M. Abadi, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems". In: ArXiv e-prints, 2016.

K. N. Abazajian, The Seventh Data Release of the Sloan Digital Sky Survey, ApJS, vol.182, pp.543-558, 2009.

K. N. Abazajian, CMB-S4 Science Book, First Edition, ArXiv e-prints, 2016.

V. Acquaviva, Pushing the Technical Frontier: From Overwhelmingly Large Data Sets to Machine Learning, 2019.

P. A. Ade, Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR Experiment, Phys. Rev. Lett, vol.113, p.21301, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01083503

P. Ade, The Simons Observatory: science goals and forecasts, In: J. Cosmology Astropart. Phys, vol.2, p.56, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01876519

C. P. Ahn, The Tenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment, ApJS, vol.211, p.17, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01001672

S. Alam, The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III, ApJS, vol.219, p.12, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01223398

S. Alam, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, MNRAS 470, pp.2617-2652, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582830

A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett, vol.48, pp.1220-1223, 1982.

C. Alcock and B. Paczynski, An evolution free test for non-zero cosmological constant, Nature, vol.281, p.358, 1979.

J. Alimi, First-Ever Full Observable Universe Simulation, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-11, 2012.

D. Alonso, Homogeneity and isotropy in the Two Micron All Sky Survey Photometric Redshift catalogue, MNRAS 449.1, pp.670-684, 2015.

D. Alonso, A unified pseudo-C framework, pp.4127-4151, 2019.

J. Alsing, Hierarchical cosmic shear power spectrum inference, MNRAS 455, pp.4452-4466, 2016.

J. Alsing, A. Heavens, and A. H. Jaffe, Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference, MNRAS 466.3, pp.3272-3292, 2017.

L. Amendola, Cosmology and Fundamental Physics with the Euclid Satellite". In: ArXiv e-prints, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00720626

E. Anderes, B. D. Wandelt, and G. Lavaux, Bayesian Inference of CMB Gravitational Lensing, ApJ, vol.808, p.152, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01293242

S. Appleby and A. Shafieloo, Testing isotropy in the local Universe, In: J. Cosmology Astropart. Phys, vol.10, p.70, 2014.

M. A. Aragon-calvo, Classifying the large-scale structure of the universe with deep neural networks", pp.5771-5784, 2019.

M. Arjovsky and L. Bottou, Towards Principled Methods for Training Generative Adversarial Networks". In: ArXiv e-prints, 2017.

M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein GAN". In: ArXiv e-prints, 2017.

F. Avila, The angular scale of homogeneity in the Local Universe with the SDSS blue galaxies, 2019.

F. Avila, The scale of homogeneity in the local Universe with the ALFALFA catalogue, J. Cosmology Astropart. Phys, vol.12, p.41, 2018.

W. E. Ballinger, J. A. Peacock, and A. F. Heavens, Measuring the cosmological constant with redshift surveys, MNRAS, vol.282, p.877, 1996.

R. Barkana, Separating out the Alcock-Paczy?ski effect on 21-cm fluctuations, pp.259-264, 2006.

M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rep, vol.340, pp.291-472, 2001.

D. Baumann, The physics of inflation, ICTS course, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02123336

P. S. Behroozi, R. H. Wechsler, and H. Wu, The ROCKSTAR Phase-space Temporal Halo Finder and the Velocity Offsets of Cluster Cores, ApJ, vol.762, p.109, 2013.

Y. Bengio, Learning deep architectures for AI, Foundations and trends R in Machine Learning 2.1, pp.1-127, 2009.

P. Berger and G. Stein, A volumetric deep Convolutional Neural Network for simulation of mock dark matter halo catalogues, DOI: 10.1093/ mnras/sty2949, pp.2861-2871, 2019.

F. Bernardeau, Large-scale structure of the Universe and cosmological perturbation theory, Phys. Rep, vol.367, pp.1-248, 2002.

E. Bertschinger and A. Dekel, Recovering the full velocity and density fields from largescale redshift-distance samples, ApJ, vol.336, pp.5-8, 1989.

, In: Large-scale Structures and Peculiar Motions in the Universe, Astronomical Society of the Pacific Conference Series, vol.15, pp.67-82, 1991.

, Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett. 112, vol.24, p.241101, 2014.

, Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season, vol.121, p.221301, 2018.

, Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett, vol.114, p.101301, 2015.

M. Bilicki, Two Micron All Sky Survey Photometric Redshift Catalog: A Comprehensive Three-dimensional Census of the Whole Sky, ApJS 210.1, p.9, 2014.

V. Bistolas and Y. Hoffman, Nonlinear Constrained Realizations of the Large-Scale Structure, ApJ, vol.492, pp.439-451, 1998.

C. Blake and K. Glazebrook, Probing Dark Energy Using Baryonic Oscillations in the Galaxy Power Spectrum as a Cosmological Ruler, ApJ, vol.594, pp.665-673, 2003.

C. Blake, The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae, MNRAS 418, pp.1725-1735, 2011.

J. R. Bond and G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter, ApJ, vol.285, pp.45-48, 1984.

J. R. Bond, A. H. Jaffe, and L. Knox, Estimating the power spectrum of the cosmic microwave background, Phys. Rev. D, vol.57, pp.2117-2137, 1998.

J. Bond, L. Richard, D. Kofman, and . Pogosyan, How filaments are woven into the cosmic web, Nature, vol.380, pp.603-606, 1996.

F. R. Bouchet, S. Prunet, and S. K. Sethi, Multifrequency Wiener filtering of cosmic microwave background data with polarization, MNRAS, vol.302, pp.663-676, 1999.

F. R. Bouchet, Perturbative Lagrangian approach to gravitational instability, A&A, vol.296, p.575, 1995.

J. Bovy, Photometric Redshifts and Quasar Probabilities from a Single, Data-driven Generative Model, ApJ, vol.749, p.41, 2012.

J. Bowyer, A. H. Jaffe, and D. I. Novikov, MasQU: Finite Differences on Masked Irregular Stokes Q,U Grids". In: ArXiv e-prints, 2011.

T. Buchert, A class of solutions in Newtonian cosmology and the pancake theory, A&A 223, pp.9-24, 1989.

T. Buchert, A. L. Melott, and A. G. Weiss, Testing higher-order Lagrangian perturbation theory against numerical simulations I. Pancake models, A&A, vol.288, pp.349-364, 1994.

E. F. Bunn, Detectability of microwave background polarization, Phys. Rev. D, vol.65, issue.4, p.43003, 2002.

, Erratum: Detectability of microwave background polarization, Phys. Rev. D, vol.65, issue.6, p.69902, 2002.

, Efficient decomposition of cosmic microwave background polarization maps into pure E, pure B, and ambiguous components, Phys. Rev. D, vol.83, issue.8, p.83003, 2011.

E. F. Bunn and B. Wandelt, Pure E and B polarization maps via Wiener filtering, Phys. Rev. D, vol.96, issue.4, p.43523, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01584648

E. F. Bunn, Wiener filtering of the COBE Differential Microwave Radiometer data, ApJ, vol.432, pp.75-78, 1994.

E. F. Bunn, E/B decomposition of finite pixelized CMB maps, Phys. Rev. D, vol.67, issue.2, p.23501, 2003.

J. Caldeira, DeepCMB: Lensing Reconstruction of the Cosmic Microwave Background with Deep Neural Networks". In: arXiv e-prints, 2018.

L. Cao and L. Fang, A Wavelet-Galerkin Algorithm of the E/B Decomposition of Cosmic Microwave Background Polarization Maps, ApJ, vol.706, pp.1545-1555, 2009.

G. Carleo, Machine learning and the physical sciences, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02101667

S. M. Carroll, Spacetime and geometry. An introduction to general relativity, vol.1, 2004.

G. Casella and E. George, Explaining the Gibbs sampler, The American Statistician, vol.46, pp.167-174, 1992.

A. Challinor and G. Chon, Error analysis of quadratic power spectrum estimates for cosmic microwave background polarization: sampling covariance, MNRAS 360, pp.509-532, 2005.

A. Challinor and H. Peiris, Lecture notes on the physics of cosmic microwave background anisotropies, American Institute of Physics Conference Series, vol.1132, pp.86-140, 2009.

M. Chevallier and D. Polarski, Accelerating Universes with Scaling Dark Matter, International Journal of Modern Physics D 10, pp.213-223, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00142125

J. Chluba, Science with CMB spectral distortions, 2014.

T. S. Cohen, Spherical CNNs". In: arXiv e-prints, 2018.

P. Coles and B. Jones, A lognormal model for the cosmological mass distribution, MN-RAS 248, pp.1-13, 1991.

R. T. Cox, Probability, frequency and reasonable expectation, American journal of physics 14.1, pp.1-13, 1946.

C. Davis, The norm of the Schur product operation, Numerische Mathematik 4.1, pp.343-344, 1962.

A. A. De-laix and G. Starkman, Sensitivity of Redshift Distortion Measurements to Cosmological Parameters, ApJ, vol.501, pp.427-441, 1998.

I. Debono and G. F. Smoot, General Relativity and Cosmology: Unsolved Questions and Future Directions, p.23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554768

V. Desjacques, D. Jeong, and F. Schmidt, Large-Scale Galaxy Bias". In: ArXiv e-prints, 2016.

S. Dodelson, Modern cosmology, 2003.

N. R. Draper and H. Smith, Applied regression analysis, vol.326, 2014.

S. Duane, Hybrid Monte Carlo, Physics Letters B, vol.195, p.91197, 1987.

J. Dunkley, Five-Year Wilkinson Microwave Anisotropy Probe Observations: Likelihoods and Parameters from the WMAP Data, ApJS, vol.180, pp.306-329, 2009.

G. Efstathiou, Numerical techniques for large cosmological N-body simulations, The Astrophysical Journal Supplement Series, vol.57, pp.241-260, 1985.

A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pp.844-847, 1915.

D. J. Eisenstein and W. Hu, Baryonic Features in the Matter Transfer Function, ApJ, vol.496, pp.605-614, 1998.

, Power Spectra for Cold Dark Matter and Its Variants, ApJ, vol.511, pp.5-15, 1999.

D. J. Eisenstein, Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, ApJ 633, vol.2, pp.560-574, 2005.

F. Elsner, B. Leistedt, and H. V. Peiris, Unbiased pseudo-C power spectrum estimation with mode projection, MNRAS 465, pp.1847-1855, 2017.

F. Elsner and B. D. Wandelt, Improved Simulation of Non-Gaussian Temperature and Polarization Cosmic Microwave Background Maps, ApJS, vol.184, pp.1262-1269, 2009.

, Fast calculation of the Fisher matrix for cosmic microwave background experiments, A&A, vol.540, p.6, 2012.

F. Elsner and B. D. Wandelt, Fast Wiener filtering of CMB maps, Proc. Big Bang, Big Data, Big Computers, 2012.

, Likelihood, Fisher information, and systematics of cosmic microwave background experiments, A&A, vol.542, 2012.

, Efficient Wiener filtering without preconditioning, A&A, vol.549, 2013.

M. Erdmann, Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks, ArXiv e-prints, 2018.

P. Erdo?du, The 2dF Galaxy Redshift Survey: Wiener reconstruction of the cosmic web, pp.939-960, 2004.

P. Erdo?du, Reconstructed density and velocity fields from the 2MASS Redshift Survey, MNRAS 373, pp.45-64, 2006.

H. K. Eriksen, Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling, ApJS, vol.155, pp.227-241, 2004.

H. K. Eriksen, The Joint Large-Scale Foreground-CMB Posteriors of the 3 Year WMAP Data, ApJ, vol.672, p.87, 2008.

A. Ferté, Efficiency of pseudospectrum methods for estimation of the cosmic microwave background B-mode power spectrum, Phys. Rev. D, vol.88, issue.2, p.23524, 2013.

K. B. Fisher, Wiener reconstruction of density, velocity and potential fields from all-sky galaxy redshift surveys, MNRAS 272, pp.885-908, 1995.

R. Flauger, J. C. Hill, and D. N. Spergel, Toward an understanding of foreground emission in the BICEP2 region, J. Cosmology Astropart. Phys, vol.8, p.39, 2014.

N. Fornengo, Dark matter overview, 2016.

D. Fowler and E. Robson, Square root approximations in Old Babylonian mathematics: YBC 7289 in context, Historia Mathematica 25, vol.4, pp.366-378, 1998.

K. Freese, Status of dark matter in the universe, International Journal of Modern Physics D 26.6, pp.1730012-223, 2017.

J. Friberg, A Remarkable Collection of Babylonian Mathematical Texts: Manuscripts in the Schøyen Collection: Cuneiform Texts I, 2007.

A. Friedmann, Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes, Zeitschrift fur Physik, vol.10, pp.326-332, 1922.

M. Frigo and S. , The design and implementation of FFTW3, Proc. IEEE 93, vol.2, pp.216-231, 2005.

H. Fu, Perception Oriented Haze Image Definition Restoration by Basing on Physical Optics Model, IEEE Photonics Journal, vol.10, p.2837010, 2018.

L. Fussell and B. Moews, Forging new worlds: high-resolution synthetic galaxies with chained generative adversarial networks, ArXiv e-prints, 2018.

M. Galassi, GNU Scientific Library reference manual Network Theory, 2009.

S. Galli, CMB polarization can constrain cosmology better than CMB temperature, Phys. Rev. D, vol.90, issue.6, p.63504, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117038

C. Gauss and . Friedrich, Theoria motus corporum coelestium in sectionibus conicis solem ambientium auctore Carolo Friderico Gauss. sumtibus Frid. Perthes et IH Besser, 1809.

E. Gaztanaga and J. Yokoyama, Probing the statistics of primordial fluctuations and their evolution, ApJ, vol.403, pp.450-465, 1993.

A. E. Gelfand and A. Smith, Sampling-based approaches to calculating marginal densities, Journal of the American statistical association, vol.85, pp.398-409, 1990.

A. Gelman, Objections to Bayesian statistics, Bayesian Analysis 3.3, pp.445-449, 2008.

S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, Readings in computer vision, pp.564-584, 1987.

K. Glazebrook and C. Blake, Measuring the Cosmic Evolution of Dark Energy with Baryonic Oscillations in the Galaxy Power Spectrum, ApJ, vol.631, pp.1-20, 2005.

L. Gleser, A. Nusser, and A. J. Benson, Decontamination of cosmological 21-cm maps, MNRAS 391, pp.383-398, 2008.

G. H. Golub and C. Loan, Matrix computations, pp.374-426, 1996.

I. J. Goodfellow, Generative Adversarial Networks". In: ArXiv e-prints, 2014.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016.

K. M. Górski, HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, ApJ, vol.622, pp.759-771, 2005.

J. Grain, M. Tristram, and R. Stompor, Polarized CMB power spectrum estimation using the pure pseudo-cross-spectrum approach, Phys. Rev. D 79, vol.12, p.123515, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00434062

I. Gulrajani, Improved Training of Wasserstein GANs, 2017.

A. Gupta, Non-Gaussian information from weak lensing data via deep learning, ArXiv e-prints, 2018.

A. H. Guth and S. Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett, vol.49, pp.1110-1113, 1982.

A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, vol.23, pp.347-356, 1981.

M. C. Guzzetti, Gravitational waves from inflation". In: ArXiv e-prints, 2016.

O. Hahn and T. Abel, Multi-scale initial conditions for cosmological simulations, pp.2101-2121, 2011.

N. Hamaus, Probing cosmology and gravity with redshift-space distortions around voids, J. Cosmol. Astropart. Phys, vol.12, p.36, 2014.

N. Hamaus, Constraints on Cosmology and Gravity from the Dynamics of Voids, Physical Review Letters, vol.117, p.91302, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01462219

D. Hanson, Detection of B-Mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope, Physical Review Letters, vol.111, p.141301, 2013.

E. R. Harrison, Fluctuations at the threshold of classical cosmology, Phys. Rev. D, vol.1, issue.10, p.2726, 1970.

W. Hastings and . Keith, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57.1, pp.97-109, 1970.

K. He, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

S. He, Learning to predict the cosmological structure formation, Proceedings of the National Academy of Science 116, vol.28, pp.13825-13832, 2019.

A. Heavens, Statistical techniques in cosmology". In: arXiv e-prints, 2009.

J. W. Henning, Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data, ApJ, vol.852, p.97, 2018.

G. Hinshaw, Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis, ApJS, vol.170, pp.288-334, 2007.

C. M. Hirata and U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization, Phys. Rev. D, vol.68, issue.8, p.83002, 2003.

C. M. Hirata, Cross-correlation of CMB with large-scale structure: Weak gravitational lensing, Phys. Rev. D, vol.70, issue.10, p.103501, 2004.

S. Ho, Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe, J. Cosmology Astropart. Phys, vol.5, p.40, 2015.

S. Ho, Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics, and Cosmological Implications, ApJ, vol.761, p.14, 2012.

R. W. Hockney and J. W. Eastwood, Computer simulation using particles, 1988.

Y. Hoffman, Wiener Reconstruction of the Large-Scale Structure in the Zone of Avoidance". In: Unveiling Large-Scale Structures Behind the Milky Way, Astronomical Society of the Pacific Conference Series, vol.67, p.185, 1994.

Y. Hoffman and E. Ribak, Constrained realizations of Gaussian fields -A simple algorithm, ApJ, vol.380, pp.5-8, 1991.

D. W. Hogg, Cosmic Homogeneity Demonstrated with Luminous Red Galaxies, ApJ 624, vol.1, pp.54-58, 2005.

B. Horowitz, U. Seljak, and G. Aslanyan, Efficient Optimal Reconstruction of Linear Fields and Band-powers from Cosmological Data, 2018.

W. Hu, CMB temperature and polarization anisotropy fundamentals, Annals of Physics, vol.303, pp.203-225, 2003.

W. Hu and S. Dodelson, Cosmic Microwave Background Anisotropies, pp.171-216, 2002.

W. Hu and M. White, A CMB polarization primer, New Astron. 2, pp.323-344, 1997.

E. Hubble, The Distribution of Extra-Galactic Nebulae, ApJ, vol.79, pp.10-1086, 1934.

K. M. Huffenberger and S. K. Naess, Cosmic Microwave Background Mapmaking with a Messenger Field, ApJ, vol.852, p.92, 2018.

K. M. Huffenberger, Preconditioner-free Wiener filtering with a dense noise matrix, MNRAS 476.3, pp.3425-3431, 2018.

K. M. Huffenberger, D. Benjamin, and . Wandelt, Fast and Exact Spin-s Spherical Harmonic Transforms, The Astrophysical Journal Supplement Series, vol.189, pp.255-260, 2010.

L. Hui, A. Stebbins, and S. Burles, A Geometrical Test of the Cosmological Energy Contents Using the Ly? Forest, ApJ, vol.511, pp.5-8, 1999.

. Huterer, C. E. Dragan, W. Cunha, and . Fang, Calibration errors unleashed: effects on cosmological parameters and requirements for large-scale structure surveys, MNRAS 432, pp.2945-2961, 2013.

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ArXiv e-prints, 2015.

P. Isola, Image-to-Image Translation with Conditional Adversarial Networks, 2016.

Z. Ivezic, LSST: from Science Drivers to Reference Design and Anticipated Data Products, ArXiv e-prints, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02080729

C. Jacobi and . Gj, Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkommenden lineären Gleichungen, Astronomische Nachrichten 22, vol.20, pp.297-306, 1845.

J. Jasche and F. S. Kitaura, Fast Hamiltonian sampling for large-scale structure inference, MNRAS 407, pp.29-42, 2010.

J. Jasche and G. Lavaux, Matrix-free large-scale Bayesian inference in cosmology, pp.1204-1212, 2015.

, Bayesian power spectrum inference with foreground and target contamination treatment, A&A, vol.606, 2017.

, Physical Bayesian modelling of the non-linear matter distribution: New insights into the nearby universe, A&A, vol.625, 2019.

J. Jasche, F. Leclercq, and B. D. Wandelt, Past and present cosmic structure in the SDSS DR7 main sample, J. Cosmology Astropart. Phys, vol.1, p.36, 2015.

J. Jasche and B. D. Wandelt, Bayesian inference from photometric redshift surveys, MNRAS 425, pp.1042-1056, 2012.

, Bayesian physical reconstruction of initial conditions from large-scale structure surveys, MNRAS 432, pp.894-913, 2013.

, Methods for Bayesian Power Spectrum Inference with Galaxy Surveys, ApJ, vol.779, p.15, 2013.

J. Jasche, Bayesian non-linear large-scale structure inference of the Sloan Digital Sky Survey Data Release 7, MNRAS 409, pp.355-370, 2010.

J. Jasche, Bayesian power-spectrum inference for large-scale structure data, MN-RAS 406, pp.60-85, 2010.

E. T. Jaynes, Information theory and statistical mechanics, Physical review 106, vol.4, p.620, 1957.

H. Jeffreys, An invariant form for the prior probability in estimation problems, Proc. R. Soc. Lond. A 186.1007, pp.453-461, 1946.

J. Jewell, S. Levin, and C. H. Anderson, Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background, ApJ, vol.609, pp.1-14, 2004.

D. H. Jones, The 6dF Galaxy Survey: final redshift release (DR3) and southern largescale structures, MNRAS 399, pp.683-698, 2009.

N. Kaiser, On the spatial correlations of Abell clusters, ApJ, vol.284, pp.9-12, 1984.

R. Kalman and . Emil, A new approach to linear filtering and prediction problems, Journal of basic Engineering, vol.82, pp.35-45, 1960.

M. Kamionkowski, A. Kosowsky, and A. Stebbins, Statistics of cosmic microwave background polarization, Physical Review Letters, vol.78, pp.7368-7388, 1997.

M. Kamionkowski and E. D. Kovetz, The Quest for B Modes from Inflationary Gravitational Waves, ARA&A 54, pp.227-269, 2016.

T. Karras, Progressive Growing of GANs for Improved Quality, Stability, and Variation, ArXiv e-prints, 2017.

T. Karras, S. Laine, and T. Aila, A Style-Based Generator Architecture for Generative Adversarial Networks, 2018.

I. Kayo, A. Taruya, and Y. Suto, Probability Distribution Function of Cosmological Density Fluctuations from a Gaussian Initial Condition: Comparison of One-Point and Two-Point Lognormal Model Predictions with N-Body Simulations, ApJ, vol.561, pp.22-34, 2001.

M. G. Kendall and A. Stuart, London, 1946Kendall1The Advanced Theory of Statistics1946, vol.3, 1968.

J. Kim, How to make a clean separation between CMB E and B modes with proper foreground masking, A&A, vol.531, 2011.

J. Kim and P. Naselsky, E/B decomposition of CMB polarization pattern of incomplete sky: a pixel space approach, A&A, vol.519, 2010.

D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, ArXiv e-prints, 2014.

F. Kitaura, Non-Gaussian gravitational clustering field statistics, MNRAS 420, pp.2737-2755, 2012.

F. S. Kitaura and T. A. Enßlin, Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization, MNRAS 389, pp.497-544, 2008.

F. Kitaura, S. Gallerani, and A. Ferrara, Multiscale inference of matter fields and baryon acoustic oscillations from the Ly? forest, MNRAS 420, pp.61-74, 2012.

F. Kitaura, J. Jasche, and R. B. Metcalf, Recovering the non-linear density field from the galaxy distribution with a Poisson-lognormal filter, MNRAS 403, pp.589-604, 2010.

F. S. Kitaura, Cosmic cartography of the large-scale structure with Sloan Digital Sky Survey data release 6, MNRAS 400, pp.183-203, 2009.

A. A. Klypin and S. F. Shandarin, Three-dimensional numerical model of the formation of large-scale structure in the Universe, MNRAS, vol.204, pp.891-907, 1983.

A. Klypin and J. Holtzman, Particle-Mesh code for cosmological simulations, 1997.

D. Kodi-ramanah, G. Lavaux, and B. D. Wandelt, Wiener filter reloaded: fast signal reconstruction without preconditioning, MNRAS 468, pp.2825-2834, 2017.

K. Ramanah, T. Doogesh, G. Charnock, and . Lavaux, Painting halos from cosmic density fields of dark matter with physically motivated neural networks, Phys. Rev. D, vol.100, issue.4, p.43515, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02101666

K. Ramanah, G. Doogesh, B. D. Lavaux, and . Wandelt, Wiener filtering and pure E/B decomposition of CMB maps with anisotropic correlated noise, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02193940

K. Ramanah and . Doogesh, Cosmological inference from Bayesian forward modelling of deep galaxy redshift surveys, A&A 621, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01867538

T. Kohonen, The self-organizing map, Proceedings of the IEEE 78.9, pp.1464-1480, 1990.

T. Kohonen, G. Barna, and R. Chrisley, Statistical pattern recognition with neural networks: Benchmarking studies, IEEE International Conference on Neural Networks, 1988.

E. W. Kolb and M. S. Turner, The early universe, In: Front. Phys, vol.69, p.1, 1990.

E. Komatsu, D. N. Spergel, and B. D. Wandelt, Measuring Primordial Non-Gaussianity in the Cosmic Microwave Background, ApJ, vol.634, pp.14-19, 2005.

E. Komatsu, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS 192, p.18, 2011.

J. M. Kovac, Detection of polarization in the cosmic microwave background using DASI, Nature 420.6917, pp.772-787, 2002.

N. Krachmalnicoff and M. Tomasi, Convolutional Neural Networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis, 2019.

O. Lahav, Wiener Reconstruction of All-Sky Galaxy Surveys in Spherical Harmonics, ApJ, vol.423, p.93, 1994.

S. Lam, A. Kwan, S. Pitrou, and . Seibert, Numba: A LLVM-based Python JIT Compiler, Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 2015.

, LLVM '15, vol.7, pp.1-7

D. L. Larson, Estimation of Polarized Power Spectra by Gibbs Sampling, ApJ, vol.656, pp.653-660, 2007.

C. Lattner and V. Adve, LLVM: A compilation framework for lifelong program analysis & transformation, Proceedings of the international symposium on Code generation and optimization: feedback-directed and runtime optimization, p.75, 2004.

R. Laureijs, Euclid Definition Study Report, ArXiv e-prints, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01437352

G. Lavaux, Bayesian 3D velocity field reconstruction with VIRBIUS, MNRAS 457, pp.172-197, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304278

G. Lavaux and J. Jasche, Unmasking the masked Universe: the 2M++ catalogue through Bayesian eyes, DOI: 10 . 1093 / mnras / stv2499, pp.3169-3179, 2016.

G. Lavaux and B. D. Wandelt, Precision Cosmography with Stacked Voids, ApJ, vol.754, p.109, 2012.

D. Layzer, A new model for the distribution of galaxies in space, AJ 61, vol.61, pp.10-1086, 1956.

F. Leclercq, Bayesian large-scale structure inference and cosmic web analysis, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01265548

F. Leclercq, A. Pisani, and B. D. Wandelt, Cosmology: from theory to data, from data to theory, 2014.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, pp.436-444, 2015.

Y. Lecun and Y. Bengio, Convolutional networks for images, speech, and time series, The handbook of brain theory and neural networks 3361, vol.10, p.1995, 1995.

Y. Lecun, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86, vol.11, pp.2278-2324, 1998.

Y. A. Lecun, Efficient backprop, Neural networks: Tricks of the trade, pp.9-48, 2012.

B. Leistedt and H. V. Peiris, Exploiting the full potential of photometric quasar surveys: optimal power spectra through blind mitigation of systematics, MNRAS 444, pp.2-14, 2014.

B. Leistedt, Wavelet reconstruction of E and B modes for CMB polarization and cosmic shear analyses, MNRAS 466, pp.3728-3740, 2017.

F. Lekien and J. Marsden, Tricubic Interpolation in Three Dimensions, Journal of Numerical Methods and Engineering, vol.63, pp.455-471, 2005.

G. Lemaître, Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Annales de la Société Scientifique de Bruxelles, vol.47, pp.49-59, 1927.

G. Lemaître, Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae, MNRAS 91, pp.483-490, 1931.

, L'Univers en expansion, Annales de la Société Scientifique de Bruxelles 53, 1933.

M. Levi, The DESI Experiment, a whitepaper for Snowmass, 2013.

A. Lewis, Harmonic E/B decomposition for CMB polarization maps, Phys. Rev. D, vol.68, issue.8, p.83509, 2003.

A. Lewis, A. Challinor, and N. Turok, Analysis of CMB polarization on an incomplete sky, Phys. Rev. D, vol.65, issue.2, p.23505, 2002.

A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J, vol.538, pp.473-476, 2000.

A. Linde, Inflationary cosmology, pp.1-54, 2008.

A. D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Physics Letters B, vol.108, pp.389-393, 1982.

E. V. Linder, Exploring the Expansion History of the Universe, Physical Review Letters, vol.90, p.91301, 2003.

E. V. Linder and A. Jenkins, Cosmic structure growth and dark energy, MNRAS, vol.346, pp.573-583, 2003.

M. López-corredoira, Alcock-Paczy?ski Cosmological Test, ApJ, vol.781, p.96, 2014.

T. Louis, The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters, J. Cosmology Astropart. Phys, vol.6, p.31, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01554436

L. Lucie-smith, Machine learning cosmological structure formation, pp.3405-3414, 2018.

A. L. Maas, Y. Awni, A. Hannun, and . Ng, Rectifier nonlinearities improve neural network acoustic models, Proceedings of the 30th International Conference on Machine Learning, vol.28, 2013.

A. Mangilli and L. Verde, Non-Gaussianity and the CMB bispectrum: Confusion between primordial and lensing-Rees-Sciama contribution?, In: Phys. Rev. D, vol.80, p.123007, 2009.

A. Mangilli, Optimal bispectrum estimator and simulations of the CMB lensingintegrated Sachs Wolfe non-Gaussian signal, A&A, vol.555, 2013.

A. Manzotti, CMB Polarization B-mode Delensing with SPTpol and Herschel, ApJ, vol.846, p.45, 2017.

V. J. Martínez and E. Saar, Statistics of galaxy clustering, In: Statistical challenges in astronomy. Third Statistical Challenges in Modern Astronomy (SCMA III) Conference, pp.143-160, 2001.

R. Massey, Dark matter maps reveal cosmic scaffolding, Nature 445, vol.7125, pp.286-290, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00131454

T. Matsubara and Y. Suto, Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant, ApJ, vol.470, p.1, 1996.

M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Modeling Comput. Simulation, vol.8, issue.1, pp.3-30, 1998.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics 5.4, pp.115-133, 1943.

J. D. Mcewen and Y. Wiaux, A Novel Sampling Theorem on the Sphere, IEEE Transactions on Signal Processing 59, vol.12, pp.5876-5887, 2011.

A. L. Melott, T. Buchert, and A. G. Weiss, Testing higher-order Lagrangian perturbation theory against numerical simulations. II. Hierarchical models, A&A, vol.294, pp.345-365, 1995.

N. Metropolis, Equation of state calculations by fast computing machines, The journal of chemical physics 21, vol.6, pp.1087-1092, 1953.

L. Metz, Unrolled Generative Adversarial Networks, 2016.

M. Millea, E. Anderes, and B. D. Wandelt, Bayesian delensing of CMB temperature and polarization, ArXiv e-prints, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02188903

C. Modi, Y. Feng, and U. Seljak, Cosmological Reconstruction From Galaxy Light: Neural Network Based Light-Matter Connection". In: ArXiv e-prints, 2018.

P. Monaco, T. Theuns, and G. Taffoni, The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field, MNRAS 331, pp.587-608, 2002.

P. Monaco, E. Di-dio, and E. Sefusatti, A blind method to recover the mask of a deep galaxy survey, J. Cosmology Astropart. Phys, vol.4, p.23, 2019.

P. Monaco, Predicting the Number, Spatial Distribution, and Merging History of Dark Matter Halos, ApJ, vol.564, pp.8-14, 2002.

M. J. Mortonson and U. Seljak, A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty, J. Cosmology Astropart. Phys, vol.10, p.35, 2014.

F. Moutarde, Precollapse scale invariance in gravitational instability, ApJ, vol.382, pp.377-381, 1991.

P. F. Muciaccia, P. Natoli, and N. Vittorio, Fast Spherical Harmonic Analysis: A Quick Algorithm for Generating and/or Inverting Full-Sky, High-Resolution Cosmic Microwave Background Anisotropy Maps, ApJ 488, vol.2, pp.63-66, 1997.

V. Mukhanov, Physical foundations of cosmology, 2005.

S. Mukherjee and B. D. Wandelt, Beyond the classical distance-redshift test: cross-correlating redshift-free standard candles and sirens with redshift surveys, ArXiv e-prints, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871901

. Münchmeyer, K. M. Moritz, and . Smith, Fast Wiener filtering of CMB maps with Neural Networks". In: arXiv e-prints, 2019.

M. Mustafa, CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks, Computational Astrophysics and Cosmology, vol.6, p.1, 2019.

S. Naess, The Atacama Cosmology Telescope: CMB polarization at 200 &lt, 2014.

, J. Cosmology Astropart. Phys, vol.10, p.7

V. Nair and G. E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, Proceedings of the 27th International Conference on Machine Learning. ICML'10, pp.807-814, 2010.

J. Nash, Non-Cooperative Games, The Annals of Mathematics 54, vol.2, p.286, 1951.

R. Neal, Slice Sampling, Annals of Statistics, vol.31, pp.705-767, 2000.

. Neal and M. Radford, Probabilistic inference using Markov chain Monte Carlo methods, 1993.

, Slice sampling, Annals of statistics, pp.705-741, 2003.

M. C. Neyrinck, A halo bias function measured deeply into voids without stochasticity, MNRAS 441, pp.646-655, 2014.

M. A. Nielsen, Neural networks and deep learning, 2015.

S. J. Nowlan and G. E. Hinton, Simplifying neural networks by soft weightsharing, pp.473-493, 1992.

M. Ntampaka, The Role of Machine Learning in the Next Decade of Cosmology, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02065883

A. Nusser, The Alcock-Paczy?ski test in redshifted 21-cm maps, MNRAS, vol.364, pp.743-750, 2005.

A. Nusser and A. Dekel, Tracing large-scale fluctuations back in time, ApJ, vol.391, pp.443-452, 1992.

I. J. O'dwyer, Bayesian Power Spectrum Analysis of the First-Year Wilkinson Microwave Anisotropy Probe Data, ApJ, vol.617, pp.99-102, 2004.

S. P. Oh, D. N. Spergel, and G. Hinshaw, An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps, ApJ, vol.510, pp.551-563, 1999.

N. Padmanabhan and M. White, Constraining anisotropic baryon oscillations, Phys. Rev. D 77, vol.12, p.123540, 2008.

T. Padmanabhan, Structure formation in the universe, 1993.

J. Pape?, L. Grigori, and R. Stompor, Solving linear equations with messenger-field and conjugate gradient techniques: An application to CMB data analysis, A&A, vol.620, 2018.

J. A. Peacock, Cosmological physics, 1999.

P. J. Peebles, The large-scale structure of the universe, 1980.

P. J. Peebles and J. T. Yu, Primeval Adiabatic Perturbation in an Expanding Universe, ApJ, vol.162, p.815, 1970.

S. Peirani, LyMAS: Predicting Large-scale Ly? Forest Statistics from the Dark Matter Density Field, ApJ, vol.784, p.11, 2014.

A. A. Penzias and R. W. Wilson, A Measurement of Excess Antenna, p.4080, 1965.

/. Mc, ApJ, vol.142, pp.419-421

L. Perez and J. Wang, The Effectiveness of Data Augmentation in Image Classification using Deep Learning, 2017.

N. Perraudin, DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications, Astronomy and Computing, vol.27, p.130, 2019.

S. Phillipps, A Possible Geometric Measurement of the Cosmological Constant, p.1077, 1994.

, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, A&A, vol.571, 2014.

, Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity, 2014.

, Planck 2015 results. IX. Diffuse component separation: CMB maps, A&A, vol.594, 2016.

, Planck 2015 results. XIII. Cosmological parameters, A&A, vol.594, 2016.

, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, vol.594, 2016.

, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, vol.594, 2016.

, Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, A&A, vol.586, 2016.

, Planck 2018 results. I. Overview and the cosmological legacy of Planck, ArXiv e-prints, 2018.

, Planck 2018 results. VI. Cosmological parameters". In: arXiv e-prints, 2018.

, Planck 2018 results. IX. Constraints on primordial non-Gaussianity". In: arXiv e-prints, 2019.

G. Pollina, On the relative bias of void tracers in the Dark Energy Survey". In: ArXiv e-prints, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833726

P. A. Popowski, Quasar Clustering and Spacetime Geometry, ApJ, vol.498, pp.11-25, 1998.

N. Porqueres, Explicit Bayesian treatment of unknown foreground contaminations in galaxy surveys, A&A, vol.624, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01974784

G. Puglisi, Iterative map-making with two-level preconditioning for polarized Cosmic Microwave Background data sets -A worked example for ground-based experiments, A&A, vol.618, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01707590

G. D. Racca, The Euclid mission design, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.9904, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01468079

A. Radford, L. Metz, and S. Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ArXiv e-prints, 2015.

D. M. Reiman and B. E. Göhre, Deblending galaxy superpositions with branched generative adversarial networks, ArXiv e-prints, 2018.

D. Ribli, I. Bálint-Ármin-pataki, and . Csabai, An improved cosmological parameter inference scheme motivated by deep learning, Nature Astronomy, vol.3, pp.93-98, 2019.

H. P. Robertson, Kinematics and World-Structure III, ApJ, vol.82, p.257, 1935.

A. C. Rodríguez, Fast cosmic web simulations with generative adversarial networks, Computational Astrophysics and Cosmology, vol.5, p.4, 2018.

K. K. Rogers, Spin-SILC: CMB polarization component separation with spin wavelets, MNRAS 463, pp.2310-2322, 2016.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

L. Rosasco, Are loss functions all the same?, In: Neural Computation, vol.16, pp.1063-1076, 2004.

A. J. Ross, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function, MNRAS, vol.464, pp.1168-1191, 2017.

A. J. Ross, Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III, MNRAS 417, pp.1350-1373, 2011.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Cognitive modeling 5, vol.3, p.1, 1988.

B. S. Ryden, Measuring Q 0 from the Distortion of Voids in Redshift Space, ApJ, vol.452, p.25, 1995.

Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003.

D. Saadeh, How Isotropic is the Universe?, In: Physical Review Letters, vol.117, p.131302, 2016.

P. Sarkar, The scale of homogeneity of the galaxy distribution in SDSS DR6, pp.128-131, 2009.

W. Saunders and W. E. Ballinger, Interpolation of Discretely-Sampled Density Fields, Mapping the Hidden Universe: The Universe behind the Mily Way -The Universe in HI, 2000.

P. A. Kraan-korteweg, H. Henning, and . Andernach, Astronomical Society of the Pacific Conference Series, vol.218, p.181

K. Schawinski, Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit, DOI: 10 . 1093/mnrasl/slx008, pp.110-114, 2017.

D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds, ApJ, vol.500, pp.525-553, 1998.

J. Schmelzle, Cosmological model discrimination with Deep Learning". In: ArXiv eprints, 2017.

F. Schmidt, A rigorous EFT-based forward model for large-scale structure, ArXiv e-prints, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01861879

I. M. Schmoldt, On Density and Velocity Fields and beta from the IRAS PSCZ Survey, AJ, vol.118, pp.1146-1160, 1999.

R. Scoccimarro, The Bispectrum: From Theory to Observations, ApJ, vol.544, pp.597-615, 2000.

R. Scoccimarro and R. K. Sheth, PTHALOS: a fast method for generating mock galaxy distributions, MNRAS, vol.329, pp.629-640, 2002.

R. Scoccimarro, Transients from initial conditions: a perturbative analysis, pp.1097-1118, 1998.

R. Scranton, Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data, ApJ, vol.579, pp.48-75, 2002.

M. I. Scrimgeour, The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity, MNRAS 425.1, pp.116-134, 2012.

U. Seljak and C. M. Hirata, Gravitational lensing as a contaminant of the gravity wave signal in the CMB, Phys. Rev. D, vol.69, issue.4, p.43005, 2004.

U. Seljak and M. Zaldarriaga, Signature of Gravity Waves in the Polarization of the Microwave Background, Physical Review Letters, vol.78, pp.2054-2057, 1997.

D. S. Seljebotn, A Multi-level Solver for Gaussian Constrained Cosmic Microwave Background Realizations, ApJS 210, p.24, 2014.

D. S. Seljebotn, Multi-resolution Bayesian CMB component separation through Wiener filtering with a pseudo-inverse preconditioner, A&A, vol.627, 2019.

H. Seo and D. J. Eisenstein, Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys, ApJ, vol.598, 2003.

R. K. Sheth, Constrained realizations and minimum variance reconstruction of non-Gaussian random fields, MNRAS 277, pp.933-944, 1995.

J. Shewchuk and . Richard, An introduction to the conjugate gradient method without the agonizing pain, 1994.

M. Shirasaki, N. Yoshida, and S. Ikeda, Denoising Weak Lensing Mass Maps with Deep Learning". In: arXiv e-prints, 2018.

M. Shoji, D. Jeong, and E. Komatsu, Extracting Angular Diameter Distance and Expansion Rate of the Universe From Two-Dimensional Galaxy Power Spectrum at High Redshifts: Baryon Acoustic Oscillation Fitting Versus Full Modeling, ApJ, vol.693, pp.1404-1416, 2009.

A. F. Smith, O. Gareth, and . Roberts, Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Methodological), vol.55, pp.3-23, 1993.

K. M. Smith, Pseudo-C estimators which do not mix E and B modes, Phys. Rev. D, vol.74, issue.8, p.83002, 2006.

, Pure pseudo-C estimators for CMB B-modes, New Astron. Rev, vol.50, pp.1025-1029, 2006.

K. M. Smith, O. Zahn, and O. Doré, Detection of gravitational lensing in the cosmic microwave background, Phys. Rev. D, vol.76, issue.4, p.43510, 2007.

K. M. Smith and M. Zaldarriaga, General solution to the E-B mixing problem, Phys. Rev. D, vol.76, issue.4, p.43001, 2007.

M. J. Smith and J. E. Geach, Generative deep fields: arbitrarily sized, random synthetic astronomical images through deep learning, 2019.

G. F. Smoot, Structure in the COBE differential microwave radiometer first-year maps, ApJ, vol.396, pp.1-5, 1992.

T. Sousbie, MoLUSC: A Mock Local Universe Survey Constructor, ApJ, vol.678, pp.569-577, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00293961

V. Springel, The cosmological simulation code GADGET-2", MNRAS, vol.364, pp.1105-1134, 2005.

N. Srivastava, Dropout: a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, vol.15, pp.1929-1958, 2014.

J. L. Starck, M. J. Fadili, and A. Rassat, Low-CMB analysis and inpainting, A&A, vol.550, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926790

D. Stark, PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light, DOI: 10 . 1093 / mnras / sty764, pp.2513-2527, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02320506

V. Sudevan, Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations, ApJ, vol.842, p.62, 2017.

P. M. Sutter, A First Application of the Alcock-Paczynski Test to Stacked Cosmic Voids, ApJ, vol.761, p.187, 2012.

P. M. Sutter, A measurement of the Alcock-Paczy?ski effect using cosmic voids in the SDSS, MNRAS 443, pp.2983-2990, 2014.

A. Suzuki, The Polarbear-2 and the Simons Array Experiments, Journal of Low Temperature Physics, vol.184, pp.805-810, 2016.

F. Sylos-labini, Absence of self-averaging and of homogeneity in the large-scale galaxy distribution, EPL (Europhysics Letters), vol.86, p.49001, 2009.

C. Szegedy, Going Deeper with Convolutions, Computer Vision and Pattern Recognition (CVPR, 2015.

C. Szegedy, Rethinking the Inception Architecture for Computer Vision, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016.

C. Szegedy, Inception-v4, inception-resnet and the impact of residual connections on learning, AAAI Conference on Artificial Intelligence, vol.4, p.12, 2017.

S. Tassev and M. Zaldarriaga, The mildly non-linear regime of structure formation, J. Cosmology Astropart. Phys. P, p.13, 2012.

J. F. Taylor, M. A. Ashdown, and M. P. Hobson, Fast optimal CMB power spectrum estimation with Hamiltonian sampling, MNRAS 389, pp.1284-1292, 2008.

M. Tegmark, How to Make Maps from Cosmic Microwave Background Data without Losing Information, Phys. Rev. D, vol.480, pp.5895-5907, 1997.

M. Tegmark and G. Efstathiou, A method for subtracting foregrounds from multifrequency CMB sky maps**, MNRAS 281, pp.1297-1314, 1996.

M. Tegmark, Measuring the Galaxy Power Spectrum with Future Redshift Surveys, ApJ, vol.499, pp.555-576, 1998.

M. Tegmark, The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey, ApJ, vol.606, 2004.

, The Dark Energy Survey". In: arXiv e-prints, 2005.

. The-polarbear-collaboration, A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales from 2 years of POLAR-BEAR Data, ArXiv e-prints, 2017.

T. Tröster, Painting with baryons: augmenting N-body simulations with gas using deep generative models, MNRAS 487.1, pp.24-29, 2019.

R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemporary Physics, vol.49, pp.71-104, 2008.

, Bayesian Methods in Cosmology". In: arXiv e-prints, 2017.

M. S. Turner and M. White, CDM models with a smooth component, Phys. Rev. D, vol.56, pp.4439-4443, 1997.

F. Vansyngel, Semi-blind Bayesian inference of CMB map and power spectrum, A&A, vol.588, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321490

L. Verde, Statistical Methods in Cosmology, Lectures on Cosmology Accelerated Expansion of the Universe by Georg Wolschin, vol.800, pp.147-177, 2010.

C. Villani, Optimal transport: old and new, vol.338, 2008.

A. G. Walker, On Milne's theory of world-structure, Proceedings of the London Mathematical Society, vol.42, p.90, 1937.

B. D. Wandelt, D. L. Larson, and A. Lakshminarayanan, Global, exact cosmic microwave background data analysis using Gibbs sampling, Phys. Rev. D, vol.70, issue.8, p.83511, 2004.

L. Wang and P. J. Steinhardt, Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure, ApJ, vol.508, pp.483-490, 1998.

M. Webster, O. Lahav, and K. Fisher, Wiener reconstruction of the IRAS 1.2-Jy galaxy redshift survey: cosmographical implications, MNRAS 287, pp.425-444, 1997.

S. Weinberg and R. H. Dicke, Gravitation and cosmology: principles and applications of the general theory of relativity, American Journal of Physics, vol.41, pp.598-599, 1973.

N. Wiener, Extrapolation, interpolation, and smoothing of stationary time series, vol.2, 1949.

I. H. Witten, Data Mining: Practical machine learning tools and techniques, 2016.

J. K. Yadav, J. S. Bagla, and N. Khandai, Fractal dimension as a measure of the scale of homogeneity, MNRAS 405.3, pp.2009-2015, 2010.

D. G. York, The Sloan Digital Sky Survey: Technical Summary, AJ, vol.120, pp.1579-1587, 2000.

M. Zaldarriaga, Nature of the E-B decomposition of CMB polarization, Phys. Rev. D, vol.64, p.103001, 2001.

M. Zaldarriaga and U. Seljak, Gravitational lensing effect on cosmic microwave background polarization, Phys. Rev. D, vol.55, issue.2, p.23003, 1997.

J. Zamudio-fernandez, HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks, 2019.

S. Zaroubi, Unbiased reconstruction of the large-scale structure, MNRAS 331, pp.901-908, 2002.

S. Zaroubi, Y. Hoffman, and A. Dekel, Wiener Reconstruction of Large-Scale Structure from Peculiar Velocities, ApJ, vol.520, pp.413-425, 1999.

Y. B. Zel'dovich, Reprint of, 1970.

A. .. , Gravitational instability: an approximate theory for large density perturbations, A&A, vol.500, pp.13-18

Y. B. Zeldovich, A hypothesis, unifying the structure and the entropy of the Universe, MNRAS 160, vol.1, pp.1-3, 1972.

X. Zhang, From Dark Matter to Galaxies with Convolutional Networks". In: arXiv e-prints, 2019.

W. Zhao and D. Baskaran, Separating E and B types of polarization on an incomplete sky, Phys. Rev. D, vol.82, issue.2, p.23001, 2010.

T. Zingales and I. P. Waldmann, ExoGAN: Retrieving Exoplanetary Atmospheres Using Deep Convolutional Generative Adversarial Networks, ArXiv e-prints, 2018.