O. Aalen, Nonparametric Estimation of Partial Transition Probabilities in Multiple Decrement Models, The Annals of Statistics, vol.6, issue.3, pp.534-545, 1978.

O. Aalen, Nonparametric Inference for a Family of Counting Processes, The Annals of Statistics, vol.6, issue.4, pp.701-726, 1978.

F. Abegaz, I. Gijbels, and N. Veraverbeke, Semiparametric estimation of conditional copulas, Journal of Multivariate Analysis, vol.110, pp.43-73, 2012.

A. , Principes du conseil en assurance, 2018.

H. Ahn and W. Loh, Tree-Structured Proportional Hazards Regression Modeling, Biometrics, vol.50, issue.2, p.471, 1994.

M. G. Akritas and I. V. Keilegom, Estimation of bivariate and marginal distributions with censored data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.65, issue.2, pp.457-471, 2003.

M. G. Akritas, The Central Limit Theorem under Censoring, Bernoulli, vol.6, issue.6, p.1109, 2000.

B. Altshuler, Theory for the measurement of competing risks in animal experiments, Mathematical Biosciences, vol.6, pp.1-11, 1970.

I. Aubin and A. Rolland, Calcul des indicateurs de conformité aux lignes directrices à partir des données pays de 2010 et de 2014, Garantir la qualité de l'enseignement supérieur transnational, pp.131-133, 2015.

M. Bargès, H. Cossette, and É. Marceau, TVaR-based capital allocation with copulas, Insurance: Mathematics and Economics, vol.45, issue.3, pp.348-361, 2009.

S. M. Bartram, S. J. Taylor, and Y. Wang, The Euro and European financial market dependence, Journal of Banking & Finance, vol.31, issue.5, pp.1461-1481, 2007.

T. Bayes, LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S, Philosophical Transactions of the Royal Society of London, vol.53, pp.370-418, 1763.

N. Benoumechiara, B. Michel, P. Saint-pierre, and N. Bousquet, Preprint repository arXiv achieves milestone million uploads, Physics Today, 2014.

R. Beran, Nonparametric regression with randomly censored survival data, Tech. Rep.). Univ. California, 1981.

D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l'inoculation pour la prévenir. Histoire de l'académie royale des sciences, p.1760, 1766.

G. Biau and E. Scornet, A random forest guided tour, TEST, vol.25, issue.2, pp.197-227, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01221748

URL : https://hal.archives-ouvertes.fr/hal-01605353

M. Boudreault, H. Cossette, and É. Marceau, Risk models with dependence between claim occurrences and severities for Atlantic hurricanes, Insurance: Mathematics and Economics, vol.54, pp.123-132, 2014.

M. Boudreault, H. Cossette, and E. Marceau, On a Joint Frequency and Severity Loss Model Applied to Earthquake Risk, SSRN Electronic Journal, 2017.

I. Bou-hamad, D. Larocque, and H. Ben-ameur, A review of survival trees, Statistics Surveys, vol.5, issue.0, pp.44-71, 2011.

A. Boulesteix, S. Janitza, J. Kruppa, and I. R. König, Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.2, issue.6, pp.493-507, 2012.

A. Boumezoued, N. E. Karoui, and S. Loisel, Measuring mortality heterogeneity with multi-state models and interval-censored data, Insurance: Mathematics and Economics, vol.72, pp.67-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01215350

A. Bravais, Analyse mathématique sur les probabilités des erreurs de situation d'un point, 1844.

L. Breiman, Bagging predictors, Machine Learning, vol.24, issue.2, pp.123-140, 1996.

L. Breiman, Random forests. Machine learning, Machine Learning, vol.45, issue.1, pp.5-32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees, 1984.

L. Breiman, Heuristics of instability and stabilization in model selection, The Annals of Statistics, vol.24, issue.6, pp.2350-2383, 1996.

G. Caragata-nasvadi and A. Wister, Do Restricted Driver's Licenses Lower Crash Risk Among Older Drivers? A Survival Analysis of Insurance Data From British Columbia, The Gerontologist, vol.49, issue.4, pp.474-484, 2009.

J. F. Carriere, Bivariate Survival Models for Coupled Lives, Scandinavian Actuarial Journal, vol.2000, issue.1, pp.17-32, 2000.

A. C. Cebrián, M. Denuit, and P. Lambert, Generalized Pareto Fit to the Society of Actuaries? Large Claims Database, North American Actuarial Journal, vol.7, issue.3, pp.18-36, 2003.

A. Charpentier, Copules et risques multiples. Chapter 6 in the book "Statistique du risque, 2013.

A. Charpentier, J. Fermanian, and O. Scaillet, The estimation of copulas: Theory and practice, 2007.

M. Chauvigny, L. Devineau, S. Loisel, and V. Maume-deschamps, Fast remote but not extreme quantiles with multiple factors: applications to Solvency II and Enterprise Risk Management, European Actuarial Journal, vol.1, issue.1, pp.131-157, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00517766

X. Chen and H. Ishwaran, Random forests for genomic data analysis, Genomics, vol.99, issue.6, pp.323-329, 2012.

H. J. Cho and S. Hong, Median regression tree for analysis of censored survival data, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol.38, pp.715-726, 2008.

A. Ciampi, J. Thiffault, J. Nakache, and B. Asselain, Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates, Computational Statistics & Data Analysis, vol.4, issue.3, pp.185-204, 1986.

D. G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, vol.65, issue.1, pp.141-151, 1978.

H. Cossette, M. Côté, M. Mailhot, and E. Marceau, A note on the computation of sharp numerical bounds for the distribution of the sum, product or ratio of dependent risks, Journal of Multivariate Analysis, vol.130, pp.1-20, 2014.

H. Cossette, E. Marceau, and I. Mtalai, Collective Risk Models with Hierarchical Archimedean Copulas, SSRN Electronic Journal, 2018.

H. Cossette, E. Marceau, Q. H. Nguyen, and C. Y. Robert, Tail Approximations for Sums of Dependent Regularly Varying Random Variables Under Archimedean Copula Models, Methodology and Computing in Applied Probability, vol.21, issue.2, pp.461-490, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02006795

A. Cousin and E. Di-bernardino, On multivariate extensions of Value-at-Risk, Journal of Multivariate Analysis, vol.119, pp.32-46, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00638382

A. Cousin and E. Di-bernardino, On multivariate extensions of Conditional-Tail-Expectation, Insurance: Mathematics and Economics, vol.55, pp.272-282, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00877386

D. R. Cox, Regression Models and Life-Tables, Journal of the Royal Statistical Society: Series B (Methodological), vol.34, issue.2, pp.187-202, 1972.

A. Cuberos, E. Masiello, and V. Maume-deschamps, Copulas checker-type approximations: Application to quantiles estimation of sums of dependent random variables, Communications in Statistics - Theory and Methods, vol.49, issue.12, pp.3044-3062, 2019.

Y. Cui, R. Zhu, and M. Kosorok, Tree based weighted learning for estimating individualized treatment rules with censored data, Electronic Journal of Statistics, vol.11, issue.2, pp.3927-3953, 2017.

Y. Cui, R. Zhu, M. Zhou, and M. Kosorok, Preprint repository arXiv achieves milestone million uploads, Physics Today, 2014.

J. D. Cummins, Development of life insurance surrender values in the united states. SS Huebner Foundation for Insurance Education, 1973.

J. D. Cummins and N. A. Doherty, The Economics of Insurance Intermediaries, Journal of Risk <html_ent glyph="@amp;" ascii="&"/> Insurance, vol.73, issue.3, pp.359-396, 2006.

D. M. Dabrowska, Uniform Consistency of the Kernel Conditional Kaplan-Meier Estimate, The Annals of Statistics, vol.17, issue.3, pp.1157-1167, 1989.

D. M. Dabrowska, Kaplan-Meier Estimate on the Plane, The Annals of Statistics, vol.16, issue.4, pp.1475-1489, 1988.

R. B. Davis and J. R. Anderson, Exponential survival trees, Statistics in Medicine, vol.8, issue.8, pp.947-961, 1989.

P. Deheuvels, La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance, Bulletin de la Classe des sciences, vol.65, issue.1, pp.274-292, 1979.

M. Denuit, J. Dhaene, M. Goovaerts, and R. Kaas, Actuarial theory for dependent risks: measures, orders and models, 2006.

M. Denuit and C. Legrand, Risk classification in life and health insurance: extension to continuous covariates, European Actuarial Journal, vol.8, issue.1, pp.245-255, 2018.

A. Derumigny and J. Fermanian, About tests of the ?simplifying? assumption for conditional copulas, Dependence Modeling, vol.5, issue.1, pp.154-197, 2017.

L. Devineau and S. Loisel, Risk aggregation in solvency ii: How to converge the approaches of the internal models and those of the standard formula?, Bulletin Français d'Actuariat, vol.9, issue.18, pp.107-145, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403662

A. Dias and P. Embrechts, Dynamic copula models for multivariate highfrequency data in finance, p.81, 2004.

D. Bernardino, E. Maume-deschamps, V. Prieur, and C. , Estimating a bivariate tail: a copula based approach, Journal of Multivariate Analysis, vol.119, pp.81-100, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00475386

P. Doukhan, J. Fermanian, and G. Lang, Copulas of a vector-valued stationary weakly dependent process, 2005.

. Drees, Les dépenses de santé depuis 1950, Études et résultats de la Drees, 2017.

. Drees, Les dépenses de santé en 2017 -résultats des comptes de la santé. Panoramas de la Drees -santé, 2018.

M. Dreyfus, L'histoire de la mutualité: quatre grands défis, Les Tribunes de la sante, pp.49-54, 2011.

C. Dutang, The customer, the insurer and the market, Bulletin Français d'Actuariat, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01616152

U. Einmahl and D. M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, Journal of Theoretical Probability, vol.13, issue.1, pp.1-37, 2000.

U. Einmahl and D. M. Mason, Uniform in bandwidth consistency of kernel-type function estimators, Ann. Statist, vol.33, issue.3, pp.1380-1403, 2005.

P. Embrechts, L. De-haan, and X. Huang, Modelling multivariate extremes. Extremes and integrated risk management, pp.59-67, 2000.

L. Euler, Recherches générales sur la mortalité et la multiplication du genre humain

D. Fantazzini and S. Figini, Random Survival Forests Models for SME Credit Risk Measurement, Methodology and Computing in Applied Probability, vol.11, issue.1, pp.29-45, 2008.

A. Favre, S. El-adlouni, L. Perreault, N. Thiémonge, and B. Bobée, Multivariate hydrological frequency analysis using copulas, Water Resources Research, vol.40, issue.1, p.40, 2004.

D. Ferger, W. G. Manteiga, T. Schmidt, and J. Wang, From Statistics to Mathematical Finance, 2017.

J. Fermanian and O. Lopez, Single-index copulas, Journal of Multivariate Analysis, vol.165, pp.27-55, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01700864

J. Fermanian, D. Radulovic, and M. Wegkamp, Weak convergence of empirical copula processes, Bernoulli, vol.10, issue.5, pp.847-860, 2004.

J. Fermanian and O. Scaillet, Nonparametric estimation of copulas for time series, The Journal of Risk, vol.5, issue.4, pp.25-54, 2003.

J. Fermanian and O. Scaillet, Some Statistical Pitfalls in Copula Modeling for Financial Applications, SSRN Electronic Journal, 2004.

T. R. Fleming and D. P. Harrington, Counting Processes and Survival Analysis, Counting processes and survival analysis, vol.169, 2005.

M. J. Frank, On the simultaneous associativity ofF(x, y) andx+y?F(x, y), Aequationes Mathematicae, vol.19, issue.1, pp.194-226, 1979.

L. R. Berrone and J. Moro, Lagrangian means, Aequationes Mathematicae, vol.55, issue.3, pp.217-226, 1998.

E. W. Frees, R. A. Derrig, and G. Meyers, Predictive Modeling in Actuarial Science, Predictive Modeling Applications In Actuarial Science, vol.1, pp.1-10

E. W. Frees and E. A. Valdez, Understanding Relationships Using Copulas, North American Actuarial Journal, vol.2, issue.1, pp.1-25, 1998.

W. Fu and J. S. Simonoff, Survival trees for left-truncated and right-censored data, with application to time-varying covariate data, Biostatistics, vol.18, issue.2, p.kxw047, 2016.

C. Geerdens, E. F. Acar, and P. Janssen, Conditional copula models for right-censored clustered event time data, Biostatistics, vol.19, issue.2, pp.247-262, 2017.

C. Genest, M. Gendron, and M. Bourdeau-brien, The Advent of Copulas in Finance, The European Journal of Finance, vol.15, issue.7-8, pp.609-618, 2009.

A. Dias, Copulae and Multivariate Probability Distributions in Finance, Copulae and multivariate probability distributions in finance, pp.13-22, 2013.

C. Genest, K. Ghoudi, and L. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, vol.82, issue.3, pp.543-552, 1995.

C. Genest, K. Ghoudi, and L. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, vol.82, issue.3, pp.543-552, 1995.

C. Genest and R. J. Mackay, Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données, Canadian Journal of Statistics, vol.14, issue.2, pp.145-159, 1986.

C. Genest and J. Mackay, The Joy of Copulas: Bivariate Distributions with Uniform Marginals, The American Statistician, vol.40, issue.4, p.280, 1986.

C. Genest, J. Ne?lehová, and N. Ben-ghorbal, ESTIMATORS BASED ON KENDALL'S TAU IN MULTIVARIATE COPULA MODELS, Australian & New Zealand Journal of Statistics, vol.53, issue.2, pp.157-177, 2011.

T. A. Gerds and M. Schumacher, Consistent Estimation of the Expected Brier Score in General Survival Models with Right-Censored Event Times, Biometrical Journal, vol.48, issue.6, pp.1029-1040, 2006.

B. Gibaud, De la mutualitéà la sécurité sociale: conflits et convergences. Editions de l'Atelier, 1986.

B. Gibaud, Mutualité/Sécurité sociale (1945-1950) : la convergence conflictuelle, Vie sociale, vol.4, issue.4, p.39, 2008.

I. Gijbels and K. Herrmann, On the distribution of sums of random variables with copula-induced dependence, Insurance: Mathematics and Economics, vol.59, pp.27-44, 2014.

I. Gijbels, M. Omelka, and N. Veraverbeke, Nonparametric testing for no covariate effects in conditional copulas, Statistics, vol.51, issue.3, pp.475-509, 2016.

I. Gijbels, N. Veraverbeke, and M. Omelka, Conditional copulas, association measures and their applications, Computational Statistics & Data Analysis, vol.55, issue.5, pp.1919-1932, 2011.

R. Gill, Large Sample Behaviour of the Product-Limit Estimator on the Whole Line, The Annals of Statistics, vol.11, issue.1, pp.49-58, 1983.

Y. Goldberg and M. R. Kosorok, Support vector regression for right censored data, Electronic Journal of Statistics, vol.11, issue.1, pp.532-569, 2017.

B. K. Goodwin and A. Hungerford, Copula?Based Models of Systemic Risk in U.S. Agriculture: Implications for Crop Insurance and Reinsurance Contracts, American Journal of Agricultural Economics, vol.97, issue.3, pp.879-896, 2014.

J. Graunt, Natural and Political Observations Mentioned in a Following Index, and Made Upon the Bills of Mortality, Mathematical Demography, pp.11-20, 1977.

S. Gribkova and O. Lopez, Non-parametric Copula Estimation Under Bivariate Censoring, Scandinavian Journal of Statistics, vol.42, issue.4, pp.925-946, 2015.

S. Gribkova, O. Lopez, and P. Saint-pierre, A simplified model for studying bivariate mortality under right-censoring, Journal of Multivariate Analysis, vol.115, pp.181-192, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00683483

Q. Guibert, O. Lopez, and P. Piette, Forecasting mortality rate improvements with a high-dimensional VAR, Insurance: Mathematics and Economics, vol.88, pp.255-272, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02402342

Q. Guibert and F. Planchet, Utilisation des estimateurs de kaplan-meier par génération et de hoem pour la construction de tables de mortalité prospectives, 2017.

Q. Guibert and F. Planchet, Non-parametric inference of transition probabilities based on Aalen?Johansen integral estimators for acyclic multi-state models: application to LTC insurance, Insurance: Mathematics and Economics, vol.82, pp.21-36, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01955234

M. Guillén, J. P. Nielsen, T. H. Scheike, and A. M. Pérez-marín, Time-varying effects in the analysis of customer loyalty: A case study in insurance, Expert Systems with Applications, vol.39, issue.3, pp.3551-3558, 2012.

E. J. Gumbel, Bivariate Exponential Distributions, Journal of the American Statistical Association, vol.55, issue.292, pp.698-707, 1960.

C. Günther, I. F. Tvete, K. Aas, G. I. Sandnes, and Ø. Borgan, Modelling and predicting customer churn from an insurance company, Scandinavian Actuarial Journal, vol.2014, issue.1, pp.58-71, 2011.

S. Haberman and E. Pitacco, Disability insurance, Actuarial Models for Disability Insurance, pp.80-144, 2018.

D. Hainaut, A NEURAL-NETWORK ANALYZER FOR MORTALITY FORECAST, ASTIN Bulletin, vol.48, issue.02, pp.481-508, 2018.

D. Hainaut and C. Y. Robert, CREDIT RISK VALUATION WITH RATING TRANSITIONS AND PARTIAL INFORMATION, International Journal of Theoretical and Applied Finance, vol.17, issue.07, p.1450046, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02006628

F. E. Harrell, R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati, Evaluating the yield of medical tests, JAMA: The Journal of the American Medical Association, vol.247, issue.18, pp.2543-2546, 1982.

R. Henckaerts, K. Antonio, M. Clijsters, and R. Verbelen, A data driven binning strategy for the construction of insurance tariff classes, Scandinavian Actuarial Journal, vol.2018, issue.8, pp.681-705, 2018.

K. L. Henebry, A test of the temporal stability of proportional hazards models for predicting bank failure, Journal of Financial and Strategic Decisions, vol.10, issue.3, pp.1-11, 1997.

Y. Hong, W. Q. Meeker, and J. D. Mccalley, Prediction of remaining life of power transformers based on left truncated and right censored lifetime data, The Annals of Applied Statistics, vol.3, issue.2, pp.857-879, 2009.

T. Hothorn, P. Bühlmann, S. Dudoit, A. Molinaro, and M. J. Van-der-laan, Survival ensembles, Biostatistics, vol.7, issue.3, pp.355-373, 2005.

T. Hothorn, K. Hornik, and A. Zeileis, Unbiased Recursive Partitioning: A Conditional Inference Framework, Journal of Computational and Graphical Statistics, vol.15, issue.3, pp.651-674, 2006.

T. Hothorn, B. Lausen, A. Benner, and M. Radespiel-tröger, Bagging survival trees, Statistics in Medicine, vol.23, issue.1, pp.77-91, 2003.

P. Hougaard, Univariate Survival Data, Statistics for Biology and Health, pp.36-111, 2000.

B. F. Huang and P. C. Boutros, The parameter sensitivity of random forests, BMC Bioinformatics, vol.17, issue.1, p.331, 2016.

J. Berthon, Institut des Actuaires, 2004.

H. Ishwaran, E. H. Blackstone, C. E. Pothier, and M. S. Lauer, Relative Risk Forests for Exercise Heart Rate Recovery as a Predictor of Mortality, Journal of the American Statistical Association, vol.99, issue.467, pp.591-600, 2004.

H. Ishwaran, T. A. Gerds, U. B. Kogalur, R. D. Moore, S. J. Gange et al., Random survival forests for competing risks, Biostatistics, vol.15, issue.4, pp.757-773, 2014.

H. Ishwaran and U. B. Kogalur, Consistency of random survival forests, Statistics & Probability Letters, vol.80, issue.13-14, pp.1056-1064, 2010.

H. Ishwaran and U. B. Kogalur, Consistency of random survival forests, Statistics & Probability Letters, vol.80, issue.13-14, pp.1056-1064, 2010.

H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer, Random survival forests, The Annals of Applied Statistics, vol.2, issue.3, pp.841-860, 2008.

H. Ishwaran, U. B. Kogalur, E. Z. Gorodeski, A. J. Minn, and M. S. Lauer, High-Dimensional Variable Selection for Survival Data, Journal of the American Statistical Association, vol.105, issue.489, pp.205-217, 2010.

H. Joe, Multivariate Models and Multivariate Dependence Concepts, 1997.

H. Joe, R. L. Smith, and I. Weissman, Bivariate Threshold Methods for Extremes, Journal of the Royal Statistical Society: Series B (Methodological), vol.54, issue.1, pp.171-183, 1992.

E. Jondeau and M. Rockinger, The Copula-GARCH model of conditional dependencies: An international stock market application, Journal of International Money and Finance, vol.25, issue.5, pp.827-853, 2006.

E. L. Kaplan and P. Meier, Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, vol.53, issue.282, pp.457-481, 1958.

E. L. Kaplan and P. Meier, Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, vol.53, issue.282, pp.457-481, 1958.

M. G. Kendall, A New Measure of Rank Correlation, Biometrika, vol.30, issue.1/2, p.81, 1938.

C. Kim, Modeling Surrender and Lapse Rates With Economic Variables, North American Actuarial Journal, vol.9, issue.4, pp.56-70, 2005.

J. P. Klein and M. L. Moeschberger, Survival analysis: techniques for censored and truncated data, 2006.

H. Koul, V. V. Susarla, and J. V. Ryzin, Regression Analysis with Randomly Right-Censored Data, The Annals of Statistics, vol.9, issue.6, pp.1276-1288, 1981.

L. Hardy and H. , Ressources et utilisation des soins de longue durée, 2012.

S. W. Lagakos, General Right Censoring and Its Impact on the Analysis of Survival Data, Biometrics, vol.35, issue.1, p.139, 1979.

L. Lakhal, L. Rivest, and D. Beaudoin, IPCW Estimator for Kendall's Tau under Bivariate Censoring, The International Journal of Biostatistics, vol.5, issue.1, 2009.

M. L. Lakhal-chaieb, Copula inference under censoring, Biometrika, vol.97, issue.2, pp.505-512, 2010.

M. Leblanc and J. Crowley, Relative Risk Trees for Censored Survival Data, Biometrics, vol.48, issue.2, p.411, 1992.

M. Leblanc and J. Crowley, Survival Trees by Goodness of Split, Journal of the American Statistical Association, vol.88, issue.422, pp.457-467, 1993.

L. Lescourret and C. Y. Robert, Extreme dependence of multivariate catastrophic losses, Scandinavian Actuarial Journal, vol.2006, issue.4, pp.203-225, 2006.

A. H. Li and J. Bradic, Preprint repository arXiv achieves milestone million uploads, Physics Today, 2014.

B. R. Logan, J. P. Klein, and M. Zhang, Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation, Biometrics, vol.64, issue.3, pp.733-740, 2008.

O. Lopez, A generalization of the Kaplan?Meier estimator for analyzing bivariate mortality under right-censoring and left-truncation with applications in model-checking for survival copula models, Insurance: Mathematics and Economics, vol.51, issue.3, pp.505-516, 2012.

O. Lopez, A censored copula model for micro-level claim reserving, Insurance: Mathematics and Economics, vol.87, pp.1-14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01706935

O. Lopez, X. Milhaud, and N. E. Thérond, Tree-based censored regression with applications in insurance, Electronic Journal of Statistics, vol.10, issue.2, pp.2685-2716, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01141228

O. Lopez, V. Patilea, and I. Van-keilegom, Single index regression models in the presence of censoring depending on the covariates, Bernoulli, vol.19, issue.3, pp.721-747, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00644892

O. Lopez and P. Saint-pierre, Bivariate censored regression relying on a new estimator of the joint distribution function, Journal of Statistical Planning and Inference, vol.142, issue.8, pp.2440-2453, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00584379

P. Maas, How Insurance Brokers Create Value-A Functional Approach, Risk Management and Insurance Review, vol.13, issue.1, pp.1-20, 2010.

B. Mallet-bricout, Loi" chatel": de nouvelles avancées dans la protection du consommateur, p.38, 2005.

N. Mantel, Evaluation of survival data and two new rank order statistics arising in its consideration, Cancer Chemother Rep, vol.50, pp.163-170, 1966.

A. W. Marshall and I. Olkin, A generalized bivariate exponential distribution, Journal of Applied Probability, vol.4, issue.2, pp.291-302, 1967.

V. Maume-deschamps, D. Rullière, and A. Usseglio-carleve, Quantile predictions for elliptical random fields, Journal of Multivariate Analysis, vol.159, pp.1-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01356081

N. Meinshausen, Quantile regression forests, Journal of Machine Learning Research, vol.7, pp.983-999, 2006.

L. Meira-machado, M. Sestelo, and A. Gonçalves, Nonparametric estimation of the survival function for ordered multivariate failure time data: A comparative study, Biometrical Journal, vol.58, issue.3, pp.623-634, 2015.

URL : https://hal.archives-ouvertes.fr/hal-00732887

X. Milhaud and C. Dutang, Lapse tables for lapse risk management in insurance: a competing risk approach, European Actuarial Journal, vol.8, issue.1, pp.97-126, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985256

X. Milhaud, S. Loisel, and V. Maume-deschamps, Surrender triggers in life insurance: what main features affect the surrender behavior in a classical economic context?, Bulletin Français d'Actuariat, vol.11, issue.22, pp.5-48, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00450003

A. M. Molinaro, S. Dudoit, and M. J. Van-der-laan, Tree-based multivariate regression and density estimation with right-censored data, Journal of Multivariate Analysis, vol.90, issue.1, pp.154-177, 2004.

A. M. Molinaro, A. Olshen, and R. Strawderman, TREE DERIVED SURVIVAL RISK GROUPS IN DIFFERENTIATING RISK FOR GLIOMA PATIENTS, Neuro-Oncology, vol.16, issue.suppl 3, pp.iii2-iii2, 2014.

E. A. Nadaraya, On Estimating Regression, Theory of Probability & Its Applications, vol.9, issue.1, pp.141-142, 1964.

R. B. Nelsen, Introduction, An Introduction to Copulas, pp.1-4, 1999.

W. Nelson, Hazard Plotting for Incomplete Failure Data, Journal of Quality Technology, vol.1, issue.1, pp.27-52, 1969.

D. Nolan and D. Pollard, $U$-Processes: Rates of Convergence, The Annals of Statistics, vol.15, issue.2, pp.780-799, 1987.

D. Oakes, On consistency of Kendall's tau under censoring, Biometrika, vol.95, issue.4, pp.997-1001, 2008.

J. F. Outreville, Whole-life insurance lapse rates and the emergency fund hypothesis, Insurance: Mathematics and Economics, vol.9, issue.4, pp.249-255, 1990.

V. Paris, M. Devaux, and L. Wei, Health Systems Institutional Characteristics, 2010.

A. J. Patton, On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation, Journal of Financial Econometrics, vol.2, issue.1, pp.130-168, 2004.

A. J. Patton, Estimation of multivariate models for time series of possibly different lengths, Journal of Applied Econometrics, vol.21, issue.2, pp.147-173, 2006.

A. J. Patton, MODELLING ASYMMETRIC EXCHANGE RATE DEPENDENCE*, International Economic Review, vol.47, issue.2, pp.527-556, 2006.

R. Peto and J. Peto, Asymptotically Efficient Rank Invariant Test Procedures, Journal of the Royal Statistical Society. Series A (General), vol.135, issue.2, p.185, 1972.

F. Planchet, Tables de mortalité d'expérience pour des portefeuilles de rentiers. Note méthodologique de l'Institut des Actuaires, 2005.

F. Planchet and P. Winter, Utilisation de l'Internet sur le lieu de travail pour des raisons non professionnelles au Luxembourg, 2004, 2009.

P. Probst, M. N. Wright, and A. Boulesteix, Hyperparameters and tuning strategies for random forest, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.9, issue.3, 2019.

A. E. Renshaw and S. Haberman, Statistical analysis of life assurance lapses, Journal of the Institute of Actuaries, vol.113, issue.3, pp.459-497, 1986.

G. A. Satten and S. Datta, The Kaplan?Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average, The American Statistician, vol.55, issue.3, pp.207-210, 2001.

M. Schmid, M. N. Wright, and A. Ziegler, On the use of Harrell?s C for clinical risk prediction via random survival forests, Expert Systems with Applications, vol.63, pp.450-459, 2016.

E. Scornet, Tuning parameters in random forests, ESAIM: Proceedings and Surveys, vol.60, pp.144-162, 2017.

E. Scornet, G. Biau, and J. Vert, Consistency of random forests, The Annals of Statistics, vol.43, issue.4, pp.1716-1741, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00990008

M. R. Segal, Regression Trees for Censored Data, Biometrics, vol.44, issue.1, p.35, 1988.

M. R. Segal, Classification and Regression Trees, Random Forest Algorithm, Machine Learning Approaches to Bioinformatics, pp.120-132, 2010.

J. H. Shih, Modeling Multivariate Discrete Failure Time Data, Biometrics, vol.54, issue.3, p.1115, 1998.

J. H. Shih and T. A. Louis, Inferences on the Association Parameter in Copula Models for Bivariate Survival Data, Biometrics, vol.51, issue.4, p.1384, 1995.

G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics, Society for Industrial and Applied Mathematics (SIAM), vol.59, 2009.

P. Silvapulle, G. Kim, and M. J. Silvapulle, Robustness of a semiparametric estimator of a copula, Econometric society 2004 australasian meetings, 2004.

M. Sklar, Fonctions de répartitionà n dimensions et leurs marges, vol.8, pp.229-231, 1959.

C. Spearman, "General Intelligence," Objectively Determined and Measured, The American Journal of Psychology, vol.15, issue.2, p.201, 1904.

J. A. Steingrimsson, L. Diao, A. M. Molinaro, and R. L. Strawderman, Doubly robust survival trees, Statistics in Medicine, vol.35, issue.20, pp.3595-3612, 2016.

J. A. Steingrimsson, L. Diao, and R. L. Strawderman, Censoring Unbiased Regression Trees and Ensembles, Journal of the American Statistical Association, vol.114, issue.525, pp.370-383, 2018.

M. Stepanova and L. Thomas, Survival Analysis Methods for Personal Loan Data, Operations Research, vol.50, issue.2, pp.277-289, 2002.

C. J. Stone, Optimal Rates of Convergence for Nonparametric Estimators, The Annals of Statistics, vol.8, issue.6, pp.1348-1360, 1980.

W. Stute, Consistent Estimation Under Random Censorship When Covariables Are Present, Journal of Multivariate Analysis, vol.45, issue.1, pp.89-103, 1993.

W. Stute, The Central Limit Theorem Under Random Censorship, The Annals of Statistics, vol.23, issue.2, pp.422-439, 1995.

W. Stute, Consistent Estimation Under Random Censorship When Covariables Are Present, Journal of Multivariate Analysis, vol.45, issue.1, pp.89-103, 1993.

W. Stute, Nonlinear censored regression, Statistica Sinica, pp.1089-1102, 1999.

W. Stute, Kaplan?Meier Integrals, Handbook of Statistics, vol.23, pp.87-104, 2003.

W. Stute and J. Wang, The Strong Law under Random Censorship, The Annals of Statistics, vol.21, issue.3, pp.1591-1607, 1993.

Y. V. Sun, Multigenic Modeling of Complex Disease by Random Forests, Computational Methods for Genetics of Complex Traits, vol.72, pp.73-99, 2010.

. Sécu, Les chiffres clés de la sécurité sociale 2017.Édition de la Sécurité sociale, 2018.

A. Tsiatis, A nonidentifiability aspect of the problem of competing risks., Proceedings of the National Academy of Sciences, vol.72, issue.1, pp.20-22, 1975.

H. Tsukahara, Semiparametric estimation in copula models, Canadian Journal of Statistics, vol.33, issue.3, pp.357-375, 2005.

H. Uno, T. Cai, M. J. Pencina, R. B. D'agostino, and L. J. Wei, On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data, Statistics in Medicine, vol.30, issue.10, pp.1105-1117, 2011.

D. Van-den-poel and B. Larivière, Customer attrition analysis for financial services using proportional hazard models, European Journal of Operational Research, vol.157, issue.1, pp.196-217, 2004.

D. Van-den-poel and B. Lariviere, Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services, Expert Systems with Applications, vol.27, issue.2, pp.277-285, 2004.

M. J. Van-der-laan, Efficient estimation in the bivariate censoring model and repairing NPMLE, The Annals of Statistics, vol.24, issue.2, pp.596-627, 1996.

M. J. Van-der-laan and J. M. Robins, Unified Methods for Censored Longitudinal Data and Causality, 2003.

A. Van-der-vaart, Asymptotic statistics, 1998.

A. W. Van-der-vaart and J. A. Wellner, Weak Convergence, Weak Convergence and Empirical Processes, pp.16-28, 1996.

I. Van-keilegom and M. G. Akritas, Transfer of tail information in censored regression models, Annals of Statistics, pp.1745-1784, 1999.

I. V. Keilegom, M. G. Akritas, and N. Veraverbeke, Estimation of the conditional distribution in regression with censored data: a comparative study, Computational Statistics & Data Analysis, vol.35, issue.4, pp.487-500, 2001.

I. Van-keilegom and N. Veraverbeke, Hazard rate estimation in nonparametric regression with censored data, Annals of the Institute of Statistical Mathematics, vol.53, issue.4, pp.730-745, 2001.

N. Veraverbeke, M. Omelka, and I. Gijbels, Estimation of a Conditional Copula and Association Measures, Scandinavian Journal of Statistics, vol.38, issue.4, pp.766-780, 2011.

R. Verbelen, K. Antonio, and G. Claeskens, Multivariate mixtures of Erlangs for density estimation under censoring, Lifetime Data Analysis, vol.22, issue.3, pp.429-455, 2015.

R. Verbelen, L. Gong, K. Antonio, A. Badescu, and S. Lin, FITTING MIXTURES OF ERLANGS TO CENSORED AND TRUNCATED DATA USING THE EM ALGORITHM, ASTIN Bulletin, vol.45, issue.3, pp.729-758, 2015.

P. C. Verhoef and B. Donkers, Predicting customer potential value an application in the insurance industry, Decision Support Systems, vol.32, issue.2, pp.189-199, 2001.

W. Wang and M. T. Wells, Nonparametric estimation of successive duration times under dependent censoring, Biometrika, vol.85, issue.3, pp.561-572, 1998.

W. Wang and M. T. Wells, Estimation of kendall's tau under censoring, Statistica Sinica, pp.1199-1215, 2000.

G. S. Watson, Correlograms, Linear Models and Time-Series Analysis, pp.359-403, 2018.

M. V. Wüthrich, Machine learning in individual claims reserving, Scandinavian Actuarial Journal, vol.2018, issue.6, pp.465-480, 2018.

X. Xue and R. Brookmeyer, Bivariate frailty model for the analysis of multivariate survival time, Lifetime Data Analysis, vol.2, issue.3, pp.277-289, 1996.

H. Youn and A. Shemyakin, American Statistical Association Statistical Computing Section Student Paper Competition Deadline: January 8, 1999, Computational Statistics & Data Analysis, vol.28, issue.2, p.238, 1998.

H. Youn and A. Shemyakin, Pricing practices for joint last survivor insurance, Actuarial Research Clearing House, vol.1, issue.2, p.3, 2001.

R. Zhu, Tree-based methods for survival analysis and high-dimensional data (Unpublished doctoral dissertation). The University of North Carolina at Chapel Hill, 2013.

R. Zhu and M. R. Kosorok, Recursively Imputed Survival Trees, Journal of the American Statistical Association, vol.107, issue.497, pp.331-340, 2012.

R. Zhu, D. Zeng, and M. R. Kosorok, Reinforcement Learning Trees, Journal of the American Statistical Association, vol.110, issue.512, pp.1770-1784, 2015.