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Avant-Propos

Такие дела

Over the past thirteen years, I have been dedicating my research activities to characterise pro-
tein sequences, structures, dynamics and interactions, and relate them to protein (mal-)functioning.
During my PhD and post-doctoral experiences, I extensively studied two particular systems, namely
the edema factor (EF) of anthrax and the receptor tyrosine kinase KIT. I developed and applied
computational methods to simulate their behaviour in solution and predict the impact of chemi-
cal modifications (ion binding, oncogenic mutations) on their activation. I discovered a new fam-
ily of inhibitors preventing the interaction between EF and calmodulin, and I designed a rescuing
mutation in KIT. I mostly used structural information, generating and exploiting conformational
ensembles. Since my recruitment at LCQB in 2012, I have started to look at protein sequences and
to include evolutionary aspects in my work. I have also moved to the development of methods
that can be applied on a large scale, without requiring expert knowledge on the studied systems.

During the last two decades, biology has been revolutionised by the advent of high-throughput
technologies and the rapid increase of computing resources. Our understanding of biological ob-
jects has been improved, but also challenged by the massive amounts of data produced and ac-
cessible. It would be no exaggeration to say that most popular and basic concepts in Biology lack
a clear and unambiguous definition. What is exactly a gene? Shall a protein domain be seen as
an autonomous folding unit or as an evolutionary persistent building block? Answering these
questions is not a trivial task. As data accumulate, we are becoming more and more aware of the
complexity of living systems and of the need to revisit long standing over-simplifying paradigms.
Experimental evidence of pervasive translation, tissue-specific transcriptomes and cellular het-
erogeneity give us a glimpse of the huge function diversification potential that living organisms
have evolved. For instance, a given protein may interact with hundreds of partners through dis-
tinct or overlapping regions, interconvert between a wide range of conformations, and perform
completely different functions in the cell (e.g. RNA binding and chemical reaction catalysis). Ide-
ally, one would like to be able to decipher such complexity, toward controlling existing proteins
and designing new ones with desired qualities. Unfortunately, directly observing proteins in ac-
tion remains very challenging and accurately simulating their behaviour and interactions with
their environment is computationally prohibitive. Alternatively, the information encoded in pro-
tein sequences provides a valuable indirect mean for probing protein functioning. It has the ad-
vantages of being accessible in large amount at low cost and of resulting from millions of years
of evolution, thus complying with physical and environmental constraints. In this dissertation, I
will discuss the relative contributions of sequence- and structure-based information in identifying
protein functional sites and in predicting the impact of variations at these sites.

Experimental measurements are generally regarded as the ground truth. Predictions produced
by a computational method shall be ultimately validated by wet-lab experiments. However, the
later are not exempted from biases coming from the chosen conditions and the instruments of
measure. Moreover, there is a theoretical model, and some underlying assumptions, behind any
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experimental data published in the literature. For instance, solving a protein (or protein complex)
structure with X-ray crystallography often implies expressing it in another organism, modifying it,
placing it in a physico-chemical environment very different from the physiological one, biasing
the final output toward known structures of similar proteins and applying crystal packing con-
straints. One may argue that computational methods generating in silico data are a mean of prob-
ing a system, just like an experimental device. Here, I will present molecular simulations at time
and length scales that cannot be probed by wet-lab experiments. I will show how medium-scale
computational experiments can inform us about the social life of proteins, and how apparently
false positive predictions can make us aware of the multiplicity of protein surface usage.

Predictive models have adapted to the increasing body of accessible empirical knowledge. For
instance, the description of protein structures has evolved from models assembled from basic
pieces according to physical elementary laws, through task-driven statistics to complex artificial
intelligent systems that learn directly from (possibly) heterogeneous and high-dimensional data.
In very recent years, deep neural networks have proven successful in predicting protein structures,
assessing mutational outcomes and guiding protein design. They are being applied to an ever
higher number of problems in biology. When dealing with them, the human task seems shifted
from understanding complex biological objects to understanding complex network architectures,
their hyperparameters and their filters. Still, biological and physical priors play an essential role in
achieving good performance, by guiding the selection and annotation of the training and testing
data, and by imposing some constraints on the architecture. One drawback of these complex sys-
tems is that they lack interpretability. In the following, I will report on methods based on human
learning and intuition, rather than machine learning. They typically rely on a few biologically and
physically meaningful parameters. They are designed to provide a clear readout of the input data
and to transform these data into comprehensible objects useful for making predictions and inter-
preting them. I will show how these methods can help to reason about the origins and functions
of protein interactions and can provide mechanistic explanations for observed phenotypes.

Finally, I would like to emphasise that the work presented herein is the result of a collaborative
effort. Several colleagues, collaborators and students, have been involved at every step of it, from
the formulation of an idea to its validation and exploitation to generate new knowledge. Since
my recruitment at LCQB, I have had the opportunity to co-supervise several Master students, PhD
students and post-doctoral fellows, mostly in collaboration with A. Carbone, head of the Analyt-
ical Genomics team. I have been involved in one of the main research themes developed in the
team, which concerns protein-protein interactions. We have also collaborated on the prediction
of the effect of mutations on protein structural stability and function. In recent years, I have been
co-leading a project team with H. Richard (now at RKI, DE) on the topic of alternative splicing. The
aim of the project is to systematically assess the structural impact of alternative splicing in evolu-
tion. This dissertation is organised in three chapters reporting some outcomes of these projects.
These collaborations have been very enriching, especially because we come from different back-
grounds and look at the same biological objects from different points of view. I would also like to
acknowledge a big part of my activity, which is devoted to teaching. Elaborating the pedagogical
material and interacting with the students strongly influence the research I am doing, and in more
than one way.
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Chapter 1

The fate and effects of protein mutations

1.1 Motivation

Understanding which and how genetic variations affect proteins and their biological functions is
a central question for bioengineering, medicine, and fundamental biology. Disease-associated
mutations can impair protein function in various ways, by destabilising the protein structure, by
shifting the equilibrium of conformation populations, or by modulating the binding affinity of the
protein for its cellular partner(s), to name a few. Ideally, one would like to be able to rapidly as-
sess the outcomes of thousands of mutations and to provide mechanistic explanation for these
outcomes. This would allow to reach some level of control over proteins, needed to improve the
treatment of diseases, the design of new proteins and the synthesis of molecular libraries.

Deep mutational scans 1 or multiplexed assays for variant effects 2 have enabled the full de-
scription of the mutational landscapes of a few tens of proteins (see 3 for a list of proteins and
associated experiments). They have revealed that a protein contains a relatively small number
of positions highly sensitive to mutations, where almost any substitution induces highly deleteri-
ous effects 4,5. Although these methods represent major biotechnological advances, they remain
resource intensive and are limited in their scalability. Moreover, the measured phenotype and
the way it is measured vary substantially from one experiment to another, making it difficult to
compare different measurements and/or proteins 6. These limitations call for the development of
efficient and accurate computational methods for high-throughput mutational scans.

Many computational methods predicting mutational effects exploit information coming from
protein sequences observed in nature 3,7–20. They look at the amino acid frequencies of occurrence
in multiple alignments of related sequences. Multiple sequence alignments (MSAs) provide in-
valuable information about protein evolutionary history, diversity, conservation and function21,22.
Typically, one expects that rarely occurring mutations are likely deleterious. A straightforward way
to estimate frequencies of occurrence is to treat each position in the alignment independently
from the others. However, the amino acid residues comprising a protein are inter-dependent, and
the effect of a mutation depends on the amino acids present at other positions, a phenomenon
referred to as ’epistasis’ 23,24. By leveraging on the increasing wealth of genomic data, recent de-
velopments have enabled modelling inter-dependencies between positions and have significantly
improved the accuracy of mutational effects predictions 3,7–10,13,14. Specifically, some statistical
methods estimate couplings between pairs of positions 7–14. They are very accurate in identify-
ing a few strong direct couplings responsible for the whole co-variability observed in homologous
sequences and corresponding to physical contacts in protein structures 7,25,26. In the context of
mutational outcome prediction, the ensemble of all pairwise couplings is used as a proxy to cap-
ture the influence of the whole sequence context on a particular position. One of the limitations
of these methods is that the explicit calculation of higher-order couplings is computationally in-
tractable. To circumvent this issue, a deep latent-variable model was proposed where the global
sequence context is implicitly accounted for by coupling the observed positions to latent (’hid-
den’) variables 3. The model is fully trained on each studied protein family to generate sequences
likely to belong to the family. Deviations between outputs and inputs are then used as estimates
of the mutational effects. The mutational landscapes of certain protein families are very well cap-
tured by this deep learning approach, but the results strongly depend on the variability of the
input data. More generally, the statistical inference of a large body of parameters from a finite,
and sometimes very low, sequence sampling is a challenging problem 27,28. It is particularly rele-
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CHAPTER 1. THE FATE AND EFFECTS OF PROTEIN MUTATIONS

vant in the case of viral proteins whose sequences are often highly conserved. Several technical
advances employing regularisation terms have improved the accuracy of inter-residue coupling
estimation when dealing with viral proteins7,9,11–14. Moreover, the usage of very small position-
specific amino acid alphabets has reduced the computational cost of the inference. These efforts
have allowed achieving very good agreement between the fitness landscapes inferred from pa-
tient sequences and in vitro experiments for several proteins from HIV and HCV. Nevertheless,
the available methods still remain computationally costly and have only been evaluated against
low-throughput experimental data.

While sequence-based methods can yield very accurate predictions of mutational phenotypic
outcomes, structural approaches provide a unique way to shed light on the molecular mecha-
nisms underlying them. There are few reported cases where crystallised protein mutants provide
clear insights on the effects of the mutations (e.g. p53 cancer mutations affecting the arginines in
contact with DNA 29,30). However, in the vast majority of cases, the global shape of the protein re-
mains unchanged upon mutations, even when the latter result in deleterious phenotypes31. This
is very well exemplified by PSD95pd z3: the crystallographic structures of several deleterious mu-
tants were solved and are very similar to that of the wild type 32. Moreover, mutation signals can
propagate across protein structures and affect very distant protein sites, a phenomenon referred
to as "allosteric coupling"33. In this context, characterising the dynamical behaviour of the pro-
tein may reveal internal dynamics changes associated to the mutations, and help assess and inter-
pret their outcomes. Such characterisation can be realised by all-atom molecular dynamics (MD),
and there are several examples in the literature where MD simulations, even of only a few tens
of nanoseconds, revealed conformational rearrangements upon mutations and brought valuable
insights into the molecular mechanisms underlying mutational outcomes34–45. The time scales
reachable by MD have largely increased and it is now possible to simulate a mutated system for
several microseconds 46. Nevertheless, simulating tens of mutants on such long time periods re-
mains very costly and the complete description of a protein’s conformational landscape is still far
beyond reach. Another drawback is that identifying the protein properties (inter-residue distance,
inter-domain angle, local unfolding, solvent exposure...) that should be recorded along the sim-
ulation to guide an automatic detection of mutational effects, usually demands an expert knowl-
edge of the system under study. Even with such knowledge, it may be difficult to determine what
matters or not.

For decades, models and methods have been proposed toward rationalising the propagation
of a signal, such as a point mutation, across a protein structure 33,47–58. In recent years, several
methods have been developed to identify "communication routes" 59–69, "dynamic domains" 70–76

and/or critical allosteric residues 70,77 in proteins in an automated way (see also methods reviewed
in 78). Most of them construct a graph representing the protein where the nodes are the residues
and the edges are determined based on the strength of non-covalent interactions (hydrogen-bonds,
hydrophobic contacts, salt bridges...) and/or on correlations between residues displacements.
The latter are inferred either from all-atom MD simulations, or from more coarse-grained and
computationally efficient approaches like the Elastic Network Model (ENM), where residues close
in 3D space are linked by springs. The constructed graph is then analysed to extract paths and
communities of residues. Residues identified in the paths and/or playing particular roles (e.g.
hubs) in the communities have been shown to be important for the protein structural stability and
allosteric regulation. However, the agreement of computationally identified paths/communities
with experimental data has been mostly assessed qualitatively, and little agreement has been found
between different computational approaches or simulations 78.

In the following, I present contributions toward sequence-based large-scale computational
mutational scans of proteins 79, the automated extraction of routes of information transmission
across protein structures42,80–83, the systematic prediction of mutation severity based on struc-
tural dynamics83 and the characterisation of the molecular mechanisms underlying mutational
outcomes 80,82. They were published in six research articles, among which three as first author and
three as co-corresponding author.

8



CHAPTER 1. THE FATE AND EFFECTS OF PROTEIN MUTATIONS

1.2 Contributions

1.2.1 Evolution-based large scale prediction of mutational outcomes

To assess mutational effects at large scale, we have developed a fast, scalable, and simple method
that explicitly models the evolutionary history of natural sequences (Fig. 1.1). Our two main hy-
potheses are that mutations occurring rarely in nature are likely deleterious and that the different
positions in a protein sequence influence each other. These hypotheses are not new, but to imple-
ment them we adopt an orthogonal approach compared to the state of the art. Instead of treating
the input sequence data as a 2D matrix (MSA), we exploit the underlying tree structure of the data
coming from their evolutionary history.

A global epistatic model accounting for protein evolutionary history

Specifically, to evaluate the impact of a given mutation at a given position in a query sequence,
we look at an ensemble of sequences homologous to that query (Fig. 1.1a) and at the topology of
the tree reflecting their evolutionary relationships (Fig. 1.1b). Our main contribution is to extract
conservation patterns in line with the topology of the tree and use them to determine the extent
to which a mutation will be deleterious for the function of the query protein. For this, the first step
of our approach consists in estimating the biological importance of each residue in the query by
computing its evolutionary conservation (Fig. 1.1c). Our measure of conservation is computed
by the Joint Evolutionary Trees (JET) method 84 and is inspired from the notion of evolutionary
trace 85,86. It is markedly different from measures that quantify frequencies of occurrence at single
positions (columns) of an alignment. Indeed, for each position in the query, we look at the level
in the tree where the amino acid at that position appeared and remained conserved thereafter
(Fig. 1.1b, see gray rectangles). Since the tree is inferred from global similarities between entire
sequences, the conservation degree of a given position embeds the covariations between this po-
sition and all other positions in the sequence. Hence, two positions can have the same distribution
of letters but different conservation levels. For example, this will happen if one position displays
all occurrences of the most represented letter in a subtree of ancient origin while the other dis-
plays them in several subtrees. Here, we deal with a potentially large number of sequences, and
the reconstruction of a unique tree relating all of them may lead to an unreliable topology. To cope
with this issue, we construct many small trees from subsets of sequences and average conserva-
tion levels over all trees.

We use the computed conservation degrees to weight positions. Specifically, to compare dif-
ferent substitutions occurring at a given position, we combine two quantities. The first one is the
relative frequency of occurrence of the mutation, relying on physicochemical similarities rather
than amino acid identities. It depends only on the position of interest (independent contribution).
The second one is the minimum evolutionary distance one has to go in the evolutionary tree to
observe a natural sequence displaying the mutation (epistatic contribution). This evolutionary
distance between the query q and some sequence s is expressed as

Devol (q, s) =
n∑

k=1
TJET(k)2 ∗1Xq

k 6=Xs
k
, (1.1)

where n is the length of q , Xq
k is the amino acid of q at position k, and 1Xq

k 6=Xs
k

is the indicator

function. It explicitly accounts for the conservation degrees of all variable positions between the
query q and the closest sequence s bearing the mutation. Then, to compare mutations occurring
at different positions, we rely on the hypothesis that more conserved positions will be more sen-
sitive to any mutation than less conserved positions. To implement this idea, we re-weight the
predicted mutational effects by the evolutionary conservation degrees. The normalised predicted
effect (NPE) of a mutation X-to-Y at position i is expressed as
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CHAPTER 1. THE FATE AND EFFECTS OF PROTEIN MUTATIONS

NPE(Yi ) = TJET(i )∗PE(Yi ). (1.2)

where PE(Yi ) is the predicted effect. As a result, highly deleterious mutations will be mainly found
at highly conserved positions (Fig. 1.1c, second matrix, dark squares are mainly localised at con-
served positions, highlighted by arrows, while the other columns have been "whitened"). We
have only two hyper-parameters, namely the relative weight of the independent and epistatic
contributions and a reduced amino acid alphabet used for computing the frequencies of occur-
rence. The method is implemented as a fully automated tool, Global Epistatic Model for predict-
ing Mutational Effects (GEMME), available as a downloadable package and as a web server at:
www.lcqb.upmc.fr/GEMME/. GEMME is applicable to single site mutations and also to combina-
tions of mutations.

Figure 1.1: Principle of GEMME. (a) Ensemble of sequences related to a query sequence, on top and in red. The query displays
a serine (S) at position i and a glycine (G) at position j . Some sequences are coloured according to the amino acids they display
at the two positions: T-G in blue, T-V in purple, X-V in orange (X stands for any amino acid, except for T and A) and A-V in green.
(b) Tree representing the evolutionary relationships between the related sequences with position-specific information. The colour
code is the same as in (a). The red dots and dotted grey lines indicate the levels where S and G appeared at positions i and j and
remained conserved thereafter. The associated subtrees are highlighted by grey rectangles. The stars indicate the closest sequences to
the query displaying the S-to-T mutation at i (left, in blue), the S-to-A mutation at i (left, in green) and the G-to-V mutation at j (right,
in orange). Mutation S-to-A et i will be predicted as more deleterious than S-to-T because it more distant from the query. But it will
be predicted as less deleterious than mutation G-to-V at j because position j is much more conserved than position i . (c) Workflow
of the method applied on the third PDZ domain of PSD95 (DLG4). The colour strip on top gives conservation levels for the query q .
Positions highlighted by arrows are highly conserved. A homologous sequence s is displayed below. The changes are highlighted in
red and the colour strip indicates the associated computed values (squared conservation levels). The two matrices give the predicted
effects and normalised predicted effects, respectively, for all possible substitutions at all positions in q .

Application at large scale and comparison with the state of the art

Assessed against experimental measures collected from 41 high-throughput mutational scans rep-
resenting 657,840 mutations, GEMME achieved an average Spearman rank correlation ρ̄ = 0.53±
0.13 (Fig. 1.2). Despite its apparent simplicity, it achieves similar or better performance com-
pared to the state of the art methods DeepSequence 3 and EVmutation 8. Importantly it largely
outperforms them when the diversity of the input sequence alignment is low, as is the case for
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CHAPTER 1. THE FATE AND EFFECTS OF PROTEIN MUTATIONS

viral proteins. GEMME was also assessed against 128 experimental measures coming from 9 low-
throughput mutational studies of two HIV proteins, with sequences coming from patients. With a
weighted average correlation of 0.70, the results are similar to those obtained by two coevolution-
based computational frameworks 7,9. Hence, while GEMME was designed to treat any protein fam-
ily, its performance on viral proteins are similar to recent computational frameworks well suited
to treat these proteins. Besides predictive performance, a major advantage of GEMME is its com-
putational efficiency. Our algorithm is faster than state-of-the-art methods by several orders of
magnitude Fig. 1.2b. It takes less than 10 minutes to treat any protein from the high-throughput
dataset. A thorough analysis of revealed that the epistatic contribution is useful to discriminate be-
tween equally frequent mutations Fig. 1.2c and that the results are robust to parameter changes.
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Figure 1.2: GEMME’s predictive and computing performances. (a) Spearman rank correlation coefficients ρbetween predicted and
experimental measures for 35 high-throughput experiments corresponding to 33 proteins and 1 protein complex. Scans comprising
multiple mutations are highlighted by a gold rectangle. (b) Computing times of EVmutation and GEMME (in seconds). (c) Examples of
distributions for the mutations’ site-independent relative frequencies of occurrence. For each mutation, the reported value is the log-
odd ratio between the number of sequences displaying the mutation over the number of sequences displaying the wild-type amino
acid. The epistatic contribution is helpful in the case of DNA methylase HaeIII (in red) but not in the case of Hepatitis C NS5A (in blue).

Contrary to statistical inference-based methods, GEMME does not estimate a joint probability
distribution. Instead, it directly exploits the information encoded in natural sequences in a query-
centred way. Specifically, each tree constructed to compute conservation levels contains the query,
and the evolutionary distances are computed with respect to the query. Hence, our predictions
estimate deviations from the query, while predictions from statistical inference-based methods
correspond to ratios of probabilities of belonging to the protein "family" represented by the input
alignment. On the one hand, this constitutes a limitation of our method. For instance, in case
of a mutant with a higher fitness than the wild type and evolutionary far away from it, GEMME
will simply predict a strong mutational effect. On the other hand, this can be an advantage in
the presence of "subfamilies" performing different functions and displaying different functionally
relevant sequence patterns (as is the case of the cryptochrome/photolyase family for instance).

1.2.2 Conformational dynamics-based prediction of mutational effects

We have developed several measures and algorithms to extract information relevant to the prop-
agation of mutational signals across protein structures from conformational ensembles. Their
design was inspired by experimental studies suggesting that protein residues "communicate" in
different ways. On the one hand, signals may be propagated via stable non-covalent interactions
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across the protein structure. A classical example is given by hemoglobin, where the binding of
oxygen to one subunit induces conformational changes relayed to the other subunits, increasing
their binding affinity for oxygen33. On the other hand, signals may be transmitted without requir-
ing physical interactions as a support, but simply via local changes in atomic fluctuations87,88. In
our approach, we aimed at accounting for this dual nature of allosteric coupling by computing
different types of correlations and links between residues. We refer to it as "infostery", from “info”
– information – and “steric” – arrangement of residues in space.

Average properties

Independent
Cliques

Communication
pathways

Protein structure 
network

Dynamical unitsa) b)

Figure 1.3: Principle of the infostery analysis. (a) Starting from a set of conformations, we compute residue-based properties: local
dynamical correlations (CorrLFA ), minimum distances (Dist), communication propensities (CP), non-covalent interaction strengths
(INT) and secondary structures (SS). By combining them, we group residues in independent cliques and in communication pathways.
A coloured graph is then constructed and connected components, called dynamical units, are extracted. Communication pathways
are also used to detect pairs of communicating segments, which are portions of secondary structure elements. (b) Top: 3 residues
belonging to different types of dynamical units. Middle: 4 protein residues in direct communication with the protein’s ligand (green
thick segment). Bottom: 2 pairs of residues bridging two sub-regions of a dynamical unit. The more pronounced colour of the two
subregions indicate that they contain many pathways (dense communication).

A method to describe protein dynamical architectures

To describe inter-residue communication, we exploit average quantities computed from confor-
mational ensembles and identify independent cliques and communication pathways (Fig. 1.3a, on
the left). We define an independent clique as a cluster of residues close to each other in 3D space
displaying high concerted atomic fluctuations. They typically correspond to solvent-exposed loops
which are highly flexible and also move independently from the rest of the protein. We define a
communication pathway as a chain of residues, where all the residues "communicate" efficiently
with each other and any pair of residues adjacent in the pathway are linked by stable non-covalent
interactions. Communication efficiency is computed from the conformational ensemble as the
inter-residue distance variance. Hence, residues that move together (small variance) will be con-
sidered to communicate efficiently. Two residues adjacent in a pathway are said to be in direct
communication, as opposed to indirect communication when the residues are in the same path-
way but not adjacent in it. The notion of direct communication is more refined than that of phys-
ical contact and should not be confounded with it: accounting for inter-residue displacements
correlations enables discriminating among physical contacts. By linking residues belonging to the
same clique or to the same pathway, one can define a protein structure network (Fig. 1.3a, in the
middle) and extract connected components from it. These components can be thought of as the
dynamical units of the protein. Intuitively, residues in a pathway-based unit move together in a
rather rigid way, while residues in a clique-based unit are more flexible (Fig. 1.3a, on the right).

This description of the protein structure can be used to assess the effects of mutations, by com-
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paring either individual communication pathways or statistics on the pathways between wild-type
and mutated proteins. It can also be useful to identify residues playing a key role in the stability
and intra-communication of the protein structure and thus likely sensitive to mutations. Namely,
we devised three strategies to identify residues that serve as communication bridges (Fig. 1.3b).
The first class is comprised of residues belonging to both a pathway-based unit and a clique-based
unit (Fig. 1.3b, on top). The second class contains residues establishing direct communication
with the ligand, in case of a protein-ligand complex (Fig. 1.3b, in the middle). The third class
comprises pairs of residues that are in direct communication while their neighboring residues are
not (Fig. 1.3b, at the bottom). The intuition is that because their communication signal is iso-
lated, disrupting these pairs should have an impact on the overall communication of the unit. The
approach is implemented as a fully automated tool, COMmunication MApping v2.0 (COMMA2,
http://www.lcqb.upmc.fr/COMMA2/).

Figure 1.4: Infostery analysis of KIT cytoplasmic region. Left: Structure of KIT cytoplasmic region, in the auto-inhibited inactive
state (PDB code: 1T45). Some sub-regions documented in the literature are highlighted with colours. The A-loop is in red and the JMR
is in orange tones. The mutation site D816 is highlighted by a black sphere. Right: Average MD conformations: (A,D) wild type KIT,
(B,E) D816V mutant, (C,F) D816V/D792E double mutant. The interaction network between the A-loop residues Y823 and the catalytic
loop residues H790, D792 and N797 is depicted on top. The communication pathways starting from the A-loop toward the JMR are
displayed at the bottom. Each pathway is displayed as a chain of small black spheres connected together by black lines. The path
linking the A-loop and the JMR through the catalytic loop is highlighted in magenta. Residues D/V816 and Y823 in the A-loop, D/E792
in the catalytic loop and V559 in the JMR are highlighted in licorice and labeled.

Long-range mutational effects and rescue mutant design

As a proof of concept, we applied our method to the receptor tyrosine kinase KIT and its onco-
genic mutant, KITD816V . The D816V mutation takes place in the activation loop (A-loop) of the
protein kinase region and makes the protein constitutively active. We performed 50-ns MD sim-
ulations of the auto-inhibited inactive state of the protein and observed that the mutation had
a short-range destabilising effect on a small helix, and also a long-range stabilising effect on the
juxta-membrane region (JMR). The JMR is located 15 Å away from the mutation site (Fig. 1.4, on
the left) and plays a crucial role in the auto-inhibition of the protein. By using our formalism, we
could rationalise this long-range effect in terms of communication across the protein structure.
In the wild type, we identified a communication pathway linking the A-loop and the JMR through
the catalytic loop (Fig. 1.4D). This pathway likely serves as a physical support for information
transmission between the two sites. In the mutant, the local hydrogen-bond (H-bond) network
around the mutation is disturbed and the communication pathway is disrupted (Fig. 1.4E). This
observation provides a mechanistic explanation for the structural reorganisation of the JMR in the
mutant. This interpretation is consistent with the results obtained by principal component anal-
ysis revealing a decoupling of A-loop and JMR motions in the mutant. By comparing the H-bond
networks in the wild type and the mutant, we spotted a key H-bond in the communication path-
way of the wild type, namely 823· · ·792 that was lost in the mutant (Fig. 1.4A-B). We hypothesised
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that a way to re-establish the communication between the A-loop, the catalytic loop and the JMR
in the D816V mutant would be to restore this H-bond. To this aim, we substituted the aspartate (D)
in position 792 by a glutamate (E), bearing the same charge and displaying a longer side chain. We
anticipated that such replacement would facilitate the formation and stabilisation of an H-bond
with Y823 that adopted in the mutant an orientation unfavourable to such interaction. 50-ns MD
simulations of this double mutant confirmed our hypothesis. The H-bond was indeed restored
(Fig. 1.4C), and so was the communication pathway (Fig. 1.4F). Moreover, the position and the
conformation of the JMR were similar to those observed in the simulation of the wild type. Binding
free energy calculations further showed that the similar structural properties and dynamical be-
haviours displayed by the JMR in the wild type and D816V/D792E-mutated KIT forms correspond
to nearly equivalent thermodynamic landscapes.

1

2

1

2

a) b) c)

Figure 1.5: Infostery analysis of the PSD95pd z3-CRIPT complex. (a) Pathway properties mapped onto averaged MD conforma-
tions. Top: Communication pathways are displayed as segments linking residues’ C-α atoms. The thickness is proportional to the
number of pathways. Bottom: Pathway concentration is displayed as spheres whose sizes are proportional to the number of pathways
crossing the residue. (b) Inverse cumulative distributions of the number of pathways (on top) and highly connected residues (at the
bottom) for 45 neutral (in grey), 71 deleterious (in light blue) and 59 highly deleterious (in dark blue) mutations. Each y value gives
the percentage of mutations with a number higher than the x value. The orange and red lines indicate the largest differences between
the grey and dark blue curves and between the grey and light blue curves, respectively. (c) Dotplot representing direct and indirect
communication between PSD95pd z3 residues. The upper and lower triangles correspond to different thresholds. Each dot indicates a
communication pathway linking 2 residues. Grey: the 2 residues are close in the sequence. Black: direct communication. Red/Pink:
indirect communication. Isolated direct communications are encircled in blue. The secondary structures are also indicated. At the
bottom, two communication motifs are mapped onto the 3D structure of PDZ. The pathways linking the residues in the motifs are
displayed as black solid lines. The C-α atoms of the residues belonging to the motif are represented as grey spheres (black smaller
spheres outside the motif). Dashed red lines indicate indirect communications.

Medium-scale application on hundreds of mutants

As a more quantitative application, we used our formalism to study the wild-type complex be-
tween PSD95pd z3 and its cognate substrate (CRIPT peptide) and 175 single-point mutants. We
addressed two questions: (i) Is a particular substitution at a given position deleterious? (ii) What
are the positions highly sensitive to mutations? We used data obtained from a deep mutational
scanning experiment4 to assess the predictive power of our approach.

To answer to the first question, the wild-type and mutated complexes were simulated for 100
ns (5 replicates of 20 ns), leading to a total of 17.6 µs. Over this time scale, we did not observe
any significant difference in terms of shapes and motions between the different systems. Never-
theless, our analysis revealed a clear and statistically significant correlation between mutational
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phenotypic outcome and pathway concentration (Fig. 1.5a-b). Specifically the more deleterious
the mutants, the higher the number of communication pathways and of highly connected residues
(i.e. crossed by many pathways). We further showed that the number of highly connected residues
can be used as a predictor of the severity of the mutations. We obtained an MCC of 47% on a bal-
anced set of 15 highly deleterious mutations and 15 neutral ones.

To answer to the second question, we identified communication bridges (Fig. 1.3b) from the
simulation of the wild-type complex only, and compared them with 20 experimentally identified
’hot spots’. These ’hot spots’ are positions that display a very high sensitivity to virtually any sub-
stitution. In total, we detected 18 communication bridges, among which 16 were ’hot spots’. This
corresponds to a sensitivity of 80% and a precision of 89%. Importantly, we could describe the role
of these positions in the inter-residue communication and dynamical architecture of the com-
plex, thanks to our rationale for picking them up. To assess the robustness and transferability
of our results, we extended the MD simulations by several tens of nanoseconds, and we applied
the same analysis on two unrelated systems, namely the the β-lactamase TEM-1 and the complex
between growth hormone and its receptor. We found that our results were not affected by the du-
ration of the MD simulations, and that our approach was pertinent and useful on the two other
systems. Moreover, we carefully compared our results with those obtained from other structure-
based methods (ENcoM 89, STRESS 70, PRS 62, RIP 60 and CARDS 77) and sequence-based methods
(JET 84, SCA 90, DCA 26 and MST 91). We found that the predictive power of our approach is similar
or higher than those methods. Moreover, there is a very good overlap between the set of infostery-
detected residues, the set of conserved/coevolved and buried residues, and the set of residues
highly sensitive to mutations. This clearly indicates a link between evolutionary constraints and
structural constraints. One key ingredient of our infostery analysis is the usage of relatively short
(tens of ns) MD simulations. This ensures the applicability of the method on a large scale.

1.3 Conclusions and perspectives

We have proposed and compared different approaches to predict the protein residues sensitive to
mutations and the effect of single or multiple mutations on protein structure, dynamics and/or
function. We have shown, along with other studies, that the massive amounts of sequence data
available nowadays can be leveraged to predict mutational outcome on a large scale with high ac-
curacy. Our main contribution was to propose a method that is much faster than the state of the art
and more robust to variability in the input data. It also allows interpreting the predictions in terms
of the evolutionary history of the sequences observed today in nature. We have also proposed a
new formalism to automatically extract pertinent information from conformational ensembles,
typically generated by relatively short MD simulations. By using this formalism, we could ratio-
nalise long-range mutational effects and guide mutation design. We quantitatively assessed its
predictive power on several hundreds of single-point mutants of a protein complex. We demon-
strated that the positions highly sensitive to mutations can be identified using information from
the wild type only and we described their role in maintaining the structural stability of the protein.

Perspectives for GEMME consist in applying it to entire proteomes, investigating how it be-
haves on sequences coming from a population, versus sequences from different species. We have
started a collaboration with M. Rera (IBPS, SU) on this matter, with a Master student (spring 2020).
We will look at several hundreds of lineages in Drosophila and will focus on a specific phenotype,
namely longevity. Another direction would be to extend the method to deal with non-canonical
amino acids (NCAAs). Predicting which and where NCAAs can be incorporated shall be very useful
for chemists. I have started to discuss about this with I. Coin (University of Leipzig). Perspectives
for COMMA consist in reducing its computational cost by replacing the simulations with normal
mode analysis or else. As a case study, we are considering successive mutations occurring in bac-
terial resistance to antibiotics. Another potential application of COMMA is the prediction of dis-
ordered regions, or regions with ambiguous secondary structure.
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Chapter 2

The multiplicity of protein interactions

2.1 Motivation

Proteins regulate virtually all biological processes through a complex network of dynamical inter-
actions 92. A detailed description of these interactions is expected to provide direct information on
the way to interfere with them and more generally on the (mal-)functioning of the cell 93. However,
the experimental assessment of all possible interactions of a protein is very challenging94,95. This
has motivated the development of integrative approaches combining experimental and compu-
tational techniques to probe the ’molecular sociology of the cell’ 96. They have proven successful
in determining the structures of several macromolecular assemblies 96–100 and have improved our
understanding of protein interactions at the genome scale101–107. These efforts have revealed the
complexity and multiplicity of protein interactions (Fig. 2.1). A protein may interact with several
partners at the same time – each partner binding to a different site, or may present a shared bind-
ing region that will be used by different partners at different moments of its lifetime. It is estimated
that as much as 75% of the surface could potentially be used for interactions 108. Partners include
other proteins and also nucleic acids. Determining whether a site is competent to bind only one
type of partners or several types of partners is very challenging. For example, some proteins were
shown to be able to bind both proteins and DNA via the same region109,110, and there are more
and more evidence that proteins accommodate indifferently DNA and RNA111. Another layer of
complexity is added by conformational changes which may be substantial, especially upon bind-
ing to nucleic acids. In this context, there is a need for the development of tools able to decrypt
protein surfaces at the residue level and to precisely estimate binding affinities on large ensem-
ble of potential partners. Ideally, one would like to infer the number of interactions for a protein,
identify precisely the borders of each interaction site possibly overlapping other sites, discriminate
between strong and weak binders and identify the locations on a protein surface where artificial
molecules (e.g. drugs) could best interfere with protein partners.

A long standing problem relevant to protein interactions has been to determine the 3D ar-
rangement formed between two protein partners. This implies determining the position and
orientation of the two proteins relative to each other and predicting binding-associated confor-
mational changes. To address this problem, molecular docking algorithms have been developed,
stimulated by the CAPRI competition112. Candidate conformations are evaluated based on prop-
erties reflecting the strength of the association, e.g. shape complementarity, electrostatics, desol-
vation, conformational entropy. Experimental data and evolutionary information (conservation or
coevolution signals) can be included to improve the selection of candidate conformations 113–115.
Although docking methods have shown great improvements over the years, they are still far from
perfect in correctly ranking near-native complex conformations and in modeling the conforma-
tional rearrangements associated to binding116,117. A related problem is that of identifying the
surface regions involved in interactions. Evolutionary, physico-chemical and geometrical prop-
erties have been shown to be relevant to this issue 84,86,118–125, and a number of predictive tools
have been developed based on them126–132 (see 133,134 for surveys). Although some of these tools
achieve very high accuracy against subsets of known experimental binding sites, their predictions
are generally much smaller than the expected interacting surface size 108. Moreover, many tools
do not propose sites but rather evaluate the probability of a residue to be involved in interac-
tions. Molecular docking calculations can also be employed for detecting binding sites, as it has
been observed that the latter display a high propensity to be targeted by partners and also by
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non-interactors135. Last but not the least, a highly challenging problem is the identification of a
protein’s ’true’ partners. In the context of a very crowded cellular environment, how can a protein
distinguish its dedicated partners from non-interactors? While in vitro/in vivo experiments can
suggest and test putative partners, computations provide a unique way to characterise interac-
tions at very large scale and to explore the space of negatives, i.e. of what does not occur in the cell.
Due to the limitations of scoring functions, the identification of interaction partners has generally
been regarded as beyond the scope of molecular docking136–138. It is only recently that molecular
docking-based strategies have been devised to this problem. The first proof-of-principle for such
an approach applied to the reconstruction of biological networks was reported in139. In 2007, the
first large-scale cross-docking study 140 for the prediction of interaction partners was launched on
168 proteins141 whose interactions were known. This study highlighted the importance to develop
appropriate concepts and tools for improving the discriminative power of molecular docking.

Figure 2.1: Schematic representation of the complexity of protein interactions. Proteins are represented as opaque surfaces,
where the colours highlight the binding sites. Each circle corresponds to a given protein (in the center) and its potential partners. The
concentric layers indicate different degrees of affinity (from strong to low when going away from the center). The sectors are coloured
according to the corresponding binding sites. On the left, two cercles of affinity associate to 2 proteins are shown, for clarity, but a
cercle could be drawn for each displayed protein. On the right, a sector is zoomed in and detailed.

In the following, I present contributions toward predicting protein interfaces with other pro-
teins 142–144 and with nucleic acids 145, deciphering the complexity associated to protein surface
usage by protein partners146, efficiently detecting interfaces generated by high-throughput dock-
ing147 and discriminating cognate partners from non-interactors 107,148,149. They were published
in eight research articles, among which three as first author and three as co-corresponding author.

2.2 Contributions

2.2.1 What is an interface?

Given a protein complex structure, interacting residues can be identified based on interatomic
distances, changes in residue solvent accessible surface area (SASA) upon binding 150 or a Voronoi
model of the interface 151. Different views on protein interfaces are underlaid by these different cri-
teria and they may complement each other. The ensemble of protein residues interacting with the
partner form an interacting site (IS). This classical notion of IS is very restrictive and does not ac-
count for the interface variability that may come from structure ensembles. Indeed, the definition
of the interface between two given proteins may vary from one structure to another, depending on
the crystallization conditions, on the quality of the data/model and/or on the inherent flexibility
of the assembly. What is more, the notion of IS masks the complexity of protein surface usage by
multiple partners. This motivated us to define the new concept of interacting region (IR), obtained
by merging overlapping ISs (typically, ≥ 60% overlap). We used this notion to describe the surface

18



CHAPTER 2. THE MULTIPLICITY OF PROTEIN INTERACTIONS

usage of 262 protein chains (P-262). Based on the observation that functional interfaces are con-
served across closely related homologs 152, we collected all functional ISs involving these query
proteins or their close homologs (≥ 90% sequence identity) from the Protein Data Bank (PDB) 153.
This amounted to 23 642 ISs, which were merged into 370 IRs (1.4 per protein chain). The notion
of IR captures the multiplicity of protein surface usage by several partners (Fig. 2.2a) and also the
interface variability coming from molecular flexibility (Fig. 2.2b). On average, about 50% of the
protein surface is covered by functional interactions, in line with a previous study 108. Moreover,
a significant number of proteins have their surface completely or almost completely covered. If
one were to consider only one PDB structure for each protein, the estimation would drop down to
one third of the surface. This finding challenges the role of specificity in the evaluation of protein
interface prediction methods and rather put the emphasis on precision.

Figure 2.2: Examples and schema illustrating the notions of interacting site and interacting region. (a) The query proteins are
displayed as grey cartoons, their interacting sites as opaque coloured surfaces and their partners as coloured cartoons and transparent
surfaces. Left: trypsin (1ezx_C, in grey) interacts with itself (5gxp_B, in green), serpin (1ezx_A, in blue) and eglin C (4b2b_B, in red). The
3 corresponding ISs lead to the definition of 2 IRs, as depicted on the schema at the bottom, where each IR is contoured by a thick black
line. Right: the natriuretic peptide receptor forms a homodimer (1yk1_A, in grey, and 1yk1_B, in blue) to bind its substrate (1yk1_E, in
orange). The 2 ISs detected at the surface of one receptor monomer (1yk1_A, in grey) are merged into an IR. (b) On top, the IS defined
from one PDB structure is coloured in white and the additional residues belonging to the IR are in black. The differences reflect the
interface variability between different crystallographic structures of the same complex. At the bottom, the patches predicted by JET2

are coloured in wheat (SCcons ) and purple (SCnotLi g ). The precision increases from 79 to 91% for 1avo_A and from 76 to 92% for
1jjo_A.

2.2.2 Protein-protein interface prediction

We predict interacting patches at the surface of the proteins from by relying on four biologically
and physically meaningful residue properties (Fig. 2.3a): evolutionary sequence conservation in-
ferred from the analysis of homologous sequences (TJET), physico-chemical properties expected
at the interface based on experimentally known complex structures (PC), local geometry com-
puted on the protein 3D structure (CV), and propensities to be found at docked interfaces inferred
from high-throughput docking calculations (NIP). The calculation of the later requires to be able
to efficiently treat millions of conformations generated by docking. To do so, we have developed
INTBuilder(http://www.lcqb.upmc.fr/INTBuilder/), a fast, easy-to-use software whose com-
plexity scales linearly with the number of atoms/residues. The four sequence- and structure-based
properties, TJET, PC, CV and NIP, are used to feed a clustering algorithm according to several scor-
ing strategies specifically aimed at detecting the support, the core and the rim of a protein interface
(Fig. 2.3b, on the left). These three layers are defined for known experimental interfaces by com-
paring their solvent accessibilities in the presence and absence of the partner. Support residues
are buried with and without the partner, core residues become buried upon binding to the partner
and rim residues are exposed in the presence and absence of the partner 154. A threshold of 25%
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relative solvent accessibility is used to determine whether a residue is buried or not. To approx-
imate these layers, our algorithm first identifies a small cluster of highly scored residues, called
the seed. Seeds closer than 5 Å are merged. Then, the detected seeds are progressively extended,
and the resulting residue clusters are merged if they are in contact (< 5 Å away). Importantly, the
way residues are picked up based on their scores differs between seed and extension, such that the
detected signal is very strong in the seed and progressively fades away as the extension is grown.
Finally, an outer layer is added to form what we call a predicted patch (Fig. 2.3b, on the right). By
running several iterations of the algorithm, a confidence score is assigned to each residue within
each patch.

Figure 2.3: Ingredients of JET2 and dynJET2 methods. (a) Sequence and structural residue-based properties. (b) Section of an ex-
perimental interface (on the left, PDB code: 1N8O) and of the corresponding prediction using SCcons (on the right). The experimental
and predicted interface residues are displayed in opaque surface: support, core and rim are in yellow, brown and green; cluster seed,
extension and outer layer are in red, orange and cyan. (c) Schematic icons picturing the four scoring schemes. TJET : conservation
level, PC: interface propensity, CV: circular variance, NIP: docking propensity.

The first three properties, TJET, PC and CV, are used to derive three different scoring strategies
(Fig. 2.3b) designed to identify different types of protein-protein interfaces (Fig. 2.3c): SCcons tar-
gets very conserved residues (identified by the TJET score) to form a seed which is then extended
using both TJET and PC scores, and complemented with an outer layer of protruding residues;
SCnotLi g differs from SCcons in that it not only accounts for conservation to detect the seed, but
also for local geometry (CV); SCg eom disregards evolutionary information and solely employs PC
and CV scores for detecting all three layers of the interface. While SCcons is intended to detect di-
verse protein binding sites, SCnotLi g specifically targets protein interfaces located closeby or over-
lapping small ligand binding pockets, and SCg eom is designed to deal with lowly conserved inter-
faces, e.g. antigen binding sites. These SCs are implemented in JET2 (http://www.lcqb.upmc.
fr/JET2). The fourth property, NIP, is used exclusively in a fourth strategy, SCdock (Fig. 2.3c), im-
plemented in dynJET2 (http://www.lcqb.upmc.fr/dynJET2). It reflects the propensity of each
protein residue to bind partners and non-partners in docking calculations. To evaluate docking
conformations, we used a coarse-grained empirical energy function comprising a Lennard-Jones
potential for van der Waals interactions and a Coulomb potential for electrostatics155. JET2 and
dynJET2 revisit the idea formalized in the Joint Evolutionary Trees (JET) method 84.

JET2 was initially assessed against 238 protein complexes representing a wide spectrum of
functional and structural classes 156,157. It allowed to detect lowly conserved binding sites that
were missed by JET, and to define protein-protein interfaces close to or overlapping ligand-binding
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pockets with improved sensitivity and precision. It performed similarly to machine learning algo-
rithms employing tens of parameters158–161. JET2 was further applied to more than 20 000 pro-
teins, corresponding to the non-redundant set (at 40% identity) of all chains for which a high-
quality 3D structure is available in the PDB. Predictions were evaluated on more than 15 000 ex-
perimentally characterised ISs. This is, to our knowledge, the largest evaluation of a protein bind-
ing site prediction method. The overall performance of JET2 on all interfaces are: Sen = 52.52, PPV
= 51.24, Spe = 80.05, Acc = 75.89. The generated knowledge base is available to the community
at: http://www.jet2viewer.upmc.fr/jet2_viewer. JET2 was also used in recent rounds of
CAPRI and in the CASP13-CAPRI experiment. dynJET2 was assessed against the set of ISs and IRs
defined for P-262. On average, the predictions cover 60% of the protein surface, a bit more than
the experimental estimation, and match IRs with an F1-score of 0.57 ± 0.19. A large amount of pre-
dicted patches better matched IRs, compared to ISs. This result is expected from a good protein
interface prediction algorithm, as the notion of IR seems more biologically pertinent than that of
IS in many cases, especially when the IR synthesises the variability inherent to structure ensem-
bles of the same complex (Fig 2.2b). The agreement with experimental IRs depends on the type
of interactions. In particular, the detection of the binding sites at the surface of antibodies and
G proteins is very sharp, while the interfaces of the receptors and the enzymes regulators are the
most difficult to detect. Evolutionary conservation, physicochemical properties and local geome-
try (SCcons , SCnotLi g , SCg eom) are generally able to better capture protein interface signals than the
coarse-grained empirical energy function used in the docking experiment (SCdock ). Nevertheless,
there are a number of cases where docking-based data provide valuable information to improve
predictions by unveiling interfaces that could not be detected otherwise.

Figure 2.4: Predictions of protein interfaces with different partners. The protein of interest is represented as a grey cartoon while
its partners are displayed as coloured cartoons (and transparent surfaces on the left). (a) Different partners binding to distinct regions
(PDB code: 1MAH). The predicted patches are coloured according the scoring scheme used: SCcons in orange and SCg eom in cyan.
(b) Multi-usage of the same protein surface region (PDB codes: 1FQJ, on the left, and 1GOT, on the right). Residues (true positives)
predicted by JET2 (SCnotLi g ) are displayed as a coloured opaque surface: cluster seed, extension and outer layer are in red, orange
and cyan. On the predicted patches are indicated, for each residue, the number of interactions it is involved in. (c) Heavy chain of the
anticoagulation factor X displayed with the patches predicted by SCcons (beige) and SCdock (red), the patches’ clustered seeds, the
three experimental IRs for this protein and the corresponding partners.
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2.2.3 Learning about interface origins and partners

Beyond their predictive power, JET2 and dynJET2 permit to dissect interaction surfaces and un-
ravel their complexity. Indeed, the predicted patches are directly interpretable in terms of evolu-
tionary origin and geometrical properties. This is illustrated by the example of acetylcholinesterase
for which SCcons predicted a patch matching the conserved substrate binding site and SCg eom pre-
dicted well the protein homodimeric interface (Fig 2.4a). The organisation of the predicted patches
in different layers can also inform us about the specificity determinants of molecular recognition.
For instance, the binding sites of transducin β-γ and of the regulatory protein RGS9 share 73% of
their residues and are detected at 58% and 62% by the same SCnotLi g patch (Fig 2.4b). Among the
true positives, 64% (9/14) of the seed residues are involved in both interactions whereas most if not
all residues from the extension and the outer layer are specific of the interaction with one partner.
Finally, crossing the information coming from different SCs can help infer the existence of several
IRs. An example is given by the heavy chain of the anticoagulation factor X, whose interface with
the light chain ((Fig 2.4c, in light grey) is well detected by SCdock (in red), while the SCcons pre-
diction (in beige) covers two experimental IRs (in grey and dark grey). In that case, looking at the
seeds generated by SCnotLi g , SCg eom , and SCdock (second panel) allows resolving the ambiguity.
On the P-262 dataset, we predicted 562 seeds (2.14 per protein), among which one quarter of the
seeds are completely inside an IR (100% precision) and almost than half of the seeds detect an IR
with very high (≥80%) precision. We also observed that the accumulation of seeds with different
properties in a protein region is an indicator that this region will likely interact with many partners.

2.2.4 (Multiple) Protein-DNA interface prediction

JET2 clustering algorithm was adapted and new scoring strategies were devised to predict DNA-
binding sites at the surface of proteins. For this, we compiled a new dataset of 187 protein-DNA
complex structures (HR-PDNA187), representative of all types of protein-DNA interactions, along
with a subset of associated unbound structures (APO82). HR-PDNA187 comprises the largest
body of non-redundant known high-resolution crystallographic protein-DNA complex structures.
It covers all major groups of DNA-protein interactions according to Luscombe et al. classifica-
tion162. It is freely available at: http://www.lcqb.upmc.fr/JET2DNA and could serve as a refer-
ence benchmark for the community. By analysing this dataset, we showed that the support-core-
rim model could be useful to describe signals encoded in protein-DNA interfaces. We identified
two different spatial organisations where the support and the core alternate their positions (Fig.
2.5a). This variety reflects the different ways a protein may bind to DNA. Nevertheless, in both or-
ganisations, the core plays the same physical role by stacking into the DNA grooves, while support
residues tend to accommodate the DNA backbones. Similarly to what we did for protein-protein
interfaces, we devised a scoring scheme relying mainly on conservation (D-SCcons), to deal with
the general case, and a scoring scheme focusing mainly on geometry (D-SCg eom), to deal with
cases where no evolutionary information is available or where the whole protein surface displays
a homogeneous conservation signal (Fig. 2.5b). In addition, we devised a scheme designed to
specifically detect very concave interfaces, where the protein binds to DNA by "enveloping" it (e.g.
polymerases). Interface propensities specific to DNA binding are considered in the three D-SC.
They are notably different from protein-protein interface propensities. Indeed, protein-DNA in-
terfaces are enriched in positively charged and polar residues (especially in the rim and the core),
while protein-protein interfaces are enriched in hydrophobic residues (especially in the support,
and the core).
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Figure 2.5: Protein-DNA interface prediction. (a) Sections of two experimental interfaces (on top, PDB codes: 1JE8 and 1D02) and
the corresponding JET2

DNA predictions using D-SCenv (at the bottom). The colour code is the same as in Fig. 2.3b. b) Schematic icons
picturing the three scoring schemes in JET2

DNA. CVlocal and CVg l obal are computed with a radius of 12 Å and 100 Å , respectively.
Different colours correspond to different formulas used to detect the layers. (c) Examples of multiple binding site predictions. For
each protein (each row), the experimental complex present in HR-PDNA187 and another experimental complex displaying a distinct
DNA-binding site are shown on the first and third columns, respectively. For each structure, the ’main’ DNA-binding site is coloured
according to TJET values and the site coming from the other structure is mapped and displayed in transparent grey. The predictions
computed on each experimental structure are displayed on the second and fourth columns, respectively, and coloured according to
the scoring scheme. On top: RNA polymerase from bacteriophage T7 (PDB: 1CEZ and 1MSW). At the bottom: R.DpnI modification-
dependent restriction endonuclease (4ESJ and 4KYW).
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JET2
DNA reached an average F1-score of 61% on HR-PDNA187 and of 58-59% on the subset

of 82 proteins for which unbound forms are available. The performance is similar on bound and
unbound forms, and for the vast majority of the proteins, the sensitivity on the unbound form
is almost as high as (>80%) of even greater than that computed on the bound form. Hence,
JET2

DNA is able to detect interacting residues even when they are ‘hidden’ by conformational
changes. Assessed on a completely independent dataset (taken from163) comprising 57 DNA- and
RNA-protein complexes, JET2

DNA achieved an average F1-score of 45. The sensitivity is roughly the
same as for HR-PDNA187 but the precision (PPV) is lower. This can be explained by the fact that
the experimental reference interfaces are defined using a much more stringent distance cutoff163

than what we used for HR-PDNA187. The predictive performances are equivalent for both DNA-
and RNA-binding sites, showing that these sites share similar properties. Compared to several
machine-learning methods 163–165, JET2

DNA achieves a significantly higher sensitivity (by 20-40%)
with similar accuracy. The main advantages of JET2

DNA compared to the other methods is that it
can inform on the type of interactions the predicted patches may be engaged in and it can un-
ravel alternative binding sites. For instance, it detects the highly conserved active site of the RNA
polymerase from bacteriophage T7 with D-SCcons (Fig. 2.5c, on top, in orange) and the protrud-
ing and lowly conserved recognition site of the same protein with D-SCg eom (in blue). Another
example is given by the modification-dependent restriction endonuclease, where a combination
of D-SCcons and D-SCg eom is identifies very well the two binding sites of the protein (Fig. 2.5c, at
the bottom). Both sites play the same role and are highly conserved. D-SCg eom enables rescuing
lowly conserved subregions that D-SCcons is not able to detect. Notice that the second site is well
detected even when displaying a "distorted" conformation in the absence of DNA (on the left).
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Figure 2.6: Protein partner discrimination and global social behaviour. (a-c) In y-axis are reported the percentages of cognate
partners identified within the top x% of non-interactors, where x varies between 1 and 100 (colour scale). Each protein was docked
against its native partner and 371 non-interactors (including itself). The proteins were ranked using: (a) shape complementarity
score distributions, (b) interaction indexes II, (c) normalised interaction indexes NII. (d-e) Effect of the normalisation on proteins
depending on their sociability. Given a protein X, the NII values enable to rank all the proteins from the dataset, from 1st to 352nd . We
report the distributions of the number of ranks lost (negative values) or gained (positive values) by any protein Y. (d) both X and Y and
either highly (in red, S ≥ 0.75) or poorly (in blue, S ≤ 0.19) sociable. (e) X has medium sociability while Y is highly (in red) or poorly (in
blue) sociable.
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2.2.5 Protein sociability

The knowledge of protein interfaces can be used to rank putative complex conformations gen-
erated by docking and to help the identification of the "true" partners versus non- or poorly-
interacting pairs. Specifically, we performed a high-throughput complete cross-docking (CC-D)
experiment, where 352 proteins 157 were docked against each other, using the docking program
HEX 166. To estimate the strength of the interaction between two proteins P1 and P2, we consid-
ered either the docking score, which is based on shape complementarity, or a measure reflecting
the match between docked and known interfaces, which we call II:

IIP1,P2 = max(FIRP1,P2 ,FIRP2,P1 ), (2.1)

where FIRP1,P2 and FIRP2,P1 (Fraction of Interface Residues) are the fractions of the docked inter-
faces, obtained when docking P1 against P2 and reciprocally, composed of residues belonging to
the experimental interfaces for the two proteins (see Materials and Methods). The maximum is
determined over the 2 x 2 000 best-scored poses from the 2 docking calculations involving P1 and
P2. Experimental interfaces can be viewed as perfect predictions and allow estimating the max-
imum discriminative power one can expect from the interaction index II. Using this index, we
could identify three times more cognate partners in the top 5% than when using the shape com-
plementarity docking score (Fig. 2.6, compared a and b).

We further introduced a sociability index, or S-index, and used it to normalize the II indices
before comparing them. The S-index of a proteins Pi is expressed as

SPi =
1

P

∑
P j∈P

IIPi ,P j , (2.2)

and represents the degree of "sociability" of a protein: the higher the value of S, the more sociable
the protein in the CC-D. Using the S-index to weight II values yielded strikingly improved results
(Fig. 2.6c). The known partners of 80 proteins (23% of the benchmark set) were identified in the
top 5%. Given a protein pair P1P2, the normalisation accounts for the sociability of P1 and P2 in the
following way: if the proteins are highly (resp. poorly) sociable, i.e. their S values are high (resp.
low), the interaction index IIP1,P2 will be lowered (resp. raised). This procedure has a direct impact
on the ranks of the potential partners (Fig. 2.6e). Poorly sociable proteins (in blue) generally gain
ranks upon normalisation while highly sociable proteins (in red) are systematically penalised by
the normalisation. Given a protein P with medium sociability, the down-shifting of highly socia-
ble proteins may greatly help singling out its cognate partner. These results showed that to decide
whether P1 and P2 interact together, the way P1 and P2 behave with all the other proteins in the
dataset should be accounted for. Using the same computational experiments, we also showed that
proteins from the same functional class have evolved to avoid interactions between them (low NII
values), and that the ability to discriminate cognate partners from non-interactors is very much
linked to the ability of the docking program to generate near-native interfaces. We found similar
results with two other docking programs, namely ZDOCK 167 and MAXDo 140.

A question one may wonder is to what extent our notion of sociability is related to that of stick-
iness. The notion of stickiness is usually defined based on the content of hydrophobic residues at
the surface of the protein 168. Important efforts have been dedicated to characterising sticky pro-
teins and their interactions159,168–170. It was shown that sticky proteins have stronger than average
non-functional interactions and that avoiding such non-functional PPIs is an important constraint
in protein evolution159,169. Sociability, as we define it here, reflect a tendency to glue to anyone in
the docking calculations, without explicitly accounting for the physico-chemical properties of the
surface. The most sociable proteins in the dataset are inhibitors and proteins with other function,
displaying rather small interacting surfaces, without any particular compositional bias. Hence, the
notion of sociability goes beyond that of stickiness: while a sticky protein has no preferential part-
ner, we show that a protein might be sociable with all other proteins but display different degrees
of sociability, with proteins playing different functional roles in the cell.
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2.3 Conclusions and Perspectives

We have proposed to revisit the definition of protein interfaces to account for the multiplicity of
protein surface usage and molecular flexibility. We have developed several computational meth-
ods to detect protein surface patches likely involved in interactions with other proteins and with
nucleic acids. Contrary to machine learning methods, our approaches rely on a small number
of biologically and physically relevant descriptors and combine them in a straightforward way.
They provide a unique way to understand the origins and properties of the predicted sites and
interpret them in light of their functions. For example, enzyme binding sites for substrates or in-
hibitors typically display a very conserved support and core, while antibody binding sites for anti-
gens are highly protruding and variable. Transcription factors typically display one or two highly
conserved binding sites, while polymerases form large concave interfaces. Another advantage of
our approaches is their ability to discover alternative hidden binding sites. We have illustrated this
with enzymes displaying both a protruding or flat and poorly conserved recognition site, and a
highly conserved active site. The examples we showed let us envision a much larger complexity in
the usage of protein surfaces by DNA than expected. In addition, we have compiled a new non-
redundant dataset of protein-DNA complexes spanning a wide range of functional classes and
have made it freely available for the community. We have performed CC-D calculations of several
hundreds of proteins and have inferred systemic properties about the way proteins live together.
We have proposed a formal definition of protein sociability and have demonstrated that the global
social behaviour of a protein, with respect to many others, should be taken into account to identify
its cognate partners and discriminate them from non-specific encounters.

A perspective for the JET2/dynJET2/JET2DNA suite is to integrate its predictions in a dock-
ing engine. The residue-based scores provided by these methods could be mapped onto grids
representing the proteins and exploited by fast Fourier transform (FFT) algorithms, to guide the
sampling of candidate conformations. This may allow enriching the conformational ensembles
with near-native solutions, especially for cases where large conformational changes occur. I have
started a collaboration with S. Grudinin (Nano-D team, INRIA) on this subject. He has extensive
experience with FFT docking algorithms. Another direction of improvement and extension for this
work concerns the reconstruction of the cellular interactome. We have been developing a unified
computational framework integrating information coming from CC-D calculations, interface pre-
diction and binding affinity estimation toward a better identification of cellular partners. We have
already achieved very high accuracy in discriminating cognate partners from non-interactors for
certain functional classes of proteins. We are now moving toward a multi-conformation and multi-
partner paradigm, using deep learning architectures. We are also investigating whether the effect
of mutations can be predicted using machine learning with good generalisation performance. Be-
ing able to reconstruct interaction networks and predict how they are altered, possibly rewired,
by mutations, is of paramount importance for personalised medicine. I am co-supervising a PhD
student (2019-2022) with A. Carbone (LCQB, SU) on these issues.
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Chapter 3

The evolution of protein isoforms

3.1 Motivation

Eukaryotes have evolved a transcription machinery that can augment the protein repertoire with-
out increasing the genome size. It produces several mRNA transcripts from the same gene, by
choosing different initiation/termination sites and/or by splicing different exons 171. Alternative
splicing (AS) concerns almost all multi-exon genes in vertebrates172 and can result in protein cod-
ing transcripts with very diverse lengths, domains and amino acid compositions. It has been
suggested that two protein isoforms may have completely different cellular partners173 and may
adopt different 3D folds 174. AS has also gained interest for medicinal purpose, as the ratio of alter-
natively spliced isoforms is imbalanced in several cancers175,176.

At the genomic level, the mechanisms responsible for the emergence of a new isoform have
been well documented177–179. In recent years, deep surveys of the splicing complexity gener-
ated by such mechanisms across species have become possible, thanks to the advent of high-
throughput sequencing (HTS) technologies like RNA-Seq 172,180. Nevertheless, we still know rel-
atively little about the actual impact of AS on the functioning of the concerned proteins 181. This
is in part due to the fact that most studies have focused on regulatory aspects. The second reason
is technical, as it is very challenging to evaluate how many of the transcripts detected by HTS are
translated and functional. Different experimental techniques give very different estimates 182,183.
Finally, AS tends to affect protein regions that are difficult to see experimentally, because they
are intrinsically disordered and/or involved in transient interactions184,185. Hence, the extent to
which and how AS modulates protein functions and interactions remains an open question.

The elusiveness of the significance of AS for protein function has stimulated the development
of knowledge bases 186–189 providing sequence- and/or structure-based information and func-
tional annotations at the level of the transcript or the exon. In particular, a pertinent proxy for
function is evolutionary conservation. In this respect, a few methods have been proposed to re-
construct transcripts’ phylogenies 190,191 or assess the presence of ASEs in several species192. One
of the problems one has to face when studying transcript diversity across species is to determine
a mapping of transcripts and/or of exonic regions between the considered species. Such a map-
ping is not trivial as genomic exons may vary in terms of sequence and length from one species to
another. Moreover, the task may be complicated by the presence of duplicated sequences display-
ing high sequence similarity. Disentangling the orthology (coming from speciation) from paralogy
(coming from duplication) relationships is challenging in such cases. Existing tools for orthology
detection at the gene level rely on graph-based clustering of sequences, where sequence similari-
ties are computed using pairwise alignments, or on tree-based methods reconciling the gene fam-
ily trees with the species tree 193. At the exon level, previous efforts have used pairwise alignments
of genomic sequences 194,195 or multiple sequence alignments (MSAs) of concatenated translated
exons 190. However, there exists no automated and/or general method to detect orthologous exons
while accounting for transcript diversity.

Structural characterization can also inform us about the potential function of a protein isoform
and rationalize about the mechanisms underlying its (mal)-functioning. However, so far, very few
structures of alternatively spliced isoforms have been described and are available in the PDB196.
It was shown that the boundaries of single constitutive exons or of co-occurring exon pairs tend
to overlap those of compact structural units, called protein units197. Moreover, some particular
features (PFAM domain content, structural content, presence of binding motifs...) could be re-
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lated to the existence of alternative isoforms. For instance, brain- or other tissue-regulated exons
frequently overlap intrinsically disordered regions embedding conserved linear binding motifs184.
Exciting results were obtained by Birzele and co-authors198, who collected experimental data for
488 isoforms representing 367 proteins and provided a database of structural templates. They
highlighted examples where ASEs affecting highly conserved protein regions resulted in major
fold-changing events, suggesting new functional properties of the isoforms. A few cases of iso-
forms displaying domain atrophy while retaining some activity have also been reported199.

In the following, I present contributions toward decomposing transcripts into evolutionary-
wise building blocks200, reconstructing plausible evolutionary scenarios explaining an ensemble
of transcripts observed in a set of species and systematically assessing the impact of AS on protein
structures 201. They led to the publication of one research article as co-corresponding author and
another one is in preparation.

3.2 Contributions

3.2.1 What is an (s-)exon?

Along evolution, genomic exons may diverge, undergo truncation or elongation, get lost or dupli-
cated once, or several times. These events taking place at the level of the gene may be accompa-
nied by a modulation of the usage of the exons in the transcriptome. In this context, decompos-
ing transcripts into entities that are meaningful to date the appearance and fixation of AS events
along evolution is not obvious. We propose to introduce the notion of s(pliced)-exon defined as
the minimal building block necessary to describe the whole transcript variability observed in a set
of species. Formally, an s-exon is a group of orthologous exonic regions, represented by a multi-
ple sequence alignment (MSA). To identify s-exons, we combine pairwise alignment-based exon
clustering with MSAs of concatenated exonic regions (Fig. 3.1a, on the left). The first step consists
in comparing all genomic exons versus all by pairwise alignment, constructing a similarity graph
and identifying clusters in the graph. Then, genomic exons are split into smaller pieces, called sub-
exons, that account for the transcript variability within each species. Finally, for each cluster, an
MSA is generated that satisfies the constraints given by the genomic coordinates of the sub-exons.
S-exons are defined as column blocks in the MSA, delimited by the sub-exon boundaries. The al-
gorithm is implemented in ThorAxe (https://github.com/PhyloSofS-Team/thoraxe), an ef-
ficient and fully automated tool that retrieves transcript data from Ensembl 202 and clean them,
decomposes the transcripts into s-exons and builds a splice graph describing their variability (Fig.
3.1a, on the top right). Each node of the graph is an s-exon and each edge is a junction between
two s-exons The graph is annotated with evolutionary conservation levels (the darker the colour
the more conserved the s-exon/junction). Such a graph permits a straightforward identification
of evolutionary conserved ASEs. Importantly, the transcripts come from different species, and the
splice graph represents both the intra- and inter-species variability. While most methods work
with genomic exons and perform species comparison after the construction of the splice graph,
the original contribution of our work is that both the s-exons and the splice graph are transcript-
and species-aware. Moreover, ThorAxe is able to deal with very small exonic regions and to disen-
tangle paralogy from orthology relationships (Fig. 3.1a, on the bottom right).

3.2.2 Evolutionary history and structural characterization of transcript isoforms

To get insight into the functional implications of AS events, we have developed a unified com-
putational framework combining sequence- and structure-based information. We infer plausible
evolutionary scenarios explaining a set of protein coding transcripts in a set of species and we
predict the 3D structures of the corresponding protein isoforms. The evolutionary inference is
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based on the maximum parsimony principle. Specifically, given a a gene tree and the observed
transcripts at the leaves, represented as a collection of s-exons, we reconstruct a phylogenetic for-
est embedded in the gene tree that minimises the number of evolutionary events (creation, loss
and mutation of a transcript, see Fig. 3.1b). The underlying evolutionary model is comprised of
two levels, following 190. At the level of the gene, exons can be absent, constitutive, or alternative
(i.e. involved in at least one ASE), whereas at the level of the transcript, exons are either present
or absent. The cost associated to the mutation of an exon naturally depends on its impact on
the status of the exon at the gene level. For instance when the gain of an exon at the gene level
shifts its status from absent to constitutive, the mutation will not be penalised. Our main con-
tribution was to develop heuristics in order to treat complex cases in a computationally tractable
way. Specifically, we have implemented a multi-start iterative strategy combined with a systematic
local exploration around the best current solution to efficiently search the space of phylogenetic
forests. Moreover, we have designed a branch-and-bound algorithm adapted to the problem of as-
signing transcripts between parent and child nodes. The reconstructed forests are provided with
a user-friendly visualisation (Fig. 3.1c). In addition to phylogenetic reconstruction, we predict
the 3D structures of the protein isoforms based on comparative modelling. To retrieve template
structures of (possibly distant) homologs to the studied transcripts, we use the HH-suite 203. The
search is performed in an iterative way, so as to reach a maximum coverage of the query, and in an
exon-centered manner, such that we provide an overview of the structural information available
for each s-exon. The generated models (see examples on Fig. 3.1c) are annotated with sequence
(exon boundaries) and structure (secondary structure, solvent accessibility, model quality) infor-
mation. It becomes very easy to visualise the location of each exon on the modelled structure. Our
approach is implemented in a fully automated tool, Phylogenies of Splicing Isoforms Structures or
PhyloSofS (https://github.com/PhyloSofS-Team/PhyloSofS).

3.2.3 The c-Jun N-terminal kinase family as a case study

As a proof of concept, we used our methods to date the appearance of ASEs inducing functional di-
versity in the c-Jun N-terminal kinase family (JNK1, JNK2 and JNK3) and to provide a mechanistic
explanation for their outcome. JNKs play essential regulatory roles by targeting specific transcrip-
tion factors. Several alternative JNK transcripts performing different functional tasks have been
experimentally identified and characterised 181,204,205. We considered 7 species, namely H. sapi-
ens, M. musculus, X. tropicalis, T. rubripes, D. rerio, D. melanogaster and C. elegans. With 60
observed transcripts assembled from a total of 19 different s-exons, this case represents a high
degree of complexity for the phylogenetic reconstruction. Most transcripts are comprised of more
than 10 s-exons, and the number of transcripts per gene per species varies from 1 to 8 (Fig. 3.1c).
We inferred a phylogenetic forest containing 7 transcript trees (Fig. 3.1c), relating 12 transcripts
observed in human across the three genes. Based on it, we dated the appearance of an ASE involv-
ing a pair of mutually exclusive s-exons, namely 6 and 7, in the ancestor common to mammals,
amphibians and fishes. We found that the most ancient of these two s-exons is s-exon 7. By char-
acterising in detail the structural dynamics of two human isoforms, JNK1α and JNK1β, bearing
one or the other s-exon, we could detect changes in the side-chain flexibilities of a few residues
differing between the two s-exons (Fig. 3.1c, in the top right corner, in orange and purple). These
residues are predicted as involved in interactions by JET2 and thus the subtle differences we ob-
served may be responsible for the selectivity of the JNK isoforms toward their substrates 206,207.
Our transcripts phylogeny also highlighted an isoform that was not previously described in the
literature, namely JNK1δ (Fig. 3.1c). Despite displaying a large deletion (∼ 80 residues), it is con-
served across several species and MD simulations suggested that it is stable in solution (Fig. 3.1c,
in the top right corner, in gray-pink). In total, we could reconstruct a phylogeny for 46 out of the
60 observed transcripts. The 14 orphan transcripts (Fig. 3.1c, leaves in grey) are not conserved
across the studied species, and thus likely result in non-functional protein products. As a support
for this hypothesis, our structural analysis showed that they displayed properties likely reflecting
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Figure 3.1: Evolution and structures of transcript isoforms. (a) Schematic workflow of ThorAxe pipeline. The different steps of the
method are explained on the left and illustrated on the right. The s-exons are displayed as columns of gray boxes on the bottom left,
as nodes in the splice graph on the top right and as coloured bocks in MSAs on the bottom right. An exemple of a pair of highly similar
mutually exclusive homologous exons (3_0 and 3_1) is given. (b) Principle of PhyloSofS’ reconstruction of transcripts phylogenies.
Given a gene tree and transcripts observed at the leaves, PhyloSofS infers a forest of transcript trees embedded in the gene tree. The
problem addressed here is that of a partial assignment: how to pair transcripts so as to maximize their similarity? (c) Transcripts’
phylogeny reconstructed by PhyloSofS for the JNK family. The forest comprises 7 trees, 19 deaths (triangles) and 14 orphan transcripts
(in grey). Mutation events are indicated on branches by the symbol + or - followed by the number of the exon being included or
excluded (e.g. +11). The cost of the phylogeny is 69 (with CB = 3, CD = 0 and σ = 2). On the bottom left corner are displayed the
exon compositions of the human isoforms for which a phylogeny could be reconstructed. On the top right corner, are displayed some
representative MD conformations of the human isoforms JNK1α (orange), JNK1β (purple) and JNK1δ (gray-pink). For JNK1α (resp.
JNK1β), we focus on the s-exon 6 (resp. 7). The clustering was performed based on position 228 (RMSD cutoff of 1.5 Å) and yielded 8
conformations for JNK1α (resp. 1 for JNK1β). For JNK1δ, we show a superimposed pair of conformations illustrating the amplitude of
the A-loop motion. Exons 5, 8’ and 9 are indicated by colours and labels. For clarity, 8’ is also indicated by two stars on the structure.
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structural instability (large truncations, poorer quality, larger and more hydrophobic surfaces).
We found alternative phylogenies with equivalent cost, but they differ only slightly from the one
reported here. Moreover, we showed that our phylogeny was robust to small parameter changes.

3.2.4 Tracking functional ASEs in protein evolution and structures

We then scaled up the analysis to an original set of 50 human genes (16 gene families) that we
compiled. The rationale for choosing these genes was that several splice variants had been ex-
perimentally shown to perform different functional tasks. We considered one-to-one orthologs of
these genes in 12 species, namely (H. sapiens, G. gorilla, M. mulatta, M. domestica, R. norvegicus,
M. musculus, B. taurus, S. scrofa, O. anatinus, X. tropicalis, D. rerio, D. melanogaster and C. ele-
gans). We collected about 900 transcripts annotated in Ensembl, comprising between 8 and 91 s-
exons. We found that the vast majority of the documented functional splice variants (correspond-
ing to 48 ASEs) were conserved in several (more than 3) species and that the variations between
them affected interactions with cellular partners. Moreover, we identified 11 conserved new ASEs.
About half of the detected ASEs are insertions/deletions and the other half is mutually exclusive
tuples or alternative starts/ends. Structural information is available for a bit less than 50% of the
105 associated s-exons. As illustrative examples, let us mention TPM1 and CAMK2B. For TPM1, the
splice graph produced by ThorAxe allowed the identification of a couple of complex ASEs involv-
ing some substitutions and insertions of homologous exons. All exons were predicted as folding
into an α-helix and there exist cryo-EM structures showing they interact with actin. Hence, the
ASEs likely modulate the speed at which actin filaments form and their length. For CAMK2B, the
splice graph clearly showed that most of the AS concerns the linker between the two domains (ki-
nase and hub) of the protein. Most of the events consist in insertion of disordered segments. We
could identify a triplet of highly similar s-exons being part of the same insertion event. They are
enriched in prolines, suggesting that they may be involved in interactions with cellular partners.

3.3 Conclusions and perspectives

We have developed a couple of computational methods to investigate the evolution of protein
transcript isoforms and the impact of AS events on their structural dynamics. Our work allows to
put together, for the first time, two types of information, one coming from sequence analysis and
phylogenetic inference, and the other from molecular modelling. We should stress that the prob-
lem of pairing transcripts across homologous and paralogous genes between different species, ad-
dressed here, is much more complex than that of inferring the transcripts’ phylogeny of each gene
separately. Indeed, in the former case, the problem size is bigger, one needs to reconcile the gene
tree with the species tree, and the sequences are more divergent. By applying our method to the
JNK family, we could date functional ASEs, identify a new conserved isoform that seems stable in
solution and provide mechanistic explanation for AS-induced phenotypes. By scaling up the anal-
ysis to a few tens of genes, we assessed the evolutionary origins of functional ASEs documented
in the literature and we discovered new ASEs. We should stress that our iterative exon-centred
strategy for modelling the 3D structures if the isoforms is the first of its kind.

The reliability of the transcript expression data clearly constitutes a present limitation of our
methods. However, as experimental evidence accumulates and precise quantitative data become
available, they will become instrumental in assessing the contribution of AS in protein evolution.
Although PhyloSofS was applied here to study the evolution of transcripts in different species,
it has broad applicability and can be used to study transcript diversity and conservation among
diverse biological entities. The entities could be at the scale of one individual/species (tissue/cell
differentiation), or different species (matching cell types), or a population of individuals affected
(or not) by a multifactorial disorder.
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Chapter 4

Future work

In the next four years, I will pursue my efforts to elucidate the relationship between genotype and
phenotype, particularly in the context of protein interactions and alternative splicing (AS). I will
leverage the expertise I have acquired and the work we have done for identifying functional sites
and predicting the impact of sequence variations at these sites. The three themes developed in
this dissertation are intertwined and my research plan will emphasise the cross-talks and overlaps
between them. I intend to target most of my efforts to describe, understand and exploit the way AS
generates protein functional diversity in eukaryotes. As stated in the third chapter, our knowledge
on this matter is still relatively limited. Yet, this topic is of paramount importance, both for our
fundamental understanding of living organisms and for the development of new treatments.

Consistent with the literature, our preliminary results on a benchmark set of 50 genes have
shown that evolutionary conserved ASEs tend to impact regions directly or indirectly involved
in interactions with other proteins, small molecules or nucleic acids (Fig. 4.1). We found cases
where a disordered region or loop is inserted nearby an interaction site, or an interacting segment
is replaced by a very similar one, or several similar binding motifs are inserted. These examples
illustrate the way AS modulates the strength, the speed and the selectivity of functional cellular in-
teractions. Predicting precisely the impact of the AS-induced variations is a very challenging task
because we still do not know much about the determinants of molecular specificity and binding
affinity. State-of-the-art methods predicting binding affinities and how they are altered by muta-
tions crucially lack generalisation performance 208,209. Moreover, the task is complicated by the
fact that a significant proportion of the alternatively spliced regions are intrinsically disordered. I
propose a new view on the problem, by inverting the question: what can evolutionary conserved
ASEs tell us about the molecular determinants of protein function(s) and interactions?

FYN TPM1 PAX6 FMR1

Figure 4.1: Examples of conserved ASEs affecting interactions. The protein is displayed as a grey cartoon, with the region affected
by the ASE coloured in green. When the structure of the region is not known, it is simply represented by a hand-drawn line. When
the ASE involves two mutually exclusive segments, the residues differing between the two segments are highlighted in sticks. FYN
interacts with a small molecule (in spheres), TPM1 with a protein partner (in surface), PAX6 with DNA (in cartoon) and FMR1 with
RNA (in cartoon).

Our working hypothesis is that ASEs encode precious information about where and how to
target a protein in order to modulate its interactions. We will extract this information and use
it to expand protein diversity way beyond what is observed today. We will exploit the growing
body of RNA-Seq data across species to discover new conserved ASEs not yet annotated in public
databases. Indeed, we have seen in our preliminary work that the publicly available annotated
transcript data are incomplete. By directly looking at raw RNA-Seq evidence and relying on the
percent spliced in (PSI) measure 210, we could further increase by about 35% the number of con-
served ASEs in our benchmark set. We will develop algorithms to integrate RNA-Seq data (splice
junctions) in ThorAxe splice graphs. On this matter, we have initiated a collaboration with P. De
La Grange, co-founder of the Genosplice company. The company has extensive expertise and
know-how in ASE detection from RNA-Seq data. They are willing to share their expertise and also
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their in-house database FastDB 211, which implements a series of filtering and rescuing protocols
to get reliable sets of transcripts. The developed computational framework will be applied to the
∼20,500 Human protein coding genes available in Ensembl. We will identify the set of ASEs ob-
served in Human and conserved in several species spanning the tree of life and for which RNA-Seq
data are available in the Bgee database 212. We will further create an atlas of ASEs for all known pro-
tein domain families. We will use Pfam classification213, which contains ∼ 18 000 domain families.
The rationale will be that the functional ASEs detected on one domain of one particular protein
can inform us about the functional sites of the whole Pfam family to which the domain belongs.
We will gather all available structural data, to describe the conformational flexibility and the inter-
actions of the s-exons. Based on our preliminary work, we estimate that we will be unable to find
structural information for a significant portion of the s-exons (see examples of loop insertions on
Fig. 2, for PAK6 and FMR1). That is why I have started a collaboration with J. Cortés, who recently
developed a method predicting probabilities of folding into the main types of secondary struc-
tures214. It exploits structural information encoded in tripeptide fragments from coil regions. Our
multi-strategy approach will make the construction of a ‘structural profile’ feasible for virtually all
s-exons involved in the detected functional ASEs. This knowledge base shall provide very useful
information to biologists and medicinal chemists about the regions of a protein that are important
for its function and how they can be modified or targeted to modulate this function. We will also
develop a probabilistic model that will learn from the functional ASEs observed today in nature to
generate new protein functional diversity. The rationale will be that the means AS has produced
to generate protein diversity along evolution can be reused and generalized to expand the protein
repertoire way beyond what we observe today. The challenge here will be to design an artificial
system able to learn the underlying rules of (functional) AS and to generalize to any protein se-
quence. Solutions found by living organisms have often proven very complex and diverse, such
that generalizing explicative and predictive models is a difficult task. At the same time, the con-
ditions favorable to life are strongly constrained, and hence one can expect strong regularities in
the way natural diversity is generated. Deep neural nets are especially suited to deal with complex
data and spot their regularities. We will particularly focus on variational auto-encoders (VAE) and
deep neural network-powered autoregressive models (DNNAM), which have proven very power-
ful to predict the outcomes of mutations and insertions/deletions and design protein sequences
with desired properties 3,215,216. DNNAM have the advantage of being reference-free (no need, for
example, to align training sequences) and some recent implementations 217 deal with 3D informa-
tion (protein structures represented as graphs) as input. We will use the knowledge acquired with
the atlas to guide the design of our architecture and determine the representation of the input data.
We will use the ASEs identified in Human as training set. We expect our initial set to be of the order
of a few thousands and we will augment it with information coming from the other species. For
both the design of the architecture and the representation of the input data, we will benefit from
the know-how and expertise of our collaborator S. Grudinin, who has been developing pioneering
deep learning-based methods for protein structure quality assessment218,219.

This project embeds original concepts concerning the relationship between genotype and
phenotype. The idea that the way living organisms generate protein diversity through AS can in-
form us about the fundamental determinants of protein functioning and can be reused to guide
protein design is new. The question we address could not have been answered before, due to
conceptual and technological reasons. The rapid growth of data generated by HTS and of stud-
ies applying deep learning to biological issues (including AS, but with different goals and views
compared to our proposal) makes this project timely. Our preliminary work has been accom-
plished within the framework of the MASSIV project (ANR-17-CE12-0009, 2018-2021), which I am
co-leading with H. Richard, and which will be running for one more year. This will enable starting
the proposed plan with a post-doctoral fellow (D. Zea) and two Master students (B. Moindrot and
P. Charpentier). I am currently looking for funding to ensure the continuity of the work on the
subject (Projet Emergence de la Ville de Paris, Doctoral grant from the SCAI...).
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