-induced interactions might
be at the heart of the observed loss mechanism (DePue et al. 1999; Vuletić et al. 1999).
For completeness, we consider a number of other possible loss mechanisms in the following.

• Photoassociation resonances have been reported for 174Yb in Tojo et al. (2006)
and Kim et al. (2016). They are all located at negative detunings from the inter-
combination transition. The closest one is the prevailing resonance with respect to
our experiment and is located at −4.2 MHz from the inter-combination transition.
With our chosen laser detuning δL = +15Γg, the two-body loss rate K2 induced by
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Figure 4.8: Fitted parameters on the time evolution of the total atom number for both set
of experiments described previously. (a-b) Varying horizontal lattice depth as in Section
4.2.3. (c-d) Varying spontaneous emission rate as in Section 4.2.4. Losses seem to be
enhanced by the lattice depth and the spontaneous emission rate.

this photoassociation resonance is (Kim et al. 2016)

K2 ≈ 0.18 s−1 × P

1 µW
× n0

1014 cm−3 , (4.17)

which is very small compared to Γsp for the densities n0 ≈ 1014 cm−3 explored in the
experiment (K2n0/Γsp ≈ 10−3). We thus neglect the possible role of photoassocia-
tion to a bound state in our experiment. The light-induced collisions are possibly
due to purely repulsive potentials that do not support any bound state (Chin et al.
2010).
• The lifetime of the excited 3P1 state is smaller than 1 µs. Thanks to the time-of-

flight expansion of 20 ms, all atoms have decayed back to the ground state when the
image is taken and as such the reduction in atom number cannot be attributed to
a reduction in detection efficiency.
• The observed reduction in atom number is therefore purely due to processes that

expel atoms from the trap. Due to the chosen positive laser detuning, the dissipation
laser beam adds a repulsive force on the atoms, but the laser beam waist is much
bigger than the atomic sample and the induced acceleration is then negligible.
• Another process for losses is three-body recombination. As shown in Section 3.1,

for horizontal lattice depth around 25ER, deep in the Mott insulator regime, filling
fractions in the lattice range from 1 to 3. We thus expect an average filling fraction
between 1 and 2 in our system. The typical decay time for triplets at horizontal
lattice depths around 10ER is about 500 ms, which is much bigger than the typical
loss time Γ−1

sp . As described in the next section, dissipation fosters the creation of
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas

higher occupation numbers in the lattice, which are prone to three-body recombi-
nations with an enhanced rate. The lifetime of a site with eight atoms reduces to
10 ms, and is still bigger than the observed loss time.

4.2.6 Overview

In this section we have observed the unconventional relaxation dynamics of a superfluid
submitted to spontaneous emission. We have characterised the coherence properties of the
atomic sample using a simple observable Pk=0 in various experimental conditions. The
relaxation dynamics always exhibit a drastic slowing down from an exponential decay
to an algebraic decay with a power-law exponent smaller than one. This suggests a
sub-diffusive behaviour that we attribute to the presence of interactions between atoms.
These interactions are mostly controlled by the optical lattice parameters themselves, as
observed in the dependence of the power-law exponent with respect to the lattice depth.

Incidentally, the spontaneous emission rate seems to affect mostly the initial decay,
which might be an indication of super-radiant effects. In these conditions, we can also
expect dipole-dipole interactions to play a significant role. Both effects are addressed in
the next chapter. Interactions might also be responsible for the observed strong atom
losses through light-assisted collisions for example (DePue et al. 1999).

4.3 Dissipative Bose-Hubbard model

In the last section, we observed that the dynamics of a superfluid under dissipation ex-
hibit a relaxation dynamics with a power-law exponent smaller than one. We attributed
this unconventional algebraic relaxation to interactions between atoms. Incidentally, the
interplay between dissipation and interactions in the system seems non-trivial. In this
section, I present a first theoretical approach to grasp the forces at play, and give key
elements for the understanding of the previous observations. Inspired by a theoretical
work on the decoherence of a bosonic many-body quantum system (Poletti et al. 2012;
Poletti et al. 2013), this approach provides a simple description of the dissipation that
permits to explore the long-term dynamics of the system in terms of Fock space diffusion.
Some strong approximations, which do not necessarily hold in our system, are necessary
to make progress and I discuss them at the end of the section.

4.3.1 Dissipation in optical lattices

In order to describe an absorption-spontaneous emission process for an atom in an optical
lattice, we introduce the following quantum jump operators Ĉ(u) (similar to the one
introduced in Section 4.1)

Ĉ(u) =
∑

sites i,j
bands l,m

〈wli| e−i(k0u−kL)·R̂ |wmj 〉 â
l†
i â

m
j . (4.18)

This operator describes the process of absorption of a laser photon with wavevector kL

and subsequent spontaneous emission of a photon in the direction u with wavevector k0.
This very general description can be simplified by keeping only local terms (i = j). This
is motivated by the fact that k0d = πλm/λ0 ≈ 2.3 is bigger than one (d = λm/2 is the
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lattice period). In the single-band approximation, we also neglect the contributions of
higher excited bands in the lattice (l = m = 0). This leads to a local dissipative operator

Ĉ(u) ' 〈w0
i | e−i(k0u−kL)·R̂ |w0

i 〉 â
0†
i â

0
i ≈ n̂i, (4.19)

where n̂i is the density operator on the site i. This holds in the limit of deep lattices.
This model which describes atoms undergoing local dissipation in an optical lattice

has been studied in details by Poletti et al. (2012). The main assumptions are the tight-
binding regime (only nearest-neighbour tunnelling), the single-band approximation and
the strictly on-site dissipation. Such a description is well suited for far-off-resonant light
scattering (from the optical lattice beams for example) but do not take into account either
resonant or collective effects (see Section 4.3.5 for a discussion).

4.3.2 Lindblad master equation

As described in Section 2.3, I consider a 2D Bose-Hubbard system described by the
following single-band Hamiltonian,

Ĥ = −J⊥
∑
〈i,j〉

(â†i âj + â†j âi) +
U

2

∑
i

n̂i (n̂i − 1) , (4.20)

where we discarded the external confinement for simplicity.
The dissipative evolution of an atomic sample in such a 2D Bose-Hubbard system can

be captured in the dynamics of its density matrix ρ̂ (Cohen-Tannoudji et al. 1992; Pichler
et al. 2010),

∂ρ̂

∂t
=

1

i~

[
Ĥ, ρ̂

]
+ κD̂[ρ̂], (4.21)

D̂[ρ̂] =
∑
i

n̂iρ̂n̂i −
1

2
n̂2
i ρ̂−

1

2
ρ̂n̂2

i , (4.22)

which describes both the unitary evolution of the system with Ĥ and the dissipation
process with D̂. The dissipative coupling to a Markovian environment is characterised
by a site-resolved density measurement strength κ and the operator D̂, defined using the
on-site density operators Ĉi ≈ n̂i. The measurement strength κ can be identified to the
spontaneous emission rate Γsp given in the sections above.

We consider a lattice of Ns sites with N atoms (filling fraction n̄ = N/Ns), and give a
Fock space representation of the density matrix

ρ̂ =
∑
n,m

ρnm|n〉〈m|, (4.23)

where |n〉 is a state of occupations numbers ni on each site i, i.e. n = (n1, ..., nNs).
The asymptotic steady-state ρ̂ss of (4.21) is a fully mixed state where all Fock state
configurations are equally likely (Poletti et al. 2012),

ρ̂ss =
∑
n

1

M
|n〉〈n|, (4.24)

whereM = (N+Ns−1)!/[N !(Ns−1)!] is the number of configurations in which N atoms
can be distributed between Ns sites.

The dynamics described by the master equation (4.21) results from the competition
between three different energy scales:
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1. dissipation with strength κ that causes damping and spatial coherence destruction,
2. coherent tunnelling with time ~/J⊥ that restores coherence over the lattice,
3. inter-atomic interactions that obstructs the dynamics due to the energy cost U .

The master equation (4.21) is valid only if spatial coherences are short-ranged, which is the
case for an initial Fock state, but not for a superfluid state. However, spontaneous emission
destroys long-range spatial coherences on a time ∼ κ−1. Poletti et al. (2013) identified
two time scales that separate three different regimes for the dissipative dynamics:

• An initial stage where long-range coherences decay exponentially because of dissi-
pation, on a time scale κ−1. This regime is not described by (4.21).
• A second, intermediate stage where relaxation slows down due to the interplay

between dissipation, tunnelling and interactions. In this regime, only local and
nearest-neighbour coherences remain, and the master equation (4.21) becomes valid.
Dissipation destroys spatial coherence and localises atoms in Fock space (due to the
form of the dissipator Ĉ ≈ n̂i). This is balanced by coherent tunnelling that restores
short-ranged spatial coherence, and on-site interactions that favours the creation of
small filling fraction Fock states.
• After a time t∗, the dynamics gets finally dominated by the population of rare

configurations in Fock space which correspond to the occupation of sites with a very
large number of atoms. In this thermalisation stage, the density matrix reaches its
uniform steady-state (4.24). The time scale t∗ associated with this final stage can
be much bigger than κ−1 if interactions or tunnelling time are big enough.

A crucial finding in Poletti et al. (2012) is to give an analytical expression for t∗ in the
limit where U dominates over J⊥ and κ:

t∗ =

(
U

J⊥

)2
n̄2

2κz
, (4.25)

with z the number of nearest neighbours. As mentioned before, this time scale is greatly
enhanced by the strength of interactions and separates well from the time scale κ−1. For
example, in 2D with z = 4, n̄ = 1 and U = 10 J⊥ (V⊥ ≈ 7.5ER), t∗ ≈ 12κ−1. In practice,
this thermalisation time scale might not be accessible.

Following the notation used in Poletti et al. (2013), I introduce the vector eji which
is 0 everywhere except at positions i and j where it takes respectively the values +1
and −1, i.e. n + ei+1

i = (n1, ..., ni + 1, ni+1 − 1, ..., nNs). Coherent tunnelling connects

Fock configurations separated by eji , and enables coherences of the type ρ
n+eji
n , with i, j

referring to nearest-neighbours.
Dissipation, represented by D̂, only affects the coherences and not the populations.

In the limit identified in Poletti et al. (2013), U, κ � J⊥, the coherences ρ
n+eji
n are slave

variables with respect to the populations ρnn: the faster evolution of ρ
n+eji
n averages out

to a time-dependent steady-state that follows the slower dynamics of the populations

ρ
n+eji
n

∣∣
ss
≈

J⊥
√
nj(ni + 1)

U(ni − nj + 1)− i~κ

(
ρnn − ρ

n+eji
n+eji

)
. (4.26)

This allows to write a secular master equation for the populations

d

dτ
ρnn = − n̄

2

z

∑
(i,j)

nj(ni + 1)

(ni − nj + 1)2 + ε2

(
ρnn − ρ

n+eji
n+eji

)
, (4.27)
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where τ = t/t∗ and ε = ~κ/U . The notation (i, j) refers to all nearest-neighbour pairs,
counted both ways. Such a summation is equivalent to a double sum over all lattice sites i
firstly, and their nearest-neighbours j secondly. A detailed derivation of (4.27) is provided
in Appendix B.2.

Master equation with a factorisation ansatz

In order to obtain predictions that can be compared with our experimental results, we
need to solve the master equation (4.27). A numerical solution of (4.27) seems out of
reach for realistic lattice sizes. Following again Poletti et al. (2013) we choose to perform
the approximation that the diagonal part of the density matrix factorises over all sites,

ρ̂ '
∏
i

(
+∞∑
ni=0

ρ(ni)|ni〉〈ni|

)
, with

∑
i

ρ(ni)ni = n̄. (4.28)

Using the factorisation ansatz (4.28), the master equation (4.27) reduces to a differ-
ential equation for the on-site occupation probability distribution ρ(n),

dρ(n)

dτ
=

∑
m,ν=±1

n̄2 (n+ δ1,ν)(m+ δ−1,ν)

(n−m+ ν)2 + ε2
[ρ(n+ ν)ρ(m− ν)− ρ(n)ρ(m)] , (4.29)

where δ±1,ν is the Kronecker delta. We use this form in the remainder of the section. The
master equation (4.29) preserves the norm and the mean occupation number,∑

n

ρ(n) = 1, and
∑
n

nρ(n) = n̄. (4.30)

However, fluctuations of the on-site occupation number ∆n are not preserved [∆n2 =∑
n (n− n̄)2 ρ(n)].

4.3.3 Anomalous diffusion in Fock space

Using (4.29), Poletti et al. (2013) described explicitly the relaxation dynamics to the
steady-state through the three distinct regimes mentioned earlier.

• During the initial stage the occupation number distribution broadens and long-
range correlations decay exponentially (if they already existed at all). The time
scale associated with this regime is κ−1.
• Then relaxation slows down drastically and an algebraic regime emerges. In this

second stage, the many-body state is already mainly a mixture of Fock state config-
urations with small filling fractions which belong to a decoherence-free subspace and
do not decay. However, the appearance of such configurations is slowed down by two
effects. First, nearest-neighbour tunnelling events partially restore coherences and
slow down relaxation. Second, on-site interactions add a cost to the creation of Fock
states with more than one atom, which also slows down relaxation. Additionally,
the broadening of the Fock space distribution ρ(n) with time is characterised by an
exponent equal to 1/2, indicating anomalous diffusion (compared to the Brownian
diffusion case where the exponent is equal to one). The time scale associated with
this regime is t∗, the time it takes for rare configurations of high occupation numbers
on a single site to get populated.
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas

• In the final regime, the density matrix reaches its steady-state expression (4.24)
with a stretched exponential evolution. This thermalisation stage is driven by the
population of rare configurations with high occupation numbers on a single site,
because of their suppressed probability to occur.

In the following we focus on the second stage, where the density matrix is mostly diagonal
with weak contributions of off-diagonal coherences between Fock configurations differing
by one-atom tunnelling events. Before solving (4.29) numerically, we consider the limit of
large filling fractions where analytical results can be obtained.

Continuum approximation for large fillings

A very insightful result is obtained in the limit of large filling fraction n̄ � 1. In this
case, the discrete variable n can be replaced by a continuous variable x 7→ n/n̄ ∈ R+

and the occupation number distribution becomes ρ(n) 7→ p(x)/n̄. The master equation
(4.29) then maps to a Fokker-Planck equation, as shown in Poletti et al. (2013) (see also
Appendix B.3 for more details), from which analytical results can be derived. In that
respect, and for times κ−1 ≤ t ≤ t∗, the solution of the master equation obeys a scaling
form f (Poletti et al. 2013), which takes a simple analytical expression in the limit of
weak dissipation, κ→ 0,

p(x, τ) =
1

τα
f

(
x− 1

τα

)
(4.31)

=
κ→0

1

4Γ(5/4)τ 1/4
e−(x−1)4/(16τ), (4.32)

where Γ is the Gamma function. Note that this scaling form is only valid in the window
κ−1 ≤ t ≤ t∗ and for a peaked occupation number distribution, i.e. ∆n� n̄ (Poletti et al.
2013).

In the limit of weak dissipation, the exponent α is 1/4, giving the scaling for the
broadening of the distribution ∆x2 ∝ τ 1/2. This demonstrates anomalous diffusion in Fock
space (more precisely sub-diffusion), much slower than the standard Brownian motion case
presented in Section 4.1 that is expected for non-interacting atoms, for which α = 1/2
and ∆x2 ∝ τ .

Numerical solution of the master equation

A numerical solution of (4.29) is shown in Figure 4.9 with the parameters U = 10 J⊥,
ε = 0.1, n̄ = 2 and t∗ = 50κ−1. The initial state is a Fock state with n̄ = 2. Figure 4.9a
shows the evolution of ρ(n) with time, the initial narrow distribution broadens with time
and reaches the asymptotic steady-state value ρss(n) =

t→∞
n̄n/(1 + n̄)n+1.

The width of the distribution ρ increases with time. This width characterises oc-
cupation number fluctuations. Figure 4.9b shows the time evolution of the normalised
width along with a power-law fit for τ ∈ [0.01; 0.1]. The exponent is ∼ 0.30, close to the
continuum limit prediction of 1/4, and also demonstrates anomalous diffusion.

4.3.4 Relaxation of spatial coherence

Long-range correlations decay during the first stage of the relaxation. In the second stage
we expect only short-ranged coherences to survive. These coherences are captured by the
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Figure 4.9: (a) Numerical integration of (4.29), the asymptotic distribution is plotted as a
black dashed line. (b) Normalised atom number fluctuations ∆n/n̄. The dashed line is a
power-law fit with exponent ∼ 0.30. For all these curves the parameters are: U = 10 J⊥,
~κ = 0.1 J⊥, n̄ = 2 and t∗ = 50κ−1. The algebraic regime κ−1 ≤ t ≤ t∗ thus corresponds
to τ ∈ [0.02, 1].

one-body nearest-neighbour correlator C1 defined as

C1 = 〈â†i âj〉|i−j|=1 =
∑
n,m
|i−j|=1

〈n|â†i âj|m〉 ρnm =
∑
n

|i−j|=1

√
nj(ni + 1)ρ

n+eji
n . (4.33)

Using the steady-state approximation for the density matrix coherences (4.26) and the
factorisation ansatz we get

C1 =
J⊥
U

+∞∑
n,m=0

(m+ 1)(n+ 1)

n−m− iε
[ρ(n)ρ(m+ 1)− ρ(n+ 1)ρ(m)] . (4.34)

Continuum approximation for large fillings

We can go further by considering the continuous distribution p(x) presented earlier. For
this we write ρ(n+ 1) = p(x+ 1/n̄)/n̄ ≈ p(x)/n̄+ p′(x)/n̄2 and thus

ρ(n)ρ(m+ 1)− ρ(n+ 1)ρ(m) ≈ 1

n̄3
[p(x)p′(y)− p′(x)p(y)] , (4.35)

where x = n/n̄ and y = m/m̄. The nearest-neighbour correlator then becomes

C n̄�1
1 =

J⊥
U

∫
R+2

dxdy
xy

x− y − iε/n̄
[p(x)p′(y)− p′(x)p(y)] . (4.36)

In the limit of weak dissipation, we can use the scaling form (4.31) and show that (see
Appendix B.3)

C n̄�1
1 ≈ ξJ⊥

U

1√
τ

=
ξn̄√
2z

1√
κt

with ξ = 2
Γ(3/4)

Γ(1/4)
≈ 0.6760, (4.37)

where Γ is the Gamma function. Note that this analytical result is identical to the one
obtained by Poletti et al. (2012) for a BEC in a double-well, and does not depend on
the microscopic parameters U and J⊥. In the algebraic regime, only nearest-neighbour
coherences remain, and we expect the 2D lattice to behave in a way similar to a collection
of double-wells. This is confirmed by the numerical calculation above.

In Figure 4.10b, a numerical computation of (4.36) is compared to the asymptotic
evaluation (4.37) with the scaling form. The agreement is good for times τ . 0.1.
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas

Numerical computation

A numerical computation of C1 from (4.34) is plotted in Figure 4.10a, along with a power-
law fit giving an exponent ∼ −0.54. This power-law exponent is remarkably close to the
−1/2 exponent found in the limit of large fillings (4.37).
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Figure 4.10: (a) Normalised nearest-neighbour correlator C1/n̄, the dashed line is a power-
law fit with exponent ∼ −0.54. The initial state is a Fock state with n̄ = 2 and the
parameters are: U = 10 J⊥, ~κ = 0.1 J⊥ and t∗ = 50κ−1. (b) Nearest-neighbour correlator
C n̄�1

1 in the continuum approximation. Dots are computed from (4.36). The solid line is
the asymptotic evaluation (4.37) with the scaling form (4.31).

Table 4.2 summarises our numerical investigation for various occupation numbers.
The initial state is always a Fock state with occupation number n̄. The case n̄ = 1 differs
substantially from the scaling limit, but this is not a surprise since it is very far from the
continuum approximation underlying the scaling prediction.

Occupation number n̄ 1 2 3

t∗ [κ−1] 12 50 110
∆n/n̄ exponent 0.44 0.30 0.26
C1/n̄ exponent -0.21 -0.54 -0.56

Table 4.2: Fitted power-law exponents for atom number fluctuations and nearest-
neighbour correlator for different mean occupation numbers n̄.

4.3.5 Limitations

The previous analytical description makes use of various assumptions that do not nec-
essarily hold in our system. Here I summarise and discuss the limitations of the theory
presented in this section. For this I need to take the dissipation strength κ as the rate of
spontaneous emission Γsp used in our experiments.

1. As presented in Section 4.2, we expect inter-band transitions to occur over a time
scale of a few Γ−1

sp . The single-band approximation therefore does not hold.

2. The treatment with a local density measurement Ĉ ∝ n̂i does not account for
resonant nor collective effects in light scattering. Such a simplified description of
atom-light interaction might not be sufficient to account for all the observations of
Section 4.2.
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4.3. Dissipative Bose-Hubbard model

3. The condition U � J⊥,Γsp used for the adiabatic elimination of the coherences is
not always verified in the experiments, where U/J⊥ is on the order of one for the
smallest horizontal lattice depths.

4. Atom losses (see Section 4.2.5) can also affect the dynamics, even though we disre-
garded this aspect by normalising the distributions. This is not at all included in
the model.

Influence of three-body recombination processes

The observed broadening of the occupation number distribution leads to the formation of
Fock states with relatively high n. In the experiment, these states are prone to three-body
recombinations, leading to atom losses. For example, the typical lifetime for three atoms
on the same site is a few hundred milliseconds, and decreases rapidly with increasing
occupation number. The method developed in this section cannot be used directly in
the presence of losses because they induce a coupling between different Fock subspaces,
complicating the calculation substantially. In order to incorporate these losses in the
model, we add by hand a loss term to the master equation (4.29),

dρ(n)

dt

∣∣∣∣
losses

= L3B [(n+ 3)(n+ 2)(n+ 1)ρ(n+ 3)− n(n− 1)(n− 2)ρ(n)] , (4.38)

where L3B characterises the rate of these losses. This procedure is justified provided that
the losses are slow enough to affect only the populations but not the coherences, which
requires L3Bn̄� κ.

In the experiment, the actual three-body recombination rate is around ~L3B ≈ 10−3 J⊥,
which corresponds to L3Bt

∗ = 0.5. A numerical computation of (4.29) including the loss
process (4.38) is shown in Figure 4.11. The initial state is a Fock state with n̄ = 2.
High occupation numbers are suppressed as expected but the relaxation dynamics is
qualitatively not much affected. The fitted exponents for the atom number fluctuations
and nearest-neighbour correlator are renormalised to respectively ∼ 0.33 and ∼ −0.52,
which does not differ much from the case where the losses are absent.
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Figure 4.11: (a) Numerical integration of (4.29) with three-body losses (4.38). The initial
state is a Fock state with n̄ = 2. (b) Normalised atom number fluctuations. The dashed
line is a power-law fit with exponent ∼ 0.33. For all these curves the parameters are:
U = 10 J⊥, ~κ = 0.1 J⊥, n̄ = 2, t∗ = 50κ−1 and L3Bt

∗ = 0.5.
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas

4.4 Relaxation dynamics in the algebraic regime

The theoretical analysis provided in Section 4.3 supports some of our observations, and
encourage a more detailed investigation. The early attempt to capture the relaxation dy-
namics from a simple observable presented in Section 4.2 can be improved for the algebraic
regime where only a few parameters are required to describe faithfully the experimental
momentum distributions. In this section, I present an analysis of the momentum distri-
bution profiles in the algebraic regime of the decay. I directly extract valuable quantities
from the profiles, such as band populations and correlators.

4.4.1 Momentum distribution description

We describe the momentum distribution for the system using the one-particle field op-
erator ψ̂(r, t) of an atom released from the optical lattice. The atomic density for long
times-of-flight is ntof(k) = 〈ψ̂†(k, ttof)ψ̂(k, ttof)〉 where k = Mr/(~ttof) is the rescaled po-
sition due to ballistic expansion. Assuming that interactions do not significantly modify
the expansion and that time-of-flight is long enough (Gerbier et al. 2008), the momentum
distribution is exactly determined by the following expression,

ntof(k) =
∑

bands n,m

Sn,m(k)Wn,m(k). (4.39)

Wn,m is a smooth envelope function given by the Fourier transform W of the on-site
Wannier function w: Wn,m(k) ∝ Wn(k)W ∗

m(k). Sn,m is a structure factor, given by the

Fourier transform of the first-order correlation function 〈ân†i âmj 〉,

Sn,m(k) =
∑

sites i,j

eik·(ri−rj)〈ân†i â
m
j 〉. (4.40)

In the algebraic regime we expect the coherences to be already short-ranged. We
therefore only keep local i = j, as well as the first three nearest-neighbour terms5:

1. the first neighbours are located at i = j ± (0, 1) and i = j ± (1, 0),
2. the second neighbours are on the diagonals i = j + (±1,±1),
3. the third neighbours are located at i = j ± (0, 2) and i = j ± (2, 0).

The initial state of our system is prepared in the fundamental band of the lattice and
spontaneous emission does not create coherences between bands. We therefore have for
the fundamental band:

S0,0(k) '
∑
i

〈â†iâi〉+
∑
〈i,j〉1

2〈â†iâj〉 [cos(kxd) + cos(kyd)]

+
∑
〈i,j〉2

2〈â†iâj〉 [cos(kxd+ kyd) + cos(kxd− kyd)]

+
∑
〈i,j〉3

2〈â†iâj〉 [cos(2kxd) + cos(2kyd)] . (4.41)

where we omitted the band index n = 0. d = λm/2 is the lattice period and 〈i, j〉m
denotes mth neighbour pairs. Band populations may evolve due to the coupling with the

5Note that we assume a perfect square symmetry for simplicity. This is fulfilled up to 10 % in the
experiment and we have not quantified the deviations.
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resonant laser. We keep only the lowest n = 4 energy levels to describe the distributions,
assuming that all degenerate excited bands are equally populated (the level n corresponds
to all bands (nx, ny) which satisfy n = nx + ny). We treat the components in the excited
energy levels (initially empty) as fully incoherent, i.e.

Sn,n(k) '
∑
i

〈ân†i â
n
i 〉 for n > 0. (4.42)

In the case where some long-range coherences remain, i.e. a BEC is still present, the
previous description must be amended. Inspired by the Bogoliubov theory of the weakly
interacting Bose gas, we write the annihilation operator âni ≈ αiδn,0 + δ̂ai, where αi is the

condensate order parameter, δn,0 is the Kronecker delta and δ̂ai is a perturbation with
zero expectation value in the fundamental band. The BEC structure factor reads

SBEC(k) ≈
∑

sites i,j

α∗iαj . (4.43)

We empirically model the structure factor SBEC by a Gaussian distribution G with variable
amplitude G but fixed width and centred on the distribution (the width is set to match
the central peak width at early times). This is motivated by the quadratic dependence in
space of the near-field phase correction terms (Gerbier et al. 2008).

We can finally write the approximate expression for the momentum distribution

ntof(k) ' GG(k)︸ ︷︷ ︸
BEC

+
3∑

m=0

Cm |W0(k)|2
∑
m1,m2

cos (m1kxd+m2kyd)︸ ︷︷ ︸
fundamental band

+
3∑

n=1

Pn |Wn(k)|2︸ ︷︷ ︸
excited energy levels

, (4.44)

with the normalisation condition
∫

d3k ntof(k) = Nat and m1, m2 chosen to match the
description in (4.41). We use the following short-hand notations:

C0 =
∑
i

〈â†iâi〉 , (4.45)

Cm =
∑
〈i,j〉m

2 〈â†iâj〉 for m ∈ {1, 2, 3}, (4.46)

Pn =
∑
i

〈ân†i â
n
i 〉 for n ∈ {1, 2, 3}. (4.47)

4.4.2 Experimental profiles and fits

We use the momentum distribution description given in (4.44) to fit the 2D experimental
profiles in the algebraic regime of the decay (tdiss ≥ tcross). Figure 4.12 shows typical one-
dimensional profiles obtained from cuts through the 2D profiles along one lattice axis.
The duration of the dissipation laser pulse tdiss increases from bottom to top. In Figure
4.12a, smooth solid lines correspond to the fits.

Figure 4.12b shows the residuals of the fit, they are comparable to the image noise
almost everywhere, which indicates that the model is sufficient to capture the profiles
adequately. A detailed discussion of the fitting procedure is given in Appendix B.4.
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Figure 4.12: Momentum profile evolution with respect to dissipation pulse time in the
algebraic regime of the decay with parameters V⊥ = 7.3ER and Γsp = 520 s−1. As
indicated by the vertical scale in the middle, dissipation pulse time grows upwards. (a)
Cuts along one axis of the optical lattice, smooth solid lines are fits. The atomic density
scale is not shown for clarity: the corresponding peak optical density is ODmax ≈ 0.1 for
the bottom curve. (b) Residuals of the fit.

4.4.3 Band population evolution

We obtain band populations from the best-fit parameters computed as described previ-
ously. The total population in the fundamental band P0 is obtained from the coefficients
C0 and given by

P0 =

∫
d3k C0 |W0(k)|2 = C0. (4.48)

Excited energy level populations Pn are readily obtained from the best-fit parameters.

In Figure 4.13, the time evolution of the relative population of the different energy
levels in the algebraic regime (tdiss ≥ tcross) is shown for fixed Γsp = 520 s−1 and various
horizontal lattice depths. We observe substantial inter-band transitions during dissipation.
The transfer to higher bands is suppressed as the horizontal lattice depth is increased.
The regime when excited band populations get non-negligible happens for Γsptdiss ≈ 1.

Atoms in excited bands have a higher tunnelling energy and a slightly reduced inter-
action energy compared to fundamental band atoms. This can modify the dynamics and
we therefore expect deviations from the single-band model presented in Section 4.3 when
the populations in higher bands become substantial, this is discussed below. A theoreti-
cal study and interpretation of the energy level population evolution is given in the next
chapter.
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Figure 4.13: Fitted relative populations in the various bands with respect to dissipation
pulse time. Γsp = 520 s−1 is the same for all curves.

4.4.4 Nearest-neighbour coherence evolution

We obtain spatial coherences in the fundamental band from the best-fit parameters com-
puted as described previously. In Figure 4.14, the time evolution of the nearest-neighbour
correlator C1 in the algebraic regime (tdiss ≥ tcross) is shown for Γsp = 520 s−1 and vari-
ous horizontal lattice depths. The axes are in double logarithmic scale. We performed
a power-law fit on the data points above the detection floor. The detection floor for the
evaluation of C1 is situated at around 0.015, and stems from the noise on the absorption
images. The results presented in Figure 4.14 are a compilation of the data presented in
Section 4.2.3, where we varied the horizontal lattice depth V⊥, and a more recent data set
taken during the writing of the manuscript (they are shown as filled and hollow points
respectively).

The decay of coherences seems algebraic for sufficiently large lattice depth (roughly
V⊥ & 7ER). We observe a departure from the power-law scaling at long times tdiss ≥ Γ−1

sp

for smaller lattice depth. This departure is less pronounced as lattice depth is increased.
While this could be consistent with the regime where excited energy level populations are
non-negligible, it might as well be predicted by the model presented in Section 4.3. Indeed,
the scaling form derived in the continuum approximation requires a peaked occupation
number distribution, this does not necessarily hold for the lowest lattice depth where the
initial distribution is expected to be broad.

Figure 4.15 presents the fitted exponents for the power-law decay of the nearest-
neighbour correlator corresponding to the set of experiments presented in Figure 4.14.
The exponents are close to one for low V⊥ and seem to converge to a value close to ∼ 0.5
as lattice depth is increased. This crossover from a standard diffusion to an anomalous
sub-diffusion is remarkably consistent with the prediction of Section 4.3.

In Figure 4.16, I show the fitted exponents for the algebraic decay of C1 corresponding
to the set of experiments presented in Section 4.2.4, where we varied the spontaneous
emission rate Γsp. The exponents seem to scatter above a value close to ∼ 1, compatible
with a standard diffusion in Fock space. However, due to the small value of the lattice
depth, the tight-binding and single-band approximations are dubious. In principle we
could also extract the further-neighbour correlators C2 and C3, but the signal was too
noisy to exhibit any feature.
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Figure 4.14: Fitted nearest-neighbour coherences with respect to dissipation pulse time.
Γsp = 520 s−1 is the same for all curves and lines are power-law fits. The estimated
detection floor is located at around 0.02 as indicated by the shaded area. The crossover
time tcross giving the start of the algebraic regime is displayed as a vertical dashed line.
Filled data points correspond to the experiments of Section 4.2.3, hollow data points
correspond to measurements taken several months later.
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Figure 4.15: Fitted exponents for the algebraic decay of the coherence C1 with varying V⊥
and fixed Γsp = 520 s−1. Filled data points correspond to the experiments of Section 4.2.3,
hollow data points correspond to measurements to measurements taken several months
later.
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Figure 4.16: Fitted exponents for the algebraic decay of the coherence C1 with varying
Γsp and fixed V⊥ = 3.5ER. Data correspond to the experiments of Section 4.2.4.

In conclusion, interactions seem to slow down the coherence relaxation dynamics. As
explained in Poletti et al. (2012), this interaction-induced impeding of decoherence stems
from the suppression of localisation processes and diffusion in Fock space as normally
induced by dissipation. Indeed, on-site interactions make high occupation numbers en-
ergetically onerous. As a final piece of evidence, we explore this interpretation of Fock
space diffusion in what follows.

4.5 Detection of Fock space dynamics through

inelastic losses

As demonstrated in the last section, interactions play a key role in the relaxation dy-
namics, leading to a sub-diffusive relaxation in momentum space. Thanks to the theoret-
ical framework developed in Section 4.3, we also understand this behaviour in terms of
anomalous diffusion in Fock space. Dissipation induced by spontaneous emission triggers
localisation in Fock space, followed by a much slower diffusion resulting from the com-
petition between on-site interactions, tunnelling and diffusion. In this section, I present
an experimental investigation of the Fock space dynamics induced by dissipation. This is
performed by measuring inelastic losses coming from three-body recombination events, a
robust signature of Fock states with more than three atoms.

4.5.1 Freezing the spatial dynamics to observe the Fock space
distribution

As before, we prepare superfluid phases at a given horizontal lattice depth V⊥ and submit
it to spontaneous emission with the dissipation laser. In order to probe the occupation
number dynamics in Fock space, we switch off the dissipation and freeze the density
distribution by a quench to deep lattice depth (∼ 25ER). The quench is performed
in 10 µs, fast enough to prevent any spatial redistribution during the quench but slow
enough to avoid inter-band transitions. We subsequently observe the evolution of the
atom number with respect to the hold time in the deep lattice.

In principle, we should observe (i) a first decrease (on the order of 100 ms) of the atom
number corresponding to sites with triple or higher occupancies, caused by three-body
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas
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Figure 4.17: Atom number decay after freezing for various dissipation times, the sponta-
neous emission rate is Γsp = 250 s−1 and the horizontal lattice depth is V⊥ = 8.6ER. The
insets show the evolution at short times. Solid lines are fits using the model presented in
Appendix B.5.
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4.5. Detection of Fock space dynamics through inelastic losses

recombination processes, (ii) a plateau when all highly-occupied sites have decayed to
singly- or doubly- occupied sites.

Figure 4.17 shows typical experimental sequences. The atomic ensemble is prepared
in a superfluid phase at a given V⊥. The dissipation laser is applied for a time tdiss and
then switched off while simultaneously quenching to deep lattice depth. We observe the
total atom number varying the hold time thold in the lattice.

As expected, we observe an initial decay of the atom number over a time thold ≤ 100 ms,
more pronounced as tdiss increases. However, we also observe a further decay with a much
longer time scale. Before discussing the dynamics of triply-occupied sites, we shall analyse
this long-time behaviour, which is the point of the next paragraph.

4.5.2 Calibration of the two-body loss rate

In order to understand the long-time decay of the atom number in the previously described
experiments, we studied the time evolution of the atom number without spontaneous
emission in deep lattices by preparing Mott insulator phases as in Chapter 3. Figure 4.18
shows the measurements. We observe a substantial reduction of atom loss when decreasing
the atom number, which we interpret as a consequence of a two-body loss mechanism.
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Figure 4.18: Atom number decay without spontaneous emission for Mott insulator phases
with different total atom numbers. The long-time decay is more pronounced as initial
atom number increases [from (a) to (d)].

In order to extract a loss rate from the measurements, we model the time evolution of
the system by assuming that tunnelling is negligible over the course of the decay and that
decay processes are purely local. We restrict the discussion to 2- and 3-body inelastic
processes with characteristic rates γk=2,3. The system of equations governing the time
dynamics in provided in Appendix B.5 and we recall it here (pn is the spatially-averaged
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas

probability of finding n atoms per site):

p0(t) = (1− e−2γ2t)p2(0) + (1− e−6γ3t)p3(0), (4.49)

p1(t) = p1(0), (4.50)

p2(t) = e−2γ2tp2(0), (4.51)

p3(t) = e−6γ3tp3(0). (4.52)

We analysed the data in Figure 4.18 with this set of equations, where we have truncated
the Fock space to n = 3 (no Mott shell with n = 4 or higher is expected, see Figure
3.2). We set γ3 to its expected value [using the three-body recombination rate L3 ≈
7× 10−30 cm6 s−1 measured in Fukuhara et al. (2009), see Appendix B.5]. The initial
probabilities and γ2 are free parameters. The results of this fit are shown in Figure 4.19.

The populations Nn = npn are plotted in Figure 4.19a. They are in rough agreement
with the theoretically expected value in the atomic limit at zero-temperature, computed
from our loading model (see Section 3.1). For high atom number, we observe a deviation
with a smaller occupation of triply-occupied sites, very similar to what we already observed
previously (see Figure 3.7).

The fitted two-body loss rate γ2 is shown in Figure 4.19b. It takes on a consistent
value when the atom number is sufficient. An average of the last three points gives
γ2 ≈ 5× 10−2 s−1. A further combined fit of the four data sets with a single γ2 common
to all sets returns γ2 ≈ 4.7(15)× 10−2 s−1.
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Figure 4.19: Best-fit parameters from the analysis of the data in Figure 4.18. (a) Mott
shell populations N1, N2 and N3 versus total atom number. Dashed lines are the expected
Mott shell populations in the atomic limit at zero-temperature (see Section 3.1). (b)
Fitted two-body loss rate γ2. Only the last three points are relevant since atom number
in doubly-occupied sites is too small for the first one.

4.5.3 Dynamics of triply-occupied sites

With the calibration of γ2, we can perform a quantitative analysis of the dynamics of
multi-occupied sites when spontaneous emission is present. We use the same model as
in the previous paragraph, fixing γ2 to its fitted value and γ3 to its expected value6 but

6Letting γ2 or γ3 as free parameters was not conclusive since 2- and 3-body processes can be mixed
up by the fit procedure. We decided to fix both and only let the populations as free parameters.
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4.6. Conclusion

leaving the populations as free parameters. Three different data sets were taken, the
experimental parameters of which are summarised in Table 4.3 (data presented in Figure
4.17 correspond to the set 2).

Set Nat(0) V⊥[ER] V0,z[ER] γ3[s−1]

1 6.3× 104 5.5 25.9 0.21
2 6.4× 104 8.6 26.7 0.38
3 5.5× 104 27.4 26.7 1.48

Table 4.3: Experimental parameters for the study of triply-occupied site dynamics, as
shown in Figure 4.17.

The fit results are summarised in Figure 4.20, they are compatible with our previous
conclusions7:

1. we observe a small (but finite in Sets 1 and 2) population for triply-occupied sites
at short times, simply due to the occupation probability in the initial state,

2. then we measure a rise in the population occurring for times tdiss & tcross, compatible
with a dissipation-induced diffusion in Fock space.

We note that the rise of triply-occupied sites in the deep Mott insulator regime is quite
unexpected since density redistribution should be prohibited within the experimental
time scale due to the small value of the tunnelling time ~/J⊥ ≈ 100 ms. However, the
occurrence of inter-band transitions could be responsible for this rise in triply-occupied
sites, caused by enhanced tunnelling in the excited bands (~/J1

⊥ ≈ 3.5 ms ∼ Γ−1
sp ).
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Figure 4.20: Best-fit parameters from the analysis of atom losses for the three data sets
described in Table 4.3. The crossover times tcross giving the beginning of the algebraic
regime are displayed as vertical dashed lines. For all data sets Γsp = 250 s−1.

4.6 Conclusion

In this chapter, I have demonstrated anomalous momentum diffusion for an ultracold
atomic gas in optical lattices. I first recalled how dissipation with spontaneous emission

7Note that we also included n = 4 for this fit, but the fitted population N4 was zero almost everywhere
with big fit uncertainties. We thus do not show it.
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4. Anomalous momentum diffusion in an open Bose-Hubbard gas

affects the dynamics of a single atom, focusing on momentum diffusion and the loss of
spatial quantum coherences. I then showed our measurements displaying a dramatic
change in the relaxation of a superfluid subjected to spontaneous emission, the long-time
dynamics of which being governed by a ‘slow’ power-law decay. Thereupon, I described a
‘simple’ theoretical model which captures the main features of our observations. In this
model, inter-atomic interactions are essential to understand the slow down of relaxation, as
observed in the experiments. I then detailed two quantitative studies of the experimental
data providing evidence for anomalous sub-diffusion in momentum space. I could relate
these results to the theoretical model by comparing the predictions with our observation
of power-law exponents and site occupation distributions. While quantitative agreement
has been found, a number of experimental observations could not be explained by the
model:

• The relatively high rate in the exponential regime of the decay (see Figure 4.4).
• The weak dependence of the crossover on the spontaneous emission rate (see Figure

4.6).
• The observation of atom losses (see Section 4.2.5).
• The departure from power-law in the decay of coherences for shallow lattice depths

(see Figure 4.14).
• The rise of triply-occupied sites in the deep Mott insulator regime.

I shall address some of these discrepancies in the following chapter, but I can already
discuss them using simple arguments based on the band structure of the lattice. Substan-
tial inter-band transitions occur due to dissipation for times tdiss & Γ−1

sp . The dynamics of
excited atoms is a priori different from the one in the fundamental band. In Figure 4.21,
I show the ratio U/J⊥ and the time scale t∗ for atoms in the fundamental band n = 0
and for atoms in the first excited energy level n = 1. The interaction energy U for atoms
in the first excited energy level is calculated with the assumption that excited atoms are
not numerous and thus interact mostly with atoms in the fundamental band.
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Figure 4.21: Figures of merit for the validity of the model presented in Section 4.3 for
atoms in the fundamental band n = 0 and atoms in the first excited energy level n = 1.
In both curves the vertical gray dashed line denote the depth above which the first excited
band is bound. (a) Ratio U/J⊥. (b) Time scale Γspt

∗.

• For atoms in the fundamental band, the validity condition U � J⊥ for the model
developed in Section 4.3 occurs for V⊥ & 5ER (Figure 4.21a). This corresponds
roughly to the depth where momentum diffusion becomes anomalous with the ex-
ponent 0.5 (see Figure 4.15). Below this depth, the treatment is not valid any longer
and neither is the prediction of an algebraic decay with exponent 1/2.
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4.6. Conclusion

• Atoms in the first excited band are much more mobile. The first excited band is
bound only for V⊥ & 7.5ER. Moreover, U/J⊥ for that band is much smaller than
one for V⊥ . 8ER. This might explain the departure from the power-law regime
observed for depth V⊥ . 7ER.
• The observation of an algebraic regime in the decay of coherences is expected from

the model in Section 4.3 if the time scales Γ−1
sp and t∗ are well separated. This is

the case for atoms in the fundamental band for V⊥ & 5ER but not at all for atoms
in the first excited energy level (see Figure 4.21b). This goes along the previous
argument for the departure from the power-law regime at small lattice depth.
• The observed rise in triply-occupied sites in the Mott insulator regime ∼ 25ER is

possibly caused by atoms in the first excited energy level which can move in the
lattice, the tunnelling time ~/J1

⊥ at that depth is roughly Γ−1
sp . However, in this

regime, the time scales Γ−1
sp and t∗ are well separated and the behaviour of excited

band atoms should be close to the ones in the lowest band.
• The observed atom loss might also reflect the anomalous momentum diffusion if we

consider that those losses are a direct observation of the dynamics in Fock space. In
this way, note the similarity between the curves for the atom loss (Figure 4.7) and
the fraction of atoms at zero momentum Pk=0 (Figure 4.2a). Also, the exponent
characterising the atom loss (Figure 4.8a) is close to the exponent for the decay of
coherences (Figure 4.4).

Refining the theory to include short-time collective effects and excited bands is very
challenging. Especially for two dimensional systems for which we are not aware of a
theoretical framework encompassing this problem truly for realistic system sizes. We
have started a collaboration with the theory groups of Antoine Georges in Paris and
Corinna Kollath in Bonn to try to understand our observations better. With this in mind,
the same kind of experiments in a one-dimensional regime could be helpful to check with
theory, since exact numerical tools are available for that matter, for example with density-
matrix renormalisation group techniques (Verstraete et al. 2004; White et al. 2004). Such
experiments are readily achieved in the experiment by raising two lattice arms to their
maximal depth, thus preparing an ensemble of 1D tubes. One should then pay attention
to minimise the coupling between the tubes, by choosing cleverly the polarisation of the
dissipation laser for example. If light-induced dipole-dipole interactions play a significant
role in the dissipation dynamics, it might then be impossible to reach a true 1D regime
without preparing a single tube. A solution to this problem would then be to create the
tubes with a bigger spacing. While the use of far-infrared lasers for their long wavelengths
(for example CO2 lasers) are technically challenging, one can create bigger lattice spacings
using co-propagating beams with a small angle (Gross et al. 2011).
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5
Theoretical approach to the

relaxation dynamics in optical
lattices

Figure 5.1: Pictorial description of various effects related to spontaneous emission in
optical lattices. (a) The absorption of a laser photon (wavevector kL) and its subsequent
emission (wavevector k0u) can either leave an atom in place (see site 1), transfer an
atom to the next site (see site 2) or promote it to another band (see site 3). (b) The
absorption of a photon on a site with two atoms leads to an energy shift Udd associated
to the exchange of this photon between the two atoms, also called induced dipole-dipole
interaction. (c) Spontaneous emission for independent emitters (here 12 atoms contribute
to a rate 12 Γsp) is sketched on the top. Collective emission with a rate Λ a priori different
from 12 Γsp is sketched on the bottom. Figure designed with Marion Bouganne.

As presented in Chapter 4, the quantised motion of atoms subjected to spontaneous
emission in optical lattices exhibits a very unusual anomalous diffusion dynamics. This
diffusion dynamics was quantitatively explained and understood by a theoretical model
developed in Poletti et al. (2013) where inter-particle interactions in the fundamental
band play a crucial part. However, this model is only a minimal description of the very
rich physics of interacting atoms excited coherently by a laser and coupled to the electro-
magnetic field. In this chapter, I provide a description of this problem starting from
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5. Theoretical approach to the relaxation dynamics in optical lattices

a quantum master equation describing the coupling between the atoms and the electro-
magnetic field (Pichler et al. 2010). This framework allows me to characterise a number of
phenomena left out in the Poletti model: inter-band transitions, dipole-dipole interactions
or collective effects in light emission. I use this description to explain a number of our
experimental observations from Chapter 4.

Firstly, I present a single-particle quantum master equation and study the inter-
band transition dynamics, as well as light-induced tunnelling activated by absorption-
spontaneous emission cycles. Secondly, I generalise the treatment to many atoms, pro-
viding a many-body quantum master equation. This equation allows me to calculate the
magnitude of light-induced dipole-dipole interactions, leading to a shift of the on-site in-
teraction energy and to weak nearest-neighbour interaction. It also allows me to calculate
the importance of collective effects in the spontaneous emission rate. Finally, I compare
the theoretical predictions to our experimental observations and conclude the study by
highlighting the issues that remain open.

5.1 Theoretical description of spontaneous emission

by a two-level atom: the quantum optical

master equation

In this introductory section, I first consider a single atom (or a collection of non-interacting
ones) subjected to spontaneous emission in an optical potential. The goal is to justify the
expression of the master equation given in (5.14) and used in Section 5.2. The treatment
is generalised to the case of interacting atoms in Section 5.3.

5.1.1 Quantum theory of relaxation: the quantum master
equation

Here we first provide a concise account of the general theoretical framework. In order
to derive a useful equation of motion for a quantum system undergoing dissipation, we
distinguish a system of interest {the atom} from the other degrees of freedom grouped in
an environment or reservoir {the electro-magnetic field}. The unitary evolution of both
sub-systems, when isolated from each other is described by the Hamiltonian Ĥ0; we also
consider a coupling operator V̂ linking them. The exact equation of motion for the total
density matrix ρ̃tot, written in the interaction picture with respect to Ĥ0 (operators in
this picture are denoted with a tilde instead of a hat), is given by an integro-differential
equation (Cohen-Tannoudji et al. 1992)

dρ̃tot

dt
=

1

i~

[
Ṽ (t), ρ̃tot(0)

]
− 1

~2

∫ t

0

dt′
[
Ṽ (t),

[
Ṽ (t′), ρ̃tot(t

′)
]]
. (5.1)

Two essential assumptions are required to derive a simpler equation for the evolution of
the density matrix ρ̃s of the system of interest only:

• the first assumption is the factorisation of the total density matrix at all times
ρ̃tot ≈ ρ̃s⊗|∅〉〈∅|R, where |∅〉R is the vacuum state of the reservoir. This amounts to
neglecting the correlations between the atom and the reservoir, a detailed discussion
of this approximation is given in Cohen-Tannoudji et al. (1992);
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5.1. The quantum optical master equation

• the second assumption is the Born-Markov approximation, which allows to calculate
a coarse-grained speed of variation for ρ̃s which we use to approach dρ̃s/dt (Cohen-
Tannoudji et al. 1992).

These two assumptions lead to the general form of the master equation written in the
interaction picture,

dρ̃s

dt
= − 1

~2

∫ +∞

0

dτ TrR

{
Ṽ (t)Ṽ (t− τ) [ρ̃s(t)⊗ |∅〉〈∅|R] + [ρ̃s(t)⊗ |∅〉〈∅|R] Ṽ (t− τ)Ṽ (t)

}
+

1

~2

∫ +∞

0

dτ TrR

{
Ṽ (t) [ρ̃s(t)⊗ |∅〉〈∅|R] Ṽ (t− τ) + Ṽ (t− τ) [ρ̃s(t)⊗ |∅〉〈∅|R] Ṽ (t)

}
,

(5.2)

with the partial traces taken over the degrees of freedom of the reservoir.
The first line of (5.2) describes the decay of the populations and coherences and repre-

sent departure terms labelled Ã. The second line describes the growth of the populations
and coherences and represent feeding terms labelled B̃. We write (5.2) with the new
notations

dρ̃s

dt
= −(Ãρ̃s + ρ̃sÃ

†) + B̃[ρ̃s]. (5.3)

5.1.2 Hamiltonian and notations

Figure 5.2: Sketch of the
internal atomic structure.

The internal atomic structure is taken identical to the ex-
perimental situation in Chapter 4: a J = 0 ground state
|g〉 with zero energy and a J = 1 excited state mani-
fold |em〉 (m = 0,±1) with energy ~ω0 and width ~Γ (as
depicted in Figure 5.2). The Hamiltonian Ĥ0 of the un-
coupled {atom, electro-magnetic field} system is

Ĥ0 = Ĥem + Ĥat. (5.4)

Ĥem describes the electro-magnetic field vacuum, a bath
of harmonic oscillators. Each mode µ of the electro-
magnetic field is specified by a wavevector kµ and a po-

larisation vector εµ ⊥ kµ. The annihilation operator for a photon in mode µ is âµ and

Ĥem is given by:

Ĥem =
∑
µ

~ωµâ†µâµ. (5.5)

Ĥat refers to the atom and comprises a motional part describing the external degrees of
freedom and an internal part describing the internal degrees of freedom:

Ĥat = Ĥmotion + Ĥintern. (5.6)

We work in a first quantised formalism where the external degrees of freedom of the atom
are described by the position and momentum operators R̂, P̂ . The motional Hamiltonian
is given by

Ĥmotion =
P̂

2

2M
+ Vopt(R̂), (5.7)

where Vopt is a spatially dependent optical potential. The internal Hamiltonian is

Ĥintern = ~ω0P̂e, (5.8)

with P̂e =
∑

m |em〉〈em| the projector on the excited state manifold.
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5. Theoretical approach to the relaxation dynamics in optical lattices

5.1.3 Atom-light interaction

Vacuum field

Here we follow the well-established treatment in quantum optics, making the dipolar-
electric approximation1 in the Coulomb gauge (Cohen-Tannoudji et al. 1992). The atoms
and the electro-magnetic field are coupled by a dipolar-electric Hamiltonian

V̂vac = −D̂ · Ê⊥. (5.9)

D̂ is the electric dipole operator with components

D̂m = d|em〉〈g|+ d|g〉〈em|, (5.10)

with d the dipole matrix element of the transition. In the Coulomb gauge, the interaction
involves the transverse component of the electric field,

Ê⊥ = i
∑
µ

Eµεµeikµ·R̂âµ + h.c., (5.11)

with Eµ =
√

~ωµ/(2ε0L3). Here L is the size of the box with periodic boundary conditions
containing the system of interest, chosen much larger than all other relevant length scales
in the problem.

Laser field

We also consider the coupling with a near-resonant laser light field, taken as a plane wave
for simplicity, with frequency ωL and wavevector kL. The laser detuning from the atomic
transition is δL = ωL − ω0. The laser polarisation εL is linear along the quantisation axis
so that only the π-transition from |g〉 to |e0〉 is excited. The coupling operator is

V̂las =
~ΩL

2
ei(kL·R̂−ωLt)|e0〉〈g|+ h.c., (5.12)

where ΩL is the Rabi frequency quantifying the coupling. The quantum field generated
by the laser is described to a very good approximation by a coherent state. Here we only
consider its mean value because the number of photons in this mode is very large compared
to one, and corrections for that matter due to quantum fluctuations are negligible.

5.1.4 Single-particle master equation

We want to derive a master equation for the dynamics of an atom driven by a laser
field, in addition to its coupling with the electro-magnetic field vacuum. We perform a
Mollow transformation (Mollow 1975), which amounts to considering the external electro-
magnetic field as a product of a coherent state with a large number of photons and vacuum
in the other modes. The evolution due to the interaction of the atom with laser photons

1We focus on physical processes happening on a length-scale set by the photon wavelength and we
disregard the dynamics happening on the scale of the atom, except for the matter of the dipole transition
of interest.
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5.1. The quantum optical master equation

is given by [V̂las, ρ̂s]/(i~), and the relaxation due to the interaction V̂vac with the electro-
magnetic field vacuum is given by (5.2). In the Schrödinger picture the master equation
takes the form2

dρ̂s

dt
=

1

i~

[
Ĥat + V̂las, ρ̂s

]
− (Âρ̂s + ρ̂sÂ

†) + B̂[ρ̂s], (5.13)

where the explicit forms of the departure and feeding terms are given in Appendix C.3.

5.1.5 Adiabatic elimination for small saturation

The density matrix ρ̂s describes both motional and internal degrees of freedom of the
atom. As such we can split the internal description into reduced matrices describing the
external dynamics of the populations ρ̂s|gg, ρ̂s|ee and coherences ρ̂s|eg = ρ̂†s

∣∣
ge

.

The laser detuning from the atomic transition δL = ωL − ω0 is chosen such that the
saturation parameter s = Ω2

L/(2δ
2
L + Γ2/2) is much smaller than one. In that case, the

excited state population is negligible ( ρ̂s|ee � ρ̂s|gg) and the coherences ρ̂s|eg between the
excited and the ground states evolve much faster than the ground state population ρ̂s|gg.
This allows us to assume that the coherences and population of the excited state reach
their steady-state value much faster than the ground state population. These steady-
state values are calculated assuming constant ground state variables and then injected
in the equations describing the time evolution of ρ̂ = ρ̂s|gg. As a result the coherences
and population of the excited state adiabatically follow the time evolution of the slower
variables, this procedure is known as ‘adiabatic elimination’ of the excited state (Cohen-
Tannoudji et al. 1992).

With this procedure the master equation (5.13) for ρ̂s can be simplified in a master
equation for ρ̂s|gg, giving the time evolution of the external degrees of freedom of the atom
in the ground state only (Pichler et al. 2010). The single-particle master equation takes
on the form:

dρ̂

dt
=

1

i~

(
Ĥeff ρ̂− ρ̂Ĥ†eff

)
+ Γsp

∫
d2uN(u)ei(kL−k0u)·R̂ρ̂e−i(kL−k0u)·R̂, (5.14)

Γsp = Γ
s

2
, (5.15)

Ĥeff = Ĥmotion − i~
Γsp

2
, (5.16)

N(u) =
3

8π
[1− (u · εL)2]. (5.17)

N is the normalised directional factor for spontaneous emission (
∫

d2uN(u) = 1).

Lindblad form Such a master equation, describing the time evolution of a reduced
system under its coupling to an environment can be generally written in the Lindblad
form3 (Haroche et al. 2006). This can be done here using the quantum jump operators

Ĉ(u) = ei(kL−k0u)·R̂. With this (5.14) can be rewritten as:

dρ̂

dt
=

1

i~

[
Ĥmotion, ρ̂

]
+Γsp

∫
d2uN(u)

{
Ĉ(u)ρ̂Ĉ†(u)− 1

2
Ĉ†(u)Ĉ(u)ρ̂− 1

2
ρ̂Ĉ†(u)Ĉ(u)

}
.

(5.18)
2In the derivation of (5.13), we neglected the contribution of the photon recoil and of the Doppler

effect, which amounts to considering that all photons are emitted at a frequency ω ≈ ω0 = ck0.
3See Appendix B.1 for a reminder of the derivation of this equation.
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The reduced system time evolution is given by the unitary evolution under the Hamil-
tonian Ĥmotion and the occurrence of quantum jumps captured by the jump operators Ĉ
describing the change in motional state after an absorption-spontaneous emission cycle.
This master equation is used in the theoretical description of laser cooling (Dalibard et al.
1985) and we already introduced it to describe momentum diffusion in Chapter 4.

5.2 Dissipative dynamics of a single atom in an

optical lattice

In this section, I apply the single-particle master equation (5.14) to derive predictions for
the time evolution of an atom subjected to spontaneous emission in an optical lattice.
I first introduce the Lamb-Dicke regime of tight trapping. I then explore the dynamics
in a simple one-dimensional lattice, where I show the expected time dependence of po-
sition/momentum diffusion. I then show the importance of inter-band transitions and
extend the calculation to the more realistic 3D case to provide quantitative predictions
on the band population time evolution. I finally calculate tunnelling matrix elements
induced by the interaction with the near-resonant light.

5.2.1 Suppression of momentum recoil for tight trapping

The effects of spontaneous emission on the momentum of an atom can be strongly altered
by the presence of a trapping potential. I first introduce the Lamb-Dicke regime in the
simpler case of the harmonic potential, then I discuss what changes when the atom is
trapped in an optical lattice.

Harmonic trap and Lamb-Dicke regime

Here we consider the case of an atom trapped in a 1D harmonic potential with trapping
frequency ωho. The atom is illuminated by a resonant laser field. In the regime where
ωho � Γ, the quantised mode structure of the atom in the trap can be neglected and the
situation is not very different from the free space treatment characterised by a Brownian
diffusion in momentum space (Wineland et al. 1979). The situation in the opposite limit
of tight-trapping changes radically. When ωho � Γ, the motional states of the trapped
atom are well-resolved in the excitation spectrum. The square of the matrix element
〈n| eik0x̂ |0〉 describing the laser-induced coupling between the ground state |0〉 and an
excited motional state |n〉 is

L0↔n
ho = | 〈n| eik0x̂ |0〉 |2 = e−η

2 η2n

n!
. (5.19)

The parameter describing the ‘binding strength’ is the so-called Lamb-Dicke parameter
η = k0σho/

√
2, with the harmonic oscillator length σho =

√
~/(Mωho) (Wineland et al.

1979). In the Lamb-Dicke regime, where η � 1, the transitions for which the motional
state changes are strongly suppressed: L0↔n

ho /L0↔0
ho = η2n/n! � 1 for n > 0 (see Figure

5.3). Therefore, spontaneous emission does not modify the motional degrees of freedom
of a tightly-trapped particle, leading to a recoil-free spontaneous emission.

This phenomenon is very similar to the Mössbauer effect in nuclear physics in which
the nucleus of an atom in a crystal can be probed without recoil, the photon momentum
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5.2. Dissipative dynamics of a single atom in an optical lattice

being absorbed by the crystal as a whole. The Lamb-Dicke regime is paramount for laser
cooling and was successfully used to cool down ions to the motional ground state in linear
Paul traps (Diedrich et al. 1989; Monroe et al. 1995), and later with neutral atoms in
deep 1D optical lattices (Perrin et al. 1998; Vuletić et al. 1998).

Optical lattices

In the limit of infinitely deep optical lattices, one recovers the case of a tight harmonic
trap [see (1.14)in Section 1.2]. For finite lattice depths however, and even in a regime
described by a tight-binding Hubbard Hamiltonian, the harmonic trap approximation
can be dubious. The recoil due to absorption-spontaneous emission processes can transfer
atoms from the lowest band of the lattice to higher bands (provided Γ is much larger than
the band gaps). In optical lattices, localised states are described by Wannier functions w
which do not have direct analytical expressions (see Section 1.2). We compute numerically
the factor L defined in one-dimension by the square of a matrix element

Ln↔m =
∣∣〈wm0 (x)| eik0x̂ |wn0 (x)〉

∣∣2 , (5.20)

where n,m are the band indices. In sufficiently deep lattices, above a few recoil energies,
the Wannier functions are exponentially localised so that matrix elements between neigh-

bouring sites of the type
∣∣〈wm1 (x)| eik0x̂ |wn0 (x)〉

∣∣2 are suppressed and negligible. Figure
5.3a shows the comparison between the Lamb-Dicke factors L0↔n and the harmonic os-
cillator case L0↔n

ho . The agreement is excellent for deep lattices but substantial deviations
arise for depths smaller than ten recoil energies, which correspond to the regime of the
experiments presented in Chapter 4. In particular, the ratio L0↔1/L0↔0 is higher in an
optical lattice than in the harmonic oscillator case.
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10−2

10−1
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L0
↔
n

n = 0

n = 1

n = 2

n = 3

Figure 5.3: Lamb-Dicke factors L0↔n for a 1D sinusoidal potential (solid lines) calculated
from (5.20), and L0↔n

ho for a harmonic oscillator potential (dashed line) calculated from
(5.19).

Lamb-Dicke factors

Due to the anisotropy of the optical lattice used in Chapter 4, we numerically computed
the Lamb-Dicke factors Ln↔m as defined previously for both the vertical direction z and
the horizontal directions ⊥. The results are given in Table 5.1. None of the Lamb-Dicke
parameters L0↔1 are very small compared to one. We thus expect inter-band transitions
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to occur over a time scale of a few Γ−1
sp , in line with the observations of the last chapter

(see Section 4.4.3).

Direction Depth [ER] L0↔0 L0↔1 L0↔1/L0↔0

z 27 0.82 0.16 0.2
⊥ 3.5 0.48 0.30 0.6
⊥ 13 0.73 0.22 0.3

Table 5.1: Lamb-Dicke factors for the relevant lattice depths explored in the experiments
presented in last chapter.

5.2.2 Inter-band transitions in a 1D optical lattice

The previous discussion suggests that inter-band transitions cannot be ignored. We thus
look at the dynamics of a single atom using the Bloch basis to explore the time-evolution
of the bands population. We apply the master equation (5.14) to the example of an atom
moving in a 1D optical lattice with period d:

Ĥmotion =
P̂ 2
x

2M
+ V0 sin2

(
πx̂

d

)
. (5.21)

We note |n, q〉 the Bloch waves in the 1D lattice for band n and quasi-momentum q. We
are interested in the evolution of the populations in this basis:

Πn
q = 〈n, q| ρ̂ |n, q〉 . (5.22)

We project (5.14) on the Bloch waves basis to obtain the time evolution of the populations:

dΠn
q

dt
= −ΓspΠn

q + Γsp

∫
d2uN(u) 〈n, q| e−i(k0u−kL)·R̂ρ̂ei(k0u−kL)·R̂ |n, q〉 , (5.23)

where we used the fact that the Bloch waves are eigenvectors of the motional Hamiltonian,
i.e. 〈n, q| [Ĥmotion, ρ̂] |n, q〉 = 0. The atom is compelled to move in one space dimension x
and we define a reduced directional factor integrated over the two perpendicular directions
y, z:

N ′(ux) =
3

8

(
u2
x + 1

)
Θ [1− |ux|] , (5.24)

with the normalisation
∫

duxN
′(ux) = 1 and where Θ is the Heaviside step function.

Equation (5.23) becomes

dΠn
q

dt
= −ΓspΠn

q + Γsp

∫
duN ′(u) 〈n, q| e−ik0ux̂ρ̂eik0ux̂ |n, q〉 . (5.25)

The first term in (5.25) is a departure from the state |n, q〉 after absorption of a photon, it
gives an exponential-like decay. The second term describes the feeding from other Bloch
waves |n′, q′〉 6= |n, q〉 due to spontaneous emission. We now introduce the matrix elements
α given by:

αn,n
′

q,q′ (k) = 〈n′, q′| eikx̂ |n, q〉 , (5.26)
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for which an explicit expression is provided in Appendix C.1.1. Inserting two resolutions
of identity in (5.25) leads to

dΠn
q

dt
= −ΓspΠn

q + Γsp

∫
duN ′(u)

∑
n1,n2

∫
dq1dq2

[
αn,n2
q,q2

(k0u)
]∗
αn,n1
q,q1

(k0u) 〈n2, q2| ρ̂ |n1, q1〉 .

(5.27)

The product of the matrix elements α does not vanish if and only if q1 = q2 (see
Appendix C.1.2 for a proof), which stems from momentum conservation. Additionally,
we make the approximation that coherences between different bands of the lattice can be
neglected

〈n2, q
′| ρ̂ |n1, q

′〉 ≈ Πn1

q′ δn1,n2 . (5.28)

Such a secular approximation (Cohen-Tannoudji et al. 1992) is safe because: (i) the initial
state is in the fundamental band with zero initial coherences, (ii) coherences created by
spontaneous emission are small and decay much more rapidly than populations. We then
have a simplified master equation:

dΠn
q

dt
≈ −ΓspΠn

q + Γsp

∑
n′

∫
dq′Πn′

q′

∫
duN ′(u)

∣∣∣αn,n′

q,q′ (k0u)
∣∣∣2 (5.29)

= −ΓspΠn
q + Γsp

∑
n′

∫
dq′Πn′

q′ β
n,n′

q,q′ . (5.30)

The set of differential equations (5.30) forms a closed set for the populations, which can

be numerically integrated. Extending the result from Appendix C.1.1 concerning αn,n
′

q,q′ ,

the normalised rates βn,n
′

q,q′ ensure momentum conservation and band transfer (in the tight-

binding limit we have βn,n
′

q,q′ ∝ Ln↔n
′
). In the following we restrict our discussion of the 1D

case to a short times expansion where an analytical result can be obtained. Integration
for longer times is performed in the 3D case in Section 5.2.3.

Short times expansion

The atom is initially prepared in the lowest Bloch band of the lattice Πn
q (0) = Π0δ0,nδ

(1)(q).
We can calculate the evolution of the populations perturbatively, at short times, replacing
Πn
q by its initial value on the right-hand-side of (5.30):

Πn
q (t) ≈ Π0δ0,nδ

(1)(q)(1− Γspt) + Π0β
n,0
q,0 Γspt. (5.31)

The normalised rate of transfer βnq = βn,0q,0 to the state |n, q〉 is given by the integral:

βnq =

∫ 1

−1

du
3

8
(u2 + 1)

∣∣αn,0q,0 (k0u)
∣∣2 . (5.32)

Figure 5.4a shows βnq for V0 = 10ER. The transfer rate to higher bands follows the
expectation from Lamb-Dicke factors (see Figure 5.3), in particular excitation to the
first band is substantial. Strong redistribution in quasi-momentum space following from
momentum conservation is observed.
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Figure 5.4: 1D lattice with orthogonal dissipation laser wavevector and polarisation. (a)
Initial normalised rate of change βnq [defined in (5.32)] of the population Πn

q for a lattice
depth V0 = 10ER. The observed discontinuities are due to the folding in quasi-momentum
space. Indeed, spontaneous emission redistributes momentum on an interval with ex-
tremal values ±k0, which are bigger than the first Brillouin zone. In quasi-momentum
space, this results in a folding of the emission spectrum. Discontinuities exactly happen at
the folding values ±k0 ∓ 2π/d (or q ≈ ±0.63π/d). (b) Integrated matrix elements W0↔n

[defined in (5.33)] for the first four bands. The dashed lines are the predictions W0↔n
ho

[defined in (5.34)] for the harmonic oscillator case.

Transfer rates

We can compare our numerical estimation of the matrix elements α with the exact values
known for a harmonic oscillator (see the discussion in Section 5.2.1). The integrated
transfer rate from band 0 to band n in an optical lattice is given by:

W0↔n =

∫
dq βnq =

∫
dq

∫ 1

−1

du
3

8
(1 + u2)

∣∣αn,0q,0 (k0u)
∣∣2 . (5.33)

We can compare this quantity with the expectation from the harmonic oscillator with
frequency ωho and length xho =

√
~/(Mωho), the Lamb-Dicke parameter is η = k0xho/

√
2:

W0↔n
ho =

∫ 1

−1

du
3

8
(1 + u2)L0↔n

ho (k0u) =

∫ 1

−1

du
3

8
(1 + u2)e−(ηu)2 (ηu)2n

n!
. (5.34)

Figure 5.4b shows both transfer rates versus lattice depth. The agreement is excellent in
the limit of high lattice depth, where the harmonic oscillator approximation is legitimate.
However substantial deviations arise at low lattice depth, where the transfer rate to the
first band is larger in the optical lattice case. We conclude that the Lamb-Dicke approx-
imation is not sufficient and that band structure calculations are necessary for a precise
estimation of the transfer rates.
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5.2.3 Inter-band transitions in a cubic optical lattice

We now apply the master equation (5.14) to the case of an atom moving in a cubic lattice,
which corresponds to our experimental situation:

Ĥmotion =
P̂

2

2M
+ V⊥ sin2

(
πx̂

d

)
+ V⊥ sin2

(
πŷ

d

)
+ V0,z sin2

(
πẑ

d

)
. (5.35)

The near-resonant laser field illuminating the atom is a plane wave which propagates along
the vertical direction and π-polarised along ex + ey. We note |n, q〉 the Bloch functions
in the 3D lattice for band n = (nx, ny, nz) and quasi-momentum q = (qx, qy, qz). We are
interested in the evolution of the populations in this basis:

Πn
q = 〈n, q| ρ̂ |n, q〉 . (5.36)

As in the previous 1D case, we project the master equation (5.14) on the Bloch waves
basis to obtain the time evolution of the populations. The same derivation applies and
we also make the approximation that coherences between different bands of the lattice
can be neglected. This leads to a system of differential equations for the populations:

dΠn
q

dt
= −ΓspΠn

q + Γsp

∑
n′

∫
d3q′Πn′

q′ β
n,n′

q,q′ . (5.37)

Integration along the vertical direction

Since we are only interested in the evolution in a plane perpendicular to the laser prop-
agation, we can integrate over nz and qz. This considerably alleviates the numerical
computation. Indeed, the 3D Bloch waves are given by a product of 1D Bloch waves,
because of the separability of the optical potential. This extends to the β coefficients so

that βn,n′

q,q′ = β
nx,n′

x

qx,q′x
β
ny ,n′

y

qy ,q′y
β
nz ,n′

z

qz ,q′z
. Moreover, after integration over nz and qz, the coefficients

βn,n′

q,q′ do not depend on n′z nor q′z any longer. This is clear with the following equality:

∑
nz

∫
dqz β

nz ,n′
z

qz ,q′z
=
∑
nz

∫
dqz 〈n′z, q′z|eik0(uz−1)z|nz, qz〉〈nz, qz|e−ik0(uz−1)z|n′z, q′z〉 = 1.

(5.38)
We now denote with an upper bar a quantity that has been integrated over nz and qz.
The differential equation (5.37) becomes:

dΠ
n

q

dt
= −ΓspΠ

n

q + Γsp

∑
n′
x,n

′
y

∫
dq′xdq

′
y Π

n′

q′ β
n,n′

q,q′ . (5.39)

Short times expansion

The atom is initially prepared in the lowest Bloch band of the lattice Πn
q (0) = Π0δ0,nδ

(3)(q).
We calculate the evolution of the populations perturbatively, replacing Πn

q by its initial
value in the right-hand-side of (5.37). This gives

Πn
q (t) ≈ Π0δ0,nδ

(3)(q)(1− Γspt) + Π0β
n,0
q,0 Γspt. (5.40)
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The initial rate of change βn
q = βn,0

q,0 of the population Πn
q normalised by Γsp is given by

the integral:

βn
q =

∫
d2uN(u)

∣∣αn,0
q,0 (k0u− kL)

∣∣2 . (5.41)

Figure 5.5 shows the initial normalised rate of change β
n

q for V0 = 10ER and the first
four horizontal energy levels. The level n corresponds to all bands (nx, ny) which satisfy
n = nx + ny. Quasi-momentum redistribution is manifest. In contrast with the previous
1D case, quasi-momentum can now redistribute in all space directions. At short times
it is given by a folded version of the spontaneous emission spherical distribution in free
space. Inter-band transitions occur mostly towards the first energy level.

Longer times computation

A numerical integration of (5.39) is shown in Figure 5.6 for the first four energy levels
(labelled n = 0..3). Some considerations on how to compute the coefficients β are given
in Appendix C.1.3. Transitions to higher energy levels is manifest after a few Γ−1

sp . The
short times expansion is valid up to t . Γ−1

sp .

Conclusion

The computation of inter-band transitions was best performed in the Bloch basis, which
is the natural basis to describe the spectrum of the lattice problem (5.35). In this study
we noted substantial transfer to the first excited energy levels, and significant quasi-
momentum redistribution. Both effects strongly alter the spatial motion of the atom
subjected to spontaneous emission. The study of the spatial dynamics in the tight-binding
regime is best performed in the Wannier basis, which is the topic of the next paragraph.

5.2.4 Spatial diffusion in a 1D optical lattice

As a complementary analysis of the dissipative dynamics in an optical lattice, we now
characterise the spatial diffusion of the atom. We thus consider a tight-binding, single
band description of the optical lattice. The near-resonant laser field illuminating the
atom is a plane wave which propagates perpendicularly to the lattice (kL = kLey) and
π-polarised (εL = ez).

The Hamiltonian of the system in the Wannier basis is

Ĥmotion = −J
∑
i

|wni 〉 〈wni+1|+ h.c., (5.42)

with J the tunnelling energy. We project the master equation (5.14) on the Wannier basis
to obtain the populations and spatial coherences in the lattice, ρi,j = 〈wn=0

j | ρ̂ |wn=0
i 〉. We

start with an atom in the fundamental band and omit the band indices. We perform
again a projection on the lattice axis [N ′(u) = 3/8(u2 + 1)Θ(1− |u|)]:

dρi,j
dt

=
1

i~
〈wj|

[
Ĥmotion, ρ̂

]
|wi〉 − Γspρi,j + Γsp

∫
duN ′(u) 〈wj| e−ik0ux̂ρ̂eik0ux̂ |wi〉 (5.43)

≈ J

i~
(ρi,j±1 − ρi±1,j)− Γspρi,j + Γsp

∑
k,l

ρk,l

∫
duN ′(u) 〈wj| e−ik0ux̂ |wl〉 〈wk| eik0ux̂ |wi〉 .

In the last line we have neglected feeding of the fundamental band from excited ones for
simplicity. However, the decay from the fundamental band is taken into account.
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Figure 5.5: Initial rate of transfer β
n

q integrated along the vertical direction, for V⊥ =
10ER and the first four energy levels n. The diagrams can be understood as a folded
version of the spherical dipole pattern due to spontaneous emission in free space. As
already mentioned in the 1D case, since k0 > π/d, the sphere of spontaneous emission
exceeds the first Brillouin zone and gets folded back on the opposite sides.
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Figure 5.6: Numerical integration of (5.39), shown as solid lines, for the first four bands
and V⊥ = 10ER. The black solid line indicates the total population in the first four energy
levels, which decreases slightly when t & 5Γ−1

sp as higher bands get populated. The dashed
lines show the computation using the short times expansion of (5.40). (a) Linear scale on
both axes. (b) Logarithmic scale on both axes to zoom on the short times behaviour.
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Initially localised state: spatial diffusion

We numerically solve the set of differential equations defined by (5.43) with an atom
initially prepared in the center of the lattice. Numerical calculations are performed on a
lattice with 64 sites with periodic boundary conditions and the Wannier basis is calculated
for a lattice depth of V0 = 10ER. The spontaneous emission rate Γsp is chosen equal to the
tunnelling rate J/~. In Figure 5.7, we show the result of the numerical integration4. In
Figure 5.7a we show the time evolution of the position distribution, which broadens with
time. In Figure 5.7b we show the time evolution of the variance of the position distribution
∆x2. At short times, the diffusion is dominated by a ballistic expansion due to coherent
tunnelling, characterised by a quadratic dependence of ∆x2 with time. At longer times,
spontaneous emission takes over and the spreading of the wave packet becomes diffusive.
We retrieve the Brownian diffusion characterised by a linear dependence of ∆x2 with time.
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Figure 5.7: Numerical integration of (5.43) for a depth V0 = 10ER. The atom is initially
in the Wannier function of the lowest band in the centre of the lattice and Γsp = J/~.
(a) Position distribution in the lattice as a function of time. (b) Time evolution of the
variance of the position distribution ∆x2. At short times, the diffusion is dominated by a
ballistic expansion due to coherent tunnelling, characterised by a quadratic dependence of
∆x2 with time (slope two in logarithmic scales, dashed line). At longer times, spontaneous
emission comes into play and we retrieve the Brownian diffusion, characterised by a linear
dependence of ∆x2 with time (slope one in logarithmic scales, dotted line).

Initially delocalised state: loss of spatial coherence

We now numerically solve (5.43) with an initial Bloch state with zero quasi-momentum and
in the fundamental band, delocalised over the entire lattice. Otherwise the calculation
is performed with the same parameters as before. In order to measure the coherence
properties of the atom in the lattice we calculate the global spatial coherence function

F(i) =
∑
j

ρj,j+i, (5.44)

4Note that after integration the position distributions are normalised to eliminate the changes due to
inter-band transitions removing atoms from the fundamental band.
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which is the sum of all the spatial coherences between sites separated by i sites (see
Section 4.1.1). Figure 5.8 presents the results of this numerical integration. Figure 5.8a
shows the time evolution of F , the width of which shrinks with time. Figure 5.8b shows
the time evolution of the coherence length `c defined as the root-mean-square width of F .
The coherence length decreases exponentially with dissipation time. In Figure 5.8c, we
also show the peak amplitude Pk=0 of the momentum distribution defined as the Fourier
transform of F (see Section 4.1.1). It also exhibits an exponential decay towards zero.
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Figure 5.8: Numerical integration of (5.43) for a depth V0 = 10ER. The atom is initially
in the q = 0 Bloch wavefunction of the lowest band and we choose Γsp = J/~. (a) Global
spatial coherence function as a function of time. (b) Time evolution of the coherence
length `c of the atom in the lattice. The decay is exponential with a rate ∼ Γsp/2, as
can be seen by the straight line in semi-logarithmic scale. (c) Time evolution of the
momentum distribution amplitude Pk=0. The decay is also exponential with a rate ∼ Γsp.

Conclusion

A single atom subjected to spontaneous emission in a 1D optical lattice exhibits a diffusion
dynamics that is very different from the observations of the last chapter. In the study of
this section we noted what follows.

• Diffusion in position is characterised by a ballistic-to-diffusive expansion crossover
(see Figure 5.7).
• The loss of quantum coherences is exponential with a rate Γsp, both for the coherence

length `c and the probability density at zero-momentum Pk=0 (see Figure 5.8).

We believe that the extension to a 3D optical lattice would not qualitatively change these
statements and the only missing ingredient in the description of our experiments is the
presence of many atoms, and hence the presence of interactions.

This supports our conclusion that the experimental observation of an algebraic decay
can be viewed as a piece of evidence for unconventional relaxation dynamics coming from
atomic interactions.
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5. Theoretical approach to the relaxation dynamics in optical lattices

5.2.5 Tunnelling induced by the resonant light

In this section we address the following question: can a process of absorption-spontaneous
emission bring an atom from one site to another?

As was described in Chapter 1, atoms in an optical lattice move through coherent
tunnelling. The Hamiltonian part describing nearest-neighbour tunnelling is:

T̂ = −
∑

n,〈i,j〉

Jn
1 |wn

j 〉 〈wn
i | . (5.45)

We project the Hamiltonian part of the master equation (5.14) to obtain the evolution
due to tunnelling of the population on a given site, for example the site 0, 〈wn

0 | ρ̂ |wn
0 〉:

i~
d 〈wn

0 | ρ̂ |wn
0 〉

dt

∣∣∣∣
tunnel.

= 〈wn
0 |
[
T̂ , ρ̂

]
|wn

0 〉 =
∑
n.n. i

−Jn
1 〈wn

i | ρ̂ |wn
0 〉+ Jn

1 〈wn
0 | ρ̂ |wn

i 〉 .

(5.46)
Within a band, tunnelling couples the population to the neighbours coherences through
the tunnelling matrix elements Jn

1 . Coherent tunnelling increases with band index and
decreases with lattice depth.

Does a process of absorption-spontaneous emission induce such a tunnelling event?
We proceed to the same kind of calculation on the dissipative part of the master equation
(5.14). We are interested in the coefficients Tn

1 coupling the population 〈wn
0 | ρ̂ |wn

0 〉 to the
coherences 〈wn

i | ρ̂ |wn
0 〉, where i is a nearest-neighbour of the central site (a more complete

analysis of the tunnelling dynamics in the Wannier basis is provided in Appendix C.2):

Tn
1 = ~Γsp

∫
d2uN(u) 〈wn

0 | ei∆k·R̂ |wn
0 〉 〈wn

0 | e−i∆k·R̂ |wn
i 〉 . (5.47)
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Figure 5.9: Comparison between coherent and light-induced tunnellings for various lattice
depth V⊥. The rate of spontaneous emission is ~Γsp = 0.1ER.

As shown in Figure 5.9, the modification of tunnelling by spontaneous emission is
negligible. This stems from the coherent angular integration over the spontaneous emis-
sion directions which averages out the contributions of the finite Lamb-Dicke factors
〈wn

i | ei∆k·R̂ |wn
0 〉.
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5.3. Dipole-dipole interactions and collective effects in spontaneous emission

5.3 Dipole-dipole interactions and collective effects

in spontaneous emission

In this section, I go beyond the single-particle approach and derive a many-body master
equation equivalent to (5.13) which incorporate interactions in the model. I then concen-
trate on the specific features arising from the presence of the resonant laser field: induced
dipole-dipole interactions and collective effects in spontaneous emission. The excitation
created by the absorption of a photon can be shared between two atoms thanks to ele-
mentary emission and absorption processes. This exchange of photon modifies the energy
of the atom pair, leading to an effective interaction5 between the two atoms (Cohen-
Tannoudji 1974). In the master equation formalism presented in Section 5.3.1, this inter-
action appears in a Hamiltonian part V̂dd related to the interaction energy of a many-body
state, and a dissipative part γ̂coll related to the collective spontaneous emission rate of
the many-body state. In Section 5.3.3 I present a calculation of the energy shift induced
by the electric dipole-dipole interactions for two atoms on a same site. In Section 5.3.4 I
describe how collective effects can modify the spontaneous emission rate.

5.3.1 Master equation for many atoms subjected to
spontaneous emission

I use the formalism of second quantisation to deal with the many-body description of
the atomic ensemble. We consider an ensemble of bosons described by a field operator
Ψ̂(r). The internal atomic structure is identical to the one given in Section 5.1.2 with
a ground state |g〉 and an excited state manifold |em〉. The corresponding atomic field
operators are written Ψ̂g(r) and Ψ̂em(r). The Hamiltonian describing the atoms is made
of both motional and internal parts as before [see (5.6)] but also includes an interaction
term which captures the short-range atomic collision processes:

Ĥat = Ĥmotion + Ĥintern + Ĥcontact, (5.48)

Ĥmotion =
∑

α=g,em

∫
d3r Ψ̂†α(r)

{
− ~2

2M
∇2 + Vtrap(r)

}
Ψ̂α(r), (5.49)

Ĥintern =
∑
m

∫
d3r Ψ̂†em(r)Ψ̂em(r). (5.50)

The interaction term Ĥcontact encapsulates low-energy short-range collisions captured by
the scattering length (Ketterle et al. 1999).

The interaction between the atoms and the light field is still given by the dipolar-
electric coupling Hamiltonians in (5.9) and (5.12), which read in second quantised form:

V̂vac = −D̂ · Ê⊥, (5.51)

D̂m = d

∫
d3r Ψ̂†em(r)Ψ̂g(r) + d

∫
d3r Ψ̂†g(r)Ψ̂em(r), (5.52)

V̂las =
~ΩL

2
ei(kL·r−ωLt)Ψ̂†e,0(r)Ψ̂g(r) + h.c.. (5.53)

5Note that such an induced electric dipole-dipole interaction is different from the static dipole-dipole
interaction between two permanent dipoles.
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In principle, the atom-light interaction Hamiltonian also includes contact terms (Cohen-
Tannoudji 1974; Morice 1995). These terms can absorbed in Ĥcontact and we do not discuss
them further.

As before, we add independently the coherent evolution due to the interaction of the
atoms with laser photons [V̂las, ρ̂s]/(i~), and the relaxation due to the interaction V̂vac with
the electro-magnetic field vacuum given by (5.2). The resulting master equation is then
formally the same as (5.13).

Final master equation for the ground state variables

After adiabatic elimination of the excited state, we obtain a master equation for the
external degrees of freedom in the ground state (Pichler et al. 2010):

dρ̂

dt
=

1

i~

(
Ĥeff ρ̂− ρ̂Ĥ†eff

)
+ J [ρ̂]. (5.54)

Here Ĥeff is a non-hermitian Hamiltonian given by

Ĥeff = Ĥmotion + Ĥcontact + V̂dd −
i~
2

(γ̂sp + γ̂many) . (5.55)

The departure terms A[ρ̂] in (5.13) are included in the radiative terms of Ĥeff (V̂dd, γ̂sp

and γ̂many) whereas the feeding terms B[ρ̂] are included in the recycling term J (see also
Appendix C.3). From now on, we omit the g subscript in the field operators for simplicity,
i.e. Ψ̂ = Ψ̂g.

Ĥmotion is given by (5.49), considered only for the ground state. Ĥcontact contains the
description of short-range collisions between atoms. In the presence of laser light, but
away from photoassociation resonances, the description given in Chapter 1 is expected to
hold with a renormalisation of the scattering length due to the presence of the excited
state. However, the exact contribution of all molecular and/or diffusive states in the
interaction potential is not known, and light-assisted collisions may play an important
role (Chin et al. 2010). At this point, we do not include this in our model for simplicity
and take Ĥcontact to be the same as without resonant light.

V̂dd is the dipole-dipole interaction due to the exchange of photons between the atoms:

V̂dd = ~Γsp

∫
d3rd3r′ eikL·(r′−r)G(r − r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r), (5.56)

with the phase factor eikL·(r′−r) coming from the Rabi driving of the laser field. The
function G, shown in Figure 5.10b, is calculated in Appendix C.4 and recalled below. At
very short distances, rk0 � 1 (with k0 the emitted photon wavenumber), G is close to
the static dipole-dipole interaction, diverging as 1/r3. It falls off at distances longer than
the emitted photon wavelength λ0 = 2π/k0. The spatial dependence at long distances is
either 1/r if r ⊥ εL, or 1/r2 if r ‖ εL.

γ̂sp is a one-body decay term describing an absorption-spontaneous emission cycle

γ̂sp = Γsp

∫
d3r Ψ̂†(r)Ψ̂(r). (5.57)

γ̂many is a two-body collective decay term corresponding to super- or sub-radiance

γ̂many = Γsp

∫
d3rd3r′ eikL·(r′−r)F (r − r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r), (5.58)
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with the function F , shown in Figure 5.10a, calculated in Appendix C.4 and recalled
below. The function F is equal to one at the origin and falls off in the same way as G.

Finally, the recycling term J [ρ̂] describes the ‘feeding’ part of the master equation
(5.54), it involves one-body operators and the function F

J [ρ̂] = Γsp

∫
d3rd3r′ eikL·(r′−r)F (r − r′)Ψ̂†(r′)Ψ̂(r′)ρ̂Ψ̂†(r)Ψ̂(r). (5.59)

Lindblad form

The previous way of writing the master equation (5.54) was convenient to describe the
many-body terms arising from the interaction with the laser field. We can also rewrite
it in a form close to the Lindblad form if we group the terms comprising the function F .
Using the bosonic commutation relation for the field operators [Ψ̂(r), Ψ̂†(r′)] = δ(3)(r−r′)
and the fact that F (0) = 1, the master equation (5.54) can be rewritten in the form:

dρ̂

dt
=

1

i~

(
Ĥρ̂− ρ̂Ĥ†

)
+Γsp

∫
d3rd3r′K(r−r′)

[
n̂(r′)ρ̂n̂(r)− 1

2
n̂(r)n̂(r′)ρ̂− 1

2
ρ̂n̂(r)n̂(r′)

]
,

(5.60)
where n̂(r) = Ψ̂†(r)Ψ̂(r), Ĥ = Ĥmotion + Ĥcontact + V̂dd and K(s) = e−ikL·sF (s). This
form shows that resonant atom-light interaction acts as a position-resolved density mea-
surement. The emitted photons could thus be used to measure the position of the atoms.

Shape of dipole-dipole functions F and G
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Figure 5.10: Spontaneous emission and dipole-dipole functions F (s) and G(s) defined in
(5.62) and (5.64). The relative distance s is chosen either along the polarisation of the
laser or perpendicular to it (s = |s|). (a) Plot of F . The function is localised on a length
scale set by the wavelength of the emitted photon λ0. (b) Plot of G. Solid lines denote
positive values while dotted lines denote negative values. The function diverges at the
origin as 1/s3 (black dashed line).
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Here s = |s| and s̄ = s/s:

F (s) =
3

8π

∫
d2u eik0u·s

∑
ε⊥u

ε0 · ε∗0 (5.61)

=
3

2

{[
1− (s̄ · εL)2

] sin(k0s)

k0s
+
[
1− 3(s̄ · εL)2

](cos(k0s)

(k0s)2
− sin(k0s)

(k0s)3

)}
, (5.62)

G(s) =
1

2π
PV

[∫
dx

x3

1− x
F (xs)

]
(5.63)

=
3

4

{
−
[
1− (s̄ · εL)2

] cos(k0s)

k0s
+
[
1− 3(s̄ · εL)2

](sin(k0s)

(k0s)2
+

cos(k0s)

(k0s)3

)}
.

(5.64)

5.3.2 Many-body effects for atoms in the fundamental band

We now specialise the previous general formalism to the description of atoms in an optical
lattice. Having already discussed the role of inter-band transitions for a single particle in
Section 5.2, we simplify the discussion here by considering only atoms in the fundamental
band. In the remainder of this section, we evaluate the role of many-body effects in light-
matter interactions for atoms in optical lattices. For this we expand the field operators
in the Wannier basis (we omit the band index):

Ψ̂(r) =
∑
i

wi(r)âi. (5.65)

For simplicity, we consider here the dynamics of the reduced density matrix ρ̂0 of the
fundamental band. We neglect the role of all other bands and omit the band index from
now on.

The master equation (5.60) written in the Wannier basis, keeping only the fundamental
band, reads

dρ̂0

dt
=

1

i~

[
Ĥ, ρ̂0

]
+ Γsp

∑
i,j,k,l

Λi,j,k,l

[
â†kâlρ̂â

†
iâj −

1

2
â†iâj â

†
kâlρ̂−

1

2
ρ̂â†iâj â

†
kâl

]
, (5.66)

with the matrix elements given by

Λi,j,k,l =

∫
d3rd3r′K(r − r′)w∗i (r)wj(r)w∗k(r′)wl(r

′). (5.67)

Due to the exponentially localised form of the Wannier functions, the dominant matrix
elements have i = j and k = l. We thus consider only these elements Λi,j = Λi,i,j,j and:

dρ̂0

dt
=

1

i~

[
Ĥ, ρ̂0

]
+ Γsp

∑
i,j

Λi,j

[
n̂j ρ̂n̂i −

1

2
n̂in̂j ρ̂−

1

2
ρ̂n̂in̂j

]
. (5.68)

First-order correlation function

We are interested in the time evolution of the spatial coherence in the system. For
this we can look at the first-order correlation function ρ(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 which
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characterises the coherence between two atoms separated by the distance |r−r′|. Because
we deal with atoms in an optical lattice we consider the following correlator:

Ci,j = 〈â†iâj〉 =

∫
d3rd3r′w∗i (r)wj(r

′)C1(r, r′). (5.69)

The time evolution of the first-order correlator Ci,j can be calculated from (5.68) using
bosonic commutation relations (5.72):

dCi,j
dt

= Tr

[
â†iâj

dρ̂0

dt

]
(5.70)

=
1

i~

〈[
â†iâj , Ĥ

]〉
+ Γsp

∑
l

Λi,l − Λj,l

2

〈
â†iâjn̂l

〉
+ Γsp

∑
k

Λk,j − Λk,i

2

〈
n̂kâ

†
iâj

〉
,

(5.71)[
n̂k, â

†
iâj

]
= δi,kâ

†
iâj − δj,kâ

†
iâj . (5.72)

We also have:

Λi,j =

∫
d3rd3r′K(r − r′)|wi(r)|2|wj(r

′)|2 (5.73)

=

∫
d3rd3r′ eikL·(r′−r+rj−ri)F (r − r′ + ri − rj)|w0(r)|2|w0(r′)|2. (5.74)

Coherences between different planes are zero and we are interested in the coherence within
each planes zi = zj . We make the approximation of infinitely deep vertical lattice depth
(Lamb-Dicke parameter ηz → 0) for simplicity. In that case the expression of the matrix
element simplifies into

Λi,j ≈
∫

d2rd2r′ F (r − r′ + ri − rj)|w0(r)|2|w0(r′)|2, (5.75)

where the integration is now performed in a two-dimensional plane. Due to the even
parity of F we have Λi,j = Λj,i. We thus have:

dCi,j
dt

=
1

i~

〈[
â†iâj , Ĥ

]〉
+ Γsp

∑
l

Λi,l − Λj,l

2

〈[
â†iâj , n̂l

]〉
(5.76)

=
1

i~

〈[
â†iâj , Ĥ

]〉
︸ ︷︷ ︸
coherent evolution

−Γsp (Λi,i − Λi,j) Ci,j︸ ︷︷ ︸
dissipation

. (5.77)

The differential equation (5.77) shows two parts. The first one describes the coherent
evolution due to the Hamiltonian part of the master equation as well as the dipole-dipole
interaction term. The second term gives the evolution related to spontaneous emission.
This dissipative evolution is zero for the on-site correlation (the density) and increases
with distance. However the rate Γsp (Λi,i − Λi,j) is bound by Γsp (simply because |F | ≤ 1).

We thus conclude that spontaneous emission can not result in a decay of the coherence
faster than the rate of spontaneous emission Γsp expected for a single atom. The fast initial
decay of the coherence observed in the experiments of the last chapter (normalised rate γ
bigger than unity in Section 4.2.3 and Section 4.2.4) is thus either due to dephasing from
dipole-dipole interactions or to atom losses.
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5.3.3 Energy shift due to dipole-dipole interactions

The radiative interaction associated to the exchange of a resonant photon between two
atoms is captured by the dipole-dipole operator V̂dd given in (5.56), which we write:

V̂dd =
∑
i,j,k,l

Ui,j,k,lâ
†
iâ
†
j âkâl, (5.78)

with the matrix elements given by

Ui,j,k,l = ~Γsp

∫
d3rd3r′ eikL·(r′−r)G(r − r′)w∗i (r)w∗j(r

′)wk(r′)wl(r). (5.79)

Again, due to the exponentially localised form of the Wannier functions, the dominant
matrix elements have i = l and j = k. We can thus write

V̂dd =
1

2

∑
i,j

U
|i−j|
dd â†iâ

†
j âiâj , (5.80)

with the energy shift due to dipole-dipole interactions of an atom pair separated by a
lattice vector ri is given by:

U i
dd = 2~Γsp

∫
d3rd3r′ cos [kL · (r′ − r)]G(r′ − r)|wi(r)|2|w0(r′)|2. (5.81)

Wannier functions do not have analytical expressions and the numerical computation of
Udd is more easily performed in momentum space. Using twice the convolution theorem
(see Appendix C.5), one can rewrite (5.81) in momentum space,

U i
dd =

2~Γsp

(2π)3

∫
d3k cos [(k − kL) · ri] G̃(k)|ñ(k − kL)|2, (5.82)

where G̃ is the Fourier transform of G and ñ is the Fourier transform of the density
function |w0|2. A direct computation of the Fourier transform of G gives (with k̄ = k/k)

G̃(k) =
3π

k3
0

{
(k̄ · εL)2 − 1

3
+
[
1− (k̄ · εL)2

] k0

2k
PV

[
1

1− k/k0

]}
. (5.83)

In the long-wavelength limit k/k0 → +∞, the last term in (5.83) vanishes and we are
left with an interaction form analogous to the interaction between two permanent dipoles
(Lahaye et al. 2009). Note that in a realistic experiment we have k ∼ k0.

Dominant terms

The function G is localised over the length λ0, we thus expect U i
dd to decay fast with

site distance. At short distances G scales as 1/r3, therefore the on-site matrix element
is roughly captured by U0

dd ≈ ~Γsp/(k
3
0σ

2
⊥σz). At larger distances G scales in the worst

case as 1/r, therefore the nearest-neighbour matrix element is roughly given by U1
dd ≈

2~Γsp/(k0d). In a lattice with V⊥ = 10ER and V0,z = 27ER we get U1
dd/U

0
dd ≈ 8 %, the

ratio gets smaller for farther neighbours, decaying as 1/r. A 1/r decay is not very fast,
and the number of neighbours increases with distance such that the off-site terms, even
if individually small, can sum up to produce an non-negligible contribution. For the sake
of simplicity, in the following we only discuss the on-site term.
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Numerical computation

The numerical computation of principal value integrals as in (5.83) for G̃ can be problem-
atic. In order to check our numerical calculations, we have thus also analytically calculated
(5.81) with the harmonic oscillator wavefunction, valid in the limit of deep lattice depths.
This approximation allows us to derive an analytical approximation of U0

dd.
Figure 5.11a shows the dipole-dipole interaction energy U0

dd (the inset also shows U1
dd

for comparison). The harmonic oscillator wavefunction gives a prediction close to the
Wannier wavefunction computation even for low lattice depths. We have checked that
the two predictions become equal for very deep lattices (for lattice depths above 100ER

the relative error is smaller than five percent). In the configuration of the experiments of
Chapter 4 [εL = (ex + ey)/

√
2] dipole-dipole interactions are attractive.
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Figure 5.11: Dipole-dipole interaction energies in units of the dissipation strength ~Γsp,
for various horizontal lattice depth V⊥. The vertical lattice depth is V0,z = 27ER. (a)
On-site interaction energy U0

dd. The solid line shows the numerical computation using
Wannier wavefunctions. The dashed line shows the analytical expression for the harmonic
oscillator wavefunction (Gaussian). The inset shows the nearest-neighbour terms U1

dd. (b)
Expansion of U0

dd in powers of the Lamb-Dicke parameter η = k0σ⊥/
√

2.

Power expansion in the Lamb-Dicke parameter

The function G is dominated by a radial dependence in 1/r3 at short distances (see Figure
5.10b). We thus expect U0

dd ∝ 1/η3 as a first estimate, with η = k0σ⊥/
√

2 the Lamb-Dicke
parameter in the horizontal direction. In order to check this we make a power expansion
of U0

dd in the small parameter η. The parity of G gives only odd powers starting from
−3. Since η is smaller than one, we expect the negative powers to dominate. In Figure
5.11b, we show the expansion of U0

dd up to first two powers. For lattice depths in the
range V⊥ ∈ [3, 13] we have roughly

U0
dd

~Γsp

≈ − 1

50
η−3 − 1

2
η−1 +O(η). (5.84)

As shown in Figure 5.11b, the dominant contribution comes from the 1/η term. This
stems from the 1/η3 pre-factor, which is small because of angular integration in U0

dd. This
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is consistent with the Wannier wave function being almost isotropic (the 1/η3 pre-factor
vanishes exactly at V⊥ = V0,z = 27ER). For the same reason, the energy due to static
dipole-dipole interactions in a dipolar BEC vanish for an isotropic wave function (Lahaye
et al. 2009).

5.3.4 Collective effects in spontaneous emission

Single-particle spontaneous emission is described with the operator γ̂sp and the recycling
term J [ρ̂], which contain one-body operators. Dipole-dipole interactions modify this
behaviour by adding collective effects via the exchange of a resonant photon between two
atoms. This is captured by the decay operator γ̂many given in (5.58), which we write:

γ̂many =
∑
i,j,k,l

Γi,j,k,lâ
†
iâ
†
j âkâl, (5.85)

with the matrix elements given by

Γi,j,k,l = Γsp

∫
d3rd3r′ eikL·(r′−r)F (r − r′)w∗i (r)w∗j(r

′)wk(r′)wl(r). (5.86)

Again, due to the exponentially localised form of the Wannier functions, the dominant
matrix elements have i = l and j = k. The collective emission rate for an atom pair
separated by a lattice vector ri is therefore given by:

Γi
many = Γsp

∫
d3rd3r′ cos [kL · (r′ − r)]F (r − r′)|wi(r)|2|w0(r′)|2. (5.87)

As before, we compute the matrix elements in momentum space,

Γi
many =

Γsp

(2π)3

∫
d3k cos [(k − kL) · ri] F̃ (k)|ñ(k − kL)|2, (5.88)

where F̃ is the Fourier transform of F given by

F̃ (k) =
3π2

k3
0

[
1− (k̄ · εL)2

]
δ(1)

(
1− k

k0

)
. (5.89)

Dominant terms

As F goes to one at the origin and decreases slowly (as 1/r2 at most), the contribu-
tion of nearest-neighbours can not be neglected. Due to the localised form of the Wan-
nier functions, the magnitude of the collective emission rate Γi

coll is roughly given by
|Re[F (ri)e

ikL·ri ]|. We find Γ0
many ≈ 1, Γ1

many ≈ 0.15, and farther neighbours evaluate to
less than 7 %.

Numerical computation

Figure 5.12a shows the on-site collective emission rate Γ0
coll. The on-site term is positive,

with a value approaching one for deep lattice depths. We also computed (5.87) using the
harmonic oscillator wavefunction, as described in the previous paragraph, and it gives a
prediction close to the Wannier wavefunction computation. We have checked that both
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Figure 5.12: Two-body collective contribution Γi
many to the spontaneous emission rate in

units of the single-particle spontaneous emission rate Γsp, for various horizontal lattice
depth V⊥. The vertical lattice depth is V0,z = 27ER. Solid lines show the numerical
computation using Wannier wavefunctions. Dashed lines shows the analytical expression
for a Gaussian ansatz. (a) On-site rate Γ0

many. (b) Nearest-neighbour rate Γ1
many for

nearest-neighbour along the vertical z direction and along the horizontal ⊥ direction.

become equal in the deep lattice limit (for depths above 100ER the relative error is
smaller than five percent). Figure 5.12b shows the nearest-neighbour collective emission
rate Γ1

many for both the vertical and horizontal directions.

For two atoms on a same site, the spontaneous emission rate is enhanced (Γ0
many > 0)

due to constructive interference in the emitted fields. This enhancement corresponds
to super-radiance for which the total rate of spontaneous emission is greater than for
independent emitters. This is expected in the Dicke model for super-radiance (Dicke
1954) because the two atoms are located in a volume of dimension smaller than the
emitted photon wavelength λ0. For nearest-neighbour atoms in the horizontal direction
(but not the vertical direction) the spontaneous emission rate is reduced (Γ1

many < 0) due to
destructive interference in the emitted fields. This reduction corresponds to sub-radiance
for which the total rate of spontaneous emission is smaller than for independent emitters.
We cannot already conclude about the rate of spontaneous emission for a general many-
body state since it depends on the particular density distribution and spatial correlations
between the particles. We come back to this point in Section 5.4.3.

5.4 Comparison with the experimental results of

Chapter 4

In this section, I use the results derived in Sections 5.2 and 5.3 to give a better under-
standing of the experimental observations of Chapter 4. I first show a comparison of
the band population time evolution between the data presented in Section 4.4.3 and the
numerical evaluation of Section 5.2.3. Secondly, I discuss the importance of dipole-dipole
interactions, comparing the energy shift calculated in Section 5.3.3 to the on-site contact
interaction. Thirdly, I calculate the collective modification of the spontaneous emission
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5. Theoretical approach to the relaxation dynamics in optical lattices

rate expected in our system.

5.4.1 Band population time evolution

In Figure 5.13, the numerical solution of the master equation projected on the Bloch
basis in a 3D optical lattice (5.39) is compared to the data of the experiments described
in Section 4.2.3. In these experiments we varied the lattice depth of the horizontal lattices,
and the spontaneous emission rate was set to Γsp = 520 s−1.

For all lattice depths, the behaviour of the band populations is qualitatively re-
produced, but not quantitatively. There is a substantial disagreement at short times
(tdiss . Γ−1

sp ), compatible with the observation of an enhanced decay rate for the coher-
ence in the exponential regime (coefficient γ bigger than one in Sections 4.2.3 and 4.2.4).
The population in the first excited band typically exceeds 10 % after a time tdiss & 0.1Γ−1

sp .

Inter-band transitions happen at a higher rate than predicted by the single-particle
master equation (5.39), which points toward an effect of dipole-dipole interactions or
collective light scattering. However, at the level of discussion of Section 5.3 we can not
demonstrate this assertion. A more complete treatment is required to understand this
feature.
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Figure 5.13: Comparison between the numerically computed time evolution of the relative
populations and the data of the experiments described in Section 4.2.3 (Γsp = 520 s−1).
The qualitative behaviour is correct but the exact time evolution is not well reproduced.
There seems to be a substantial enhancement of inter-band transitions at short times.
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5.4. Comparison with the experimental results of Chapter 4

5.4.2 On-site interaction energy

We now look at the influence of induced dipole-dipole interactions on the energy of an
atom in the lattice. The total on-site interaction energy Utot is modified by dipole-dipole
interactions:

Utot = Ugg + U0
dd, (5.90)

where Ugg is the contact interaction in the ground state.
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Figure 5.14: On-site interaction energy Utot in units of the dissipation strength. The
solid line shows +Utot and the dashed line shows −Utot. Dots correspond to the values
explored in the experiments described in Section 4.2.4, where we varied the spontaneous
emission rate. The red square correspond to the experiments described in Section 4.2.3,
where we varied the lattice depth. The horizontal lattice depth is V⊥ = 3.5ER, and the
Bose-Hubbard parameters are Ugg ≈ 0.2ER and J⊥ = 0.1ER.

Figure 5.14 shows Utot/ER for varying dissipation strength. For small dissipation
strength, the contact interaction Ugg dominates. As dissipation increases, because dipole-
dipole interactions are attractive in our configuration, the on-site interaction energy
crosses zero and becomes negative. The experimental conditions of the last chapter are
highlighted with markers on the figure. There is only a small window where one can have
|Utot| � ~Γsp, which has two consequences:

• For most of our experimental conditions, dipole-dipole interactions in our system
make |Utot| bigger or on the order of ~Γsp. This might explain why we did not observe
any strong dependence of the relaxation dynamics on the spontaneous emission rate
in Section 4.2.4.
• An important approximation used to derive the master equation of Section 4.3 is

the secular approximation which requires Utot, ~Γsp � J⊥. Moreover, analytical
results are found in the strongly interacting limit Utot � ~Γsp. Our findings here
show that the limits identified in Poletti et al. (2013) are roughly verified for all the
parameters chosen in the experiments presented in the last chapter.
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5. Theoretical approach to the relaxation dynamics in optical lattices

5.4.3 Collective emission rate

Single-particle spontaneous emission is captured in the term γ̂sp of the master equation
(5.54). Collective effects arise through the term γ̂many, which is associated to super- or
sub-radiance. The total rate of spontaneous emission Λ from atoms in the lattice is given
by (Pichler et al. 2010):

Λ

Γsp

=

∫
d3rTr

[
Ψ̂†(r)Ψ̂(r)ρ̂

]
+

∫
d3rd3r′ eikL·(r′−r)F (r−r′)Tr

[
Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)ρ̂

]
.

(5.91)
The first term is equal to the number of atoms Nat, and means that each atom emits a
spontaneous photon with a rate Γsp independently from the others. The second term is
however not readily evaluated and depends on the many-body state of the system. In
order to give an estimate we consider two limiting cases: a coherent state modelling the
superfluid phase and a Fock state modelling the Mott insulator phase. In the following
we restrict our discussion to the dominant matrix elements Γi,j = Γi,j,j,i.

Fock state We first consider a Fock state with a filling fraction n̄ constant over all Ns

lattice sites, described as a product of Fock states over each site:

|Ψ〉 =
⊗

sites i

|n̄〉i . (5.92)

We expand the field operators in the Wannier basis and restrict the discussion to the
lowest band of the lattice. The second term in (5.91) reads∑

i,j,k,l

Γi,j,k,l 〈Ψ|â†iâ
†
j âkâl|Ψ〉 ≈

∑
i,j,k,l

δi,lδj,k(1− δi,j)Γi,jn̄
2 + δi,jδk,lδi,kΓi,in̄(n̄− 1) (5.93)

=
∑
i

Γi,in̄(n̄− 1) +
∑
i 6=j

Γi,jn̄
2 (5.94)

= NsΓ0,0n̄(n̄− 1) +Ns

∑
i 6=0

Γi,0n̄
2, (5.95)

The normalised spontaneous emission rate is finally given by:

Λ = Nat

[
Γsp + n̄

(
Γ0

many +
∑
i 6=0

Γi,0

)
− Γ0

many

]
. (5.96)

Coherent state We then consider a coherent state, described as a product of coherent
states over each site:

|Ψ〉 =
⊗

sites i

|α〉i , (5.97)

with |α|2 = n̄. We expand the field operators in the Wannier basis and restrict the
discussion to the lowest band of the lattice. The second term in (5.91) reads∑

i,j,k,l

Γi,j,k,l 〈Ψ|â†iâ
†
j âkâl|Ψ〉 =

∑
i,j,k,l

Γi,j,k,ln̄
2 (5.98)

≈
∑
i

Γi,in̄
2 +

∑
i 6=j

Γi,jn̄
2 (5.99)

= NsΓ0,0n̄
2 +Ns

∑
i 6=0

Γi,0n̄
2, (5.100)
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The normalised spontaneous emission rate is then given by:

Λ = Nat

[
Γsp + n̄

(
Γ0

many +
∑
i 6=0

Γi,0

)]
. (5.101)

Conclusion The total scattering rate in both limits only differ by the coefficient Γ0
many

which we evaluated to be ∼ 0 for vanishing lattice depth, and ∼ 0.8 in the Mott insulator
regime. This points towards a reduction of the spontaneous emission rate with lattice
depth.

The slow decay of the function F with distance does not really makes it possible to
define a cut-off in the summation over the neighbours in (5.96) and (5.101). We can try
to evaluate the ‘dominant’ contribution by completely neglecting the sum over neighbours
and only keep the local terms. Figure 5.15 shows the expected total spontaneous emission
rate for uniform systems with different filling fractions n̄, where only local terms are
considered.
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Figure 5.15: Normalised spontaneous emission rate Λ as a function of horizontal lattice
depth V⊥. For shallow lattice depth, Λ is calculated using a coherent state in (5.101). For
deep lattice depth, Λ is calculated using a Fock state in (5.96). Standard spontaneous
emission without collective effects would give Λ = 1.

The calculated values indicate super-radiance for all average filling fractions. This
could be an explanation for the higher rate of interband transitions observed in Figure
5.13. While this could also be consistent with the observed values for the initial decay
rate of the fraction of atoms at zero momentum (coefficient γ in Sections 4.2.3 and 4.2.4),
we noted in Section 5.3.2 that the decoherence rate was bounded by Γsp. We therefore
conclude that we expect super-radiant effects in our system but that they can not be seen
in the decay of the coherence.

A proper account of the total spontaneous emission rate would include the summation
over the neighbours. We tried to perform this summation in the limit of infinite lattice
depth where Γi,0 ≈ |F (ri) cos(kL ·ri)|. However the slow decay of F makes the summation
not to converge and to depend on the exact size of the system.
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5. Theoretical approach to the relaxation dynamics in optical lattices

5.5 Conclusion

In this chapter, I have initiated a theoretical study of dissipation in optical lattices,
including many-body effects in light-matter interactions. I first recalled the theoretical
description of spontaneous emission by a two-level atom, presenting the derivation of the
quantum master equation. I then studied various aspects related to diffusion of a single-
particle in an optical lattice, showing how the predictions differ from the observations
made in the previous chapter. Thereupon, I included a many-body description in the
quantum master equation to account for a certain number of phenomena which might
explain our observations. I have then shown that these collective effects are small but in
principle not negligible, especially when considering the full dynamics in space and time.
This should be accounted for in a proper modelling.

The complexity of the theoretical framework have limited me to the calculation of mere
matrix elements, only allowing for a perturbative approach in the study of the relaxation
dynamics. Numerical simulations of this system could be helpful to check whether dipole-
dipole interactions do play a role in the initial decay of the coherences or in the higher
transfer rates to excited bands. The predicted super-radiance of the superfluid phase
could also be investigated in an experiment measuring the time-resolved fluorescence of
the atomic sample. Finally, the observed and not quantitatively explained atom loss could
be explored further in an experiment changing the detuning of the dissipation laser.
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6
Summary and perspectives

In this thesis, I have presented an experimental investigation into the dynamics of ultracold
ytterbium atoms loaded into optical lattices and driven by a laser light field. I have
highlighted the crucial part played by inter-particle interactions on the atomic internal and
external degrees of freedom dynamics, in limits both of coherent driving and dissipative
dynamics. On the one hand, the coherent driving on the clock transition made possible the
observation of interaction energy shifts and inelastic loss rates dependent on the internal
state of the atoms. For that reason we have measured all relevant low-energy scattering
properties of 174Yb involving the clock states. On the other hand, the relaxation of a
of a Bose-Hubbard gas subjected to spontaneous emission turned out to be slowed down
by inter-atomic interactions. In that respect we have observed a remarkable change in
the relaxation of a superfluid towards an anomalous momentum diffusion regime, brought
about by the competition between interactions, motion and dissipation.

In Chapters 1 and 2, I presented all the ingredients required to witness the aforemen-
tioned observations. I first outlined the specific features of alkaline-earth-like atoms that
are of great interest in recent works, both theoretical and experimental. I focused on
the low-lying narrow transitions (the intercombination and the clock transitions) which
correspond to the driving transitions used in the experiments mentioned above. After
a concise reminder of the physics of ultracold atoms in optical lattices, I then described
the contemplated implementation of artificial gauge fields in our laboratory. I explained
why this is of major significance in the study of strongly correlated phases of matter in a
magnetic field. I finally gave an account of the apparatus used to make the experiments
described above. I explained how we create Bose-Einstein condensates of 174Yb and load
them into two-dimensional optical lattices. I also described our detection tool based on
absorption imaging and the laser used to drive the clock transition.

In Chapter 3, I reported on the high-resolution optical spectroscopy of interacting
174Yb atoms in deep optical lattices and demonstrated coherent control of isolated atoms
and atom pairs. I first showed Rabi oscillations on the clock transition for singly-occupied
isolated sites and then for both singly- and doubly-occupied isolated sites. The observed
change in the time dynamics of these two experiments revealed strong inelastic losses in
the excited clock state which allowed to characterise the loading sequence of the optical
lattices. I quantitatively compared these measurements to a prediction from a simplified
loading model based on the expected phase diagram of a Mott insulator. Using spec-
troscopy on the clock transition I finally presented the measurements of the intra- and
inter-state scattering lengths involving both clock states. These results have been pub-
lished in Bouganne et al. (2017). A simultaneous though independent work in Florence
obtained results in agreement with our observations (Franchi et al. 2017).

In Chapter 4, I reported on the anomalous momentum diffusion of a Bose-Hubbard
gas under dissipation. I first displayed the dramatic change in the relaxation dynamics
of a superfluid subjected to spontaneous emission, which was activated by driving the
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6. Summary and perspectives

intercombination transition of 174Yb. The analysis of momentum distributions revealed
a sub-diffusive behaviour, the power-law exponent of which quantitatively agree with a
model developed in Poletti et al. (2013). In this model, the slowing down of relaxation is
interpreted with an anomalous diffusion in Fock space, where interactions compete with
dissipation and coherent tunnelling. As a complementary evidence we also probed this
diffusion in Fock space. However the model describes light-matter interaction simplified to
its bare bones, and is insufficient to fully account for all our observations. I theoretically
investigated the role of many-body effects for light-matter interactions in Chapter 5, based
on a formalism presented in Pichler et al. (2010) and references therein. I first reviewed
the diffusive dynamics of a single-particle in optical lattices and highlighted how this was
very different from our observations. Using the quantum master equation formalism I then
investigated the importance of many-body effects in the system: dipole-dipole interactions
and collective spontaneous emission. I showed that these effects are not negligible and
should be accounted for in a proper modelling of time dynamics. This experimental and
theoretical work is under preparation for publication.

Perspectives

In the specific context of this experiment, we have already demonstrated the coherent
driving of a degenerate cloud in magic optical lattices. This work was important to harness
our experimental apparatus both concerning the loading of a degenerate quantum gas in
optical lattices and the construction of a narrow laser to address the clock transition.
The characterisation of the scattering properties of the clock states of 174Yb was also
important to foresee the implementation of strongly-correlated phases in a magnetic field.
In order to realise the contemplated design proposed in Gerbier et al. (2010), various
improvements have to be carried out.

• First, we need to implement the anti-magic and super-lattice potentials, the laser
systems of which have been prepared by my colleague Manel Bosch Aguilera. This
will allow us to realise a two-leg ladder for example, where the atomic motion is
affected by the gauge field generated by the clock laser driving (Stuhl et al. 2015;
Mancini et al. 2015).
• Secondly, we need to prepare a purely 2D atomic sample. At the beginning of my

thesis work, I developed a transfer optical lattice with a period of 4 µm, intermediate
between the Thomas-Fermi size of the condensate (∼ 10 µm) and the vertical lattice
period (∼ 400 nm), that should allow the reproducible adiabatic transfer of the
condensate into a single node of the vertical lattice. The stability of the central
fringe of this transfer lattice was characterised to be 4 µm K−1 with a short-term
position stability of the fringe maximum around 10 nm.
• Thirdly, we plan to set up an enhanced imaging system based on a high-resolution

microscope objective combined with an EMCCD camera [see the diploma thesis of
Elisa Soave (2016)]. The resolution of the objective was characterised to be ∼ 1 µm.
This imaging system will be of importance to detect many-body features such as
incompressible states.
• Finally, in order to reduce the inhomogeneities of the lattice potential due to the

residual harmonic confinement, a tailored laser beam derived from a digital micro-
mirror device will be added to the experiment in order to flatten the potential and
create an area of uniform density in the center of the cloud. This is currently
developed by my colleague Alexis Ghermaoui (2017).
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In order to explore further the dissipation dynamics induced by spontaneous emission,
the loading of a single plane in the vertical lattice combined with high-resolution imaging
and compensated harmonic potential will be useful. With such a scheme we should be
able to address experimentally the many-body effects in light-matter interactions with
a better level of control. For example we could prepare a Mott insulator phase with
only doubly-occupied sites and measure the dipole-dipole interaction shift using the clock
transition. We could also try to study the influence of the spatial decay of dipole-dipole
interactions by tuning the laser polarisation orientation. Furthermore, spatially-resolved
fluorescence imaging could also provide insight into the collective effects in spontaneous
emission, as well as studying in-situ spatial correlations in the cloud. Finally, we could
use an infrared transition ∼ 2 µm from the metastable clock state to reach a regime where
the wavelength of the emitted photon is larger than the lattice spacing. In this regime,
many interesting collective effects arise (Olmos et al. 2013; Zhu et al. 2015; Shahmoon
et al. 2017).

With our system we plan to realise effective magnetic fields in tight-binding systems,
first using ladders and then going to genuine 2D systems. There is also an interesting
opportunity to explore this physics in a bulk system. With the preparation of a two-
dimensional BEC in a magic trap, one can realise an artificial magnetic field using the
adiabatic following of a dressed state (Goldman et al. 2014). A suitably chosen propa-
gating laser beam near-resonant with the clock transition creates a gradient of coupling
strength orthogonal to the laser propagation. The eigenstate with the smallest energy
connects adiabatically to the bare ground state of the atom on one side of the gradient
and to the bare excited state on the other side. An atom moving in this laser beam can
adiabatically follow this dressed state and acquire momentum perpendicular to its mo-
tional direction, thereby mimicking the effect of the Lorentz force on a charged particle. In
this way an artificial magnetic field perpendicular to the 2D atomic sample is generated.
This can possibly nucleate vortices in the sample if the artificial magnetic field is strong
enough. However, losses in the excited clock state might prevent such an observation, or
at least the stabilisation of a vortex lattice.

In a broader perspective, our system provides a natural playground to study the role
of interactions and correlations in an open many-body system. We already discussed the
work performed by inducing dissipation with spontaneous emission. Yet another way to
engineer dissipation is to use the losses in the excited clock state. The effective Hamilto-
nian describing the physics of two atoms driven by the clock transition is non-Hermitian
[see (3.18) in Chapter 3], which makes the ‘eigenvectors’ to separate into different sub-
spaces with radically different lifetimes (these are referred to as gain and loss eigenvectors).
When the energy levels associated to these eigenvectors become equal (they are said to
‘coalesce’) it creates a singularity called exceptional point (Heiss 2012). The tunability of
the Hamiltonian parameters (the Rabi frequency and the laser detuning) could be used
to perform loops around the exceptional points, which is expected to provide non-trivial
chiral mode switching behaviours as well as topological properties (Mailybaev et al. 2005;
Milburn et al. 2015; Doppler et al. 2016). This can be readily implemented in the ex-
periment in deep optical lattices by performing ramps with the clock laser intensity and
detuning. After preparing the system in a lossless subspace and studying the lifetime
of the atomic sample while changing the Hamiltonian parameters, one can explore the
physics around such exceptional points. Moreover, we have the additional ability to go
from isolated atom pairs in deep lattices to a many-body phase for smaller lattice depths
where atoms become mobile. In this regime the physics might change significantly.
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A
Supplemental material for Chapter 2

A.1 Best-reference picture algorithm performance

In order to demonstrate the efficiency of the best-reference picture algorithm, we assess
it on a set of 237 image pairs taken without atoms. We consider a 400-pixel wide square
region of interest (ROI) with a 25-pixel wide background frame around it. We compare
three different ways to analyse the image pairs (If being the image supposedly with atoms
and Ii the reference image without atoms):

1. The low-intensity treatment where we compute the optical density on the assump-
tion of small intensity of the light probe OD|I�Isat,0 = − ln(If/Ii).

2. The scaling treatment where we compute the optical depth from (2.6) using a
rescaled reference image κIi, where κ is chosen to minimise the distance between
the backgrounds of If and κIi.

3. The best-reference treatment where we compute the optical depth from (2.6) with
the best-reference picture Q as the reference image (see Section 2.2.3).

The results presented here are analysed on the region of interest only, whereas rescaling
and optimisation for the second and third treatments are performed on the background
frames only.
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Figure A.1: Optical depths in the region of interest obtained from the different methods.
It is clear that the fringes appearing in the low-intensity treatment cannot be removed
using only a rescaling of the reference image. The best-reference picture provides a way
to do so.
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Figure A.2: Standard deviation (RMS) of the optical depth (OD) over the region of
interest (ROI) for all the images of the set. While the scaling treatment degrades the
quality of the pixel-to-pixel noise, the best-reference picture method gives a substantial
improvement. The solid line is the predicted photon shot-noise limit, calculated from the
average intensity over the region of interest.
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Figure A.3: Standard deviation of the difference between the image and its reference, in
photon number. Here we clearly see that on many image pairs, there is a substantial
change in the global intensity, which can be corrected using a simple rescaling of the
reference picture. The best-reference picture treatment again improves the situation.
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B
Supplemental material for Chapter 4

B.1 Dissipation in optical lattices: density matrix

formalism

In this appendix I recall fundamental concepts used in this thesis to look at the relaxation
of a quantum system. One of the most important tools to understand the physics in this
context is the density matrix ρ̂ which fully describes a quantum system in a statistical
sense (Fano 1957). It is invaluable whenever there is some lack of knowledge about part
of the system. I start by recalling some basic principles regarding the density matrix
formalism, and then discuss the master equation in the Lindblad form.

B.1.1 Density matrix

The density matrix associated to a system represented by the state |Ψ〉 is the projection
operator on that state:

ρ̂ = |Ψ〉〈Ψ|. (B.1)

The normalisation of the state |Ψ〉 makes the trace of ρ̂ equal to one: Tr[ρ̂] = 1. The
matrix elements ρnm = 〈m| ρ̂ |n〉 represent the coherence between the states |n〉 and |m〉
(those can originate from an infinite dimension basis such as the position basis with
states |r〉). The density matrix can equally represent pure states, for which Tr[ρ̂2] = 1 or
statistical mixtures for which Tr[ρ̂2] < 1. The expectation value of an observable Ô can
be computed with the trace operator

〈Ô〉 = Tr[ρ̂Ô]. (B.2)

From the Schrödinger equation governing the time evolution of |Ψ〉, one can derive an
equation of motion for ρ̂, called the Von-Neumann equation:

i~
dρ̂

dt
= [Ĥ, ρ̂], (B.3)

which allows to track the dynamical evolution of the system under a Hamiltonian evolu-
tion. The eigenvalues of ρ̂, its trace and the trace of ρ̂2 are conserved in this dynamics.

The density matrix approach is interesting when considering subsystems of the full
system S. This is of particular importance when the state of the complete system cannot
be known or measured. One can construct a partial density operator for a subsystem A
by tracing over the degrees of freedom that do not belong to A:

ρ̂A = TrS\A [ρ̂] . (B.4)

In general, and even if ρ̂ describes a pure state, ρ̂A is not a projector on a quantum
state any more: A and S are then said to be entangled. While constructing a partial
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density operator is useful to derive properties of a subsystem, this opens up the way to
decoherence. In the time evolution of the system S, correlations can build up between A
and any other sub-part of S and as a result our knowledge of A gets reduced over time
as information ‘leaks out’.

B.1.2 Master equation

We now describe the theory of relaxation in quantum mechanics, that is to say the evo-
lution of a system A coupled to an environment E the complexity of which makes it
impossible to follow the detailed evolution of the complete system A+ E. Under certain
assumptions on the environment, an equation of motion for ρ̂A can be derived: the master
equation. The essential property that the environment must satisfy is the short memory
time or Markov approximation, i.e. the correlation time τc of the environment is much
smaller than the evolution time TA of the system:

τc � TA. (B.5)

Into what does this condition translates for the coupling strength between the system
and the environment? Let us consider an environment or reservoir the energy levels of
which span a wide energy range ~∆ω. The correlation time τc of the observables of E is
thus very short:

τc =
1

∆ω
. (B.6)

The system A, coupled to such an amnesic environment through a weak coupling of
magnitude V , undergoes a random walk with time steps ∼ τc. The phase dispersion ∆ϕ
accumulated over a time t is thus given by :

∆ϕ2 ≈ V 2τ 2
c

~2

t

τc

. (B.7)

This defines an evolution time scale for the system:

TA =
t

∆ϕ2
=

~2

V 2τ 2
c

τc. (B.8)

The short memory time for the environment is thus equivalent to:

τc � TA ⇔
V τc

~
� 1. (B.9)

This condition is usually well-satisfied in quantum optics or atomic systems for which
the correlation time of the reservoir is on the order of the inverse of an atom or photon
frequency (Cohen-Tannoudji et al. 1992), while the coupling V/~ (the Rabi frequency) is
many orders of magnitude smaller.

This short memory time condition implies that the time differential equation for ρ̂A
cannot be too precise, and can only describe the ‘coarse-grained’ evolution of A, with a
typical time step ∆t much larger than τc. Such a description captures the time evolution
of A if ∆t is much smaller than the typical evolution time of A. This is summarised in
the following condition:

τc � ∆t� TA. (B.10)
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The Markov condition (B.9) allows to achieve (B.10). We can now define the coarse-
grained time derivative of ρ̂A as

∆ρ̂A
∆t

=
ρ̂A(t+ ∆t)− ρ̂A(t)

∆t
. (B.11)

ρ̂A(t + ∆t) is defined by a quantum map on ρ̂A(t), L[ρ̂A(t)] = ρ̂A(t + ∆t), i.e. a linear
super-operator acting on the Hilbert space of the operators acting in the Hilbert space of
A. It can be shown that such a quantum map L can always be represented in a simple
form called the Kraus sum representation (Haroche et al. 2006):

L[ρ̂A] = ∆t

NL∑
µ=0

Ĉµρ̂AĈ
†
µ, (B.12)

where NL is smaller than the square of the Hilbert space dimension of A. Note that this
number is independent from the size of the environment. The Lindblad operators Ĉµ are
not uniquely defined.

With some algebra (Haroche et al. 2006), one gets to the final expression of the master
equation in the Lindblad form:

dρ̂A
dt
≡ ∆ρ̂A

∆t
=

1

i~

[
ĤA, ρ̂A

]
+
∑
µ>0

(
Ĉµρ̂AĈ

†
µ −

1

2
Ĉ†µĈµρ̂A −

1

2
ρ̂AĈ

†
µĈµ

)
. (B.13)

The specific form and ordering of the second term in (B.13) ensures the positivity and norm
conservations of the master equation. The Lindblad operators can be seen as quantum
jump operators, that make the system jump from a state |Ψ〉 to the completely differ-
ent state Ĉµ |Ψ〉. The physical interpretation of the master equation is that the system
evolves under a slow non-unitary evolution with rare quantum jump events. While the
Lindblad master equation (B.13) is fairly general (provided the Markov condition holds),
the difficulty lies in finding the proper Lindblad operators for a given physical situation.

While the master equation (B.13) can be solved analytically in simple cases, such as a
two-level system coupled to the vacuum of photons [this leads to the well-known optical
Bloch equations (Cohen-Tannoudji et al. 1992)], no general solution is known. Quantum
Monte Carlo trajectories are one solution to numerically deal with (B.13) in that case,
see the seminal proposition in Dalibard et al. (1992).

B.2 Master equation derivation for the dissipative

Hubbard model

In this appendix, I derive the classical master equation (4.27) governing the evolution of
the occupation number distribution at a given site ρ(n), following closely Poletti et al.
(2013). The starting point is the master equation for the density matrix ρ̂ (Pichler et al.
2010; Cohen-Tannoudji et al. 1992),

∂ρ̂

∂t
=

1

i~

[
Ĥ, ρ̂

]
+ κD̂[ρ̂], (B.14)

D̂[ρ̂] =
∑
i

n̂iρ̂n̂i −
1

2
n̂2
i ρ̂−

1

2
ρ̂n̂2

i . (B.15)
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We recall the Bose-Hubbard Hamiltonian governing the unitary dynamics of the system

Ĥ = −J⊥
∑
〈i,j〉

(â†i âj + â†j âi) +
U

2

∑
i

n̂i (n̂i − 1) = −J⊥T̂ +
U

2
Ĝ. (B.16)

Coherences

We use (B.14) to calculate the time evolution of the coherences ρ
n+eji
n . We evaluate the

local terms with Ĝ and D̂

〈n+ eji |Ĝρ̂− ρ̂Ĝ|n〉 = 2(ni − nj + 1)ρ
n+eji
n ,

〈n+ eji |D̂[ρ̂]|n〉 = −ρn+eji
n .

Non-local tunnelling terms from T̂ give

T̂ |n〉 =
∑
〈i,j〉

√
nj(ni + 1)|n+ eji 〉+

√
ni(nj + 1)|n+ eij〉.

The density matrix is dominated by its diagonal with weak contribution from off-diagonal
coherences between Fock configurations differing by one-atom tunnelling events. Weaker
higher-order tunnelling events create also off-diagonal elements, but we neglect them.
Therefore we only keep the dominant terms that couple to the populations

〈n+ eji |T̂ ρ̂− ρ̂T̂ |n〉 ≈
√
nj(ni + 1)

(
ρnn − ρ

n+eji
n+eji

)
,

from which we get

i~
d

dt
ρ
n+eji
n = [U(ni − nj + 1)− i~κ] ρ

n+eji
n − J⊥

√
nj(ni + 1)

(
ρnn − ρ

n+eji
n+eji

)
. (B.17)

In the limit where U dominates over J⊥ and κ, the coherences evolve much more rapidly
than the populations. The coherences are thus slave variables with respect to the popula-
tions, their faster evolution average out to a time-dependent steady-state that follows the
slower dynamics of the populations. In this case we can perform an adiabatic elimination
of the coherences (Cohen-Tannoudji et al. 1992) and approximate the coherences by their
steady-state value

ρ
n+eji
n

∣∣
ss
≈

J⊥
√
nj(ni + 1)

U(ni − nj + 1)− i~κ

(
ρnn − ρ

n+eji
n+eji

)
. (B.18)

Populations

Similarly, we calculate the evolution of the populations ρnn

i~
d

dt
ρnn = −J⊥

∑
〈i,j〉

√
nj(ni + 1)

(
ρ
n+eji
n − ρn

n+eji

)
+
√
ni(nj + 1)

(
ρ
n+eij
n − ρnn+eij

)
. (B.19)

Replacing the nearest-neighbour coherences by their steady-state value (B.18), and ne-
glecting coherences at longer range, we can write

d

dt
ρnn = −2J2

⊥κ

U2

∑
(i,j)

nj(ni + 1)

(ni − nj + 1)2 + ε2

(
ρnn − ρ

n+eji
n+eji

)
, (B.20)
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with ε = ~κ/U and the notation (i, j) referring to all nearest-neighbour pairs, counted
both ways. This summation is equivalent to a double sum over all lattice sites i firstly,
and their nearest-neighbours j secondly. Following Poletti et al. (2013), we introduce the
time t∗

t∗ =

(
U

J⊥

)2
n̄2

2κz
, (B.21)

with z the number of nearest neighbours, and a reduced time τ = t/t∗. We then have

d

dτ
ρnn = − n̄

2

z

∑
(i,j)

nj(ni + 1)

(ni − nj + 1)2 + ε2

(
ρnn − ρ

n+eji
n+eji

)
. (B.22)

The timescales that govern the three regimes mentioned in Section 4.3 are (Poletti
et al. 2013):

• t ≤ κ−1, initial exponential relaxation of coherences,
• κ−1 ≤ t ≤ t∗, algebraic regime with slow decay of populations,
• t ≥ t∗, stretched exponential regime, final relaxation towards the steady-state.

B.3 Continuum approximation for large fillings

In this appendix, I give more details about the continuum approximation for large fillings
as used in Poletti et al. (2013) to obtain analytical expressions. I also derive the scaling
form of the nearest-neighbour correlator (4.37). In the limit of large filling fractions n̄� 1,
the discrete occupation number n can be replaced by a continuous variable x 7→ n/n̄ ∈ R+

and the occupation number distribution becomes ρ(n, τ) 7→ p(x, τ)/n̄. We can use 1/n̄ as
an infinitesimal quantity and thus

ρ(n+ 1, τ) =
1

n̄
p(x+ 1/n̄, τ) ≈ 1

n̄
p(x, τ) +

1

n̄2

∂p(x, τ)

∂x
+

1

2n̄3

∂2p(x, τ)

∂x2
. (B.23)

Fokker-Planck form

The master equation (4.29) written for the continuous distribution is

∂p

∂τ
= n̄2

∑
ν=±1

∫
R+

(xn̄+ δ1,ν)(yn̄+ δ−1,ν)

(xn̄− yn̄+ ν)2 + ε2
[p(x+ νdx, τ)p(y − νdy, τ)− p(x, τ)p(y, τ)] dy.

(B.24)
We define D(x, y) = xy/[(x− y)2 + ε̄2] with ε̄ = ε/n̄. Noting that ν = δ1,ν − δ−1,ν ,

∂p

∂τ
= n̄2

∑
ν=±1

∫
R+

D(x+δ1,νdx, y+δ−1,νdy) [p(x+ νdx, τ)p(y − νdy, τ)− p(x, τ)p(y, τ)] dy.

(B.25)
We expand the integrand up to second order in 1/n̄, leading to

∂p(x, τ)

∂τ
=

∫
R+

(
∂D(x, y)

∂x
− ∂D(x, y)

∂y

)[
∂p(x, τ)

∂x
p(y, τ)− p(x, τ)

∂p(y, τ)

∂y

]
(B.26)

+D(x, y)

[
∂2p(x, τ)

∂x2
p(y, τ) +

∂2p(y, τ)

∂y2
p(x, τ)− 2

∂p(x, τ)

∂x

∂p(y, τ)

∂y

]
dy.

(B.27)
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We can rewrite this in a more compact form

∂p(x, τ)

∂τ
=

∫
R+

(
∂

∂x
− ∂

∂y

)[
D(x, y)

(
∂

∂x
− ∂

∂y

)
p(x, τ)p(y, τ)

]
dy. (B.28)

This integrand is the sum of two integrands if we expand the first partial derivatives. In
the first term, we can swap the integral and the partial derivative with respect to x. In
the second term we have the integral of a derivative on the same variable, which evaluates
to zero because D(x, y) vanishes in 0 and +∞ and p is a bounded function. Therefore we
can write the master equation in the integro-differential form

∂p(x, τ)

∂τ
=

∂

∂x

[
D(x, τ)

∂p(x, τ)

∂x
− F (x, τ)p(x, τ)

]
, (B.29)

with

D(x, τ) =

∫
R+

xy p(y, τ)

(x− y)2 + ε̄2
dy and F (x, τ) =

∫
R+

xy ∂p(y, τ)/∂y

(x− y)2 + ε̄2
dy. (B.30)

The master equation in the form (B.29) is a Fokker-Planck equation. With this ex-
pression one can prove the conservation of the norm and of the mean value of p. It is
the starting point of the analytical derivation performed in Poletti et al. (2013) where
they demonstrate a scaling form in the algebraic regime of the decay and a stretched
exponential form in the final stage.

Spatial coherence

We perform the same type of calculation for the one-body nearest-neighbour correlator
C1. Its expression (4.34) written for the continuous distribution is

C1(τ) =
J⊥
U

∫
R+2

xy

x− y − iε̄

[
p(x, τ)

∂p(y, τ)

∂y
− ∂p(x, τ)

∂x
p(y, τ)

]
dxdy. (B.31)

In the limit of weak dissipation (ε̄→ 0), we can use the scaling form (4.31) so that

C1(τ) =
J⊥
U

∫
R+2

xy

x− y
p(x, τ)p(y, τ)

1

4τ

[
(x− 1)3 − (y − 1)3

]
dxdy. (B.32)

We then perform a change of variables (x, y) 7→ (u = (x− 1)/τ 1/4, v = (y − 1)/τ 1/4)

C1(τ) =
J⊥
4U

∫
Υ

(
1 + uτ 1/4

) (
1 + vτ 1/4

)
p(u, τ)p(v, τ)

[
u2 + uv + v2

]
dudv, (B.33)

where the integral is now performed on the domain Υ = [−τ−1/4,+∞]2.
For short enough times, the distribution p is peaked around u = 0 so that we can (i)

extend the domain of integration to R2, (ii) neglect uτ 1/4 and vτ 1/4 compared to 1:

C1(τ) ≈ J⊥
4U

∫
R2

p(u, τ)p(v, τ)
[
u2 + uv + v2

]
dudv (B.34)

=
J⊥
U
√
τ
× 1

64Γ(5/4)2

∫
R2

(
u2 + uv + v2

)
e−(u4+v4)/16dudv (B.35)

=
J⊥
U
√
τ

2Γ(3/4)

Γ(1/4)
, (B.36)

where Γ is the Gamma function. This is the result given in (4.37).
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B.4 Fitting procedure for the momentum

distribution

In order to fit the measured momentum distributions with the model of (4.44), we perform
a χ2 minimisation

χ2 =
∑
pixels

(
ñ− ntof

σ

)2

, (B.37)

where ñ is the measured momentum distribution (image of the atoms using resonant
absorption, withNpix×Npix pixels squared) and ntof defined in (4.44). We assume normally
distributed intensities on the pixels with variance σ (typical noise of roughly 10 % of the
maximal optical density, assumed uniform across the image). I normalise all distributions
to 1, i.e.

∑
pixels ñ = 1 and

∑
pixels ntof = 1.

The minimisation of (B.37) is performed using M = 7 free parameters that we group
into a vector x = (P1,P2,P3, C0, C1, C2,G). We also write ntof = p · x with

p =

(
|W1|2, |W2|2, |W3|2, 2|W0|2, |W0|2

∑
α=x,y

cos (kαd) , |W0|2
∑
α=x,y

cos (2kαd) , G

)
.

(B.38)
χ2 is a therefore a quadratic form with respect to x which we write

χ2 = a+ b · x + xT ·Q · x, with the normalisation d · x = 1, (B.39)

where we identify

a =
∑
pixels

ñ2

σ2
, bi =

∑
pixels

−2ñpi
σ2

, Qij =
∑
pixels

pipj
σ2

, di =
∑
pixels

pi. (B.40)

The matrix Q is symmetric and positive definite. I hence need to minimise the Lagrangian
L = χ2 +µ(d ·x−1), which is still a quadratic form and where µ is a Lagrange multiplier
that includes the normalisation constraint. Taking the first-order derivatives to zero leads
to an invertible linear system of equations{

∂L/∂xi = 0,∀i
∂L/∂µ = 0

⇐⇒
{

2Q · x + b + µd = 0
d · x− 1 = 0

(B.41)

The solution of this system gives the optimal set of parameters x0 and the optimal χ2

value should be close to the number of degrees of freedom N2
pix−M . Confidence intervals

on these parameters are calculated by computing surfaces of iso-χ2 with the normalisation
condition d · x = 1. A convenient way to do this is to write the quadratic form of the χ2

as (true if we assume the normalisation condition to always hold):

∆χ2 = χ2 − χ2
min = (x− x0)T ·Q · (x− x0) = δxT ·Q · δx. (B.42)

The covariance matrix of this optimisation problem is given by R = Q−1. The quantity
∆χ2 is distributed as a χ2 distribution with M degrees of freedom (Press 2007). The
ellipsoid defined by ∆χ2 = pM encloses a volume which includes the true parameters
with a probability that depends on the value of pM . A χ2 distribution with M degrees
of freedom is identical to a Γ-distribution with shape M/2 and scale 1/2 (Bohm et al.
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2010). One can calculate pM in such a way that the cumulative density function of the
latter Γ-distribution equals 68.3%. In our case p7 ≈ 8.18.

Confidence intervals are given by the projection of the ellipsoid on the parameters
axes, this is done by intersecting the axes with the tangential planes of the ellipsoid which
are normal to the axes. The gradient of the ellipsoid surface gives a normal vector J to
the surface J = 2Q · δx. This normal vector defines a relevant tangential plane when it
is collinear to one of the parameter axes ei. I therefore need to solve the linear system

2Q · δxi = ηei. (B.43)

Since Q is positive definite, it is invertible and δxij = Rijη/2. δxi is simply the ith column
of R multiplied by η/2. The ellipsoid surface equation becomes

η2

4

∑
kl

RikRilQkl = pM ⇐⇒
η2

4
Rii = pM , (B.44)

which gives two solutions for η (the two opposite sides of the ellipsoid). The confidence
interval on the ith parameter is therefore given by:

xi = x0
i ± δxii = x0

i ±
√
pMRii. (B.45)

B.5 Analysis of atom losses in a quenched optical

lattice

The loss dynamics of atoms in a deep lattice is described generally by a master equation
for the density matrix ρ̂ with Lindblad operators L̂k = âki describing the destruction of k
atoms in site i (we dropped the band index for clarity):

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+
∑
k=2,3

γk
∑
i

[
âki ρ̂â

†k
i −

1

2
â†ki â

k
i ρ̂−

1

2
ρ̂â†ki â

k
i

]
, (B.46)

γk = Lk

∫
d3r |w0|2k. (B.47)

The loss constants Lk only depend on the atom and we assume that γk does not depend
on the site position (the inhomogeneity of the potential does not appreciably change the
Wannier function). The time evolution of the probability pin of finding n atoms at a
particular site i is computed by projecting the master equation (B.46) on the state |n〉i:

dpin
dt

=
∑
k=2,3

γk
[
(n+ 1) . . . (n+ k)pin+k − n(n− 1) . . . (n− k + 1)pinεk

]
, (B.48)

with εk = 0 if n < k and 1 otherwise. The space with n atoms decays to the n− k space
and is fed by the n+ k space. The mean atom number per site 〈n〉i =

∑
n np

i
n evolves as

d 〈n〉i
dt

= −
∑
k=2,3

kγk
∑
n≥k

n(n− 1) . . . (n− k + 1)pin, (B.49)

Nat(t) =
∑
i

〈n〉i (t). (B.50)
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We define a cumulative probability pn =
∑

i p
i
n, we have:

dpn
dt

=
∑
k=2,3

γk [(n+ 1) . . . (n+ k)pn+k − n(n− 1) . . . (n− k + 1)pnεk] , (B.51)

Nat(t) =
∑
n

npn(t) =
∑
n

Nn(t), (B.52)

where Nn corresponds to the number of atoms in the Mott shell with n atoms per site.
The solution of this system can be readily computed in the experimentally relevant limit
γ2 � γ3, and we truncate the Fock space to n ≤ 4 since higher occupancies are not
expected (see Section 4.3.5):

p0(t) = (1− e−2γ2t)p2(0) + (1− e−6γ3t)p3(0), (B.53)

p1(t) = p1(0) + (1− e−24γ3t)p4(0), (B.54)

p2(t) = e−2γ2tp2(0), (B.55)

p3(t) = e−6γ3tp3(0), (B.56)

p4(t) = e−24γ3tp4(0). (B.57)
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C.1 Bloch waves matrix elements α

In this section, I give the derivation of various results used in the main text. The cal-
culations are performed in the 3D case with the dissipation laser wavevector kL oriented
along ez.

C.1.1 Explicit form of the matrix elements α

We write the Bloch waves1

|n, q〉 = eiq·R
∑
K

Cn
q+K |K〉 , (C.1)

where K designates a reciprocal lattice vector and |k〉 a plane wave with wavevector k.
We are interested in the effect of the translation operator on a Bloch wave |n, q〉. Let
then consider a shift of momentum ~p,

αn,n′

q,q′ (p) = 〈n′, q′| eip·R̂ |n, q〉 (C.2)

= 〈n′, q′|
∑
K

Cn
q+K |K + q + p〉 (C.3)

=
∑
K,K′

(
Cn′

q′+K′

)∗
Cn

q+K 〈K ′ + q′|K + q + p〉 (C.4)

=

(
2π

L

)3∑
K,L

(
Cn′

q′+K−L

)∗
Cn

q+Kδ
(3) (q + p− q′ +L) . (C.5)

We can obtain a further understanding of α by going to the Wannier basis:

|n, q〉 =

(
d

L

)3/2∑
i

eiq·ri |wn
i 〉 . (C.6)

1Here we adopt the notation from Ashcroft et al. (1976) for compactness.
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We can thus write

αn,n′

q,q′ (p) =

(
d

L

)3∑
i,j

ei(q′·rj−q·ri) 〈wn
i | eip·R̂ |wn′

j 〉 (C.7)

≈
(
d

L

)3∑
i

ei(q′−q)·ri 〈wn
i | eip·R̂ |wn′

i 〉 (C.8)

=

(
d

L

)3∑
i

ei(q′−q+p)·ri 〈wn
0 | eip·R̂ |wn′

0 〉 (C.9)

=

(
2π

L

)3

δ(3)(q′ − q + p) 〈wn
0 | eip·R̂ |wn′

0 〉 . (C.10)

The second equality is obtained in the tight-binding limit where only local terms are
kept. We show here that the matrix element α characterises the coupling with a photon
of momentum ~p: the Dirac distribution reflects momentum conservation and the square
modulus of the second term is the Lamb-Dicke factor (5.20) which characterises band
transfer.

C.1.2 Product of two matrix elements α

We now consider the product of two α terms as encountered in the derivation of (5.30)
and (5.37). The expansion of (αn,n2

q,q2
)∗αn,n1

q,q1
in plane waves gives

∑
K1,L1,K2,L2

Cn2
q2+K2−L2

(
Cn

q+K2

)∗ (
Cn1

q1+K1−L1

)∗
Cn

q+K1
δ(3) (q + p− q2 +L2) δ(3) (q + p− q1 +L1) .

(C.11)
The delta distributions are simultaneously non-zero if the wavevectors q + p − q1 + L1

and q+p− q2 +L2 are equal, or evenly −q1 +L1 and −q2 +L2 are equal. By definition
of the quasi-momenta q and the reciprocal lattice vectors L, this is equivalent to q1 = q2

and L1 = L2.

C.1.3 Integration over emission directions

In (5.30) and (5.37), the matrix elements are integrated over the directions of spontaneous
emission. The delta distribution in the matrix elements prescribes a finite number of
direction values for which the matrix element is finite. The condition to be fulfilled is:

q − q′ + k0u− kL +L = 0. (C.12)

The laser detuning δL is small enough to neglect the difference between kL and k0 and
we take kL ≈ k0. We note ν = k0d/π ≈ 1.37, q = κπ/d with κ ∈] − 1, 1] and L =
2π/d(aex + bey + cez) with (a, b, c) ∈ Z3. We project (C.12) on the lattice axes:

κx − κ′x + νux + 2a = 0, (C.13)

κy − κ′y + νuy + 2b = 0, (C.14)

κz − κ′z + ν(uz − 1) + 2c = 0. (C.15)
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The bounds on the quasi-momenta (κ ∈]− 1, 1]) and the norm of u (|u| = 1) restrict the
possible integer values taken by a, b and c. Since κ′ − κ ∈]− 2, 2[ and ν < 2, we have

ux ∈ [−1, 1]⇒ a ∈ {−1, 0, 1}, (C.16)

uy ∈ [−1, 1]⇒ b ∈ {−1, 0, 1}, (C.17)

uz − 1 ∈ [−2, 0]⇒ c ∈ {0, 1, 2}. (C.18)

Figure C.1: Map of the possible values taken by the integers a, b and c with respect to the
quasi-momenta q and q′ in the horizontal directions ⊥= x or y (left), and in the vertical
direction z (right).

A map for the possible values of a, b and c with respect to the quasi-momenta q and
q′ is provided in Figure C.1.

C.2 Light-induced tunnelling

We are interested in the dissipative part of the master equation (5.14), which we project
on the Wannier state |wn

0 〉. We insert two resolutions of identity in order to expand the
couplings due to the dissipation (with ∆k = k0u− kL):

〈wn
0 | e−i∆k·R̂ρ̂ei∆k·R̂ |wn

0 〉 =
∑

i,j,l,m

〈wn
0 | e−i∆k·R̂ |wm

j 〉 〈wm
j | ρ̂ |wl

i〉 〈wl
i| ei∆k·R̂ |wn

0 〉 . (C.19)

We now introduce the coefficients τ li (∆k) = 〈wl
i| ei∆k·R̂ |wn

0 〉 and integrate over the spon-
taneous emission directions:

Γsp

∫
d2uN(u) 〈wn

0 | e−i∆k·R̂ρ̂ei∆k·R̂ |wn
0 〉 = Γsp

∑
i,j,l,m

〈wm
j | ρ̂ |wl

i〉
∫

d2uN(u)τ li (∆k)τm∗j (∆k)

(C.20)

=
∑

i,j,l,m

T l,m
i,j 〈w

m
j | ρ̂ |wl

i〉 . (C.21)
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Here again we neglect coherences between different bands of the lattice, hence we restrict
the discussion to l = m. Moreover, due to the localised nature of the Wannier functions,
dominant terms will have either i or j equal to zero. With the reduced notation T l

i = T l,l
i,0

Γsp

∫
d2uN(u) 〈wn

0 | e−i∆k·R̂ρ̂ei∆k·R̂ |wn
0 〉 ≈

∑
i 6=0,l

T l
i

∗ 〈wl
i| ρ̂ |wl

0〉+ T l
i 〈wl

0| ρ̂ |wl
i〉 . (C.22)

Two main effects arise from the dissipative part of the master equation given in (C.22).

Band transfer

The main effect, as we already saw in the Bloch basis, is to induce band transfers. This is
mostly found in the local terms T l

0 which couples the population at site 0 and band n to
populations on the same site but in other bands. In Figure C.2a we show the evolution
of the inter-band transition rates P n

0 = T (n,0,0)
(0,0,0) between the fundamental band and higher

excited bands in the horizontal direction with respect to the horizontal lattice depth V⊥.
These transition rates describes the growth or decay of the fundamental band population
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Figure C.2: Rates of transfer for the first four bands in the horizontal direction with
varying depth V⊥. (a) On-site transfer rates to excited bands. Note that the rate of
transfer to the fundamental band P 0

0 is not the actual rate in the master equation (5.43).
One must add −1 to obtain the correct rate. (b) Nearest-neighbour tunnelling rates
within bands.

due to transfer from higher excited bands. Given the symmetry of the matrix elements
they also describe the rate of transfer from the fundamental band to excited bands. We
observe that transfer to the first excited band occurs at a rate of ten percent of Γsp, and
decreases only slightly when increasing the lattice depth.

Coherent hopping

The secondary effect is to create coherences between sites, this can be found in the
terms T n1 = T (n,0,0)

(1,0,0) which describes the coherent tunnelling induced by an absorption-
spontaneous emission cycle. In Figure C.2b we show the evolution of these tunnelling
rates T n1 with respect to the horizontal lattice depth V⊥. The localised nature of the
Wannier functions and the angular integration over the spontaneous emission directions
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make the matrix elements T n1 very small compared to Γsp, even in the small horizontal
lattice depth regime.

We conclude that the main effect of spontaneous emission is to excite atoms to higher
bands, direct tunnelling events induced by dissipation can be neglected.

C.3 Departure and feeding terms

In this section, I derive the analytical expressions for the departure and feeding terms
of the master equation (5.2). I use the formalism of second quantisation and derive the
expressions described in Section 5.3. Calculations are performed in the interaction picture
with respect to Ĥ0, indicated by a tilde instead of a hat on the operators. I define the

electric polarisation operators Π̂
+

and Π̂
−

with components:

Π̂+
m = Ψ̂†emΨ̂g and Π̂−m =

[
Π̂+
m

]†
. (C.23)

C.3.1 Atom-light interaction

The atom-light interaction V̂vac given by (5.9) can be rewritten as a sum of raising and
lowering terms Ṽvac = Ṽ + + Ṽ −, with Ṽ − = (Ṽ +)† and

Ṽ + = −i

∫
d3r

∑
µ

dEµâµ

(
Π̂

+
(r) · εµei(ω0−ωµ)t + Π̂

−
(r) · εµe−i(ω0+ωµ)t

)
eikµ·r. (C.24)

Here we keep the anti-resonant terms so that we will later be able to define distributions
properly, but we still make the two-level atom approximation.

We define purely atomic operators

Ŵµ(t) = dEµ

∫
d3r Π̂

+
(r) · εµeikµ·r, (C.25)

Ŵ ′
µ(t) = dEµ

∫
d3r Π̂

−
(r) · εµeikµ·r. (C.26)

Note that Ŵ ′
µ 6= Ŵ †

µ. The raising term (C.24) is thus

Ṽ + = −i
∑
µ

Ŵµâµei(ω0−ωµ)t + Ŵ ′
µâµe−i(ω0+ωµ)t. (C.27)

C.3.2 Departure terms

Here we want to evaluate the departure terms in the first line of the master equation
(5.2). We recall that the expectation value in the vacuum state does not vanish only for
products âµâ

†
µ and as a result

Ã =
1

~2

∫ ∞
0

dτ
〈
Ṽvac(t)Ṽvac(t− τ)

〉
R

=
1

~2

∫ ∞
0

dτ
〈
Ṽ +(t)Ṽ −(t− τ)

〉
R
. (C.28)

The relaxation time of the electro-magnetic vacuum field τR is on the order of an optical
period or shorter so that we can safely neglect (i) the free flight of the atom during τR,
(ii) the shift in frequency of the spontaneously emitted photons (on the order of the recoil
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frequency) (Cohen-Tannoudji et al. 1992). We can therefore perform a Born-Markov
approximation for the atomic operators and set Ŵµ(t− τ) ≈ Ŵµ(t). We also introduce a
convergence factor ε→ 0+, this leads to

Ã ≈
ε→0+

1

~2

∫ ∞
0

dτ
∑
µ

Ŵµ(t)Ŵ †
µ(t)ei(ω0−ωµ)τ−ετ + Ŵ ′

µ(t)Ŵ ′†
µ (t)e−i(ω0+ωµ−ετ)τ . (C.29)

We define s = r − r′ and perform the integration over the time variable τ ,

Ã =
ε→0+

i

~2

∑
µ

Ŵµ(t)Ŵ †
µ(t)

ω0 − ωµ + iε
+

Ŵ ′
µ(t)Ŵ ′†

µ (t)

−ω0 − ωµ + iε
. (C.30)

Next we expand the atomic operator products

Ã =
ε→0+

iΓ
∑
m,n

∫
d3rd3r′

(
Hmn(s)− i

Jmn(s)

2

)
Π̂+
m(r)Π̂−n (r′) (C.31)

+

(
Kmn(s)− i

Lmn(s)

2

)
Π̂−m(r′)Π̂+

n (r), (C.32)

where we introduced the quantities H, J , K and L to minimise the length of the equation.
They are given explicitly at the end of the calculation. In order to proceed we expand
the field operators, and combine the equal terms:

Π̂+
m(r)Π̂−n (r′) = Ψ̂†em(r)Ψ̂g(r)Ψ̂†g(r

′)Ψ̂en(r′) (C.33)

= Ψ̂†em(r)Ψ̂†g(r
′)Ψ̂en(r′)Ψ̂g(r) + δ(3)(s)Ψ̂†em(r)Ψ̂en(r), (C.34)

Π̂−m(r′)Π̂+
n (r) = Ψ̂†g(r

′)Ψ̂em(r′)Ψ̂†en(r)Ψ̂g(r) (C.35)

= Ψ̂†en(r)Ψ̂†g(r
′)Ψ̂em(r′)Ψ̂g(r) + δm,nδ

(3)(s)Ψ̂†g(r)Ψ̂g(r). (C.36)

We first discuss the one-body terms involving two field operators. The excited state
product corresponds to a single-particle interaction with the electro-magnetic field. The
real part is the Lamb shift of the excited state, and the imaginary part is a decay term due
to an absorption-spontaneous emission process. The ground state product appears only
in the anti-resonant part. The real part is the Lamb shift of the ground state, and the
imaginary part is zero (proportional to δ(1)(ωµ + ω0) with ωµ > 0). The Lamb shifts can
be incorporated into the definition of ω0 and we no longer consider them in the following.
The spontaneous decay term is:

Ã1B =
ε→0+

Γ

2

∑
m,n

∫
d3r Jmn(0)Ψ̂†em(r)Ψ̂en(r). (C.37)

Regarding the two-body terms involving four field operators, we can regroup them by
swapping the indices m and n, as a result we get the term

Ã2B =
ε→0+

iΓ
∑
m,n

∫
d3rd3r′

(
Gmn(s)− i

Fmn(s)

2

)
Ξ̂mn(r, r′), (C.38)

Ξ̂mn(r, r′) = Ψ̂†em(r)Ψ̂†g(r
′)Ψ̂en(r′)Ψ̂g(r). (C.39)
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with Gmn(s) = Hmn(s) +Knm(s) and Fmn(s) = Jmn(s) + Lnm(s). Moreover,

Gmn(s)− i
Fmn(s)

2
=

ε→0+

d2

(2π)3~Γε0

∫
d3k

k

2

∑
ε⊥k

εk,mε
∗
k,n

(
eik·s

k0 − k + iε
+

e−ik·s

−k0 − k + iε

)
(C.40)

=
ε→0+

3π

k3
0

1

(2π)3

∫
d3k

k

2

∑
ε⊥k

εk,mε
∗
k,n

(
1

k0 − k + iε
+

1

−k0 − k + iε

)
eik·s,

(C.41)

where we have changed the sign of k in the second integral. We recognise here an inverse
Fourier transform (see Appendix C.4). Now we separate the integrals over the angles
and over the modulus and recognise special distributions (this is where the anti-resonant
terms allow us to define mathematical distributions properly):∫ ∞

0

dx f(x)

(
1

1− x+ iε
+

1

−1− x+ iε

)
=

ε→0+
PV

[
f(x)

1− x

]
− iπδ(1)(1− x)f(1), (C.42)

which holds true for any odd function f . Here PV stands for the Cauchy principal value
integral. We deduce from this

Gmn(s) =
3

16π2
PV

[∫
dx

x3

1− x

∫
d2u eixk0u·s

∑
ε⊥u

εu,mε
∗
u,n

]
, (C.43)

Fmn(s) =
3

8π

∫
d2u eik0u·s

∑
ε⊥u

εu,mε
∗
u,n. (C.44)

The departure terms of the master equation can finally be expressed as

Ã = Ã1B + Ã2B, (C.45)

Ã1B =
Γ

2

∑
m,n

∫
d3r Ψ̂†em(r)Ψ̂en(r), (C.46)

Ã2B =
∑
m,n

∫
d3rd3r′

(
iΓGmn(s) +

Γ

2
Fmn(s)

)
Ξ̂mn(r, r′). (C.47)

Going back to the Schrödinger picture leaves the departure operators unchanged: Â = Ã.

C.3.3 Feeding terms

Here we want to evaluate the feeding terms in the second line of the master equation
(5.2). As for the departure terms, we expand the operators Ṽ , and use a Born-Markov
approximation on the atomic operators,

B̃1[ρ̃s] =
1

~2

∫ +∞

0

dτ Tr
{
Ṽvac(t) [ρ̃s ⊗ |∅〉〈∅|R] Ṽvac(t− τ)

}
(C.48)

=
1

~2

∫ +∞

0

dτ Tr
{
Ṽ −(t) [ρ̃s ⊗ |∅〉〈∅|R] Ṽ +(t− τ)

}
(C.49)

≈
ε→0+

1

~2

∫ +∞

0

dτ
∑
µ

Ŵ †
µρ̃sŴµe−i(ω0−ωµ)τ−ετ + Ŵ ′†

µ ρ̃sŴ
′
µei(ω0+ωµ)τ−ετ . (C.50)
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where we have introduced a convergence factor ε→ 0+, this leads to

B̃1[ρ̃s] =
ε→0+

−i

~2

∑
µ

Ŵ †
µρ̃sŴµ

ω0 − ωµ − iε
+

Ŵ ′†
µ ρ̃sŴ

′
µ

−ω0 − ωµ − iε
. (C.51)

And finally,

B̃[ρ̃s] = B̃1[ρ̃s] + B̃1[ρ̃s]
† (C.52)

=
1

~2

∑
µ

2ε

(ω0 − ωµ)2 + ε2
Ŵ †
µρ̃sŴµ +

2ε

(ω0 + ωµ)2 + ε2
Ŵ ′†
µ ρ̃sŴ

′
µ (C.53)

=
2π

~2c

L3

(2π)3

∫
d2udk k2

∑
ε⊥u

[
δ(1)(k0 − k)Ŵ †

µρ̃sŴµ + δ(1)(k0 + k)Ŵ ′†
µ ρ̃sŴ

′
µ

]
(C.54)

=
3Γ

8π

∑
m,n

∫
d2ud3rd3r′ Π̂−m(r′)e−ik0u·r′

ρ̃se
ik0u·rΠ̂+

n (r)
∑
ε⊥u

εu,mε
∗
u,n (C.55)

= Γ
∑
m,n

∫
d3rd3r′ Fmn(s)Π̂−m(r′)ρ̃sΠ̂

+
n (r). (C.56)

Going back to the Schrödinger picture gives

B̂[ρ̂s] = Γ
∑
m,n

∫
d3rd3r′ Fmn(s)Π̂−m(r′)ρ̂sΠ̂

+
n (r). (C.57)

C.4 Dipole-dipole interaction and collective

spontaneous emission functions

In this section, I derive the analytical expression of the dipole-dipole interaction and collec-
tive spontaneous emission functions F and G in (5.62) and (5.64). The directional factors
Nmn(u) = 3/(8π)

∑
ε⊥u εu,mε

∗
u,n can be expressed in terms of the spherical harmonics:

8π

3
Nmn(u) =

∑
ε⊥u

εu,mε
∗
u,n = δm,n−umu∗n = δm,n

√
4πY 0

0 (u)− 4π

3
Y m

1 (u) [Y n
1 (u)]∗ . (C.58)

We recall the definition of the spherical harmonics Y m
` in terms of the Legendre polyno-

mials Pm
` ,

Y m
` (θ, ϕ) = (−1)m

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ)eimϕ. (C.59)

And we note that:

Y m
1 [Y n

1 ]∗ = (−1)n
√
δm,n(4δm,0 + |m|) + 3|m− n|√

20π
Y m−n

2 + (−1)nδm,n
1√
4π
Y 0

0 . (C.60)

We assume that the laser excitation only populates the excited state |e0〉 linked to |g〉 by
the π-transition. As a result, we are only interested in the terms G00 and F00. We have:

Y 0
1

[
Y 0

1

]∗
=

1√
5π
Y 0

2 +
1√
4π
Y 0

0 . (C.61)
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We first perform the integration over the angles, using the decomposition of eik0u·s in
spherical harmonics and spherical Bessel functions j` (Ellinger et al. 1994). This gives,
with s̄ = s/s,

F00(s) =

∫
d2u eik0u·s 3

8π

∑
ε⊥u

εu,0ε
∗
u,0 (C.62)

=

∫
d2u

∑
`,m

i`j`(k0s)Y
m
` (u)Y m

` (s̄)∗

(
√

4πY 0
0 (u)−

√
4π

5
Y 0

2 (u)

)
(C.63)

= j0(k0s) +

√
4π

5
j2(k0s)Y

0
2 (s̄) (C.64)

=
sin(k0s)

k0s
+

[(
3

(k0s)3
− 1

k0s

)
sin(k0s)−

3

(k0s)2
cos(k0s)

]
3(s̄ · εL)2 − 1

2
(C.65)

=
3

2

{[
1− (s̄ · εL)2

] sin(k0s)

k0s
+
[
1− 3(s̄ · εL)2

](cos(k0s)

(k0s)2
− sin(k0s)

(k0s)3

)}
. (C.66)

This expression is equal to the function F in (5.62). It corresponds to the dissipative part
of the atom-light interactions (Pichler et al. 2010): it is related to collective spontaneous
emission.

The calculation of G00 is similar. We consider (C.43) and either use the residue
theorem, or a direct integration using principal value integrals, both leading to the same
result, provided s > 0:

G00(s) =
3

4

{
−
[
1− (s̄ · εL)2

] cos(k0s)

k0s
+
[
1− 3(s̄ · εL)2

](sin(k0s)

(k0s)2
+

cos(k0s)

(k0s)3

)}
.

(C.67)
This expression is equal to the function G in (5.64). It corresponds to the radiative part
of the atom-light interactions (Pichler et al. 2010): it is related to induced dipole-dipole
interactions.

C.5 Convolution theorem for the computation of

matrix elements

Here I give the proof for the Fourier space expression of the dipole-dipole interaction
energies (5.82) and modified emission rates (5.88). In this section, I denote the Fourier
transform operator by F, Fourier transforms with a tilde and the convolution product
with ?. I start with the following integral for the Wannier functions in the fundamental
band (band index omitted)

Ii =

∫
d3rd3r′ eikL·(r′−r)f(r′ − r)|wi(r)|2|w0(r′)|2 (C.68)

=

∫
d3r |wi(r)|2e−ikL·r

∫
d3r′ f(r′ − r)|w0(r′)|2eikL·r′

, (C.69)
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with W0(r) = |w0(r)|2eikL·r and where we recognise a convolution product in the second
integral. Then

Ii =

∫
d3r |wi(r)|2e−ikL·rf ? W0(r) (C.70)

= Wi ? [f ? W0]|r=0 , (C.71)

with Wi(r) = |wi(−r)|2eikL·r. Using the convolution theorem (Arfken et al. 2013):

Ii = F−1
[
W̃i × F[f ? W0]

]∣∣∣
r=0

(C.72)

=
1

(2π)3

∫
d3k W̃iW̃0f̃ , (C.73)

where we used the convolution theorem a second time to decompose F[f ? W0]. We now
use the fact that wi(−r) = w0(r + ri), which is true in the fundamental band of a cubic
lattice where all Wannier functions can be chosen real and with even parity (Kohn 1959).

We can now express W̃i as a function of W̃0:

W̃i = F[|w0(r + ri)|2eikL·r] (C.74)

= e−ikL·riF[|w0(r + ri)|2eikL·(r+ri)] (C.75)

= e−ikL·rieik·riF[|w0(r)|2eikL·r] (C.76)

= ei(k−kL)·riW̃0 (C.77)

= ei(k−kL)·ri |̃w0|2
∣∣∣
k−kL

. (C.78)

And finally,

Ii =
1

(2π)3

∫
d3k ei(k−kL)·ri f̃(k)[|̃w0|2(k − kL)]2. (C.79)
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Capogrosso-Sansone, B., Ş. G. Söyler, N. Prokof’ev and B. Svistunov (2008). Monte Carlo
study of the two-dimensional Bose-Hubbard model. Physical Review A 77.1 (cited in
pages 26, 62, 63).

Cappellini, G., M. Mancini, G. Pagano, P. Lombardi, L. Livi et al. (2014). Direct observa-
tion of coherent interorbital spin-exchange dynamics. Physical Review Letters 113.12,
120402 (cited in page 91).

Cappellini, G., P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani and J.
Catani (2015). A compact ultranarrow high-power laser system for experiments with
578nm ytterbium clock transition. Review of Scientific Instruments 86.7, 073111 (cited
in pages 70, 90).

Cazalilla, M. A., A. F. Ho and M. Ueda (2009). Ultracold gases of ytterbium: ferromag-
netism and Mott states in an SU(6) Fermi system. New Journal of Physics 11.10,
103033 (cited in page 21).

Cazalilla, M. A. and A. M. Rey (2014). Ultracold Fermi gases with emergent SU(N)
symmetry. Reports on Progress in Physics 77.12, 124401 (cited in pages 15, 21).

Cheuk, L. W., M. A. Nichols, K. R. Lawrence, M. Okan, H. Zhang and M. W. Zwierlein
(2016a). Observation of 2D fermionic Mott insulators of 40K with single-site resolution.
Physical Review Letters 116.23, 235301 (cited in page 21).

Cheuk, L. W., M. A. Nichols, K. R. Lawrence, M. Okan, H. Zhang, E. Khatami, N. Trivedi,
T. Paiva, M. Rigol and M. W. Zwierlein (2016b). Observation of spatial charge and
spin correlations in the 2D Fermi-Hubbard model. Science 353.6305, 1260–1264 (cited
in pages 21, 29).

Childress, L. and R. Hanson (2013). Diamond NV centers for quantum computing and
quantum networks. MRS Bulletin 38.2, 134–138 (cited in page 12).

Chin, C., R. Grimm, P. Julienne and E. Tiesinga (2010). Feshbach resonances in ultracold
gases. Reviews of Modern Physics 82.2, 1225–1286 (cited in pages 105, 144).

Choi, J.-y., S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A.
Huse, I. Bloch and C. Gross (2016). Exploring the many-body localization transition
in two dimensions. Science 352.6293, 1547–1552 (cited in pages 12, 22).

Chomaz, L., R. M. W. van Bijnen, D. Petter, G. Faraoni, S. Baier, J. H. Becher, M. J.
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Fölling, S., F. Gerbier, A. Widera, O. Mandel, T. Gericke and I. Bloch (2005). Spatial
quantum noise interferometry in expanding ultracold atom clouds. Nature 434.7032,
481–484 (cited in page 29).

Foot, C. J. (2004). Atomic Physics. Oxford Master Series in Physics. Oxford University
Press (cited in pages 16, 75, 78).

Foss-Feig, M., M. Hermele, V. Gurarie and A. M. Rey (2010a). Heavy fermions in an
optical lattice. Physical Review A 82.5 (cited in page 20).

Foss-Feig, M., M. Hermele and A. M. Rey (2010b). Probing the Kondo lattice model with
alkaline-earth-metal atoms. Physical Review A 81.5 (cited in page 20).

Franchi, L., L. F. Livi, G. Cappellini, G. Binella, M. Inguscio, J. Catani and L. Fallani
(2017). State-dependent interactions in ultracold 174Yb probed by optical clock spec-
troscopy. New Journal of Physics 19.10, 103037 (cited in pages 72, 90, 91, 157).

Frapolli, C. (2017). Thermodynamics and magnetism of antiferromagnetic spinor Bose-
Einstein condensates. PhD Thesis. PSL Research University (cited in page 56).

Freimund, D. L., K. Aflatooni and H. Batelaan (2001). Observation of the Kapitza-Dirac
effect. Nature 413.6852, 142–143 (cited in page 60).

Friebel, S., C. D’Andrea, J. Walz, M. Weitz and T. W. Hänsch (1998). CO2-laser optical
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Laloë, F. (2001). Do we really understand quantum mechanics? Strange correlations, para-
doxes, and theorems. American Journal of Physics 69.6, 655–701 (cited in page 12).

Landau, L. (1930). Diamagnetismus der Metalle. Zeitschrift für Physik 64.9-10, 629–637
(cited in page 30).

Laughlin, R. B. (1983). Anomalous quantum Hall effect: An incompressible quantum fluid
with fractionally charged excitations. Physical Review Letters 50.18, 1395–1398 (cited
in page 14).

Legero, T., T. Kessler and U. Sterr (2010). Tuning the thermal expansion properties of
optical reference cavities with fused silica mirrors. Journal of the Optical Society of
America B 27.5, 914 (cited in page 69).

Lewenstein, M., A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De) and U. Sen (2007).
Ultracold atomic gases in optical lattices: mimicking condensed matter physics and
beyond. Advances in Physics 56.2, 243–379 (cited in page 21).
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page 68).

White, S. R. and A. E. Feiguin (2004). Real-time evolution using the density matrix
renormalization group. Physical Review Letters 93.7 (cited in page 125).

Will, S., T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann and I. Bloch (2010).
Time-resolved observation of coherent multi-body interactions in quantum phase re-
vivals. Nature 465.7295, 197–201 (cited in page 64).

Wineland, D. J. and W. M. Itano (1979). Laser cooling of atoms. Physical Review A
20.4, 1521–1540 (cited in pages 12, 132).

Wineland, D. J. (2013). Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s
cat. Reviews of Modern Physics 85.3, 1103–1114 (cited in page 12).

Yamaguchi, A., S. Uetake, S. Kato, H. Ito and Y. Takahashi (2010). High-resolution laser
spectroscopy of a Bose-Einstein condensate using the ultranarrow magnetic quadrupole
transition. New Journal of Physics 12.10, 103001 (cited in pages 17, 53).

Zambelli, F., L. Pitaevskii, D. M. Stamper-Kurn and S. Stringari (2000). Dynamic struc-
ture factor and momentum distribution of a trapped Bose gas. Physical Review A
61.6, 063608 (cited in page 71).

Zhu, B., B. Gadway, M. Foss-Feig, J. Schachenmayer, M. L. Wall et al. (2014). Suppressing
the loss of ultracold molecules via the continuous quantum Zeno effect. Physical Review
Letters 112.7, 070404 (cited in page 91).

Zhu, B., J. Schachenmayer, M. Xu, F. Herrera, J. G. Restrepo, M. J. Holland and A. M.
Rey (2015). Synchronization of interacting quantum dipoles. New Journal of Physics
17.8, 083063 (cited in pages 18, 159).

Zupancic, P., P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam and M. Greiner
(2016). Ultra-precise holographic beam shaping for microscopic quantum control. Optics
Express 24.13, 13881–13893 (cited in page 20).

Zurek, W. H. (2002). Decoherence and the transition from quantum to classical – Revisited.
Los Alamos Science 27, 86–109 (cited in page 12).

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical.
Reviews of Modern Physics 75.3, 715–775 (cited in page 12).

Zwerger, W. (2003). Mott-Hubbard transition of cold atoms in optical lattices. Journal of
Optics B: Quantum and Semiclassical Optics 5.2, S9 (cited in pages 25, 26, 61, 73).

200

https://doi.org/10.1103/PhysRevLett.83.943
https://doi.org/10.1103/PhysRevLett.83.943
https://doi.org/10.1103/PhysRevLett.83.943
https://doi.org/10.1103/PhysRevLett.83.943
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://tel.archives-ouvertes.fr/tel-00541420/document
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1038/nature09036
https://doi.org/10.1038/nature09036
https://doi.org/10.1038/nature09036
https://doi.org/10.1038/nature09036
https://doi.org/10.1103/PhysRevA.20.1521
https://doi.org/10.1103/PhysRevA.20.1521
https://doi.org/10.1103/PhysRevA.20.1521
https://doi.org/10.1103/PhysRevA.20.1521
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1088/1367-2630/12/10/103001
https://doi.org/10.1088/1367-2630/12/10/103001
https://doi.org/10.1088/1367-2630/12/10/103001
https://doi.org/10.1088/1367-2630/12/10/103001
https://doi.org/10.1103/PhysRevA.61.063608
https://doi.org/10.1103/PhysRevA.61.063608
https://doi.org/10.1103/PhysRevA.61.063608
https://doi.org/10.1103/PhysRevA.61.063608
https://doi.org/10.1103/PhysRevLett.112.070404
https://doi.org/10.1103/PhysRevLett.112.070404
https://doi.org/10.1103/PhysRevLett.112.070404
https://doi.org/10.1103/PhysRevLett.112.070404
https://doi.org/10.1103/PhysRevLett.112.070404
https://doi.org/10.1088/1367-2630/17/8/083063
https://doi.org/10.1088/1367-2630/17/8/083063
https://doi.org/10.1088/1367-2630/17/8/083063
https://doi.org/10.1088/1367-2630/17/8/083063
https://doi.org/10.1364/OE.24.013881
https://doi.org/10.1364/OE.24.013881
https://doi.org/10.1364/OE.24.013881
https://doi.org/10.1364/OE.24.013881
https://doi.org/10.1364/OE.24.013881
https://doi.org/http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-02-5769
https://doi.org/http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-02-5769
https://doi.org/http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-02-5769
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1088/1464-4266/5/2/352
https://doi.org/10.1088/1464-4266/5/2/352
https://doi.org/10.1088/1464-4266/5/2/352
https://doi.org/10.1088/1464-4266/5/2/352
https://doi.org/10.1088/1464-4266/5/2/352

	Glossary
	Introduction
	Ultracold alkaline-earth-like gases in optical lattices
	Structure of AEL atoms
	Optical lattices
	Towards artificial gauge fields
	Summary

	Experimental apparatus
	Bose-Einstein condensation of 174Yb in a crossed optical dipole trap
	Detection and optical imaging
	Quantum gas of ytterbium in 2D optical lattices
	A laser to address the clock transition
	Summary

	Optical spectroscopy of degenerate bosons in deep optical lattices
	Quasi-adiabatic preparation of Mott insulator phases
	Single-particle spectra in optical lattices
	Rabi oscillations in deep lattices
	Sources of dephasing
	Interacting atoms driven on the clock transition
	Conclusion

	Anomalous momentum diffusion in an open Bose-Hubbard gas
	Dissipation with spontaneous emission for a single atom
	Dramatic change in the relaxation of a superfluid under dissipation
	Dissipative Bose-Hubbard model
	Relaxation dynamics in the algebraic regime
	Detection of Fock space dynamics through inelastic losses
	Conclusion

	Theoretical approach to the relaxation dynamics in optical lattices
	The quantum optical master equation
	Dissipative dynamics of a single atom in an optical lattice
	Dipole-dipole interactions and collective effects in spontaneous emission
	Comparison with the experimental results of Chapter 4
	Conclusion

	Summary and perspectives
	Supplemental material for Chapter 2
	Best-reference picture algorithm performance

	Supplemental material for Chapter 4
	Dissipation in optical lattices: density matrix formalism
	Master equation derivation for the dissipative Hubbard model
	Continuum approximation for large fillings
	Fitting procedure for the momentum distribution
	Analysis of atom losses in a quenched optical lattice

	Supplemental material for Chapter 5
	Bloch waves matrix elements 
	Light-induced tunnelling
	Departure and feeding terms
	Dipole-dipole interaction and collective spontaneous emission functions
	Convolution theorem for the computation of matrix elements

	Bibliography

