. Matériels and . .. Méthodes,

M. Au and . .. Du-modèle-murin-transgénique,

. .. Analyse,

. .. Analyses-statistiques,

. .. Résultats,

.. .. Phénotype,

, Analyse de la destruction urothéliale

. .. Discussion,

. .. Conclusion,

. .. Bibliographie,

. .. Annexes, 99 Annexe 1. Notification de la décision de l'American Journal of Kidney Disease

, Annexe 2, Tableaux des amorces et anticorps utilisés dans la troisième partie

, 103 Bibliography 1. Bankir L, Bouby N, Trinh-Trang-Tan M-M. 2 The role of the kidney in the maintenance of water balance, vol.3, pp.80005-80014, 1989.

E. B. Pedersen, I. M. Thomsen, and T. G. Lauridsen, Abnormal function of the vasopressincyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study, BMC Nephrol, vol.11, p.26, 2010.

S. Combs and T. Berl, Dysnatremias in patients with kidney disease, Am J Kidney Dis Off J Natl Kidney Found, vol.63, issue.2, pp.294-303, 2014.

G. Conte, A. Dal-canton, and G. Fuiano, Mechanism of impaired urinary concentration in chronic primary glomerulonephritis, Kidney Int, vol.27, issue.5, pp.792-798, 1985.

N. Bouby, S. Bachmann, D. Bichet, and L. Bankir, Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat, Am J Physiol, vol.258, issue.4, pp.973-979, 1990.

L. Bankir, N. Bouby, and E. Ritz, Vasopressin: a novel target for the prevention and retardation of kidney disease?, Nat Rev Nephrol, vol.9, issue.4, pp.223-239, 2013.

W. F. Clark, J. M. Sontrop, and J. J. Macnab, Urine volume and change in estimated GFR in a community-based cohort study, Clin J Am Soc Nephrol CJASN, vol.6, issue.11, pp.2634-2641, 2011.

M. Plischke, M. Kohl, and L. Bankir, Urine osmolarity and risk of dialysis initiation in a chronic kidney disease cohort--a possible titration target?, PloS One, vol.9, issue.3, p.93226, 2014.

L. A. Hebert, T. Greene, A. Levey, M. E. Falkenhain, and S. Klahr, High urine volume and low urine osmolality are risk factors for faster progression of renal disease, Am J Kidney Dis Off J Natl Kidney Found, vol.41, issue.5, pp.962-971, 2003.

E. Higashihara, K. Nutahara, and M. Tanbo, Does increased water intake prevent disease progression in autosomal dominant polycystic kidney disease?, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.29, issue.9, pp.1710-1719, 2014.

M. Weber, D. Berglund, S. Reule, S. Jackson, A. J. Matas et al., Daily fluid intake and outcomes in kidney recipients: post hoc analysis from the randomized ABCAN trial, Clin Transplant, vol.29, issue.3, pp.261-267, 2015.

O. Moranne, M. Froissart, and J. Rossert, Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.20, issue.1, pp.2670-2677, 2005.

N. S. Bricker, R. R. Dewey, H. Lubowitz, J. Stokes, and T. Kirkensgaard, OBSERVATIONS ON THE CONCENTRATING AND DILUTING MECHANISMS OF THE DISEASED KIDNEY*, J Clin Invest, vol.38, issue.3, pp.516-523, 1959.

. Ht,

K. E. Anderson, Recommendations for the diagnosis and treatment of the acute porphyrias, Ann. Intern. Med, vol.142, pp.439-450, 2005.

A. N. Higdon, Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy, Am. J. Physiol. Heart Circ. Physiol, vol.302, pp.1394-1409, 2012.

V. Jeney, Pro-oxidant and cytotoxic efects of circulating heme, Blood, vol.100, pp.879-887, 2002.

L. Gonzalez-michaca, G. Farrugia, A. J. Croatt, J. Alam, and K. A. Nath, Heme: a determinant of life and death in renal tubular epithelial cells, Am. J. Physiol. Renal Physiol, vol.286, pp.370-377, 2004.

J. Balla, Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage, Proc. Natl. Acad. Sci. USA, vol.90, pp.9285-9289, 1993.

J. Balla, Haem, haem oxygenase and ferritin in vascular endothelial cell injury, Nephrol. Dial. Transplant. Of. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, vol.18, issue.5, pp.8-12, 2003.

J. D. Belcher, Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease, Blood, vol.123, pp.377-390, 2014.

S. M. Camus, Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease, Blood, vol.125, pp.3805-3814, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02347169

G. O. Latunde-dada, R. J. Simpson, and A. T. Mckie, Recent advances in mammalian haem transport, Trends Biochem. Sci, vol.31, pp.182-188, 2006.

K. A. Nath and R. P. Hebbel, Sickle cell disease: renal manifestations and mechanisms, Nat. Rev. Nephrol, vol.11, pp.161-171, 2015.

K. A. Nath and Z. S. Katusic, Vasculature and kidney complications in sickle cell disease, J. Am. Soc. Nephrol. JASN, vol.23, pp.781-784, 2012.

E. Csongradi, L. A. Juncos, H. A. Drummond, T. Vera, and D. E. Stec, Role of carbon monoxide in kidney function: is a little carbon monoxide good for the kidney?, Curr. Pharm. Biotechnol, vol.13, pp.819-826, 2012.

P. Frei, Liver Transplantation because of Acute Liver Failure due to Heme Arginate Overdose in a Patient with Acute Intermittent Porphyria, Case Rep. Gastroenterol, vol.6, pp.190-196, 2012.

G. J. Dhar, I. Bossenmaier, R. Cardinal, Z. J. Petryka, and C. J. Watson, Transitory renal failure following rapid administration of a relatively large amount of hematin in a patient with acute intermittent porphyria in clinical remission, Acta Med. Scand, vol.203, pp.437-443, 1978.

S. W. Ryter, L. E. Otterbein, D. Morse, and A. M. Choi, Heme oxygenase/carbon monoxide signaling pathways: regulation and functional signiicance, Mol. Cell. Biochem. 234, vol.235, pp.249-263, 2002.

R. A. Zager, A. C. Johnson, and K. Becker, Plasma and urinary heme oxygenase-1 in AKI, J. Am. Soc. Nephrol. JASN, vol.23, pp.1048-1057, 2012.

F. T. Botros, L. Dobrowolski, and L. G. Navar, Renal heme oxygenase-1 induction with hemin augments renal hemodynamics, renal autoregulation, and excretory function, Int. J. Hypertens, vol.2012, p.189512, 2012.

R. Wang, R. Shamloul, X. Wang, Q. Meng, and L. Wu, Sustained normalization of high blood pressure in spontaneously hypertensive rats by implanted hemin pump, Hypertension, vol.48, pp.685-692, 2006.

M. J. Tracz, Deiciency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inlammatory responses to renal ischemia, Kidney Int, vol.72, pp.1073-1080, 2007.

A. Yachie, Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deiciency, J. Clin. Invest, vol.103, pp.129-135, 1999.

S. A. Griin, Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism, Hypertension, vol.17, pp.626-635, 1991.

V. J. Dzau, G. H. Gibbons, and R. E. Pratt, Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia, Hypertension, vol.18, pp.100-105, 1991.

W. J. Arendshorst, K. Brännström, and X. Ruan, Actions of angiotensin II on the renal microvasculature, J. Am. Soc. Nephrol. JASN, vol.10, issue.11, pp.149-161, 1999.

A. Jadhav, E. Torlakovic, and J. F. Ndisang, Hemin therapy attenuates kidney injury in deoxycorticosterone acetate-salt hypertensive rats, Am. J. Physiol. Renal Physiol, vol.296, pp.521-534, 2009.

R. Shamloul and R. Wang, Monitoring circulatory heme level in hemin therapy for lowering blood pressure in rats, Cell. Mol. Biol. Noisy-Gd. Fr, vol.51, pp.507-512, 2005.

F. Vinchi, Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases, Circulation, vol.127, pp.1317-1329, 2013.

K. A. Nath, Heme protein-induced chronic renal inlammation: suppressive efect of induced heme oxygenase-1, Kidney Int, vol.59, pp.106-117, 2001.

C. Vinsonneau, Intrarenal urothelium proliferation: an unexpected early event following ischemic injury, Am. J. Physiol. Renal Physiol, vol.299, pp.479-486, 2010.

M. Kerroch, Genetic inhibition of discoidin domain receptor 1 protects mice against crescentic glomerulonephritis, FASEB J. Of. Publ. Fed. Am. Soc. Exp. Biol, vol.26, pp.4079-4091, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00919121

E. ;. Masson and . Em-consulte, Anatomie des reins et de la voie excrétrice supérieure, Sampaio FJ. Renal anatomy. Endourologic considerations. Urol Clin North Am, 2000.

H. Lippert and R. Pabst, Arterial Variations in Man: Classification and Frequency

J. F. Bergmann-verlag-münchen, , 1985.

J. Assouad, M. Riquet, C. Foucault, G. Hidden, and V. Delmas, Renal lymphatic drainage and thoracic duct connections: implications for cancer spread, Lymphology, vol.39, issue.1, pp.26-32, 2006.

C. Chmielewski, Renal anatomy and overview of nephron function, Nephrol Nurs J

, Apr, vol.30, issue.2, pp.191-193

L. Bankir and C. De-rouffignac, Urinary concentrating ability: insights from comparative anatomy, Am J Physiol, issue.6, pp.643-66, 1985.

B. Schmidt-nielsen and O. , Structure and concentrating mechanism in the mammalian kidney, Am J Physiol, pp.1119-1143, 0200.

M. M. Melicow, The urothelium: a battleground for oncogenesis, J Urol, 1978.

B. F. Martin, Cell replacement and differentiation in transitional epithelium: a histological and autoradiographic study of the guinea-pig bladder and ureter, J Anat, 1972.

M. R. Khorshid and D. B. Moffat, The epithelia lining the renal pelvis in the rat, J Anat, 1974.

R. M. Hicks, The fine structure of the transitional epithelium of rat ureter, J Cell Biol

R. M. Hicks, The permeability of rat transitional epithelium. Kertinization and the barrier to water, J Cell Biol, vol.28, issue.1, pp.21-31, 1966.

E. Batourina, S. Tsai, S. Lambert, P. Sprenkle, R. Viana et al., Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder, Nat Genet, vol.37, issue.10, pp.1082-1091, 2005.

R. Viana, E. Batourina, H. Huang, G. R. Dressler, A. Kobayashi et al., The development of the bladder trigone, the center of the anti-reflux mechanism, Development, vol.134, issue.20, pp.3763-3772, 2007.

Z. R. Balsara and X. Li, Sleeping beauty: awakening urothelium from its slumber, Am J Physiol Renal Physiol, vol.312, issue.4, pp.732-775, 201701.

P. Acharya, J. Beckel, W. G. Ruiz, E. Wang, R. Rojas et al., Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium, Am J Physiol Renal Physiol, vol.287, issue.2, pp.305-323, 2004.

P. Khandelwal, W. G. Ruiz, E. Balestreire-hawryluk, O. A. Weisz, J. R. Goldenring et al., Rab11a-dependent exocytosis of discoidal/fusiform vesicles in bladder umbrella cells, Proc Natl Acad Sci, vol.105, issue.41, pp.15773-15781, 2008.

M. Castillo-martin, J. Domingo-domenech, O. Karni-schmidt, T. Matos, and C. Cordon-cardo, Molecular pathways of urothelial development and bladder tumorigenesis, vol.28, pp.401-409, 2010.

P. Harnden, I. Eardley, A. D. Joyce, and J. Southgate, Cytokeratin 20 as an objective marker of urothelial dysplasia, Br J Urol, vol.78, issue.6, pp.870-875, 1996.

C. Guo, Z. R. Balsara, W. G. Hill, and X. Li, Stage-and subunit-specific functions of polycomb repressive complex 2 in bladder urothelial formation and regeneration, vol.144, pp.400-408, 201701.

G. Papafotiou, V. Paraskevopoulou, E. Vasilaki, Z. Kanaki, N. Paschalidis et al., KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis, Nat Commun, vol.7, p.11914, 201620.

D. Gandhi, A. Molotkov, E. Batourina, K. Schneider, H. Dan et al., Retinoid signaling in progenitors controls specification and regeneration of the urothelium, Dev Cell

, Walker BE. Renewal of cell populations in the female mouse, Am J Anat, vol.16, issue.5, pp.469-82, 1960.

R. M. Hicks, The mammalian urinary bladder: an accommodating organ, Biol Rev Camb Philos Soc, vol.50, issue.2, pp.215-261, 1975.

I. U. Mysorekar, M. Isaacson-schmid, J. N. Walker, J. C. Mills, S. J. Hultgren et al.,

K. Shin, J. Lee, N. Guo, J. Kim, A. Lim et al., Ureteral obstruction promotes proliferation and differentiation of the renal urothelium into a bladder-like phenotype, Kidney Int, vol.472, issue.7341, pp.428-463, 2011.

M. E. Kreft, M. Sterle, P. Veranic, and K. Jezernik, Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation, Histochem Cell Biol, 2005.

H. O. Negrete, J. P. Lavelle, J. Berg, S. A. Lewis, and M. L. Zeidel, Permeability properties of the intact mammalian bladder epithelium, Am J Physiol, vol.271, issue.4, pp.886-94, 1996.

S. A. Lewis and J. L. De-moura, Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium, Nature, vol.297, issue.5868, pp.685-693, 1982.

X. Wu, X. Kong, A. Pellicer, G. Kreibich, and T. Sun, Uroplakins in urothelial biology, function, and disease. Kidney International, vol.75, pp.1153-65, 2009.

P. Hu, F. M. Deng, F. X. Liang, C. M. Hu, A. B. Auerbach et al., Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux, J Cell Biol, vol.151, issue.5, pp.961-72, 2000.

X. Kong, F. Deng, P. Hu, F. Liang, G. Zhou et al., Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases, J Cell Biol, vol.167, issue.6, pp.1195-204, 2004.

A. R. Jackson, B. Li, S. H. Cohen, C. B. Ching, K. M. Mchugh et al., The Uroplakin Plaque Promotes Renal Structural Integrity During Congenital and Acquired Urinary Tract Obstruction, Am J Physiol Renal Physiol, 2018.

A. R. Carpenter, M. B. Becknell, C. B. Ching, E. J. Cuaresma, X. Chen et al.,

, Uroplakin 1b is critical in urinary tract development and urothelial differentiation and homeostasis, Kidney Int, vol.89, issue.3, pp.612-636, 2016.

D. Jenkins, M. Bitner-glindzicz, S. Malcolm, C. Hu, A. J. Winyard et al.,

, De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure, J Am Soc Nephrol, vol.16, issue.7, pp.2141-2150, 2005.

R. Verani and R. E. Bulger, The pelvic epithelium of the rat kidney: a scanning and transmission electron microscopic study, Am J Anat, vol.163, issue.3, pp.223-256, 1982.

E. W. Pfeiffer, Comparative anatomical observations of the mammalian renal pelvis and medulla, J Anat, vol.102, issue.2, pp.321-352, 1968.

P. A. Narath, Renal pelvis and ureter, 1951.

D. Jenkins and A. S. Woolf, Uroplakins: New molecular players in the biology of urinary tract malformations. Kidney International, vol.71, pp.195-200, 2007.

B. Yang and L. Bankir, Urea and urine concentrating ability: new insights from studies in mice, American Journal of Physiology-Renal Physiology, vol.288, issue.5, pp.881-96, 2005.

A. S. Rocha and J. P. Kokko, Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport, J Clin Invest, vol.52, issue.3, pp.612-635, 1973.

X. Zhai, R. A. Fenton, A. Andreasen, J. S. Thomsen, and E. I. Christensen, Aquaporin-1 Is not Expressed in Descending Thin Limbs of Short-Loop Nephrons, JASN, vol.18, issue.11, pp.2937-2981, 2007.

J. M. Sands and H. E. Layton, The physiology of urinary concentration: an update, Semin Nephrol, vol.29, issue.3, pp.178-95, 2009.

C. W. Gottschalk and M. Mylle, Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis, J Am Soc Nephrol, vol.8, issue.1, pp.153-162, 1959.

J. P. Kokko and F. C. Rector, Countercurrent multiplication system without active transport in inner medulla, Kidney Int, vol.2, issue.4, pp.214-237, 1972.

W. H. Dantzler, A. T. Layton, H. E. Layton, and T. L. Pannabecker, Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle, Clin J Am Soc Nephrol, vol.9, issue.10, pp.1781-1790, 2014.

A. T. Layton, T. L. Pannabecker, W. H. Dantzler, and H. E. Layton, Functional implications of the three-dimensional architecture of the rat renal inner medulla, Am J Physiol Renal Physiol

R. K. Packer, S. S. Desai, K. Hornbuckle, and M. A. Knepper, Role of countercurrent multiplication in renal ammonium handling: regulation of medullary ammonium accumulation, J Am Soc Nephrol, vol.2, issue.1, pp.77-83, 1991.

T. L. Pannabecker, D. E. Abbott, and W. H. Dantzler, Three-dimensional functional reconstruction of inner medullary thin limbs of Henle's loop, Am J Physiol Renal Physiol

Y. Matsumura, S. Uchida, Y. Kondo, H. Miyazaki, S. B. Ko et al., Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel, Nat Genet

D. J. Marsh and L. A. Segel, Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla, Am J Physiol, vol.221, issue.3, pp.817-845, 1971.

R. Müller-suur, H. R. Ulfendahl, and A. E. Persson, Evidence for tubuloglomerular feedback in juxtamedullary nephrons of young rats, Am J Physiol, vol.244, issue.4, pp.425-456, 1983.

A. T. Layton, R. L. Gilbert, and T. L. Pannabecker, Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla, Am J Physiol Renal Physiol, vol.302, issue.7, pp.830-839, 2012.

R. E. Oliver, D. R. Roy, and R. L. Jamison, Urinary concentration in the papillary collecting duct of the rat. Role of the ureter, J Clin Invest, vol.69, issue.1, pp.157-64, 1982.

W. Schütz and J. Schnermann, Pelvic urine composition as a determinant of inner medullary solute concentration and urine osmolarity, Pflugers Arch, vol.334, issue.2, pp.154-66, 1972.

H. Tsukaguchi, C. Shayakul, U. V. Berger, T. Tokui, D. Brown et al., Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis, J Clin Invest, vol.99, issue.7, pp.1506-1521, 1997.

J. V. Bonventre, M. J. Karnovsky, and C. P. Lechene, Renal papillary epithelial morphology in antidiuresis and water diuresis, Am J Physiol, vol.235, issue.1, pp.69-76, 1978.

P. Devarajan, Update on Mechanisms of Ischemic Acute Kidney Injury, JASN, 2006.

, Jun, vol.1, issue.6, pp.1503-1523

R. Witzgall, D. Brown, C. Schwarz, and J. V. Bonventre, Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells, J Clin Invest, vol.93, issue.5, pp.2175-88, 1994.

W. Chaabane, F. Praddaude, M. Buleon, A. Jaafar, M. Vallet et al., Renal functional decline and glomerulotubular injury are arrested but not restored by release of unilateral ureteral obstruction (UUO), Am J Physiol Renal Physiol, vol.304, issue.4, pp.432-441, 2013.

N. Mayeur, V. Minville, A. Jaafar, J. Allard, A. Saati et al.,

, Morphologic and functional renal impact of acute kidney injury after prolonged hemorrhagic shock in mice, Crit Care Med, vol.39, issue.9, pp.2131-2139, 2011.

J. Dussaule, D. Guerrot, A. Huby, C. Chadjichristos, N. Shweke et al., The role of cell plasticity in progression and reversal of renal fibrosis, Int J Exp Pathol, vol.92, issue.3, pp.151-158, 2011.

D. Guerrot, J. Dussaule, P. Kavvadas, J. Boffa, C. E. Chadjichristos et al., Progression of renal fibrosis: the underestimated role of endothelial alterations, Fibrogenesis Tissue Repair, vol.5, issue.1, p.15, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00704841

A. R. Chade, Renal vascular structure and rarefaction, Compr Physiol, 2013.

, Apr, vol.3, issue.2, pp.817-848

J. Bábí?ková, B. M. Klinkhammer, E. M. Buhl, S. Djudjaj, M. Hoss et al., Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries, Kidney Int, vol.91, issue.1, pp.70-85, 2017.

L. Zafrani and C. Ince, Microcirculation in Acute and Chronic Kidney Diseases, Am J Kidney Dis, vol.66, issue.6, pp.1083-94, 2015.

B. Afsar, R. E. Afsar, T. Dagel, E. Kaya, S. Erus et al., Capillary rarefaction from the kidney point of view, Clin Kidney J, vol.11, issue.3, pp.295-301, 2018.

C. Maric-bilkan, E. R. Flynn, and A. R. Chade, Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat, Am J Physiol Renal Physiol, 2012.

, Feb, vol.1, issue.3, pp.308-323

N. Futrakul and P. Futrakul, Renal microvascular disease predicts renal function in diabetes, Ren Fail, vol.34, issue.1, pp.126-135, 2012.

N. Futrakul, S. Yenrudi, R. Sensirivatana, D. Watana, A. Laohapaibul et al., Peritubular capillary flow determines tubulointerstitial disease in idiopathic nephrotic syndrome, Ren Fail, vol.22, issue.3, pp.329-364, 2000.

F. Steegh, M. Gelens, F. Nieman, J. P. Van-hooff, and J. Cleutjens,

R. J. Suylen, Early Loss of Peritubular Capillaries after Kidney Transplantation, J Am Soc Nephrol, vol.22, issue.6, pp.1024-1033, 2011.

X. Wu, R. Guo, Y. Wang, and P. N. Cunningham, The role of ICAM-1 in endotoxin-induced acute renal failure, Am J Physiol Renal Physiol, vol.293, issue.4, pp.1262-71, 2007.

K. J. Kelly, W. W. Williams, R. B. Colvin, S. M. Meehan, T. A. Springer et al., Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J Clin Invest, vol.97, issue.4, pp.1056-63, 1996.

D. Schwartz, M. Mendonca, I. Schwartz, Y. Xia, J. Satriano et al., Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats, J Clin Invest, vol.100, issue.2, pp.439-487, 1997.

M. Araujo and W. J. Welch, Oxidative stress and nitric oxide in kidney function, Curr Opin Nephrol Hypertens, vol.15, issue.1, pp.72-79, 2006.

C. Langenberg, G. Gobe, S. Hood, C. N. May, and R. Bellomo, Renal histopathology during experimental septic acute kidney injury and recovery, Crit Care Med, vol.42, issue.1, pp.58-67, 2014.

D. P. Basile, K. Fredrich, B. Chelladurai, E. C. Leonard, and A. R. Parrish, Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor, Am J Physiol Renal Physiol, vol.294, issue.4, pp.928-964, 2008.

D. H. Kang, J. Hughes, M. Mazzali, G. F. Schreiner, and R. J. Johnson, Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function, J Am Soc Nephrol, vol.12, issue.7, pp.1448-57, 2001.

T. L. Pannabecker, Renal vascular pericytes: long overlooked and poorly understood, but clearly important, and what about those regulatory pathways?, Am J Physiol Renal Physiol, vol.314, issue.1, pp.67-76, 201801.

G. R. Crislip, P. M. O'connor, Q. Wei, and J. C. Sullivan, Vasa recta pericyte density is negatively associated with vascular congestion in the renal medulla following ischemia reperfusion in rats, Am J Physiol Renal Physiol, vol.313, issue.5, pp.1097-105, 2017.

R. Iliescu, S. R. Fernandez, S. Kelsen, C. Maric, and A. R. Chade, Role of renal microcirculation in experimental renovascular disease, Nephrol Dial Transplant, 2010.

F. A. Syed, J. Lin, X. Zhu, K. L. Jordan, and C. C. Bell, Agedependent renal cortical microvascular loss in female mice, Am J Physiol Endocrinol Metab, vol.25, issue.4, pp.1079-87

, Apr, vol.15, issue.8, pp.979-86

N. Boulos, F. Helle, J. Dussaule, S. Placier, P. Milliez et al., Notch3 is essential for regulation of the renal vascular tone, Hypertension, vol.57, issue.6, pp.1176-82, 2011.

K. M. Denton, W. P. Anderson, and R. Sinniah, Effects of angiotensin II on regional afferent and efferent arteriole dimensions and the glomerular pole, Am J Physiol Regul Integr Comp Physiol, vol.279, issue.2, pp.629-667, 2000.

M. Buléon, J. Allard, A. Jaafar, F. Praddaude, Z. Dickson et al., Pharmacological blockade of B2-kinin receptor reduces renal protective effect of angiotensinconverting enzyme inhibition in db/db mice model, Am J Physiol Renal Physiol, 2008.

S. Kelsen, J. E. Hall, and A. R. Chade, Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease, Am J Physiol Renal Physiol, 2011.

P. Pauletto and M. Rattazzi, Inflammation and hypertension: the search for a link, Nephrol Dial Transplant, vol.21, issue.4, pp.850-853, 2006.

A. S. Greene, P. J. Tonellato, J. Lui, J. H. Lombard, and A. W. Cowley, Microvascular rarefaction and tissue vascular resistance in hypertension, Am J Physiol, vol.256, issue.1, pp.126-157, 1989.

F. Helle, C. Jouzel, C. Chadjichristos, S. Placier, M. Flamant et al., Improvement of renal hemodynamics during hypertension-induced chronic renal disease: role of EGF receptor antagonism, Am J Physiol Renal Physiol, vol.297, issue.1, pp.191-200, 2009.

Y. Luque, O. Lenoir, P. Bonnin, L. Hardy, A. Chipont et al., Endothelial Epas1 Deficiency Is Sufficient To Promote Parietal Epithelial Cell Activation and FSGS in Experimental Hypertension, J Am Soc Nephrol, vol.28, issue.12, pp.3563-78, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01713482

R. P. Hebbel, R. Osarogiagbon, and D. Kaul, The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy, Microcirculation, vol.11, issue.2, pp.129-51, 2004.

K. A. Nath and Z. S. Katusic, Vasculature and Kidney Complications in Sickle Cell Disease, J Am Soc Nephrol, vol.23, issue.5, pp.781-785, 2012.

K. A. Nath, Z. S. Katusic, and M. T. Gladwin, The perfusion paradox and vascular instability in sickle cell disease. Microcirculation, vol.11, pp.179-93, 2004.

O. Lenoir, F. Gaillard, H. Lazareth, B. Robin, and P. Tharaux, Hmox1 Deficiency Sensitizes Mice to Peroxynitrite Formation and Diabetic Glomerular Microvascular Injuries, J Diabetes Res, p.9603924, 2017.

S. Immenschuh, V. Vijayan, S. Janciauskiene, F. Gueler, B. Koehl et al., The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothelium in sickle cell disease, Front Pharmacol, vol.8, issue.7, pp.1161-72, 2017.

N. Sabaa, L. De-franceschi, P. Bonnin, Y. Castier, G. Malpeli et al., Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease, J Clin Invest, vol.118, issue.5, pp.1924-1957, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02142776

X. R. Wu, T. T. Sun, and J. J. Medina, In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections, Proc Natl Acad Sci, vol.93, issue.18, pp.9630-9635, 1996.

B. L. Bishop, M. J. Duncan, J. Song, G. Li, D. Zaas et al., Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells, Nat Med, vol.13, issue.5, pp.625-655, 2007.

S. Vainio and Y. Lin, Coordinating early kidney development: lessons from gene targeting, Nat Rev Genet, vol.3, issue.7, pp.533-576, 2002.

J. Haymann, C. Vinsonneau, A. Girshovich, and M. Daudon,

, Nephrol Ther, vol.13, issue.1, pp.1-5, 2017.

W. Chen, Y. Wu, Y. Li, L. Li, R. Chang et al., IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury, Exp Mol Med, 2018.

K. M. Mchugh, Megabladder mouse model of congenital obstructive nephropathy: genetic etiology and renal adaptation, Pediatr Nephrol, vol.29, issue.4, pp.645-50, 2014.

B. Becknell, A. R. Carpenter, J. L. Allen, M. E. Wilhide, S. E. Ingraham et al., Molecular basis of renal adaptation in a murine model of congenital obstructive nephropathy, PLoS ONE, vol.8, issue.9, p.72762, 2013.

P. Thumbikat, R. E. Berry, G. Zhou, B. K. Billips, R. E. Yaggie et al., Bacteriainduced uroplakin signaling mediates bladder response to infection, PLoS Pathog, vol.5, issue.5, p.1000415, 2009.

C. Vinsonneau, A. Girshovich, . Mb, J. Perez, L. Mesnard et al., Intrarenal urothelium proliferation: an unexpected early event following ischemic injury, Am J Physiol Renal Physiol, vol.299, issue.3, pp.479-86, 2010.

T. Ichimura, P. W. Finch, G. Zhang, M. Kan, and J. L. Stevens, Induction of FGF-7 after kidney damage: a possible paracrine mechanism for tubule repair, Am J Physiol, issue.5, pp.967-76, 1996.

C. J. Powers, S. W. Mcleskey, and A. Wellstein, Fibroblast growth factors, their receptors and signaling, Endocr Relat Cancer, vol.7, issue.3, pp.165-97, 2000.

S. Villanueva, C. Cespedes, A. A. Gonzalez, E. Roessler, and C. P. Vio, Inhibition of bFGFreceptor type 2 increases kidney damage and suppresses nephrogenic protein expression after ischemic acute renal failure, Am J Physiol Regul Integr Comp Physiol, vol.294, issue.3, pp.819-847, 2008.

R. Feil, J. Wagner, D. Metzger, and P. Chambon, Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains, Biochem Biophys Res Commun, 1997.

M. Saito, T. Iwawaki, C. Taya, H. Yonekawa, M. Noda et al., Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice, Nat Biotechnol

T. Buch, F. L. Heppner, C. Tertilt, T. Heinen, M. Kremer et al., A Creinducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration, Nat Methods, vol.2, issue.6, pp.419-445, 2005.

R. B. Reinert, J. Kantz, A. A. Misfeldt, G. Poffenberger, M. Gannon et al., Tamoxifen-Induced Cre-loxP Recombination Is Prolonged in Pancreatic Islets of Adult Mice, PLoS One, vol.7, issue.3, 2012.

L. Zhou, L. Lv, M. Pan, Y. Cao, H. Liu et al., Are Urinary Tubular Injury Markers Useful in Chronic Kidney Disease? A Systematic Review and Meta Analysis, PLoS One, vol.11, issue.12, 2016.

M. Brezis, S. Rosen, P. Silva, and F. H. Epstein, Renal ischemia: a new perspective, Kidney Int, vol.26, issue.4, pp.375-83, 1984.

T. Seeman, J. Dusek, K. Vondrák, K. Bláhová, E. Simková et al., Renal concentrating capacity is linked to blood pressure in children with autosomal dominant polycystic kidney disease, Physiol Res, vol.53, issue.6, pp.629-663, 2004.

K. A. Nath, J. D. Belcher, M. C. Nath, J. P. Grande, A. J. Croatt et al., Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins, Am J Physiol Renal Physiol, vol.314, issue.5, pp.906-920, 2018.

M. Arruda-carvalho, K. G. Akers, A. Guskjolen, M. Sakaguchi, S. A. Josselyn et al., Posttraining Ablation of Adult-Generated Olfactory Granule Cells Degrades Odor-Reward Memories, J Neurosci, vol.34, issue.47, pp.15793-803, 2014.

T. Aychek, A. Mildner, S. Yona, K. Kim, N. Lampl et al., IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology, Nat Commun, vol.6, 2015.

F. Birey, M. Kloc, M. Chavali, I. Hussein, M. Wilson et al., Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of Depressive-like Behaviors through Reduced Secretion of FGF2, Neuron, vol.88, issue.5, pp.941-56, 2015.

Q. Cao, Y. Wang, X. M. Wang, J. Lu, V. Lee et al., , vol.4, pp.80-91

, La fonction de concentration en particulier se rattache directement à ces structures profondes. L'objet de l'étude est donc une approche physiopathologique des altérations du rein profond, qu'elles soient à l'origine de la pathologie rénale, ou qu'elles en soient le reflet. La première partie du travail repose sur des données épidémiologiques de patients atteints d'une maladie rénale chronique et montre que la diminution de l'osmolalité urinaire à jeun est prédictive d'une dégradation du débit de filtration glomérulaire et d'une insuffisance rénale terminale chez ces patients. La deuxième étude porte sur le rôle des capillaires péritubulaires d'une part dans l'hémodynamique rénale, d'autre part dans l'apparition des lésions tubulaires. Dans un modèle d'hypertension artérielle, le rôle des capillaires péritubulaires dans la toxicité rénale de l'hème y est précisé. Enfin, la troisième partie concerne la structure la plus profonde du rein, l'urothélium intrarénal, ASN.2013121336. Résumé : Le rein profond correspond aux structures médullaires, vasculaires post-glomérulaires, et à l'urothélium intrarénal, 2014.

, L'osmolalité urinaire était diminuée et l'urée et la créatininémie étaient augmentées après ablation des cellules urothéliales. Ces résultats suggèrent un rôle de l'urothélium intrarénal dans la fonction de concentration des urines

M. Clés,