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Abstracts in English and French

Abstract (English Version)

Sampling-based optimization heuristics are algorithms which aim to find good solutions for problems
that cannot be solved through exact solution strategies. They are particularly useful for the optimiza-
tion of problems that are not given as explicit formulae, but which require computer simulations or
physical experiments to assess the quality of a proposed solution. In such settings, sampling-based
optimization heuristics are essentially the only means to obtain good solutions. Another important
application of sampling-based optimization heuristics is in the optimization of problems that are too
complex to be solved analytically, and which remain intractable for problem-specific algorithm designs.

An important sub-class of sampling-based optimization heuristics are iterative optimization heuristics
(IOHs). IOHs aim at finding good solutions by a sequential process of evaluating solution candidates,
using the obtained information to adjust the strategy by which the next samples are generated, and
iterating this process until a termination criterion is met.

With my research, I aim to contribute to our understanding of the working principles that drive
the performance of IOHs. More precisely, I aim at understanding which strategies work well for
which types of problems. To this end, I study the efficiency of existing IOHs, and I compare these
performances to that of a best possible solver for the given problem. For the latter, I develop and
analyze complexity models that allow us to quantify the influence of certain algorithmic choices, such
as the size of memory used, the strategy by which solutions can be sampled, the type of information
used to select the next sampling strategies, etc.

This thesis summarizes some of my research results obtained in the last nine years, since the completion
of my PhD studies. We first derive improved (and often tight) bounds for the black-box complexity
of the two best known benchmark problems in the theory of IOHs, OneMax and LeadingOnes, and
this for various black-box models. We then demonstrate how insights obtained from such black-box
complexity studies can inspire the design of efficient optimization techniques. An important result
obtained through this approach is a rigorous example for a situation in which a non-static choice of
the control parameters of an IOH yields a super-constant performance gain over any possible static
parameter setting. This result has revived theoretical research on parameter control, which has seen
significant advances since. We discuss some examples in this thesis. We conclude by discussing the
role of algorithm benchmarking as a bridge between theoretical and empirical research of IOHs.
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Résumé (French Version of the Abstract)

Les heuristiques d’optimisation fondées sur l’échantillonnage sont des algorithmes qui visent à trouver
de bonnes solutions aux problèmes ne pouvant pas être résolus par des stratégies de solution ex-
actes. Elles sont particulièrement utiles pour l’optimisation de problèmes qui ne sont pas décrites par
des formules closes explicites, mais qui nécessitent des simulations informatiques ou des expériences
physiques pour évaluer la qualité d’une solution proposée. Dans de tels contextes, les heuristiques
d’optimisation fondées sur l’échantillonnage sont essentiellement le seul moyen d’obtenir de bonnes so-
lutions. Une autre application importante des heuristiques d’optimisation fondées sur l’échantillonnage
est l’optimisation des problèmes qui sont trop complexes pour être résolus de manière analytique et
qui qui n’admettent pas des des algorithmes spécifiques.

Une sous-classe importante d’heuristiques d’optimisation fondées sur l’échantillonnage sont les heuris-
tiques d’optimisation itérative (I.O.H.). Les IOH cherchent à trouver de bonnes solutions par un
processus séquentiel d’évaluation de solutions candidates, en utilisant les informations obtenues pour
ajuster la stratégie par laquelle les candidates suivants sont produites, et en itérant ce processus
jusqu’à ce qu’un critère de terminaison soit satisfait.

Avec mes recherches, je mefforce de contribuer à notre compréhension des principes opérationnels qui
déterminent la performance des IOH. Plus précisément, je cherche à comprendre quelles stratégies
fonctionnent bien pour quels types de problèmes. Pour cela, j’étudie l’efficacité des IOH existants, et
je compare ces performances à celle d’un meilleur solveur possible pour le problème donné. Pour ces
derniers, je développe et analyse des modèles de complexité qui permettent de quantifier l’influence
de certains choix algorithmiques, comme la taille de la mémoire utilisée, la stratégie par laquelle les
solutions peuvent être échantillonnées, le type d’informations utilisées pour sélectionner les prochaines
stratégies d’échantillonnage, etc.

Ce manuscrit résume certains de mes résultats de recherche obtenus au cours des neuf dernières
années, depuis la fin de mes études de doctorat. Nous dérivons d’abord des bornes améliorées (et
souvent serrées) pour la complexité en bôıte noire des deux problèmes de référence les plus connus
dans la théorie des IOH : OneMax et LeadingOnes, et ce pour divers modèles en bôıte noire. Nous
démontrons ensuite comment les informations obtenues à partir de ces études de complexité en bôıte
noire peuvent inspirer la conception de techniques d’optimisation efficaces. Un résultat important
obtenu grâce à cette approche est un exemple rigoureux de situation dans laquelle un choix non statique
des paramètres de contrôle d’une IOH produit un gain de performance super-constant par rapport
à tous les réglages de paramètre statique possibles. Ce résultat a relancé la recherche théorique sur
le contrôle des paramètres, qui a connu des avancées significatives depuis. Nous discutons quelques
exemples dans ce manuscrit. Nous concluons en discutant le rôle du benchmarking d’algorithmes
comme pont entre la recherche théorique et empirique des IOH.
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Chapter 1

Introduction

Many, if not most, real-world optimization problems are not given as explicit mathematical formulae,
but require (possibly expensive) evaluations to assess and to compare the quality of different alterna-
tives. Classical examples for such problems are settings in which the evaluation of a suggested solution
requires a computer simulation or a physical experiment, such as a crash test or a clinical study. Com-
puter Science studies the solution of such in-explicitly given problems under the notion of black-box
optimization. Black-box optimization problems are ubiquitous. They appear in almost any scien-
tific discipline and across almost all industrial sectors, with applications ranging from product design
and engineering, over maintenance, medial treatment scheduling, agriculture, systems biology, and
network optimization to numerous other use cases. In recent years, black-box optimization has gained
visibility in the broader Computer Science context, because of its importance in Machine Learning
and, more generally, in Artificial Intelligence, where many of the core problems such as the design of
(deep) neural networks, (hyper-)parameter optimization, etc. are essentially black-box optimization
problems.

Black-box optimization problems can only be solved by sampling-based heuristics, i.e., algorithms
which (deterministically or randomly) generate solution candidates, evaluate them, and use the so-
obtained knowledge to recommend one or more alternatives. Depending on the adaptive behavior of
the algorithms, we distinguish two main classes of sampling-based heuristics:

• Iterative Optimization Heuristics (IOHs): These algorithms proceed in rounds. After each
round, the heuristic updates the strategy by which the next solution candidates are generated.
See Section 1.1 for a more detailed description and examples.

• One-Shot Optimization Algorithms: In some situations, an adaptive procedure as required
by IOHs is not possible, e.g., because of prohibitive evaluation times or cost. In this case,
one-shot optimization techniques need to be chosen. These non-adaptive algorithms select the
set of solution candidates prior to the first evaluation. Random sampling, Latin Hypercube
designs [MBC79], and quasi-random point sets such as low-discrepancy point sets [Nie92, DP10]
are classical examples for such one-shot optimization strategies.

The main focus of this thesis is on iterative optimization. A few results for one-shot optimization,
however, will be summarized in Sections 5.3.

Before reducing our scope to IOHs, we briefly mention that the application of sampling-based optimiza-
tion algorithms is not restricted to black-box optimization alone. Indeed, sampling-based optimization
heuristics have proven useful in a number of contexts in which the problem to be solved does have an
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Figure 1.1: Black-box optimization problems require sampling-based algorithms. These algorithms
treat the problem instance as an oracle, which reveals (absolute or relative) information about the
quality of the solution candidates. Depending on the use or not of adaptive sampling strategies, we
distinguish between iterative optimization heuristics (IOHs) and one-shot optimization algorithms.
The main focus of this thesis is on IOHs.

explicit formulation (white-box setting) or in which some information about the interaction between
the decision variables is known (gray-box setting). In such applications, it typically comes handy that
sampling-based algorithms can easily be applied to new problems, without requiring deep knowledge
about the problem at hand, so that off-the-shelf implementations can be used to get first meaningful
results. Certainly, there are also cases in which an explicitly given problem simply remains intractable
for rigorous algorithmic solutions, possibly despite significant research efforts. The low autocorrelation
binary sequence problem [Gol72, PM16] is a well-known example of the latter type.

1.1 Iterative Optimization Heuristics (IOHs)

As sketched above, IOHs are adaptive sampling strategies, which adjust their behavior during the
optimization process. That is, IOHs are initialized by selecting a set of candidate solutions that are
evaluated in a first iteration. Once the quality of these search points is known, a second set of solution
candidates is selected, then evaluated, and so on, until some stopping criterion is met; for example,
when a solution of sufficient quality has been found, when a time budget is exhausted, when no
progress has been observed for some time, or when the diversity of the solutions has fallen below some
threshold. With each iteration, the heuristic collects more information about the problem instance at
hand, which it can use to focus the search on the most promising regions in the decision space.

Algorithm 1 summarizes the structure of an IOH. Concrete examples will be presented in Sections 1.3
and 1.4. IOHs can, but do not need to be randomized. When instantiating all distributions in the
framework of Algorithm 1 by degenerated ones (one-point distributions), the algorithm is determinis-
tic. The focus of our work, however, is almost exclusively on randomized IOHs.

IOHs can be loosely categorized into the following classes:1

• Single-point IOHs: This class subsumes algorithms which essentially keep one point as the
center of search and evolve both the mean and the shape of the sampling distributions. We
distinguish two main sub-classes:

1Note here that this classification is rather informal, as the boundaries between the different classes are fuzzy, and
hybridization and/or sequential execution (“chaining”) of one or several approaches is not uncommon. Readers interested
in more detailed summaries of these algorithms can find many books and tutorials on this matter. Recommended surveys
with numerous pointers to relevant literature are [SEBB18, BLS13, BPS03].
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Algorithm 1 Iterative optimization heuristics (IOHs) alternate between the generation of new solu-
tion candidates and their evaluation. Information obtained from these evaluations is used to adjust
the strategy by which the next candidates are generated. Many, but not all, IOHs are randomized.

1: t← 0 . iteration counter
2: H(0)← ∅ . search history information
3: choose a distribution Λ(0) on N . distribution of the number of samples
4: while termination criterion not met do
5: t← t+ 1
6: sample λ(t) ∼ Λ(t− 1) . nbr. of points to be evaluated in this iteration
7: Based on H(t− 1) choose a distribution D(t) on Sλ(t) . choice of sampling distribution
8: sample

(
x(t,1), . . . , x(t,λ(t))

)
∼ D(t) . candidate generation

9: evaluate f
(
x(t,1)

)
, . . . , f

(
x(t,λ(t))

)
. function evaluation

10: choose H(t) and Λ(t) . information update

– Local search algorithms: Local search algorithms move from one solution candidate to
the next by comparatively small perturbations. Where a neighborhood structure exists,
such as the Hamming neighborhoods in the search space {0, 1}n, the search moves along the
edges in this neighborhood structure, i.e., any two consecutively evaluated points are neigh-
bors. We further distinguish greedy heuristics (such as first improvement or best improve-
ment strategies) from non-greedy search heuristics, such as Simulated Annealing [KGV83],
Threshold Accepting [DS90], or Tabu Search [Glo86]. Whereas greedy heuristics always
continue the search in a best-so-far solution, the non-greedy ones may continue the search
in a worse than best-so-far solution. The probability to “accept” an inferior center of search
decreases with the difference in quality (and for a given discrepancy, it typically also de-
creases with time). Non-greedy search heuristics therefore aim to avoid the risk of getting
stuck in a local optimum by temporarily accepting worse solutions, in the hope to traverse
the “valleys” in the fitness landscape.

– Global search algorithms: Another strategy to overcome local optima is non-local sam-
pling. That is, the probability distribution from which global search heuristics sample the
solution candidates assigns positive values also to solutions that are not direct neighbors
of the current center of search. The probability to sample a point at a certain radius may
change over time, so that the heuristic can converge from an exploratory initial phase to an
exploitation stage, in which the search behaves more locally. Single-point (also known as
single-trajectory) evolutionary algorithms such as the (1 +λ) EAs (which we will introduce
in Section 1.4) or Variable Neighborhood Search [MH97] are classical examples for global
search algorithms.

• Population-based algorithms: Algorithms maintaining a set of solution candidates to
decide center and shape of the next sampling distributions are referred to as population-
based heuristics. Most evolutionary algorithms and genetic algorithms fall into this cate-
gory [Bäc96, ES03]. Other classes of population-based heuristics are estimation of distribu-
tion algorithms (EDAs [MP96, LL02]), the covariance matrix adaptation evolution strategies
(CMA-ES [HO01]), differential evolution (DE [SP97]), and Swarm intelligence algorithms such
as Particle Swarm Optimization [KE95] and Ant Colony Optimization [Dor92].

• Surrogate-based algorithms: Surrogate-based algorithms use the evaluated search points
to approximate the true optimization problem f (or parts of it) by a surrogate f̂ , with the

idea that by optimizing f̂ the algorithm can save calls to f . That is, the model f̂ is used to
propose the point(s) to be evaluated next. The model f̂ is frequently updated, e.g., after each
iteration. One of the best known surrogate-based heuristics is the efficient global optimization
algorithm (EGO [JSW98]), also referred to as Bayesian optimization. Hybridization of other
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Theoretical Analysis Empirical Evaluation
+ performance guarantees numerical observations
+ proof tells you the reason only observe numbers
+ bounds for whole classes of problems individual instances only
+ implementation-independent results can depend on implementation
time-consuming and arbitrarily difficult + fast, often easy to implement
simple benchmark problems + complex problems
simple heuristics/control schemes + complex heuristics/control schemes
limited precision + exact numbers
main scope: asymptotic behavior main scope: concrete range of dimensions

Table 1.1: Comparison of theoretical and empirical research in black-box optimization, adapted from
our GECCO tutorial Theory for Non-Theoreticians [DD16b]

IOHs with local surrogate models to select which points to further evaluate are referred to as
surrogate-assisted IOHs.

1.2 The Role of Theoretical Research for the Analysis of IOHs

A plethora of IOHs exist, and their number is ever growing – to a point where we can hardly reconstruct
whether a certain algorithm has previously been used or not, see discussions in [CSD20, Sör15] and
references mentioned therein. Most of these heuristics are developed with a particular application
in mind, and one of the key interests of our research domain is to understand to what extent the
algorithm (or an algorithmic idea) can be useful beyond the particular application that it has been
designed for. Put differently, one, if not the most important objective in the analysis of IOHs
is to analyze which approaches work well on which type of problems, and why. Two main
approaches to tackle this question exist:

Empirical Approaches/Algorithm Benchmarking: The empirical analysis and comparison of
sampling-based optimization heuristics is often referred to as benchmarking. In contrast to a purely
performance-oriented, competitive development of efficient solvers, benchmarking aims at understand-
ing why certain algorithms behaves well (or not) on a given (set of) problem(s) or problem instance(s).
Designing sound benchmark studies is a tedious task and almost every step required in a benchmark-
ing study is subject to active research. This includes the selection of the benchmark problems and
the problem instances, of the algorithms to be executed (and their configuration), of the performance
measures and the statistics used to analyze the results, of the data to be logged during execution (i.e.,
which data shall be tracked?), of the granularity of this data (i.e., how often do we record the data?),
and of an appropriate visualization of this data.

Mathematical Approaches/Theory of Sampling-Based Heuristics: An alternative way to-
wards understanding the behavior of IOHs is their analysis via mathematical means. Often subsumed
under the umbrella term theory of evolutionary computation, this sub-domain aims at proving perfor-
mance guarantees or statements about the search process of IOHs with mathematical rigor. In this
thesis, we use the terms “theory”, “theoretical guarantee”, etc. with such a mathematical approach
in mind. In the broader literature, however, different interpretations of these expressions are in use.
Notably, some authors subsume under the term “theory” all research not directly involving industrial
or academic applications.

We should note here that not only the approaches taken to analyze IOHs are different, but also the
scope. Where, in principle, empirical research is mostly bounded by the availability of human and
computational resources, theoretical research of IOHs quickly faces methodological challenges. A key
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difficulty in analyzing randomized IOHs are the complex dependencies of the random variables that
are needed to describe their optimization behavior and their performance traces. Theory of IOHs is
therefore often restricted to rather simple problems and algorithms, which do not necessarily represent
very well the complexity of the problems and algorithms solved and applied in practice. Of course,
our hope is that using the theoretical approach we can nevertheless gain insight into the working
principles of IOHs that can be generalized to more complex algorithms and problems. More broadly,
we hope that the “theory way of thinking” can derive insights that are useful for practical purposes.
This situation is comparable to the relationship between other sub-domains of theoretical and applied
Computer Science.

Despite all differences in the type and scope of results that can be obtained through either approach,
empirical and mathematical research should not be seen as competing approaches. They rather
complement each other, by offering different views on the performance and the search behavior of
IOHs. Table 1.1 summarizes the advantages of theoretical and empirical approaches, respectively.
This comparison clearly shows that we cannot rely on either one approach only, if we aim to get a
rather complete picture of the strengths and weaknesses of different IOHs.

Reflecting my main research activities in the last nine years, this thesis focuses almost exclusively on
mathematical approaches. A few empirical results will nevertheless be mentioned, e.g., where they
have crucially inspired our analyses or where they could demonstrate the applicability of our results
beyond the setting covered by the theoretical analyses. Some further empirical results, which are not
necessarily related to theoretical results, will be mentioned in Sections 5.3.2 and 5.4. In particular,
we will present in Section 5.4 our modular benchmarking platform, IOHprofiler, which we have built
with the goal to facilitate both empirical and theoretical research on IOHs, and the communication
between the two sub-domains.

By design, this thesis is strongly biased towards my own contributions to the theory of sampling-
based optimization heuristics. Readers interested in a broader overview of the field are referred to
the books [DN20, AD11], where summaries of state-of-the-art results and methods for the analysis of
IOHs can be found. The book [NW10] surveys tools and results for combinatorial optimization, and
the book [Jan13] is recommended for a gentle introduction to running time analysis of evolutionary
algorithms.

1.3 Evolutionary Algorithms – Dictionary and Examples

In the broader Computer Science context, research on IOHs is often subsumed under the term “evolu-
tionary computation”, “bio-inspired computing”, or “nature-inspired optimization”. Classically, these
terms used to refer to algorithms that were inspired – one way or the other – by phenomena observed
in nature. Today, conferences on evolutionary computation cover the whole spectrum of sampling-
based optimization techniques, and – where applicable – also the hybridization with exact solvers. It
is therefore important to keep in mind that “evolutionary computation” does not necessarily require
nor aim for nature-inspired design principles.

In the context of this thesis, biological or other nature-driven inspiration has no relevance – with one
important exception, and this is the terminology used in both this thesis and, more broadly, in the
publications of our research domain, which goes back to the times in which the biological inspiration
was still a major “selling point” of a new algorithmic idea. While a general trend towards avoiding
such community-specific terminology can be observed, several terms are still very actively used. This
leads to a rather unfortunate situation in which algorithms and results are not always immediately
accessible to non-experts. Despite best efforts, the works presented in this thesis are no exception to
this rule, as we always need to balance between addressing a general audience and the possibility for
the experts to quickly identify the relationship to previous works. We therefore briefly summarize and
“translate” the most commonly used community-specific terms used in this thesis:
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• The fitness function or objective function refers to the problem instance at hand. Even if not
modeled explicitly, there exists a function f : S → Rd, which maps the admissible decision
alternatives x ∈ S to the values that are obtained through the black-box evaluations. The value
f(x) of a search point x ∈ S is also referred to as its fitness, its function value, or its objective
value.

• An individual is an element of the decision space, i.e., a point x ∈ S. To express a temporal
component, individuals are sometimes further specified into parents and offspring. In this thesis,
we typically speak of search points or solution candidates when referring to the elements of the
decision space, and we also call S the search space. A population is a set of search points. To
indicate the temporal component, we distinguish the parent population from the offspring popu-
lation. That is, the parent population is the set or a subset of the points that have been evaluated
before the current iteration, whereas the offspring population is the one that is generated (and
in most cases also evaluated) in the current iteration.

• A mutation operator is a family (D(· | x))x∈S of unary probability distributions over the search
space S. Given a point x ∈ S, the mutation operator generates a new search point by sampling
from D(· | x). The probably most commonly known mutation operator is the one that samples
a random neighbor (we will call this operator flip1(·) in this thesis, see discussion below).

• A crossover operator or recombination operator is a family (D(· | x1, . . . , xk))(x1,...,xk)∈Sk of
k-ary probability distributions over the search space S with k > 1. A well-known example is the
coordinate-wise majority vote. More examples will be provided below.

Notation and assumptions: We use below and in the remainder of this thesis the following notation.
By [a..b] we denote the set of integers k satisfying a ≤ k ≤ b. Unless stated otherwise, we assume that
the optimization problem is a problem of the form f : {0, 1}n → R, i.e., a so-called pseudo-Boolean
function. In particular, we assume the search space to be the full n-dimensional hypercube {0, 1}n
(when considering constrained problems, we typically use penalization approaches, but we focus in this
thesis on unconstrained optimization problems, i.e., we assume all points x ∈ {0, 1}n to be feasible).
We restrict our attention to single-objective optimization, and, unless stated otherwise, we assume
maximization as objective. For x ∈ {0, 1}n we write x = (x1, . . . , xn). By flipping a bit xi we mean
to replace it by 1−xi. For two strings x and y we denote by z = x⊕ y the bitwise XOR, i.e., zi = 0 if
xi = yi = 0 or xi = yi = 1, and zi = 1 otherwise. For an integer n ∈ N we denote by Sn the symmetric
group of the set [1..n], i.e., the set of all permutations (one-to-one maps) σ : [1..n]→ [1..n].

Example: A Family of (µ + λ) Genetic Algorithms (GAs). Since it will be useful for later
discussions, we present in Algorithm 2 a framework for a class of so-called (µ + λ) genetic algo-
rithms (GAs). These algorithms are initialized by sampling and evaluating µ search points, which
form the initial population. In each iteration, λ new points are evaluated. Each of these λ “offspring”
is generated by first deciding whether or not to do a crossover operation. In the version presented
in Algorithm 2, crossover happens with probability pc (line 7). If crossover is chosen, two points are
selected from the current population (line 8), and a new point is generated by applying a crossover
operator to them. Subsequently, a random decision is taken to decide whether or not the so-created
point undergoes a mutation step (line 11). If crossover was not chosen in line 7, the new candidate
solution is generated by first selecting a point from the current population P (line 13) and then apply-
ing a mutation operator to it. The new search point is then evaluated (line 15) and inserted into the
offspring population O. When all λ offspring have been evaluated, the algorithm updates its control
parameters and operator choices and selects which of the µ + λ points from the set P ∪ O to keep
for the next iteration. Note that in all the above and below, the sets P and O are, strictly speaking,
multi-sets, i.e., we allow points to appear more than once. When we count the number of elements in
the set, each point contributes with the number of times it appears in the multi-set. Likewise, when
we say to remove a point, we remove only one of the possibly multiple copies.
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Algorithm 2 A Family of (µ+ λ) Genetic Algorithms (GAs)

1: P ← InitialSampling(µ) . initialization
2: evaluate the µ points in P
3: while termination criterion not met do
4: O ← ∅
5: for i = 1, . . . , λ do
6: Sample rc ∈ [0, 1] u.a.r. . proba. of crossover is pc
7: if rc ≤ pc then . crossover step
8: (x, y)← SelectC(P, 2) . parent selection
9: z ← Crossover(x, y) . (pre-)candidate generation

10: Sample rm ∈ [0, 1] u.a.r. . random decision: mutation after crossover?
11: if rm ≤ pm then z ← Mutation(z)

12: else . mutation step
13: x← SelectM(P, 1) . . parent selection
14: z ← Mutation(x) . candidate generation

15: Evaluate z
16: O ← O ∪ {z} . z added to offspring population

17: Update the control parameters and operator choices
18: P ← Replace(P,O, µ) . decide which µ points to keep for the next iteration

We did not specify above the operators that the (µ + λ) GA makes use of. We briefly summarize a
few standard choices below. Note, though, that – despite the great number of combinations it already
offers – this list is very far from being exhaustive. Notably, our selection is clearly biased towards
the operators that will be used in later parts in this thesis. Much much more sophisticated operators
exist, but are omitted here for the sake of brevity. The example in this section should therefore not be
seen as a description of the state of the art in evolutionary computation, but rather as an illustrated
example for how the algorithms may look like. The interested reader is referred to [ES03, Bäc96] for
broader overviews of the field.

InitialSampling(µ) – Initialization of the algorithm to sample µ points. Examples:

• Uniform Sampling: sample µ points uniformly at random (i.i.d. uniform sampling)

• Quasi-random sampling, e.g., from a low-discrepancy sequence [DP10, Mat09, Nie92]

• Latin Hypercube Designs [MBC79]

SelectC(P, k), SelectM(P, k), and Replace(P,O, k) – Selection of k points for the crossover op-
eration, the mutation operation, and the replacement of the population, respectively. For the latter,
we distinguish whether selection is applied to the (multi-)set P ∪ O (plus selection) or to O (comma
selection). Examples:

• Uniform selection, with or without replacement

• Truncation selection: select the best k points from P (with respect to the objective function
value). This operator is sometimes referred to as elitist selection. Different tie-breaking rules
are used, e.g., random selection or diversity-maximizing selection (with respect to a diversity
measure that must be specified).

• Fitness-proportional selection: select each of the k points by sampling from the distribution that
assigns each x ∈ P a probability of f(x)/

∑
y∈P f(y).

• Tournament selection: select uniformly at random m different points in P , and keep the best one
of these. Repeat the procedure k times. Instead of a uniform selection of the m “competitors”,
a fitness-proportional selection can be chosen. The tournament size m is a control parameter
that needs to be chosen by the user.
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Crossover(x, y) – binary variation operators. Examples:

• crossc(x, y) – Uniform crossover with bias c: for each position i ∈ [1..n] it is decided, indepen-
dently of all other decisions, whether the entry of the first argument (with probability 1 − c)
or of the second argument (with probability c) is copied. That is, the “offspring” z satisfies
P[zi = xi] = 1 − c and P[zi = yi] = c, for all 1 ≤ i ≤ n. The by far most common setting
uses c = 1/2, and when no further specification is made, the term “uniform selection” can be
understood this way.

• k-point crossover: select i1, . . . , ik uniformly at random and without replacement from [1..n] and
set zi ← xi for i ∈ [1..i1] ∪ [i2 + 1..i3] ∪ . . . and set zi ← yi for i ∈ [i1 + 1..i2] ∪ [i3 + 1..i4] ∪ . . ..

Mutation(x) – unary variation operators. Examples:

• flipk(x) – random search at radius k: create an offspring y by changing the entries in k pairwise
different, uniformly chosen positions. k is referred to as the mutation strength. Different ways to
change the entries in the selected positions exist. In the context of pseudo-Boolean optimization,
we simply flip the bit.

• SBM(x, p) – Standard bit mutation with mutation rate p: chooses the mutation strength k from
the binomial distribution Bin(n, p) and applies flipk(x). Standard bit mutation is often defined
in the following, equivalent, way: decide, independently for each position i ∈ [1..n], whether to
keep the entry (with probability 1− p) or whether to change it (with probability p).

• SBM>0(x, p) – Conditional standard bit mutation with mutation rate p: choose k from the
binomial distribution Bin(n, p) until k > 0 and apply flipk(x). This is identical to sampling k
from the conditional binomial distribution Bin>0(n, p) which re-assigns the probability to sample
a 0 proportionally to all values i ∈ [1..n]. That is, P[k = i] =

(
n
i

)
pi(1− p)n−i/(1− (1− p)n)

• SBM0→1(x, p) – “Shifted” standard bit mutation with mutation rate p: choose k from the
binomial distribution Bin(n, p). If k = 0, replace it by k = 1. Apply flipk(x).

• Fast mutation from [DLMN17]: Sample k from the power-law distribution P[L = k] =

(Cβn/2)−1k−β with β = 1.5 and Cβn/2 =
∑n/2
i=1 i

−β . Apply flipk(x).

• normal mutation from [YDB19]: sample k from the normal distribution N (pn, σ2) and apply
flipk(x). In contrast to the mutation operators discussed above, this operators allows to scale
the variance of the mutation strength independently of the mean.

For the last two mutation operators, one needs to decide what to do when the chosen mutation strength
k does not fall into the range [0..n]. Common treatments are resampling until a feasible mutation
strength is obtained, capping at the boundaries, or a uniform choice of k.

Termination Criteria – Examples:

• Fixed budget B of function evaluations or iterations

• Reaching a given target value v ∈ R
• No or insufficient progress in τ iterations

• Diversity falling below some threshold

These termination criteria can also be used to decide when to restart an algorithm. In this case, differ-
ent restart strategies exist, for example independent restart, restart by perturbation of previously
found solutions, or restart by applying some diversification strategy (“niching”).
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1.4 Benchmark Algorithms and Problems Frequently Appear-
ing in this Thesis

With the examples provided above, we can now introduce two families of algorithms which play an
important role in this thesis, and in the theory of IOHs in general.

Randomized Local Search (RLS): RLS is a first ascent random hill-climber. It is a (1+1) scheme,
i.e., it maintains a best-so-far solution x in memory, and generates one offspring per iteration. The
offspring y is created by applying the flipk mutation operator to x, i.e., k uniformly chosen bits are
flipped to generate y from x. Unless stated otherwise, we assume k = 1, i.e., we interpret the local
neighborhood as all points at Hamming distance 1 around the current best solution. Note that RLS
does not keep in mind which solutions have been visited already, nor does it track how often the entry
of a given position has been flipped already. It is hence a very basic optimization strategy with –
seemingly – obvious improvement potential. However, note also that it is not difficult to construct
problems for which RLS is more efficient than other local search variants which try to balance the
number of times each bit is flipped. For our analyses, RLS is often a good starting point, in particular
when used with a fixed or with a deterministic choice of the mutation strength, as it then only has
one source of randomness, not several ones.

The (1+λ) Evolutionary Algorithm (EA): Similarly to RLS, the (1+λ) EA keeps in its memory
a best so far solution x. In each iteration, λ offspring are sampled and the best one of these replaces
the parent x if it is at least as good. Ties are usually broken uniformly at random for the selection
among the λ offspring, and with a bias towards the offspring for the replacement of the best-so-far
solution. The λ offspring are sampled via independent sampling. Each one is generated by applying
the standard bit mutation operator SBM(·, p) to x. We will mostly focus on the case λ = 1.

Unless stated otherwise, we assume that p = 1/n, which is the most commonly recommended mutation
rate. See [Wit13] for an example in which it is explicitly proven that this mutation rate minimizes,
among all static choices for p, the expected optimization time of the (1 + 1) EA on any linear function
f : {0, 1}n → R, x 7→

∑n
i=1 wixi.

We did not specify the termination criteria for these two algorithms, but these will be clear from the
context, and are somewhat irrelevant in most of our studies, as we are typically interested in bounding
the running time of the algorithms, i.e., the number of evaluations needed until an optimal solution
is found. See Section 1.5 for a discussion of performance metrics.

We next present the two most prominent problems in the theoretical analysis of IOHs. They will also
play a central role in this thesis.

OneMax: The original OneMax problem asks to optimize the function

OM : {0, 1} → [0..n], x 7→
n∑
i=1

xi.

Of course, the optimum of this function is the all-ones string (1, . . . , 1). This optimum is unique and
there is no other local optimum, i.e., the problem is unimodal. It is not difficult to see that algorithms
such as RLS and the (1 + λ) EA treat the OM function identically to any of the following instances
of the generalized OneMax problem OMz, z ∈ {0, 1}n:

OMz : {0, 1} → [0..n], x 7→
n∑
i=1

1(xi = zi) = |{i ∈ [1..n] | xi = zi}|, (1.1)

where 1(E) is the function that returns 1 if the event E is satisfied and which returns 0 otherwise.
That is, OMz(x) is the number of positions in which the entries of the strings x and z agree. In this
thesis, whenever we speak of OneMax, we refer to the so-generalized set of problem instances.
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LeadingOnes: The original LeadingOnes problem asks to maximize the function

LO : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ∈ [1..i] : xj = 1} =

n∑
i=1

i∏
j=1

xj ,

which counts the number of initial ones. As with OneMax, we can easily generalize this problem
to a permutation- and XOR-invariant class of instances by defining for each z ∈ {0, 1}n and for each
permutation σ ∈ Sn the instance

LOz,σ : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ∈ [1..i] : xσ(j) = zσ(j)}. (1.2)

Note that LOz,σ(x) is simply the maximal joint prefix of the two strings x and z, in the order induced
by the permutation σ. Again it is not difficult to see that RLS and the (1 + λ) EA treat all these
instances identically, in the sense that their performance trace has exactly the same distribution on
any of these instances. We refer to the whole set of instances {LOz,σ | z ∈ {0, 1}n, σ ∈ Sn} when
speaking, in this thesis, of the LeadingOnes problem.

We briefly comment on these two problems: The OneMax function is the by far best-studied bench-
mark problem in the theory of IOHs, and is often referred to as the “drosophila of Evolutionary
Computation”[FCSS08]. The problem has a very smooth and non-deceptive fitness landscape with a
perfect fitness-distance correlation: the closer we get to the optimum, the larger the function values.
Indeed, OMz is the same problem as minimizing the Hamming distance to the target string z.

Differently from OneMax, the LeadingOnes instances are not separable, i.e., the influence of a
particular bit is not independent of the other bits (for example, there is no contribution of the 1 in
the string x = (010 . . . 0) to the function value LO(x) = 0, whereas the contribution of this bit in
the string y = (110 . . . 0) is one). LeadingOnes is undoubtedly the second-most studied benchmark
problem in the theory of IOHs. Note that it is also a non-deceptive problem, but with a bad fitness-
distance correlation: both strings (0 . . . 0) and (01 . . . 1) have function value zero, but the second one
has Hamming distance 1 from the optimum, whereas the first one has Hamming distance n.

1.5 Performance Measures

While we have mentioned several times above that we are interested in studying the “performance”
of IOHs, we did not yet make precise how we measure this performance. Which measure to use is
indeed a highly non-trivial question, for three main reasons:

1. Unlike in classical algorithmics, where problem data is assumed to be accessible and where
running times can be measured in arithmetic operations, this approach cannot be applied to
IOHs, which typically spend a significant part of their time waiting for the search points to be
evaluated.

2. Many IOHs are randomized algorithms, so that their performance traces are randomized as well.

3. Performance can differ between instances of the same problem, and (of course) between different
problems. We therefore need to decide how to aggregate performance measures.

Luckily, the first challenge can be by-passed by simply basing all running time measures on the
number of function evaluations. This way, we obtain performance measures that capture the main
components of the running time. An advantage of this “query complexity” approach is the fact that
the so-obtained running time measures are independent of the implementation of an algorithm and
of the hardware on which they are run. For theoretical research, measuring function evaluations is
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a very “clean” and convenient approach. Function evaluations are also the main, but not the only
performance criterion regarded in empirical research [HAB+16, RT18]. However, as is the case with
all complexity measures, one should not forget that there are situations in which the match between
function evaluations and optimization requirements is poor, in which case other complexity measures,
such as CPU times may be more appropriate, see [JZ11, JM02, WCL+14, HWHC13] for critical
discussions and alternatives. Note also that by counting the function evaluations only, we may not
reflect the possibility of parallelizing some of the evaluations. Where parallelization is important
(and the number of parallel evaluations is not stable during the whole optimization process), other
performance criteria such as the number of iterations may become more meaningful. As said, the
choice of the performance measure should correspond to the specific requirements of the optimization
scenario. Theoretical research, however, focuses almost exclusively on counting function evaluations
or generations, and this is also the approach taken in this thesis.

Still, even if we agree to use function evaluations as our main or only performances measure, addressing
the randomized nature of the performance traces of IOHs remains difficult, as their performance space
is at least three-dimensional, spanned by the following criteria:

• the solution quality (fitness),
• the number of function evaluations (budget), and
• the probability of finding within a given budget of function evaluations a solution that is at least

as good as a given quality threshold (probability of success).

In which way to aggregate this three-dimensional performance space depends again on the application
and user interest. Where the number of function evaluations is the key restriction, statistics about
the solution quality that can be obtained within this fixed budget are needed. These statistics can be
some quantiles of the solution quality, or its average value. If, in contrast, a user is most interested in
finding a solution of a certain quality, the number of evaluations needed to reach this fixed target is
considered – and here again it depends on the situation whether to regard quantiles or average values.
In security-related applications, but also in other settings, a high certainty to reach a minimum quality
threshold is likely to be very important, whereas the probability of success is much less important
in settings in which we can perform several independent optimization runs in parallel. We also note,
without going further into details, that in practical applications not only the robustness with respect to
solution quality and time matters, but also the robustness with respect to the recommended solution.
That is, when the same or similar problem instances are solved twice, it can be important that the
suggested solutions are similar, even if several solutions of (almost) identical quality exist.

In theoretical research, the by far most commonly studied metric is the optimization time, also referred
to as the running time of an algorithm. The running time is the number of evaluations needed until
an optimal solution is evaluated for the first time, i.e., the first hitting time of an optimal solution.
We often bound only the expected value of this random variable, but it is becoming more and more
common to also study other moments or properties of the running time.

What concerns the aggregation of performance statistics over different instances, the most common
approach in the study of IOHs follows the classic approach taken in the broader Computer Science
literature, which is to adopt a very cautious (“pessimistic”) measure and to regard the worst case.
Here again, naturally, the most suitable aggregation depends on the application at hand. Alternatives
such as average-case measures or the worst-case for a 1− ε fraction of the instances only are subject
of intensive research in the broader algorithms literature, but play – so far – only a marginal role
in the theoretical analysis of IOHs. Since in this thesis we are mostly concerned with perfectly
homogeneous instances/performance statistics, we can safely stick to the convention of applying a
worst-case aggregation.

Summing up this discussion, we mostly focus in this thesis on worst-case expected running time of an
algorithm A on a set of problem instances F . Thus, formally, we regard

sup
f∈F

E[T (A, f)],
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where T (A, f) is the random variable that denotes the number of function evaluations that algorithm
A performs on function f until it evaluates for the first time an optimal solution x ∈ S. And we keep
in mind the shortcomings of this measure listed above, in that by reducing the whole performance
space to a single measure we necessarily lose a lot of information about (1) the anytime performance of
the algorithms, (2) the distribution of the running times on a single instance, and (3) the distribution
of running times across the different instances.

We should further note that theoretical research for IOHs focuses very much on asymptotic analyses,
i.e., we typically assume that the set of problems is scalable in the dimensions, in the sense that for
each (or for at least infinitely many) n ∈ N our problem is a set Fn of problems f that are defined
over n decision variables (this is clearly the case of OneMax and LeadingOnes, as straightforwardly
seen by their definitions). We are then interested in how supf∈Fn E[T (A, f)] scales in n.

Examples: The Running Times of RLS and the (1+ 1) EA on OneMax and LeadingOnes.
The running time of RLS on OneMax is easily seen to resemble the well-known coupon collector
problem (see [DP09] or [Doe20a] for a gentle introduction to this problem), with the only difference
being the random initialization of RLS: while the coupon collector starts with zero coupons, the
initial starting point of RLS on OneMax is distributed according to a binomial distribution with
n trials and success probability 1/2. Disregarding this random starting point, RLS is easily seen
to have an expected running time on OneMax of at most n ln(n) + γn + 1

2 ≈ n ln(n) + 0.5772n
function evaluations, where γ = 0.5772 . . . is the Euler-Mascheroni constant. The precise complexity
is n ln(n) + (γ− ln(2))n+ o(1) ≈ n lnn−0.1159n, by a result that we have shown in [DD16a]. We will
see in Sections 2.4.2.1 and 3.2 that these bounds can be improved by adjusting the mutation strength
during the optimization process.

The (1 + 1) EA has a constant overhead and achieves an expected running time on OneMax of
(1 − o(1))en ln(n), see [HW19, HPR+18] for a much more precise bound. While the upper bound is
rather straightforward, the lower bound is surprisingly difficult to prove, since – in contrast to RLS –
the algorithm could, and frequently does, make progress of more than just one.

LeadingOnes was originally designed in [Rud97] to disprove a previous conjecture of
Mühlenbein [Müh92], who claimed that the expected running time of the (1 + 1) EA on every uni-
modal function is O(n log n). While Rudolph showed experimentally that its expected running time
is Θ(n2), this bound was formally proven a bit later in [DJW02]. Exact expressions for the expected
running time of the (1 + 1) EA on LeadingOnes are available in [BDN10, Sud13, Lad05] (see also
Section 4.3). It is not difficult to see that RLS has an expected running time of (1 + o(1))n2/2 on
LeadingOnes.

1.6 Outline of the Thesis

Undoubtedly, the vast majority of research activities on IOHs aims at designing efficient solvers or
at methods that help one choose a suitable heuristic for a given optimization task. A substantial
fraction of my own work also falls into this category. Another major theme in my research, however,
has always been on studying the limits of sampling-based optimization, commonly referred to in
the evolutionary computation community as black-box complexity. Results on this topic will be
presented in Chapter 2. In Chapter 3 we summarize two examples that illustrate how such black-box
complexity results can inspire the design of new algorithms. More precisely, we illustrate in this
section the key observations that let us to design the (1 + (λ, λ)) GA presented in [DDE15] and to
the learning-based parameter control scheme presented in [DDY16]. Parameter control, that is,
the dynamic configuration of IOHs, is also the topic of Chapter 4. A few selected results not covered
by the above topics will be briefly highlighted in Section 5. We conclude this thesis in Chapter 6 by
providing an outlook on what I consider to be important directions for future research.



Chapter 2

Black-Box Complexity Theory
Continued

Whereas research of IOHs very clearly aims to contribute to designing algorithms that most efficiently
optimize a given problem f : S → R, it can be very instructive to know where the limits of sampling-
based optimization techniques are. Quantifying the performance of a (possibly not explicitly known)
best solver is the subject of black-box complexity. Black-box complexity has been the central topic
of my PhD thesis [Win11]. It continues to play an important role in my research activities since. In
the following sections, I highlight a few selected results obtained in the last years. A more exhaustive
summary of existing black-box complexity results can be found in my book chapter [Doe20b].

2.1 Black-Box Complexity – Definition

Recalling that we measure the performance of sampling-based heuristics by the number of function
evaluations, this criterion must be reflected in a matching complexity theory. Following the discussion
in Section 1.5, we are thus mostly interested in studying, for a given collection of problem instances
F , the best possible (across all algorithms) worst-case (with respect to the problem instances in F)
average (over all independent runs of the algorithm) running time that an algorithm can achieve.
That is, we define the black-box complexity of a class F of problem instances as

BBC(F) := inf
A

sup
f∈F

E[T (A, f)], (2.1)

where we recall that by T (A, f) we denote the number of function evaluations that algorithm A
performs on problem instance f until it evaluates for the first time an optimal solution.

The definition above does not make any restriction on the type of algorithm, or the knowledge that it
uses about the problem instances in F . This, in particular, implies that the black-box complexity of
a single function F = {f} is always one: the algorithm querying an optimal solution arg max f in the
first iteration achieves this bound. It therefore only makes sense to study the black-box complexity
of collections F which comprise several functions or, as we shall discuss below, to restrict the set
of algorithms under consideration. In practice, we often seek to find problems that are structurally
equivalent or at least similar to a problem of interest. Here, the definition of “structurally equivalent”
can be highly subjective. A common way to generalize a function f is by concatenating it with
automorphisms of its domain [RV11, LW12, DKLW13]. For example, in the case of pseudo-Boolean
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functions f : {0, 1}n → R, and the domain being understood as the Hamming cube (i.e., we consider
as neighbors any two points that differ in exactly one position), we may consider the class

F(f) = {fz,σ | z ∈ {0, 1}n, σ ∈ Sn} (2.2)

with

fz,σ(x) := f(σ(x1 ⊕ z1, . . . , xn ⊕ zn)) = f(xσ(1) ⊕ zσ(1), . . . , xσ(n) ⊕ zσ(n)). (2.3)

As we have discussed in Section 1.4, several classical IOHs treat all such functions equally, in the sense
that their performance will be identical on each instance fz,σ.

Since invariance with respect to the bit positions is not always desirable (e.g., when the order of decision
variables corresponds to interactions between them), another generalization F∗ ⊆ F commonly studied
comprise only those instances in F for which σ is the identity; i.e.,

F∗(f) = {fz | z ∈ {0, 1}n} with fz(x) = f(x1 ⊕ z1, . . . , xn ⊕ zn).

A second, complementary way of obtaining meaningful complexity statements is to restrict the class
of algorithms under investigation. That is, for a given collection A of algorithms, we define the
A-black-box complexity of F (or, likewise, the A-restricted black-box complexity of F) as

BBC(F ,A) := inf
A∈A

sup
f∈F

E[T (A, f)]. (2.4)

When no assumption on A is made, we speak of the unrestricted black-box model and the unrestricted
black-box complexity, respectively.

Warning: Most black-box complexity models do not make any assumption on the (wall-clock) time
that an algorithm requires between any two queries. The complexity bounds are therefore not com-
parable to classical complexity notions. In particular, NP-hard problems can have very small black-
box complexity, as it essentially suffices to learn the problem instance in a sufficient (often, linear)
number of queries, and then computing an optimal solution offline, i.e., without further queries.
The last step may – in the extreme case – comprise an exhaustive search for an optimal solution;
see [DJW06, DDK14] for examples in the unrestricted and the so-called unbiased black-box models,
respectively. Most of the upper bounds mentioned below, however, can be obtained by polynomial-
time algorithms.

2.2 Black-Box Complexity – Motivation

As is the case for many sub-domains in Theoretical Computer Science, a core motivation to study
black-box complexity models is to further our understanding of the gaps between state-of-the-art
techniques and their theoretical performance limits, with the objective to derive insights that will
eventually help us design more efficient solution techniques. Black-box complexity contributes to this
goal in several complementary ways:

(1) A first benefit of black-box complexity is that it enables the above-mentioned evaluation of how
well we have understood a black-box optimization problem, and how suitable the state-
of-the-art heuristics are. Where large gaps between the black-box complexity and the performance
of a best known solver exist, we may want to explore alternative algorithmic solutions, in the hope to
identify more efficient solvers. Likewise, we can stop striving for more efficient algorithms when the
two quantities match (or are close to each other).
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(2) Another advantage of black-box complexity studies is that they allow to investigate how cer-
tain algorithmic choices influence the performance: By restricting the class of algorithms
under consideration, we can judge how these restrictions increase the complexity of a black-box op-
timization problem. In the context of evolutionary computation, interesting restrictions include the
amount of memory that is available to the algorithms [DJW06, DW14a], the number of solutions
that are sampled in every iteration [BLS14, LS19], the distributions from which solution candidates
are generated [LW12, RV11], the selection principles according to which it is decided which search
points to keep for future reference [DL17a], etc. Comparing the black-box complexity BBC(F ,A)
with BBC(F ,B) for two collections B ⊆ A quantifies the performance loss caused by restricting our
attention to the smaller class of algorithms. For example, by restricting the memory available to the
algorithms under consideration, we can analyze the effects of not storing the set of all previously
evaluated solution candidates, but only a (possibly small) subset thereof.

(3) As we shall see below, the black-box complexity of a problem can be significantly smaller than
the performance of a best known “standard” heuristic. In such cases, the small complexity is often
attained by a very problem-tailored black-box algorithm, which is not representative for common
sampling-based optimization heuristics. Interestingly, it turns out that we can nevertheless learn
from such highly specific algorithms, as they often incorporate ideas that can be beneficial much
beyond the particular problem at hand. As we shall demonstrate in Chapter 3, even for very well-
researched optimization problems, such ideas can give rise to the design of novel heuristics which are
provably more efficient than standard solutions. This way, black-box complexity serves as a source
of inspiration for the development of novel algorithmic ideas that lead to the design of
better search heuristics.

2.3 Results for the Unrestricted Model

We summarize in this section two results for the unrestricted black-box model. These results were
proven in [DDST16] and [AAD+19], respectively. In particular the first result enjoys some popularity
outside the evolutionary computation community, since it improved a 30 years old bound on a popular
board game. The second result is mostly interesting from a methodological point of view, since both
the upper and the lower bounds proven to obtain the tight black-box complexity of the LeadingOnes
problem are highly non-trivial.

2.3.1 OneMax and Mastermind

One of the most classic black-box complexity results – albeit formulated in a different context (as a
coin-weighing problem) – goes back to Erdős and Rényi, who showed in [ER63] that the unrestricted
black-box complexity of the generalized OneMax problem class defined in 1.1 is Θ(n/ log n). More
precisely, Erdős and Rényi showed that the unrestricted black-box complexity of OneMax is at least
(1 − o(1))n/ log2(n) and at most (1 + o(1)) log2(9)n/ log2(n). The upper bound was improved to
(1 + o(1))2n/ log2(n) in [Lin64, Lin65, CM66]. To date, the factor two gap between upper and lower
bound remains open. The algorithm certifying the upper bound is based on pure random sampling and
an expensive offline computation of the still possible target strings z. That the (1 + o(1))2n/ log2(n)
upper bound can also be achieved by a proper polynomial-time algorithm has been shown in [Bsh09].

The result of Erdős and Rényi was later generalized by Chvátal to larger alphabet sizes.
Chvátal [Chv83] showed that (in our terminology) the unrestricted black-box complexity of the class

fz : [0..k − 1]n → R, x 7→ |{i ∈ [1..n] | xi = zi}|
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of “Mastermind” problems with n “positions” and k “colors” is Ω(n log k/ log n) and that for ε > 0 and
k ≤ n1−ε, it is at most (2+ε)n(1+2 log k)/ log(n/k). The name of the Mastermind problem goes back
to a popular board game from the seventies and eighties of the last century, where a codemaker selects
a secret color code z and the codebreaker aims to identify the code in as few queries as possible. Each
query is answered by the number of positions in which codebreaker’s code agrees with codemaker’s.
See Figure 2.1 for a picture of this game.

Note that for k ≤ n1−ε, ε > 0 being a constant, Chvátal’s result gives an asymptotically tight bound
of Θ(n log k/ log n). Similarly to the random guessing strategy by Erdős and Rényi, it is sufficient
to query this many random queries, chosen independently and uniformly at random from [0..k − 1]n.
With high probability, the scores received for these guesses reduce the set of possible target strings z
to a single solution (which is then also the optimum of the function). Note that no adaptation is
needed for such combinations of n and k to learn the secret target vector z (but, of course, we need
adaptation to query this optimum).

Figure 2.1: The commercial Mas-
termind game, a k-color extension
of the OneMax problem.

This situation changes for the regime around k = n, which
has been the focus of several subsequent works [CCH96, Goo09,
JP11]. These works all show bounds of order n log n for the
k = n Mastermind problem. In [DDST16] we could improve these
bounds to O(n log log n), which is to date the best known upper
bound for the unrestricted black-box complexity of the n-color,
n-position Mastermind game.1 The best known lower bound
for this problem is the linear one reported in [Chv83], which is
straightforwardly proven using a basic information-theoretic ar-
gument: essentially, each query reveals at most log(n + 1) bits
of information (since each function value is an integer between
0 and n). Since we need to learn n log n bits of information in
total (this is the smallest amount of bits needed to describe the
secret code z), we easily derive that we need at least n queries
to obtain the secret code. This informal argument can be be
made precise using Yao’s minimax theorem [Yao77]. Essentially,
the latter enables us to obtain lower bounds for randomized algo-
rithms by studying the performance of deterministic algorithms
on randomly chosen problem instances. Since the class of deter-
ministic algorithms is much smaller than that of all randomized
ones, proving complexity bounds for deterministic algorithms can
be substantially easier than directly analyzing randomized ones.

Theorem 2.3.1 (Theorems 2.1 and 2.3 in [DDST16]). For Mastermind with n positions and
k = Ω(n) colors, the unrestricted black-box complexity of the n-position, k-color Mastermind game is

O(n log log n+k). For k = o(n) it is O
(
n log

(
logn

log(n/k)

))
. This bound can be realized by a polynomial-

time deterministic winning strategy.

The two central ideas in the proof of Theorem 2.3.1 are (1) the observation that a score fz(x) = 0 is
easy to interpret, as it allows to remove for each position i the color xi from the set Ci of still possible
colors for that position, and (2) the idea that we can divide the string into small blocks, for which we
can efficiently learn which blocks do not contribute to the overall score (as opposed to learning this for
individual positions). That is, we only try to find blocks which contributes 0 to fz(x), and then reduce
the set Ci for all the positions i in that block. The O(n log log n) strategy used to prove Theorem 2.3.1

1We note, without further going into the details, that results for other combinations of n and k, as well as for the case
with so-called “white pegs” are available in [DDST16]. In the original Mastermind game, the fz(x) score is indicated
by black pegs (red in Fig. 2.1), whereas the white pegs indicate the number of correct colors in a non-agreeing position
(i.e., formally the number of white pegs is defined as maxρ∈Sn |{i ∈ [1..n] | zi = xρ(i)}| − fz(x)). The case k = n and
“black-pegs only”, however, is the most interesting one, as argued in detail in [DDST16].
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alternates between random guessing of strings in C1×. . .×Cn, and the identification of the “0-blocks”.
The size of the blocks shrinks as the search progresses, reflecting the fact that the probability that a
given position i does not contribute to the score decreases with decreasing size |Ci|. The problem of
identifying which blocks contribute zero to the score is reduced to a coin weighing problem previously
studied in [GK00, Bsh09], in which one is given m coins of unknown integer weights and the goal is
to identify the weight of every coin with as few weighings as possible. A key challenge in analyzing
this strategy is in ensuring that the sizes of the sets Ci do not become imbalanced. To by-pass this
challenge, the algorithm proceeds in phases, and in each phase we never reduce the size of the sets
Ci below a certain threshold. When the size of the blocks (and of the Ci, respectively) becomes to
small, the algorithm switches to the random guessing strategy of Chvátal [Chv83]. Overall, the proof
of Theorem 2.3.1 is very heavily inspired by previous black-box complexity results in which we had
already applied the idea to divide the string into smaller blocks, see [DW14c, DW14a, DW14b] for
explicit examples.

Coming back to the discussion of adaptivity, we also showed in [DDST16] that in the k = Θ(n) regime
any o(n log n) algorithm has to be adaptive, i.e., the secret code cannot be correctly guessed with
fewer than o(n log n) guesses if these have to be decided upon prior to the first evaluation. This lower
bound can be proven by an entropy-compression argument, similar to the one presented in [MT10].

Theorem 2.3.2 (Theorems 4.1 and 4.3 in [DDST16]). The non-adaptive unrestricted black-box com-

plexity of the Mastermind problem with n positions and k colors is Ω
(

n log k
max{log(n/k),1}

)
. For k ≤ n

this bound is tight and can be achieved by a deterministic guessing strategy. In particular, the non-
adaptive unrestricted black-box complexity of the Mastermind problem with n positions and n colors is
Θ(n log n).

2.3.2 LeadingOnes

We now turn our attention to the unrestricted black-box complexity of the LeadingOnes problem
F(LO) = {LOz,σ | z ∈ {0, 1}n, σ ∈ Sn} of instances LOz,σ as defined in 1.2.

To gain some intuition about the problems in F(LO), let us briefly consider the black-box complexity
of the smaller set F∗(LO), in which no re-ordering of the bit positions is enforced and we only need
to learn the target string z. In this case, a function value of k ∈ [0..n] indicates that the entries in the
first k positions are correct, whereas the (k+1)-st entry is incorrect. We cannot infer any information
about the positions in the “tail” (k+2, . . . , n). Therefore, an efficient optimization strategy is to keep
in the next iterations the first k bits unchanged, while flipping the (k+ 1)-st. It does not matter what
we do in the tail, as we have no information about the correctness of these bits. Assuming a random
problem instance, the expected function value of the so-generated point is k + 1 +

∑n
j=k+2 2k+1−j .

This simple algorithm therefore optimizes any instance in F∗(LO) using at most n/2 + o(n) function
evaluations on average. Using Yao’s minimax principle [Yao77], it is not difficult to show that this
bound is tight, i.e., it holds that BBC(F∗(LO)) = n/2± o(n). Both bounds were proven in [DJW06].

When moving on to optimizing instances of the broader class F(LO), we lose information about the
order of the positions. That is, while a score of k still tells us that the “first” (according to the
unknown permutation σ) bits are correct, and that the (k + 1)-st one is incorrect, we do not know
in this setting – a priori – where these positions are. For efficiently optimizing a function LOz,σ, we
cannot avoid to learn some information about the permutation σ. A simple strategy to do so would be
to apply a sequential binary search, which learns the positions σ(1), σ(2), . . . one after the other. This
strategy is easily seen to yield an order n log n algorithm. This, however, is not the most efficient way
of optimizing the instances LOz,σ, as we had already proven in [DW12]. More precisely, we developed
in [DW12] a strategy which optimizes any instance from F(LO) using at most O(n log n/ log log n)
queries on average. In [AAD+19] we could improve this bound to O(n log log n) by optimizing the way
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in which we interleave the binary search learning procedure with steps that capitalize on the partial
knowledge gained about the problem instance (and in particular about the permutation σ) at hand.
We furthermore also showed that our algorithm is asymptotically optimal.

Theorem 2.3.3 (Theorems 4.1 and 5.1 in [AAD+19]). The unrestricted black-box complexity of
LeadingOnesn is Θ(n log log n). The upper bound can be achieved by a polynomial-time algorithm.

The proofs of the upper and lower bounds are both rather involved. For the lower bound, Yao’s
minimax principle is applied to the uniform distribution over the instances LOz,σ with zσ(i) := (i
mod 2), i = 1, . . . , n, indicating that the complexity of the instances LOz,σ originates indeed in the
difficulty of learning the permutation σ (since σ determines the optimum).

In contrast to the situation for Mastermind (Theorem 2.3.1), the algorithm used to prove the upper
bound in Theorem 2.3.3 cannot be derandomized. In fact, it is not difficult to show that for any deter-
ministic algorithm there exists an instance LOz,σ ∈ F(LO) enforcing Ω(n log n) function evaluations
until the optimum is queried for the first time.

Theorem 2.3.4 (Theorem 3.1 in [AAD+19]). The deterministic black-box complexity of F(LO) is
Θ(n log n), and hence asymptotically larger than its randomized counterpart from Theorem 2.3.3. The
above-mentioned binary search strategy is therefore asymptotically optimal among all deterministic
algorithms (in the big-Oh sense).

2.4 Results for Restricted Black-Box Models

After having considered the unrestricted black-box model in the previous section, we next focus on
restricted black-box models, in which the class of admissible algorithms can be substantially smaller
than in the unrestricted case. In Section 2.4.1 we first discuss the effects of combining two previously
studied black-box models, the memory-restricted one suggested in [DJW06] and the ranking-based one
introduced in [DW14b]. In Section 2.4.2 we then discuss new results for the unbiased black-box model, a
concept which revived black-box complexity around ten years ago, with the conference version [LW10],
which later appeared as full version in [LW12]. In nutshell, the unbiased black-box model restricts
the class of algorithms to those that are invariant under the Hamming automorphisms described in
Section 2.1. We finally introduce in Section 2.4.3 the elitist black-box model, a restricted black-box
model that we have introduced in [DL17a] to analyze the impact of the selection behavior of IOHs.
Intuitively, this model requires that only the µ best-so-far solutions can be kept in the memory.

2.4.1 The Combined Memory-Restricted Ranking-Based Black-Box Model

Two key results of my PhD thesis showed that the (1+1) memory-restricted black-box complexity
of the OneMax problem, as well as its ranking-based black-box complexity are Θ(n/ log n), and
thus of the same asymptotic order as its unrestricted black-box complexity, which we have already
discussed in Section 2.3.1. These results were proven in [DW14a] and [DW14b], respectively. In a
nutshell, algorithms covered by the (1 + 1) memory-restricted black-box model can only store one
previously sampled solution and its objective value. They cannot store any other information about
the optimization process, and not even an iteration counter. Ranking-based algorithms, on the other
hand, do not have access to the absolute function values, but only to the ranking of the points induced
by their function values.

While the impact of memory-restriction and ranking-basedness had previously been studied in iso-
lation, our work [DL17b] was the first to study the effects of combining these two restrictions. It is
not difficult to see, by the standard information-theoretic argument already presented above, that the
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(1+1) memory-restricted ranking-based black-box complexity of OneMax is at least linear in n, and
hence asymptotically larger than the pure ranking-based and the pure memory-restricted black-box
complexity. However, in [DL17b] we also showed lower bounds for the combined model which are by a
constant factor stronger than the simple information-theoretic ones. These bounds are thus stronger
than any bound obtained by reducing the combined model to an existing black-box model with a
single restriction. We refer the interested reader to Theorem 2 in [DL17b] for the details.

On the more constructive side, we showed in [DL17b] that the linear lower bound for the (1+1)
memory-restricted ranking-based black-box complexity of OneMax is asymptotically tight, i.e., we
presented an algorithm which meets all the requirements of the combined black-box model and which
optimizes any OneMax instance using, on average, at most a linear number of queries.

Theorem 2.4.1 (Corollary 1 in [DL17b]). The (1+1) memory-restricted, ranking-based black-box
complexity of the OneMax problem is Θ(n).

The algorithm developed to prove Theorem 2.4.1 is far from being straightforward, given that the
previously best known algorithms for the single-restriction models all very crucially violate the re-
striction implied by the other. That is, the previously studied memory-restricted algorithms make
use of absolute fitness values, whereas the query-efficient ranking-based algorithms rely on access to
a large number of previously sampled points. A different strategy was therefore needed to derive the
linear black-box algorithm which satisfies both requirements at the same time. We could nevertheless
exploit ideas from previous black-box complexity studies. Notably, we reserve some parts of the solu-
tion for implementing an iteration counter. Implementing this counter is one of the most tricky parts
in the proof of Theorem 2.4.1.

We also extended Theorem 2.4.1 to the (µ + λ) memory-restricted ranking-based black-box model,
in which the algorithms may store up to µ previously sampled search points and can sample up to λ
points per iteration. More precisely, we show that also in these cases the information-theoretic lower
bound is matched by an algorithm satisfying all the requirements.

Theorem 2.4.2 (Corollary 1 in [DL17b]). For 1 < λ < 2n
1−ε

, ε > 0 being an arbitrary constant, the
(1 + λ) memory-restricted ranking-based black-box complexity of OneMax is Θ(n/log λ) (in terms of
generations), while for µ = ω(log2(n)/ log log n) its (µ+ 1) memory-restricted ranking-based black-box
complexity is Θ(n/logµ).

We will come back to these results in Section 2.4.3.1, when we discuss the elitist black-box model.

2.4.2 The Unbiased Black-Box Model

As mentioned above, the unbiased black-box model was introduced in [LW10, LW12]. It restricts
the distributions from which the algorithms may sample new solution candidates. These have to
be unbiased with respect to automorphisms of the hypercube. In addition to requiring invariance
with respect to Hamming automorphisms, the unbiased black-box model also allows to discriminate
between algorithms of different arity, where here in this context the arity of a sampling distribution
is measured by the number of points that are needed to specify it. A k-ary unbiased operator is hence
an operator sampling from a family (D(· | x1, . . . , xk))(x1,...,xk)∈{0,1}n×...×{0,1}n of distributions that
each satisfy the following two conditions:

(i) ∀z ∈ {0, 1}n ∀y ∈ {0, 1}n : D(y | x1, . . . , xk) = D(y ⊕ z | x1 ⊕ z, . . . , xk ⊕ z), (XOR invariance)

(ii) ∀σ ∈ Sn ∀y ∈ {0, 1}n : D(y | x1, . . . , xk) = D(σ(y) | σ(x1), . . . , σ(xk)) , (permutation invariance)

where we recall from Section 1.3 that we abbreviate by Sn the set of all permutations of the index set
[1..n] and by σ(x) we denote the reordered string (xσ(1), . . . , xσ(n)). Intuitively speaking, an unbiased
operator does not discriminate between the bit positions nor between the bit values. Concretely, these
operators can be described as follows:
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• Uniform random sampling is a 0-ary unbiased operator. No other 0-ary unbiased operator exists.

• A unary unbiased operators takes as input one search point and specifies a distribution for the
radius r ∈ [0..n] of the Hamming sphere at which the output is sampled. Once r is fixed, all
points at Hamming distance r from the input are equally likely to be chosen, i.e., the offspring
is obtained by applying the flipr operator. This characterization has been formally proven
in [DDY20], but – as noted there – it can (with some effort) also be derived from [DKLW13,
Proposition 19].

As mentioned in Section 1.1, the context of evolutionary computation, unary operators are
referred to as mutation operators. All mutation operators listed in the example of Section 1.1
are unary unbiased operators.

• Binary and higher-arity unbiased operators take as input two or more points and specify (through
a possibly randomized process, as described for the unary case) for each of them at which radius
the eligible samples are. The output is sampled uniformly at random from the set of points
satisfying all these constraints. Uniform crossover and majority vote are classical examples for
such operators. The k-point crossover operators, however, are not unbiased, as they are not
invariant with respect to a rearrangement of the bit position.

A k-ary unbiased algorithm can now be defined as an algorithm that only uses unbiased operators of
arity at most k. The k-ary unbiased black-box complexity of a class F is the complexity of F with
respect to all these algorithms. Note that algorithms that are unbiased according to the definitions
above treat all the instances fz,σ in the set F(f) (as introduced in Equations (2.2) and (2.3)) identically.
For the unbiased black-box model, it therefore suffices to consider a single instance of a so-defined
problem class.

The unbiased black-box model described above was generalized to other search spaces in [RV11,
DKLW13]. Details are omitted here in the interest of space.

In the remainder of this section we present two results obtained for the unbiased black-box model.
The first one, presented in Section 2.4.2.1, provides a precise bound for the unary unbiased black-box
complexity of OneMax. The second result, focus of Section 2.4.2.2, analyzes how the k-ary unbiased
black-box complexity of so-called “jump” functions depends on the jump size ` and the arity k. The
results are based on the journal papers [DDY20] and [DDK15], respectively.

2.4.2.1 The Unary Unbiased Black-Box Complexity of OneMax

We recall from Section 2.3.1 that the unrestricted black-box complexity of OneMax is known to be
between (1± o(1))n/ log n and (2± o(1))n/ log n. Already in [LW12] it was shown that this running
time cannot be achieved by unary unbiased algorithms. More precisely, Lehre and Witt proved that
the unary unbiased black-box complexity of OneMax is Θ(n log n). The upper bound is matched by
standard IOHs such as RLS and the (1+1) EA. The lower bound was shown to hold for all functions
with a unique global optimum. This was proven via a potential function argument, or, more precisely,
using a multiplicative drift theorem for lower bounds, cf. Theorems 5 and 6 in [LW12] for details.
In [DDY20] we extended the result from [LW12] by making precise not only the leading constant, but
also the first lower order term of the unary unbiased black-box complexity of OneMax.

Theorem 2.4.3 (Theorem 37 in [DDY20]). The unary unbiased black-box complexity of OneMax
is n lnn − cn ± o(n) for a constant c between 0.2539 and 0.2665. The constant c can be numerically
computed to arbitrary precision by the approach described in [DDY20, Section 5]. The lower bound
extends to all unimodal functions; i.e., for any f : {0, 1}n → R with unique global optimum, the unary
unbiased black-box complexity of {f} is at least n lnn− cn± o(n), for the same constant c as above.
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To put the result presented in 2.4.3 into context, we note that it is in line with a major quest
in the field to obtain performance guarantees that are more precise than just determining the or-
der of magnitude. That is, where “big-Oh” asymptotic results have long dominated the field, it
has become much more common in recent years to specify leading constants or even lower-order
terms [HW19, HPR+18, Wit13, DD16a, CSWA15, dPdLDD15]. Such bounds do not only offer much
more accurate performance guarantees, but they also help us improve our methodological skills and,
not less important, they allow us analyze the influence of the control parameters, such as the mutation
rate [Wit13], or the offspring population size (see Theorem 5.4.1) at a much higher precision. Our
result summarized in Theorem 2.4.3 shows that this precision gain in running time analysis can be
extended to black-box complexity.

To prove the upper bound in Theorem 2.4.3 we showed that the drift-maximizing algorithm, which
in each iteration takes a best-so-far solution and mutates it by flipping that number of bits which
maximizes the expected fitness, is almost optimal. To define this algorithm more precisely, we recall
from our discussion above that a unary unbiased algorithm can only use random sampling or unary
unbiased operators. Each unary unbiased operator is characterized by a probability distribution
over the possible distance [0..n] at which the offspring are sampled. The drift-maximizing algorithm
introduced in [DDY20] uses in each step a deterministic radius r. This radius r is determined by
maximizing the expression Ey∼flipr(x)[OM(y)], where x is a current-best solution. Put differently, r is
the value which maximizes the average of the values in the multi-set {OM(y) | y ∈ {0, 1}n, H(x, y) =
r} (where H(x, y) is the Hamming distance between x and y).

Theorem 2.4.4 (Theorem 11 in [DDY20]). Let T (driftmax,OM) be the expected running time of the
drift maximizing algorithm on OneMax. Let UBBC1(OM) be its unary unbiased black-box complexity.
Then E[T (driftmax,OM)]− uBBC1(OM) = Θ(n2/3 ln9 n).

To understand the gain of the drift-maximizing algorithm over previously studied unary unbiased
algorithms, we can rewrite the expression in Theorem 2.4.3 to n (ln (n/3) + γ + c′) + o(n), where now
c′ is a constant between 0.2549 and 0.2675. The previously best known unary unbiased algorithm was
a variant of RLS which uses a best-of-µ initialization, for a suitably chosen µ. We have presented this
algorithm in [dPdLDD15]. It has an expected runtime equaling that of RLS up to an additive term
of order o(n). It is hence n(ln(n/2) + γ) ± o(n). For sufficiently small ε > 0, the drift-maximizing
algorithm derived in [DDY20] is thus by an additive (ln(3)− ln(2)−c′)n±o(n) term faster, on average,
than RLS or the algorithm presented and analyzed in [dPdLDD15]. That is, compared to these two
algorithms, the drift maximizing algorithm saves between 0.138n±o(n) and 0.151n±o(n) iterations on
average. For concrete problem dimensions n up to 10,000, the drift-maximizing mutation strengths r
were computed in [BD19].

The above-mentioned results come with a number of important insights into the structure of the
OneMax problem. For example, we have shown that flipping an even number of bits cannot maximize
the expected progress. We also showed that the drift-maximizing number of bits to flip decreases
monotonically with decreasing distance to the optimum. Finally, we extended our results to a fixed-
budget setting, where we bounded the expected solution quality that an optimal unary unbiased
black-box algorithm can achieve within a given budget of function evaluations (see Section 3.2 for
more details).

An important insight from our work is the observation that a dynamic choice of the mutation strength
can be beneficial even for simple optimization problems like OneMax. We will revisit this topic in
Section 3.2 and in Chapter 4, where we will discuss how this work has influenced the development
of efficient parameter control techniques. On the methodological side, we introduced for the proof
of Theorem 2.4.3 new versions of the lower bound variable drift theorem which can tolerate large
progresses if these happen with sufficiently small probability. This situation, which may occur in the
optimization of OneMax, were not well covered by the previous drift theorems.

From a high-level point of view, we note that Theorem 2.4.4 essentially confirms the intuition that
greedily maximizing the step-wise progress is an efficient solution strategy for problems with a good
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fitness-distance correlation (as mentioned in Section 1.4, OneMax has a perfect correlation between
function values and distance to the optimum). This is a core design principle used in many evolutionary
algorithms. Clearly, it is not hard to see that drift-maximization is not optimal for each and every
problem, as can be easily demonstrated by examples where the fitness leads the algorithm into local
optima far away from the optimal solution [DJW02]. Other examples where drift-maximization fails
are the difficult-to-optimize monotonic functions constructed in [DJS+13, LS18, Len18], where the
fitness leads to the optimum, but via a prohibitively long trajectory. Note also that while our theorem
confirms that drift-maximization is almost optimal for OneMax, it is also not very difficult to prove
that it is not strictly optimal. Indeed, our exact numerical computation of the black-box complexity
in [BD19] showed that the best unary unbiased black-box algorithm can be faster than the drift-
maximizer. The differences, however, are very small: for all numerically evaluated dimensions n ≤
10, 000 the difference in the expected runtime was less than one iteration. In [BD20], we have extended
this non-optimality result for the drift maximizing algorithm to (1 + λ) EAs.

2.4.2.2 The Unbiased Black-Box Complexity of Jump Functions

The result from [LW12] that any unimodal function has an Ω(n log n) unary unbiased black-box
complexity implies that a unary unbiased algorithm cannot intentionally sample the optimum even if
it knows exactly where it is located. The requirement to sample only from unary unbiased distributions
is thus quite restricting (recall here that the unrestricted black-box complexity for such a case would
be one, as the algorithm could simply query the optimum in the first evaluation). However, some lower
order improvements over RLS are possible, as we have shown in Theorem 2.4.4. These improvements
were possible because the algorithm knows at each step how far it is away from the optimum, due to
the perfect fitness-distance correlation of the OneMax function. It could set the mutation strength
r accordingly. In the study leading to journal paper [DDK15], we wanted to know how much the
efficiency suffers if the algorithm cannot immediately infer from the function values how far it is
away from the optimum. We obtain such a situation by blanking out the full `-neighborhood of
the optimum. For symmetry reasons, we need to do the same around its complement, for we could
otherwise direct the algorithm there and then apply the unary unbiased flipn(·) operator, which would
deterministically give us the optimal solution. That is, we considered in [DDK15] the functions

Jump` : {0, 1}n → [0..n], x 7→


n, if |x|1 = n;

|x|1, if ` < |x|1 < n− `;
0, otherwise,

where |x|1 := OM(x) :=
∑n
i=1 xi denotes the number of ones in x. Jump functions have a long

history in the theory of evolutionary algorithms, starting with the seminal paper [DJW02]. A number
of different variants have been studied since, see [DDK15] for a short discussion and references.

When setting ` = n/2− 1 (and assuming an even value of n), only the unique optimum (1, . . . , 1) of
Jump` and the search points with exactly n/2 ones have a non-zero function value. Let us assume
that we start in such a search point x with Jump`(x) = OM(x) = n/2. Sampling the optimum
directly from x seems hopeless, as all we could do is to set the mutation strength to n/2 and hope
that exactly the n/2 zero-bits in x are chosen to be flipped. The probability of this event is (

(
n
n/2

)
)−1,

i.e., negligibly small. We therefore need to approach the optimum if we want to find more efficient
solution strategies. The main idea developed in [DDK15] is to find a strategy that allows to imitate
the optimization of OneMax through RLS, i.e., by iteratively getting closer to the optimum. To this
end, whenever we sample a new point with function value zero, we aim to understand if it is closer
to the optimum as the previous best x or not. To learn this, we apply the following strategy: assume
that the distance of x to the optimum is known to be d. When creating y from x by flipping exactly
one bit, the distance of y to the optimum is either d − 1 or d + 1, and the distance to the “layer”
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in the hypercube with non-zero function values is thus n/2 − d + 1 or n/2 − d − 1, respectively. To
determine in which case we are, we sample sufficiently many strings at distance n/2 − d − 1, until
we have obtained a reliable estimate for the average fraction of points at distance n/2 − d − 1 from
y that are on this middle layer with fitness n/2. Since this fraction is different for points at distance
d − 1 and d + 1 from the optimum, we can then infer in which case we are. With this strategy at
hand, the main difficulty in determining the running time is in bounding by a polynomial expression
the number of samples that are needed to distinguish the case OM(y) = n − d + 1 from the case
OM(y) = n − d − 1. In order to minimize the number of samples required, we choose it adaptively,
depending on the estimated number of ones in y. We also allow fairly frequent incorrect decisions, as
long as the overall progress to the optimum is guaranteed.

From a high-level perspective, our proof can be seen as a confirmation that taking into account the
(empirical) expected function values of the offspring can be a factor to consider in the replacement step
of IOHs. This idea can indeed be found, explicitly or implicitly, in several evolutionary algorithms.
Essentially, it can be seen as the backbone of so-called self-adaptive algorithms, where the search
points “inherit” some values from their parents, and good values are more likely to survive because
they generate “fitter” offspring (see Chapter 4 for a more detailed discussion of such parameter control
mechanisms).

Coming back to the results in [DDK15], we prove the upper bounds in the following table, which sum-
marizes the bounds for the k-ary unbiased black-box complexity of Jump`, for different combinations
of k and `. The Ω(n log n) lower bound for arity k = 1 follows from [LW12, Theorem 6], and the Ω(n)
lower bound for the extreme jump function is again an easy application of Yao’s minimax principle.
For the latter, note that the we need to learn n bits of information, but each function evaluations
reveals only a constant number of bits (since there are only three possible function values).2

Short Jump Long Jump Extreme Jump
Arity ` = O(n1/2−ε) ` = (1/2− ε)n ` = n/2− 1

k = 1 Θ(n log n) O(n2) O(n9/2)
k = 2 O(n) O(n log n) O(n log n)

3 ≤ k ≤ log n O(n/k) O(n/k) Θ(n)

Theorem 2.4.5 (Table 1 in [DDK15]). The k-ary unbiased black-box complexity of Jump` satisfies
the bounds stated above.

For long jump functions, we did not only show the bounds stated above, but we could reduce the k-ary
black-box complexity to the (k − 2)-ary unbiased black-box complexity of OneMax. The bounds in
Theorem 2.4.5 then follow from our work [DW14c], with the exception of the 3-ary bound for the long
jump functions, which required a separate proof in [DDK15].

Theorem 2.4.6 (Theorem 6 in [DDK15]). Let ` ≤ (1/2 − ε)n. For all k ≥ 3, the k-ary unbiased
black-box complexity of Jump` is O(UBBCk−2(OneMax)), where UBBCk−2 denotes the (k − 2)-ary
unbiased black-box complexity.

The strategies used to prove this theorem were later applied in [BDK16] to derive tight upper bounds
for the unrestricted black-box complexities of the Jump` functions.

2.4.3 The Elitist Black-Box Model

A common trade-off that IOHs need to address is whether they rather exploit the knowledge about
the problem instance at hand, or whether they use the samples to explore regions of the decision

2Strictly speaking, we do not need to “learn” in the unbiased model where the optimum is, but since unbiased
algorithms treat all instances in the class F(Jump`) identically, we can infer the argument from there. Note that the
lower bound is not specific to the unbiased model, but applies to the unrestricted black-box complexity of F(Jump`).
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Algorithm 3 A (µ+ λ) elitist black-box algorithm maximizing a function f : S → R

1: Sample µ points x(1), . . . , x(µ) ∈ S and set X ← {x(1), . . . , x(µ)}
2: Query the ranking ρ(X, f) of X induced by f
3: while termination criterion not met do
4: Depending on X and ρ(X, f) choose a probability distribution D(t) on Sλ
5: Sample y(1), . . . , y(λ) ∈ S from D(t)

6: Set X ← X ∪ {y(1), . . . , y(λ)} and query the ranking ρ(X, f) of X induced by f
7: for i = 1, . . . , λ do Select x ∈ arg minX and update X ← X \ {x}

space for which the uncertainty about the quality of the search points is high. This trade-off is very
evident in surrogate-assisted optimization, where different infill criteria are used to maximize the
information gain, the expected improvement, or the probability of improvement. Some evolutionary
algorithms address this trade-off by striving to maintain some diversity in their “populations”: they
guide the decision which points to keep in the memory by a criterion that aims at maximizing the
coverage of the decision space. However, it is also not uncommon to greedily keep only best-so-far
solutions, in particular when the available memory (“population size”) is small. Such selection rules
are called elitist selection, and are often seen as an algorithmic interpretation of Darwin’s “survival
of the fittest” phenomenon. In particular for single-point algorithms, which always keep only one
previously evaluated solution in memory, elitist selection is fairly common. In Section 2.4.2.1 we
have seen that in combination with unary unbiased sampling, this strategy is at least almost optimal
for optimizing the OneMax problem. However, it is also easily seen that elitist selection is very
inefficient when optimizing, for example, the Trap function, which equals the OneMax problem but
which changes the function value of the all-zeros string to n+ 1, making this string the unique global
optimum of Trap. In this case, the expected optimization time of a unary unbiased elitist algorithm
is easily seen to be exponential in n, since the algorithm cannot get closer to the optimum than its
initial distance, which is (1+o(1))n/2 with overwhelming probability. A non-elitist single-point unary
unbiased algorithm, however, can simply minimize the Trap function, which will guide the search
towards the optimum in at most O(n log n) steps.

To formally analyze the impact of elitist selection on the running time of IOHs, we introduced
in [DL17a] a family of (µ + λ) elitist black-box models. These models combine features of previ-
ous black-box models with an enforced truncation selection, as elitist selection is referred to in a less
ambiguous way (see [DL17a] for different interpretations of the term “elitist selection”). The general
structure of algorithms admitted in the elitist black-box models is provided in Algorithm 3. Differ-
ent restrictions on the sampling distributions give rise to different models. For example, we may only
want to consider unbiased distributions, or only distributions that depend on the ranking of the search
points but not on their absolute function values. Note also that several – seemingly minor – decisions,
such as the adaptive or non-adaptive initialization or the tie-breaking rule in the truncation selection,
can have an important impact on the complexity of a best possible heuristic.

Apart from showing exponential performance gaps between the elitist and the non-elitist black-box
models with various combinations of other restrictions, we also proved in [DL17a] that the strategies
presented in Section 2.4.2.2 cannot be simulated efficiently.

Theorem 2.4.7 (Theorem 9 in [DL17a]). For ` = 0 the unary unbiased (1+1) elitist black-box
complexity of the jump function Jump` is Θ(n log n). For all 1 ≤ ` ≤ n/2 − 1 it is Θ(

(
n
`+1

)
). In

particular, for ` = ω(1) the black-box complexity is superpolynomial in n and for ` = Ω(n) it is 2Ω(n),
in contrast to the situation described in Section 2.4.2.2.

Fixed-probability black-box complexity: Another contribution of [DL17a] worth mentioning is
an extension of the black-box complexity measure introduced in Equation (2.1) to a fixed-probability
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performance measure.3 Where classical black-box complexity is based on the expected running time of
an algorithm, the p-fixed-probability A-restricted black-box complexity of a set F of problem instances
is defined as

min{T | ∃A ∈ A∀f ∈ F : Pr[T (A, f) ≤ T ] ≥ p}.

This notion was triggered in [DL17a] by the observation that restarts are not possible in the (strict
interpretation of the) elitist black-box model, because the new starting point(s) would need to be at
least as good as the previous-best solution(s). In practice, however, restarts are a common technique
to handle situations in which an algorithm is “stuck” or does not show sufficient progress over a
certain amount of time. In the black-box complexity literature, many results are based on algorithms
that find the optimum in a certain number of steps with at least constant probability. By randomly
restarting these algorithms after an appropriate number of steps, the expected running time can be
bounded (see [DKLW13, Remark 7] for an explicit formulation). This is not possible in the elitist
black-box model.

We will see applications of the fixed-probability black-box complexity measure in Section 2.4.3.1 and
will also come back to it again in Section 2.5, in the outlook for this chapter.

Non-applicability of Yao’s minimax principle: An important difficulty in the analysis of elitist
black-box complexities is the fact that Yao’s minimax principle [Yao77] cannot be directly applied
to the elitist black-box model, since in this model the previously exploited fact that randomized
algorithms are convex combinations of deterministic ones does not apply, see [DL17a, Section 2.2] for
an illustrated discussion. Since Yao’s minimax principle is the most important tool for proving lower
bounds in the black-box complexity context, we need an efficient, yet powerful workaround. A natural
strategy is to extend the collection A of elitist black-box algorithms to some superset A′ in which
every randomized algorithm can be expressed as a probability distribution over deterministic ones.
Finding extensions A′ that do not deteriorate the lower bounds (too much) is the main difficulty to
overcome when applying this strategy, which is crucial for several bounds proven in [DL17a], but also
for the main result in Section 2.4.3.2 below.

Additional challenge in bounding the information encoded by the state of an elitist
black-box algorithm: One may be tempted to believe that, in the elitist model, one cannot learn
information from search points that have strictly lower fitness than the current best solution, as such
(seemingly inferior) search points have to be discarded immediately and can therefore not influence
the sampling distribution of the next query. However, one has to be very careful with such arguments,
as we illustrated in [DL18] with the following example: assume that there is a search point x from
which we sample search point y1 with some very small probability ε and we sample search point y2

otherwise; i.e., we sample y2 with probability 1 − ε. For the sake of the argument assume further
that for all search points z 6= x the probability to sample y1 or y2 is zero. If, at some stage of the
algorithm, we happen to have y1 in the memory, we may then conclude that we must have been at x
in the previous step. Moreover, if f(y2) > f(x) then with probability 1− ε we would have proceeded
to y2, and thus we would never have visited y1 (as we cannot return to x from a fitter search point).
Therefore, by Bayes’ theorem f(y2) ≤ f(x) with probability at least 1 − ε. Thus, although we have
not visited y2, we can deduce information about its fitness. This situation poses a difficult challenge
for proving lower bounds in the elitist black-box model.

3Note that these measures are introduced in [DL17a] under the notion p-Monte Carlo black-box complexity. In the
context of this thesis, however, and taking into account recent works on fixed-budget (see [JZ14] and follow-up works)
and fixed-target ([BDDV20]) analyses, we prefer the term fixed-probability black-box complexity. We also invert here
the meaning of p, which was the failure probability in [DL17a] and which is used here to denote the minimal success
probability.
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2.4.3.1 Results for OneMax

We have already mentioned in Section 2.4.1 the results on the combined memory-restricted ranking-
based black-box complexity model. In fact, we also showed in [DL17b] that all the bounds proven
for that model also hold in the elitist counterpart, i.e., with enforced truncation selection. However,
unlike the results in Section 2.4.1, we can only show a p-fixed-probability black-box complexity in the
elitist case. For the (1 + 1) case, this results reads as follows.

Theorem 2.4.8 (Theorem 3 in [DL17b]). For every constant 0 < p < 1 there exists a (1+1) memory-
restricted, ranking-based algorithm using truncation selection that with probability at least p finds the
optimum of any OneMax instance using O(n) function evaluations. This running time is asymptot-
ically optimal.

Similar results are shown for the extension of Theorem 2.4.2. Whether or not this result (and others
proven in [DL17b]) extend to the classic black-box complexity (i.e., the one defined via expected opti-
mization times) remains a challenging open problem, with limited practical, but probably significant
methodological impact. In fact, as already discussed in [DL17b], a linear elitist black-box complex-
ity for OneMax could be shown if the algorithm was granted only one additional bit that it could
manipulate at will.

2.4.3.2 Results for LeadingOnes

In [DL18] we studied the (1+1) elitist black-box complexity of the LeadingOnes problem from
Section 2.3.2, i.e., the generalization of LO to the class F(LO) of functions LOz,σ. Our main result
is summarized in the following theorem.

Theorem 2.4.9 (Theorem 1 in [DL18]). The (1+1) elitist black-box complexity of the class F(LO) is
Θ(n2). This bound also holds in the case that the algorithms can make use of the absolute fitness values
of the search points in the population, and not only their rankings, i.e., in the (1+1) memory-restricted
black-box model with enforced truncation selection.

The (1 + 1) elitist black-box complexity of LeadingOnes is thus considerably larger than its unre-
stricted one presented in Theorem 2.3.3, which we recall to be of order n log log n. Note also that
the quadratic bound of Theorem 2.4.9 is matched by classical (1 + 1)-type algorithms such as the
(1+1) EA, RLS, and others.

Our result is not the first quadratic lower bound for the LeadingOnes problem, since also its unary
unbiased black-box complexity is of this order, as was shown by Lehre and Witt in [LW12]. Our
result implies that even if we replace the mutation operator in RLS or in the (1+1) EA by a possibly
strongly biased one, the resulting algorithm would still need time Ω(n2) on average. This shows that
not only unbiased sampling, but also the population structure of the algorithm and their selection
strategies determine the comparatively slow convergence of these two well-known search heuristics.

A key step in the proof of Theorem 2.4.9 is to show that the amount of information that the algo-
rithm has about the problem instance at hand is not sufficient to make substantial progress. What
complicates this analysis is the fact that the LeadingOnes functions, in principle, allow for a rather
important storage, since all the bits in the “tail” could – in principle – be used for encoding infor-
mation. This is because all the bits in position k + 2, . . . , n can be changed without changing the
function value of a search point with function value k and can hence be used to encode information.
In other settings such as those described in Sections 2.4.1 or in [DW14a, DW14b], we have used such
encoding techniques for storing information about previous samples, the number of iterations elapsed,
etc. Here in the (1+1) elitist model, we need to show that this is not possible. Or, more precisely,
we need to show that the information that an algorithm can store about the problem instance or the
optimization trajectory cannot significantly speed up the search.
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The intuitive reason why the given storage is not large enough is that, since the LeadingOnes
problem is permutation-invariant, the black-box algorithms do not know where the irrelevant bits are
located, and storing this information would require more bits than available. However, the discrepancy
is rather small: in most parts of the process, if the number of bits of the storage space was larger by
just a constant factor, then this would trivially allow for efficient use of the storage, and the lower
bounds would break down. It is thus essential to find a good measure for the information that an
algorithm can possibly encode in its queries. We develop a precise notion that bounds the amount
of information that the algorithm has about the instance LOz,σ at any given state. We can use
this notion to estimate the gain that the algorithm can make, in terms of fitness increase, from any
given amount of information. The main contribution of the work [DL18] is in making these intuitive
concepts precise and utilizable in proofs.

In terms of future work, the proof of Theorem 2.4.9 suggests that the reason for the large complexity
is rather the memory restriction than the selection strategy. We therefore conjectured in [DL18] that
already the (1+1) memory-restricted black-box complexity of LeadingOnes is Ω(n2). To date, this
question is still open. Another interesting question posed in [DL18] is whether or not a memory-
restricted black-box algorithm can benefit from trading-off a search point of better fitness value for
one possibly containing more information (but having lower fitness). For LeadingOnes, we believe
that this is not true; that is, we conjectured in [DL18] that, for every (1+1) black-box algorithm
eventually accepting search points of smaller fitness, there exists an elitist one with the same or better
expected running time.

The conference version [DL16b] of this work received a best paper award at the ACM Genetic and
Evolutionary Computation Conference (GECCO) in 2016.

2.5 Outlook

All the results stated above hold for the number of function evaluations needed until an optimal target
has been identified. They furthermore focus on average (over all independent runs of the algorithm)
worst-case (with respect to the problem instances in the class F) running time. Extending black-box
complexity models to other performance metrics is much needed, to reflect the increased interest in the
theory of IOHs community to understand not only worst-case expected optimization times, but also
other performance metrics. We believe in particular the following measures to deserve more attention:

Beyond expected performance: As already argued in Section 2.4.3, there are situations in which
the expected performance is not (or not the only) measure of interest. For example, an algorithm
finding the optimal solution in few steps with 99% probability, but not finding it in the remaining 1%
has infinite expected optimization time. In practice, it may nevertheless be preferable over one that
has a finite, but very large expected optimization time. Such situations are much better reflected by
the concept of p-fixed-probability black-box complexities, where setting p = 1/2, for example, leads to
a black-box complexity notion with respect to worst-case median performance (as opposed to worst-
case average performance). Several alternative notions could also be defined, e.g., measuring the mean
of some given fraction (or inner quantiles) of runs or applying some penalization approach as is used
in the penalized average runtime PAR-c scores.4 However, apart from our own works [DL17a, DL17b]
we are not aware of any works in this direction.

Beyond worst-case performance: In all black-box results so far, we studied the performance with
respect to a worst-case instance. This is also the most common complexity measure used in classical

4The PAR-c is defined as the average first hitting time plus (1−ps)cB/ps, with ps being the probability of a successful
run, B being the maximal budget after which an algorithm is stopped, and c being the penalty factor of the PAR-c
measure. PAR-c scores are common in the Machine Learning literature. In the empirical analysis of numerical black-box
optimization algorithms, the PAR-1 score is studied under the notion of expected running times (ERT [HAB+16]).



28 Black-Box Complexity Theory Continued

Computer Science contexts. But just as discussed above in the context of running time distributions,
this view is not necessarily suitable for each and every context. Alternatives of interest include
average-case complexity or complexity measured with respect to some percentiles of the instances.

Beyond optimization time: Another way to extend existing notions would be to deviate from the
focus on identifying an optimal solution, and to focus on first hitting times for other targets, expressed
as absolute values or in terms of absolute or relative difference to the value of an optimal solution.
Typically, these are expressed as approximation ratios, i.e., we wish to identify solutions that are at
most ε% worse than an optimal solution. Where the value of an optimal solution is not known, one
can focus on absolute target values.

Combinations of all the above are also of interest. That is, in the long run, we could even think of
black-box complexity results with respect to measures that capture both the anytime performance and
the failure probabilities. The area under the cumulative distribution function would be such a measure,
which is already commonly used in standard benchmarking platforms for IOHs [HAR+20, DWY+18b],
but which has not yet been studied in the black-box complexity context, nor in the running time
analysis of IOHs.

A first step for all the above would be to extend the classical running time results for IOHs in the
proposed way. Once this has been achieved, methods to bound the performance for all IOHs can be
discussed.

We finally mention two other important directions for future work:
(1) Beyond the discrete case: The literature on black-box complexity has a very strong bias
towards discrete optimization problems. However, similar notions can be defined for continuous and
for mixed-integer problems. A few works in this direction exist, see [TG06, FT11] for examples.

(2) A rather technical, but methodologically highly interesting question is that of identifying ways
to bound from below the complexity of the k-ary unbiased black-box model for k > 1.
We currently do not have any non-trivial bounds in this context, and this not even for for simple
functions such as OneMax or LeadingOnes. An interesting avenue towards such bounds could be
in the study of combined black-box models, as suggested above in Section 2.4.3 and as later also
investigated in [BB19b].



Chapter 3

From Black-Box Complexity
Theory to Algorithm Design

In Sections 1.2 and 2.2 we have motivated theoretical research on sampling-based optimization heuris-
tics and the study of black-box complexity models, respectively, with the hope to generate insight that
can help us design more efficient algorithms. We will demonstrate in this section how such a process
can look like in practice. Concretely, we will present two examples, in which a new algorithmic design
has been heavily influenced by previous black-box complexity studies.

We start our discussion by recalling that for some black-box models we obtained black-box complexities
that are matched by standard optimization heuristics such as RLS or the (1+1) EA. This is the case, for
example, for the asymptotic, big-Oh complexity of OneMax in the unary unbiased black-box model:
RLS and the (1+1) EA are unary unbiased black-box algorithms and their Θ(n log n) expected running
time matches the Θ(n log n) unary unbiased black-box complexity of OneMax proven in [LW12].
Another example is the LeadingOnes problem in the (1+1) elitist black-box model with its Θ(n2)
black-box complexity, which is again matched by both RLS and the (1 + 1) EA. For several other
models and problems, however, or when regarding complexities that are more precise than just in the
big-Oh asymptotic sense, we have observed black-box complexities that are smaller than the expected
running times of typical IOHs. Two possible reasons for this discrepancy exist: either the respective
black-box models do not capture very well the complexity of the problems for heuristic optimization
approaches, or there are ways to improve classical heuristics by new design principles. In the restrictive
models discussed in Sections 2.4 (see [Doe20b] for more examples), we have seen that there is some
truth in the first possibility: several black-box complexities increase considerably when the class of
admissible optimization heuristics is restricted to sub-classes of algorithms that share some common
properties of classic optimization heuristics. In this section, however, we will show that there is also
some truth in the second option, in the sense that the existing algorithms may be sub-optimal. Put
differently, we show that the gaps between black-box complexity and known running times are not
only due to “too generous” black-box models, but that there is indeed room for new algorithmic ideas.
We also demonstrate how such ideas an be obtained from the black-box complexity studies themselves.

Precisely, we discuss in this chapter two examples, which both focus on the unbiased black-box com-
plexity of OneMax. We first look at the binary case in Section 3.1, and we revisit the unary case in
Section 3.2. In both settings we derive algorithms whose expected optimization times match the best
known (in the binary case) and the best possible (in the unary case) bounds, up to lower order terms.
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3.1 The (1 + (λ, λ)) GA – An o(n log n) Genetic Algorithm for
OneMax

Our first example is taken from [DDE15], whose preceding conference version [DDE13] received a best
paper award at the ACM Genetic and Evolutionary Computation Conference (GECCO) in 2013. We
presented in this work a binary unbiased black-box algorithm which solves OneMax using o(n log n)
function evaluations. As recalled above from Section 2.4.2, no unary unbiased algorithm can achieve
such a running time. This result therefore answered a long-standing open question in evolutionary
computation: whether or not crossover operators can help speed up the optimization of “smooth”
problems. A number of results exist which show similar advantages of crossover, for example [JW02,
FW04, Sud05, DT09, DHK12, Sud12, DJK+13, DFK+16, DFK+18], but in all of these works, non-
standard problems or operators are regarded, the results hold only for uncommon parameter settings,
or they require substantial additional mechanisms like diversity-preserving selection schemes. The
latter also applies to our own work [CD18], where we showed a constant-factor speed-up over the unary
unbiased black-box complexity of OneMax via a rather simple genetic algorithm; see Section 5.1 for
more details. To our knowledge, Theorem 3.1.1 was the first example that proves advantages of
crossover in a natural algorithmic setting for a simple hill climbing problem, and this not only in
terms of constant factors, but also in big-Oh asymptotic terms.

It was previously known, by our own result proven in [DJK+11], that the binary unbiased black-box
complexity of OneMax is at most linear. The algorithm used in [DJK+11], however, is very problem-
specific and very heavily exploits the structure of the OneMax problem – in particular the fact that
OneMax is fully separable (i.e., the decision variables do not interact with each other and can therefore
be optimized sequentially). Our (1 + (λ, λ)) GA does not make use of such information. It uses fairly
standard algorithmic components: standard bit mutation, uniform crossover, and truncation selection.
The novelty is in how these operators are combined with each other. We summarize in this section
the design process that has let to this structure.

Since the unary unbiased black-box complexity of OneMax is Ω(n log n), it was clear for the devel-
opment of the (1 + (λ, λ)) GA that an o(n log n) unbiased algorithm must be at least binary. This has
led to the question how recombination can be used to learn from inferior search points. The following
idea emerged. For illustration purposes, assume that we have identified a search point x of function
value OMz(x) = n − 1. From the function value, we know that there exists exactly one bit that we
need to flip in order to obtain the global optimum z. Since we want to be unbiased, the best mutation
seems to be a random 1-bit flip. This has probability 1/n of returning the unique optimum z. If we
did this until we identified z, the expected number of samples would be n, and even if we stored which
bits have been flipped already, we would need n/2 samples on average.

Assume now that in the same situation we flip ` > 1 bits of x. Then, with a probability that depends
on `, we have only flipped already optimized bits (i.e., we flipped bits in positions i for which xi = zi
to 1− zi), thus resulting in an offspring of function value n− 1− `. However, the probability that the
position j in which x and z differ is among the ` positions is `/n. If we repeat this experiment some λ
times, independently of each other and always starting with x as “parent”, then the probability that
j has been flipped in at least one of the offspring is 1 − (1 − `/n)λ. For moderately large ` and λ
this probability is sufficiently large for us to assume that among the λ offspring there is at least one
offspring in which j has been flipped. Such an offspring has function value n−1−(`−1)+1 = n−`+1
instead of n− `− 1. Assume now that there is such an offspring x′ among the λ independent samples
crated from x. When we compare x′ with x, they differ in exactly ` positions. In ` − 1 of these, the
entry of x equals that of z. Only in the j-th position the situation is reversed: x′j = zj 6= xj . We
would therefore like to identify this position j, and to incorporate the bit value x′j into x.

So far we have only used mutation, which is a unary unbiased operation. At this point, we want to
compare and merge two search points, which is one of the driving motivations behind crossover. Since
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Algorithm 4 The (1 + (λ, λ)) GA maximizing a function f : {0, 1}n → R with offspring population
size λ, mutation rate p, and crossover bias c. Definitions of the mutation operator flip`(·) and the
crossover operator crossc(·, ·) can be found in Section 1.3

1: Choose x ∈ {0, 1}n uniformly at random (u.a.r.) . initialization
2: while termination criterion not met do
3: Sample ` from Bin(n, p) . random mutation strength
4: for i = 1, . . . , λ do x(i) ← flip`(x) . mutation phase

5: Choose x′ ∈ {x(1), . . . , x(λ)} with f(x′) = max{f(x(1)), . . . , f(x(λ))} u.a.r. . truncation
selection

6: for i = 1, . . . , λ do y(i) ← crossc(x, x
′) . crossover phase

7: Choose y ∈ {y(1), . . . , y(λ)} with f(y) = max{f(y(1)), . . . , f(y(λ))} u.a.r. . truncation
selection

8: if f(y) ≥ f(x) then x← y . replacement step

x clearly has more “good” bits than x′, a uniform crossover, which takes for each position i its entry
uniformly at random from any of its two parents, does not seem to be a good choice. We would like
to add some bias to the decision making process, in favor of choosing the entries of x. This yields to
a biased crossover, which takes for each position i its entry yi from x′ with some probability c < 1/2
and which takes the entry from x otherwise. The hope is to choose c in a way that in the end only
good bits are chosen. Where x and x′ are identical, there is nothing to worry about, as these positions
are correct already (and, in general, we have no indication to flip the entry in this position). So we
only need to look at those ` positions in which x and x′ differ. The probability to make only good
choices (i.e., to select ` − 1 times the entry from x and only for the j-th position the entry from x′)
equals c(1−c)`−1. This probability may not be very large, but when we do again λ independent trials,
then the probability to have created z in at least one of the trials equals 1 − (1 − c(1 − c)`−1)λ. For
suitably chosen parameter values c, λ, and `, this expression is sufficiently large to gain over the O(n)
strategies discussed above.

Putting everything together, the (1+(λ, λ)) GA does the following. In the mutation step, the algorithm
creates λ offspring from x using the flip`(·) mutation operator, for a mutation strength ` sampled from
a binomial distribution Bin(n, p) (the mutation rate p is a parameter of the algorithm). From these
λ offspring, an offspring x′ with largest function value among all offspring is selected, ties broken
at random. In the crossover phase, the algorithm then creates again λ offspring, by recombining x
and x′ using the biased crossover crossc(·, ·) described above. From these λ recombined offspring,
the algorithm chooses one that has largest function vales (for OneMax, ties can again be broken
at random, but for other problems it can be better to favor individuals that are different from x,
see [DDE15, Section 4.3] for examples). This selected offspring y replaces x if it is at least as good,
i.e., if f(y) ≥ f(x). Algorithm 4 summarizes the (1 + (λ, λ)) GA.

As mentioned above, the main result in [DDE15] was an o(n log n) bound for the expected running
time of the (1+(λ, λ)) GA on OneMax. We later improved this original O(n

√
log n) guarantee to the

bound stated below. In [Doe16], B. Doerr showed that this improved bound is best possible among
all static parameter settings.

Theorem 3.1.1 (from [DDE15, DD18, Doe16]). The (1 + (λ, λ)) GA is a binary unbiased
comparison-based black-box algorithm. For mutation rate p = λ/n, crossover bias c = 1/λ, and
λ = Θ(

√
log(n) log log(n)/ log log log(n)), the expected optimization time of the (1 + (λ, λ)) GA

on OneMax is O(n
√

log(n) log log log(n)/ log log(n)). No static parameter choice of λ ∈ [1..n],
k ∈ [0..n], and p ∈ [0, 1] can give a better expected running time.

Note that by setting p = λ/n and c = 1/λ, as suggested by Theorem 3.1.1, the three-dimensional
configuration space of the (1 + (λ, λ)) GA is reduced to a one-dimensional one, which is easier to deal
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with. In fact, we rarely see running time bounds that depend on two or more parameters, a topic that
is likely to gain importance in the coming years, as we shall briefly discuss in Section 6.

Coming back to the design principles that have driven the development of the (1 + (λ, λ)) GA, we
note that what is unusual about the (1 + (λ, λ)) GA is not the set of operators it uses, but the order
in which they are applied. In fact, the key idea in the (1 + (λ, λ)) GA is to use the crossover operator
after the mutation step, with the hope to “repair” the damages done by the mutation operator,
while maintaining its beneficial decisions. This idea was largely inspired by our black-box study on
Mastermind (which we have described in Section 2.3.1), where we observed that efficient algorithms
do not necessarily strive to make progress, but should also be able to learn from inferior solutions. We
then realized that many classical optimization heuristics are not very efficient in learning from such
search. Instead, they either tend to ignore them entirely, or they use them only to create some diversity
in the population. After the Mastermind study, this approach seemed quite wasteful, especially when
the heuristic is close to a local optimum and when, inevitably, a good fraction of the sampled points
are worse than the current-best solutions.

We will improve the result of Theorem 3.1.1 in Chapter 4 by showing that the expected running
time of the (1 + (λ, λ)) GA can be reduced to linear when the parameters are chosen in a dynamic
fashion. In this case, the performance matches that of the best known binary unbiased black-box
algorithm from [DJK+11]. We see this extension as one of the most important lessons learned from
the (1 + (λ, λ)) GA, since it has triggered a lot of follow-up works on dynamic parameter settings. In
fact, the whole next chapter is centered around this topic. Parameter control is today one of the most
actively researched topics in the theory of evolutionary computation community, and this, to a large
extent, thanks to the (1 + (λ, λ)) GA.

Apart from these extensions from [DD18], the (1+(λ, λ)) GA has seen a significant number of follow-up
works. For example, it is shown in [BD17] that the (1+(λ, λ)) GA can solve random 3-SAT instances in
the planted solution model having at least logarithmic average degree efficiently, using o(n log n) func-
tion evaluations. This work was inspired by the empirically robust performance of the (1 + (λ, λ)) GA
reported in [GP14]. Performance analyses for the Jump` functions discussed in Section 2.4.2.2 are
available in [ADK20]. It was shown there that the (1 + (λ, λ)) GA, with the right parameter setting,
outperforms classical IOHs. The complex parameter setting was addressed in [AD20] by blending the
(1 + (λ, λ)) GA with the “fast”, heavy-tailed mutation operator from [DLMN17] (see Section 1.3 for
definitions). In particular, the (1 + (λ, λ)) GA was shown to yield close to optimal performance for
jump sizes up to ` = n/4. Hybridizing the (1 + (λ, λ)) GA with the fast mutation operator was also
the focus of [ABD20], where it was shown that this variant achieves linear expected optimization time
on OneMax as well as promising empirical performance on random 3-SAT instances. A proof for the
Θ(n2) expected running time of the (1 + (λ, λ)) GA on LeadingOnes is available in [ADK19]. The
(1 + (λ, λ)) GA has recently been extended for use in permutation-based problems [BB20].

3.2 Randomized Local Search with Self-Adjusting Mutation
Strengths

In [DDY16] we presented another algorithm which was largely inspired by our previous black-box
studies. Concretely, we wanted to understand in this work whether it is possible that the unary
unbiased algorithm RLS can automatically detect the mutation strengths that were shown to yield
close to best-possible performance on OneMax. That is, we took a deeper look at the results presented
in Section 2.4.2.1, where we have shown that the RLS variant which chooses in each iteration the drift-
maximizing mutation strength (i.e., the mutation strength which maximizes the expected progress) is
almost optimal. Since progress is something that the algorithm can actively deduce from the function
values, there was hope that we could design mechanisms which would automatically calibrate the
mutation strength. In [DDY16] we then showed how this is indeed possible.
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The core idea was to view the selection of the mutation strength as a multi-armed bandit problem,
in which we have a portfolio of possible mutation strengths {ki | i = 1, . . . , r} and we attribute to
each possible value ki a confidence ci, which is our estimate for the progress that we expect to see
when applying this mutation strength to the current-best solution.1 With the confidences at hand,
we could greedily select at each step the mutation strength ki with the largest value ci ∈ arg max{cj |
j = 1, . . . , r}. This, however, bares the risk that we would not realize that a seemingly good mutation
strength may have become sub-optimal as the optimization has progressed. We therefore decide to use
the greedy selection in a 1− ε fraction of the iterations only, and to reserve the remaining ε iterations
for randomly selected mutation strengths kj . More precisely, we decide in each iteration whether
to use a greedy selection (with probability 1 − ε) or whether we use a random mutation strength
(with probability ε). This way, we balance the exploitation of good values and the exploration of
possibly better suited ones. In the Machine Learning literature, this strategy is known as an ε-greedy
reinforcement learning strategy. Note here that the key difference of our problem to the classic multi-
armed bandit problem is in the fact that the rewards (measured here in terms of fitness progress
max{0, f(y) − f(x)}, with x denoting the current-best solution and y the “offspring” obtained by
applying the mutation operator flipk(·) to x) change over time (our problem is hence a “multi-armed
bandit problem with dynamic rewards”).

We did not discuss yet how we assign confidences to the different mutation strengths. Here, we
first recall that the progress that can be achieved with a given mutation strength k changes with
increasing fitness f(x) of the current-best solution x (more precisely, it monotonically decreases with
increasing f(x), but this is irrelevant for the design of the strategy). Information obtained from
previous iterations must therefore be discounted as the search progresses, to be able to adjust the
confidences to the current situation. We have chosen an exponential time-decay; that is, we discount
at each step the information from previous iterations by a factor of (1 − δ). We call δ the forgetting
rate. Since (1− δ)1/δ = 1/e+ o(1) for all δ = o(1), the reciprocal 1/δ of the forgetting rate is (apart
from constant factors) the information half-life. With this exponential decay, we can now define the
confidence ci[t] of the mutation strength ki in iteration t as

ci[t] :=

∑t
s=1 1k(s)=ki(1− δ)t−s(f(xs)− f(xs−1))∑t

s=1 1k(s)=ki(1− δ)t−s
, (3.1)

where k(s) is the mutation strength used in the s-th iteration, and xs denotes the current-best solution
at the end of that iteration. While this equation may look complex at first sight, the confidences ci can
be updated after each iteration without keeping in memory the full search history. Instead, it suffices
to keep one quantity wi[t] =

∑t
s=1 1k(s)=ki(1− ε)t−s for each mutation strength ki; see [DDY16] for

details.

The main result in [DDY16] is then a proof showing that, for suitably selected hyper-parameters ε
and δ, the above-described RLS variant almost always uses the best possible mutation strength when
run on OneMax. More precisely, we showed that in all but a o(1) fraction of the iterations the
selected parameter value achieves an expected progress that differs from the best possible one by at
most some lower order term. Consequently, the algorithm has the same optimization time (apart
from an o(n) additive lower order term) and the same asymptotic 13% superiority in the fixed budget
perspective as the fastest algorithm which can be obtained when using the same portfolio of mutation
strengths.

Theorem 3.2.1 (Theorems 1 and 2 in [DDY16]). Let E[T (kmax)] be the minimal expected running
time that any randomized local search algorithm using mutation strength between 1 and kmax can

1In fact, in the original work [DDY16] we were not aware of the analogy of our strategy to the multi-armed bandit
setting, and the presentation does therefore not mention this relationship. In [DDY16] we used the term velocity instead
of confidence, and referred to this variable as vi. Note also that the definitions of δ and ε are swapped in this section,
compared to [DDY16], to maintain the analogy with the ε-greedy strategies known from the Machine Learning literature.



34 From Black-Box Complexity Theory to Algorithm Design

achieve on OneMax. The expected running time T of the ε-greedy RLS variant with hyper-parameters
ε = n−0.01, δ = n−0.99, and the same portfolio of possible mutation strengths is E[T (kmax)] + o(n).

In the fixed-budget perspective, the following holds. Let x
(t)
ε be the best solution that the ε-greedy RLS

variant with this parameter setting has identified within the first t iterations. Similarly, let x
(t)
RLS be

the best solution that the classic RLS using 1-bit flips only has found within the first t iterations.

For any t ≥ 0.2675n, the expected Hamming distance to the optimum z satisfies E[H(x
(t)
ε , z)] ≤

(1 + o(1)) 0.872E[H(x
(t)
RLS, z)].

The hyper-parameters in this result were taken as an example where this algorithm shows a superior
performance. As noted in [DDY16], the particular choice of these parameters is not very critical.
Clearly, ε has to be o(1/ log n) to ensure that at most o(n) iterations are performed with a sub-
optimal mutation strength. Likewise, δ has to be ω(1/n) to ensure that information learned Ω(n)
iterations ago (and thus at a time when the confi could be substantially different) has no significant
influence on the current decision.

In addition to this theoretical result, [DDY16] also presents empirical results for the LeadingOnes
and the minimum spanning tree (MST) problem. These experimental works suggest that, for suitably
chosen hyper-parameters ε, δ, and kmax, the average optimization time of the ε-greedy RLS variant
can be significantly smaller than that of the (1 + 1) EA. It even outperforms, empirically, RLS on
LeadingOnes, and the RLS variant that always flips either one or two random bits in the current-best
solution on the MST problem.

From a high-level perspective, we have learned from our black-box complexity studies that a drift-
maximizing choice of mutation strengths can be almost optimal. Since the expected progress is a
quantity that can be guessed from the search trajectory (at least to a sufficient extent, as the result
above demonstrates), we designed a heuristic to automatically choose suitable mutation strength on
the fly. As we shall see in the next chapter, the question how to design such parameter control
strategies has evolved into one of the most active research areas within the theory of IOHs.



Chapter 4

From Algorithm Design to
Parameter Control

We have discussed in the previous section that a dynamic choice of the mutation strength of RLS is
beneficial for solving the OneMax problem. In evolutionary computation, such dynamic parameter
settings are studied under the term parameter control. Parameter control aims at benefiting from
a non-static choice of the parameters, with the underlying idea that the flexibility in the parameter
choice can be used to adjust algorithms’ behavior to the current state of the optimization process.
For example, it may be beneficial to use a decreasing mutation rate, so that the algorithm can
converge from global exploration to local exploitation. Another advantage of parameter control is
the on on-the-fly identification of suitable parameter values; i.e., even when the gain of non-static
parameter values is not very important, we may face situations in which we do not know how to set
the parameter values. If we do not have previous experience to learn from, nor time or resources to set
up parameter tuning studies, parameter control offers a possibility to automatically identify suitable
values during the optimization process itself. That is, parameter control serves the identification of
good parameter settings on the one hand, and the tracking of good configurations as they evolve
during the optimization process.

Parameter control has a long research history in the domain of evolutionary computation (see [KHE15,
AM16, LLM07, EHM99] for surveys), but used to suffer from weak theoretical support. Previous
results mostly focused on the analysis of good parameter schedules, which do not use feedback from
the optimization process to guide the search, but which use time alone as trigger to update the
parameter setting. Many works furthermore focus only on the existence of good schedules, without
explicitly recommending a way to generate these (the last two comments apply, in particular, to
results on the Simulated Annealing heuristic proposed in [KGV83]; see [HJJ03, vLA87] for details).
A notable exception to this rule are the one-fifth success rule (see Section 4.1) and a few results for
parameter choices that explicitly depend on the quality of a best-so-far-solution (“fitness-dependent”
parameter control in the taxonomy that we will describe in Section 4.2). This unsatisfactory situation
has changed dramatically in the last five years. Starting with our work [DD18] (conference paper
appeared in 2015 [DD15]), we have seen significant improvement in our theoretical understanding of
parameter control. In this chapter, I will highlight a few selected examples. A more exhaustive survey
for results that appeared before early 2018 and covering also results that are not my own, is available
in our book chapter [DD20].
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4.1 Self-Adjusting Parameter Values for the (1 + (λ, λ)) GA

Our interest in dynamic parameter choices originated in the work [DDE15] discussed in Section 3.1.
We first observed that, similarly to the situation described in Sections 2.4.2.1 and 3.2, the expected
running time of the (1 + (λ, λ)) GA can be improved from the bound proven in Theorem 3.1.1 to
linear when the parameters are chosen in dependence of the function value of a best-so-far solution.

Theorem 4.1.1 (Theorem 8 in [DDE15]). With x denoting the search point held in the memory at the
beginning of the iteration, the expected running time of the (1 + (λ, λ)) GA with offspring population
size λ = d

√
n/(n−OM(x))e, mutation rate p = λ/n, and crossover bias c = 1/λ on OneMax is

linear.

We later showed (see Theorem 11 in [DD18]) that the linear bound in Theorem 4.1.1 is asymptotically
optimal, in the sense that no (static or dynamic) parameter setting can achieve a sub-linear expected
running time on OneMax. This is, essentially, a consequence of the fact that the algorithm uses
restricted memory combined with comparison-based selection rules.

We also performed in [DDE15] an empirical analysis, in which we tested the already mentioned one-
fifth success rule to control the parameters of the (1 + (λ, λ)) GA. The one-fifth success rule was
independently discovered in [Rec73, Dev72, SS68]. It suggests to set the step size of an evolution
strategy1 in such a manner that 20% of the iterations lead to a fitness improvement. The idea behind
this is that when the success rate is higher, then most likely the step size is too small and time is
wasted on minor improvements; however, when the success rate is smaller, then time is wasted by
waiting too long for an improvement. The value 1/5 was derived from theoretical considerations for
the performance of the (1+1) evolution strategy on the sphere problem f : Rn → R, x 7→

∑n
i=1 x

2
i .

Rechenberg showed that a success rate of about 20% yields optimal expected gain for this problem
(and also on another problem with a so-called inclined ridge, see [Rec73] for details). An indirect
interpretation of the one-fifth success rule was offered in [KMH+04]. It suggests to multiply the
current step size by a multiplicative factor F > 1 in case an iteration was successful, and to multiply
it by F−1/4 otherwise. Note that this rule guarantees a stable parameter value when, on average, one
out of five iterations is successful.
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Figure 4.1: Evolution of the self-adjusting
(red) vs. the optimal (black) choice of λ in
one random run of the (1 + (λ, λ)) GA on
OneMax, plotted against the iteration.

We applied this rule to the (1 + (λ, λ)) GA by setting
p = λ/n and c = 1/λ, and then controlling the value of
λ. That is, we initialize λ by some value (we use λ = 1
in our experiments, but the initialization does not have
a significant impact on performance, unless the initial
values are unreasonably large). After each iteration, we
replace λ by F 1/4λ if the iteration was not successful
in identifying a point of quality strictly better than the
previous best, and we replace λ by λ/F otherwise. The
empirical performance observed in [DDE15] seemed to
match the linear running time already proven for the
fitness-dependent rates from Theorem 4.1.1 very well.
Figure 4.1 illustrates the evolution of the self-adjusting
(red) vs. the optimal (black) choice of λ in one randomly
selected run of the (1 + (λ, λ)) GA, plotted here against
the iteration (which costs 2λ function evaluations each).
For convenience, we also plot (in blue) the evolution
of the quality of the best-found solution. The update
strength F in this illustration is set to 1.5.

1Evolution strategies are the analog of evolutionary algorithms for the optimization of continuous problems f : Rd →
R. The step size is the analog of the mutation rate and determines the distribution of the distance at which the next
solution candidates are sampled.
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Motivated by the promising and stable performance of the self-adjusting (1 + (λ, λ)) GA, and using
the drift analysis techniques that we have developed in previous works [DJW12], we could show that
the one-fifth success rule achieves indeed asymptotically optimal expected running time on OneMax,
provided the update strength F is not too large (see [DD18] for a discussion on how to chose F . Essen-
tially, a value around or below 1.5 is recommended. An exhaustive evaluation of the hyper-parameter
settings of various variants of the (1 + (λ, λ)) GA can be found in our empirical study [DD19]).

Theorem 4.1.2 (Theorems 9 and 11 in [DD18]). For any sufficiently small update strength F > 1
the expected optimization time of the self-adjusting (1 + (λ, λ)) GA with mutation rate p = λ/n and
crossover bias c = 1/λ has an expected linear running time on OneMax. This is asymptotically best
possible among all parameter choices.

No sublinear binary unbiased black-box algorithm is known for OneMax. The (1 + (λ, λ)) GA
therefore matches the state-of-the-art performance of the highly problem-specific algorithm from our
work [DJK+11].

As already mentioned in Section 3.1, Theorem 4.1.2 has triggered significant follow-up works. Apart
from the works mentioned there, specific for the (1+(λ, λ)) GA, and the ones described in the remain-
der of this section, we wish to mention that the self-adjusting parameter control scheme introduced
above has recently been improved in [BB19a] for more competitive performance on linear functions
with random weights and for random satisfiable MAX-SAT instances.

4.2 Classification of Parameter Control Methods

The parameter control mechanism analyzed in the previous section uses a multiplicative update rule
that depends on the success of a whole iteration. It therefore actively uses feedback from the op-
timization process, in contrast to the scheduled parameter updates used, for example, in Simulated
Annealing. To categorize parameter control schemes according to their most prominent distinguishing
factors, a taxonomy for parameter control was suggested in [EHM99]. Almost 20 years later, the fo-
cus of the evolutionary computation community has shifted significantly towards adaptive parameter
control schemes, which motivated us to introduce a revised classification scheme in [DD20]. In our
classification, we distinguish between the following control methods.

Class 1: State-Dependent Parameter Control. We classify as state-dependent parameter control
those mechanisms that depend only on the current state of the search process, e.g., on the solutions
currently held in the memory, their fitness values, their diversity, or on the time elapsed, the number
of function evaluations or iterations performed. This category subsumes the “deterministic” category
used in the classification scheme proposed in [EHM99] (which only contains time-dependent param-
eter choices) and it subsumes all other parameter setting mechanisms which determine the current
parameter values via a pre-specified function that maps the algorithm states to parameter values or
distributions over the portfolio of admissible values. All these mechanisms require the user to pre-
cisely specify how the parameter values or their probabilities shall depend on the current state. This,
obviously, assumes a substantial understanding of the interaction between the algorithm at hand and
the problem to be solved.

Class 2: Self-Adjusting Parameter Control. To overcome the usability challenges and the in-
flexibility of state-dependent parameter control mechanisms, several approaches to set the parameters
in a self-adjusting manner have been proposed. Distinguishing features of self-adjusting parameter
control mechanisms are (1) the use of global parameters, which are applied to all points in the popu-
lation (as opposed to solution-specific ones used in the endogenous schemes described in Class 3) and
(2) some sort of feedback from the optimization process. The two main subcategories of self-adjusting
parameter schemes are:
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• Success-Based Parameter Control (1-step adaptation). We classified in [DD18] as
success-based parameter settings all those mechanisms which change the parameter value from
one iteration to the next. That is, the values to be used in a current iteration depend only on
the values at the beginning of the previous iteration and an assessment of how successful the last
iteration was. The success measure can be a simple binary information like whether a solution
with superior fitness was found, but it could also take into account quantitative information
such as the fitness gain or loss in this iteration. Other statistics than the fitness can be taken
into account, e.g., the evolution of the diversity of the population.

The most common form of success-based rules are multiplicative updates of parameters, which
increase or decrease the parameter value by suitable factors depending on whether or not the
previous iteration was classified as success. The one-fifth success rule described in Section 4.1 is a
classical example for such a multiplicative update. Success-based rules other than multiplicative
updates have been designed as well. For example, in [DGWY19] the offspring were generated
with two different parameter values and the parameter value which led to the best offspring
determined the value of the next iteration.

• Learning-Inspired Parameter Control (portfolio-based parameter selection). The
other main type of self-adjusting parameter control techniques are learning-inspired parameter
control mechanisms. This class subsumes all those schemes which aim at exploiting a longer
search history than just one iteration. To allow such learning mechanisms to also adapt quickly
to changing environments, older information is taken into account to a lesser extend than more
recent ones. This can be achieved by only regarding information from (static or sliding) time
windows or by discounting the importance of older information via weights that decrease (usually
exponentially) with the anciency of the data. Different from success-based parameter control,
learning-inspired parameter control mechanisms maintain a portfolio of possible parameter val-
ues and try to learn which values are most suitable at a given point in time. The example of
the ε-greedy RLS variant presented in Section 3.2 is a typical one for this category. Unfortu-
nately, this is the only theoretical result available for this important parameter control scheme.
Empirical examples can be found in [Thi05, CFSS08, FCSS08, FCSS10, LFKZ14]

Class 3: Endogenous Parameter Control (Self-adaptation). This category corresponds to
the self-adaptive parameter control mechanisms in the taxonomy of [EHM99]. We prefer the name
endogenous parameter control as it best emphasizes the structural difference of these mechanisms,
which is to extend the original optimization problem by incorporating the parameter selection problem.
This way, the parameter values become part of the search points, and undergo the same variation and
selection process as the search points for the original optimization problem. The hope is that the
points selected to remain in the memory of the algorithm also carry good parameter values. A simple
way to incorporate the parameter selection problem is by attaching the chosen parameter values to
the search points, see [Bäc92, SF96, Bäc98, KLR+11] and [DWY18a, CL20, DL16a] for empirical
examples and theoretical running time analyses, respectively.

In [DD20] we also proposed a fourth category, in which we collected so-called hyper-heuristics. How-
ever, as already noted in [DD20], this category was introduced mostly for historical reasons, which
are not relevant in the context of this thesis.

4.3 One-Fifth Success Rule Revisited: Self-Adjusting Muta-
tion Rates for the (1+1) EA

When we introduced the one-fifth success rule in Section 4.1, we explained that it was originally
motivated by the adaptation of the step-size of an evolution strategy optimizing the continuous sphere
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Algorithm 5 The (1 + 1) EA(pinit, pmin, pmax, A, b) maximizing a function f : {0, 1}n → R
1: Set p = pinit

2: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x)
3: while termination criterion not met do
4: y ← SBM(x, p)
5: Evaluate f(y)
6: if f(y) ≥ f(x) then x← y and p← min{Ap, pmax} else p← max{bp, pmin}

function. For other applications (and in particular for the discrete optimization problems considered
in this thesis), there is no particular reason to believe that a success ratio of one to five should be
optimal or anywhere close to being optimal. We empirically investigated this question in [DW18b] for
the adaptation of the mutation rate of the (1 + 1) EA on the two benchmark problems OneMax and
LeadingOnes. This study then motivated a theoretical analysis for determining the optimal success
ratio [DDL19]. We briefly summarize the main findings of these two works.

Empirical Analysis: We introduced in [DW18b] the (1 + 1) EA(pinit, pmin, pmax, A, b), which is
summarized in Algorithm 5. The algorithm has five hyper-parameters: the initial mutation rate pinit,
the minimal mutation rate pmin, the maximal mutation rate pmax, and the two update strengths A > 1
and b < 1. The algorithm uses standard bit mutation to generate one new solution per iteration. After
each iteration, the algorithm updates the mutation rate: it replaces p by Ap whenever the new solution
is at least as good as the previous best. In this case, the new solution also replaces the old one. It
reduces p to bp when the new solution was worse than the previous best. The mutation rate is capped,
if necessary, to remain in the boundaries [pmin, pmax]. The dependence on pmin, pmax, and pinit is very
weak (see [DDL19] and [DW18a] for more details), and we therefore assume pmin = 1/n2, pmax = 1/2,
and pinit = 1/n in the following and speak of the (1 + 1) EA(A, b), for convenience. In [DW18b] we
used the conditional standard bit mutation SBM>0 introduced in Section 1.3 and we therefore refer
to this algorithm as the (1 + 1) EA>0(A, b).

We showed in [DW18b] that the (1+1) EA>0(A, b) yields very good performance on the two benchmark
problems OneMax and LeadingOnes, and this performance is not only robust with respect to the
hyper-parameters, but also with respect to the dimension n (if scaled by the asymptotic running times
n log n and n2, respectively). Figure 4.2 shows heatmaps with the empirical average running times for
three selected scenarios. The values are averages over 101 independent runs, and the granularity of
the data points is as follows: we vary A between 1.0 and 6.0 in multiples of 0.1 and we vary b between
0.00 and 1.00 in multiples of 0.02.

A visual inspection of the charts in Figure 4.2 shows that the performance landscapes for OneMax
is quite flat; i.e., the bulk of the configurations achieves similar performance. This behavior, however,
changes beyond some threshold values for A and b, as indicated by the quick succession of colors in the
upper right corner. In this regime, small changes in the configuration can cause large changes in the
performance. The heatmap for LeadingOnes is also quite flat. In the right-most plot of Figure 4.2
we zoom into the most interesting region of configurations with A ≤ 3, b ≥ 0.4, and show only average
running times below 150 000. For comparison, the (1 + 1) EA>0 needs around 135 700 iterations, on
average, on this problem instance, and RLS 125 000 iterations.

On LeadingOnes, around 67% of all 2,450 tested configurations with A ∈ [1, 6] and b ∈ [0, 1] have
an average optimization time below n2/2 – this is the expected optimization time of RLS. Between
37% (n = 100) and 41% (n=250) of all configurations are better than RLS by at least 10%. When
restricting the configurations to those 450 that satisfy 1 < A ≤ 2.5 and 0.4 ≤ b < 1, around 78% of
them are better than RLS, around 62% are better by at least 10%, around 30% outperform RLS by at
least 15%, and still almost 20% of the configurations are better by at least 16%. From an algorithm
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Figure 4.2: Optimization times of the (1 + 1) EA>0(A, b) for different update strengths A and b,
averaged over 101 independent runs: OneMax with n = 500 (left), LeadingOnes with n = 250
(middle), and LeadingOnes with n = 500 (right). Note that in the figure on the right we zoom into
the interesting region with A ≤ 3, b ≥ 0.4, and average running time at most 150 000.

design point of view this is very good news: finding good hyper-parameters is not very difficult for
this problem. We also observed that the numbers are very similar across all three tested dimensions
n = 100, 250, 500, indicating that the good performance might translate to larger dimensions.

Theoretical Analyses: Motivated by the stable and promising results described in [DW18b], we
analyzed in [DDL19] the performance of the (1 + 1) EA>0(A, b) and of the (1 + 1) EA(A, b) by
mathematical means. To keep the analogue to the one-fifth success rule, we set A = F s and b = 1/F
for some constant F > 1. This setting corresponds to a “1/(s + 1) success rule”, since the mutation
rate remains stable when one out of s+1 iterations was “successful” (where we recall that we consider
a success if the new solution y replaces the old one x). We call s the success ratio.

The main result in [DDL19] shows that the (1 + 1) EA(A, b) the best performance is obtained for
small update strengths F = 1 + o(1) and success ratio e− 1 (i.e., a 1/e success rule).

Theorem 4.3.1 (Theorem 2.1 in [DDL19]). The expected running time of the self-adjusting (1 +
1) EA(A, b) with A = F s, b = 1/F , F = 1 + o(1), and constant success ratio s > 0 on LeadingOnes
is at most s+1

4 ln(s+1)n
2 + o(n2). This expression is minimized for s = e − 1, with an expected running

time of approximately 0.68n2 + o(n2).

By a result proven in [BDN10], the (1 + o(1))0.68n2 expected running time proven in Theorem 4.3.1
is asymptotically optimal among all (1 + 1) EA variants that differ only in the choice of the mutation
rates.

A key ingredient for proving Theorem 4.3.1 is a lemma which shows that, for suitably chosen hyper-
parameters, the mutation rate used by the (1 + 1) EA(A, b) is, at all times during the optimization
process, very close to the target mutation rate ρ∗(LO(x), s), which we define as the unique mutation
rate that leads to success probability 1/(s+ 1).

For the (1+1) EA>0(A, b) variant analyzed in [DW18b], which uses the conditional mutation operator
SBM>0, we also proved a bound on the expected optimization time on LeadingOnes. We numerically
evaluated this expression for problem dimensions up to n = 10 000 and showed that the average running
times coincide almost perfectly with the performance achieved by the best possible (1 + 1) EA>0

with optimally controlled mutation rates. More precisely, our numerical evaluation showed that the
best running time is achieved for success ratio s ≈ 1.285. With this choice (and using again F =
1 + o(1)), the performance of the self-adjusting (1 + 1) EA>0(A, b) is almost indistinguishable from
(1 + 1) EA>0,opt, the best possible (1 + 1) EA>0 variant using in each iteration the optimal mutation
rate. Both algorithms achieve an expected running time for n = 10 000 which is around 0.404n2.
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Figure 4.3: Expected fixed target running times for LeadingOnes in dimension n = 10 000. The
curve of (1 + 1) EA>0,opt is indistinguishable from that of the (1 + 1) EA>0(A, b) with success ratio
s = 1.285 and the curve of the (1 + 1) EAopt indistinguishable from that of the (1 + 1) EA(A, b)
with success ratio s = e − 1. The values shown in the legend are the expected optimization times,
normalized by 1/n2.

For both algorithms, the (1 + 1) EA(A, b) and the (1 + 1) EA>0(A, b), we did not only bound the
expected optimization time but we also proved stochastic domination bounds, which provide much
more information about the running time distribution and not only its first moment. The use of
stochastic domination in running time analysis was motivated in [Doe19].

For LeadingOnes, it is also not difficult to extend optimization time results to fixed-target running
times T (v), which measure the number of function evaluations needed to find a solution x with
solution quality LO(x) ≥ v. Figure 4.3 plots the expectation of these fixed target running times
for some selected algorithms for n = 10 000. We do not plot the (1 + 1) EA>0,opt, since its running
time would be indistinguishable in this plot from the self-adjusting (1 + 1) EA>0 with success ratio
s = 1.285. For the same reason we do not plot (1 + 1) EAopt, the (1 + 1) EA with optimal fitness-
dependent mutation rate p = n/(` + 1), whose data is almost identical to that of the self-adjusting
(1+1) EA(A, b) with the optimal success ratio s = e−1. We also plot in Figure 4.3 the (1+1) EA(A, b)
with one-fifth success rule (i.e., success ratio s = 4). While its overall running time is the worst of
all algorithms plotted in this figure, we see that its fixed-target running time is better than that for
RLS for all targets up to 6 436. Its overall running time is very close to that of the (1 + 1) EA with
the best static mutation rate p ≈ 1.59/n [BDN10], and for all targets v ≤ 9 017 the expected running
time is smaller.

The results presented in this section demonstrate the significant progress that running time analysis
has seen in the last decade. Not only are we now able to analyze self-adjusting parameter choices, but
we can even do so with very high precision.

4.4 Parameter Control for Multi-Valued Decision Variables

The main focus in the discussion above was on pseudo-Boolean optimization problems f : {0, 1}n → R.
In [DDK18] we revisited the generalization of OneMax to larger alphabet sizes r, such as the Mas-
termind problem discussed in Section 2.3.1. More precisely, we studied the following three problems
(where each target string z ∈ [0..r − 1]n defines a new problem instance): OM(1)

z : [0..r − 1]n →
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[0..n];x 7→ |{i ∈ [1..n] | xi = zi}| (this is the Mastermind problem with n positions and r colors),

OM(2)
z : [0..r − 1]n → [0..n(r − 1)];x 7→

∑n
i=1 |xi − zi| (this is the L1 version of Mastermind), and

OM(3)
z : [0..r− 1]n → [0..n(r− 1)];x 7→ min{xi− (zi− r), |xi− zi|, (zi + r)−xi} (this is the L1 version

with ring topology on the decision space).

We designed in [DDK18] a multi-variate variant of RLS which uses the following self-adjusting pa-
rameter control scheme: For each coordinate i, we store a velocity vi. This velocity can be seen as
the individual mutation strength for position i. The RLS variant, RLScoord.(A, b), chooses in each
iteration exactly one coordinate in which the entry is changed. When coordinate i is chosen, the
current value xi is replaced by xi−bvic or by xi+bvic, with equal probability. As in the classical RLS
algorithm, the so-generated string y replaces x if f(y) ≤ f(x) holds (assuming minimization of f as
objective). The velocity vi is updated as follows: if f(y) < f(x) holds, vi is replaced by Avi (for some
fixed constant A > 1), and it is replaced by bvi otherwise, where b < 1 is again some fixed constant.
The value of vi is capped at 1 and at br/4c, respectively. The main result in [DDK18] is summarized
in the following theorem.

Theorem 4.4.1 (Theorem 17 in [DDK18]). For constants A, b satisfying 1 < A ≤ 2, 1/2 < b ≤ 0.9,
2Ab−b−A > 0, A+b > 2, and A2b > 1, the expected running time of the RLScoord.(A, b) on any of the

generalized r-valued OneMax function OM(i)
z , i ∈ {1, 2, 3} and z ∈ [0..r− 1]n, is Θ(n(log n+ log r)).

This is asymptotically best possible among all comparison-based variants of RLS and the (1 + 1) EA.
The running time is also by a multiplicative factor of at least log r better than any RLS or (1 + 1) EA
variant using static step sizes.

In this theorem, the update strengths can be chosen, for example, according to a one-fifth success
rule, by setting A ∈ [1.6, 2] and b = (1/A)1/4.

The result presented above is not only one more example which shows that we are now capable of
analyzing parameter control mechanisms in various settings, but we also mention this work in this
thesis because we believe that the topic of multi-variate optimization problems has not received the
attention in the theory community that it should have. We hope to see more results for this important
class of problems in the future.



Chapter 5

Selected Other Topics

After having summarized in the previous chapters the key results for two of my major research
themes – black-box complexity and parameter control – we briefly discuss in the following sections
a few selected results on different topics. For reasons of space we can only present the main results;
readers interested in more detailed discussions and related works are referred to the original papers.

5.1 A Simple Proof for the Usefulness of Crossover

When we introduced in Section 1.3 some common mutation operators, we listed three different variants
of standard bit mutation, SBM, SBM>0, and SBM0→1. The latter two differ from the common version
SBM only in how they treat mutation strength k = 0. Whereas SBM allows such mutation strengths,
the operators SBM>0 and SBM0→1 distribute the probability mass of sampling k = 0 to all other
values proportionally or to k = 1, respectively. In many cases, these modifications will only affect
constant factors of the expected running time. It is therefore often ignored in theoretical analyses, in
particular when the main focus is on big-Oh asymptotic running times only. However, in practice one
would like to avoid evaluating search points that have already been evaluated in previous iterations
and it is therefore common practice to use SBM>0 or SBM0→1 or yet different strategies which avoid
mutation strengths k = 0. In [CD18] we demonstrated why the constant factor differences should not
be neglected when aiming for results that are more precise than big-Oh accuracy.

Concretely, we analyzed in [CD18] the effects of these strategies on the expected running time of a
greedy (µ + 1) GA, previously introduced in [Sud17]. Our main result (Theorem 1 and Corollary 1
in [CD18]) shows that for µ ≥ 2 the expected optimization time of the greedy (µ+1) GA>0 with static
mutation rate p = 1/n on OneMax is at most (1 + o(1)) e−1

2 n ln(n) ≈ 0.859n ln(n) + o(n lnn) and for
p = 0.773581/n it is at most (1 + o(1))0.851n ln(n). In particular, this shows that the so-configured
(µ + 1) GA>0 has an expected optimization time that is better than that of any unary unbiased
algorithm, according to our discussion in Section 2.4.2.1. Our result is hence another important and
“pure” example for the usefulness of crossover. While the gain over RLS is only a constant factor,
the appeal of our result lies in the simplicity of its proof, which uses fairly standard mathematical
techniques and which can therefore be taught in a basic algorithms lecture. An empirical evaluation
demonstrates that the superiority of the greedy (µ+ 1) GA>0 over the best unary unbiased black-box
algorithm already holds for quite small problem instances.
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5.2 Re-Optimization for Structurally Similar Problem In-
stances

In all the above, we have focused on static optimization problems, i.e., the optimization of a function f
which does not change over time. We always assumed to have no prior knowledge about the problem at
hand, and therefore initialized the search in randomly chosen solutions. In practice, however, we often
face situations in which similar problem instances need to be solved again and again, e.g., computing
an optimal delivery schedules for a postal operator, where the shipping volumes vary from day to day,
but typically not too drastically from one day or one week to the next.

In such re-optimization situations, i.e., when we face a problem instance for which we know (or can
guess) to have solved a similar instance in a previous task, we can hope to find good solutions by
building on the knowledge derived from the previous one. A straightforward idea would be to simply
initialize the search in the best solution that could be identified for the similar problem instance.
In [DDN19] we proved that evolutionary algorithms do not necessarily benefit from such an approach.
More precisely, we showed that the (1+1) EA can require Ω(n2) function evaluations to re-optimize
a LeadingOnes instance even if it is started in a Hamming neighbor of the optimum. Since this is
asymptotically identical to the expected running time when starting from a random solution, there is
no significant advantage from starting the search in a structurally good solution.

We then used the insights obtained from this negative result to suggest ways to use the “warmstarting”
initialization in a better way. Concretely, the negative result for the (1+1) EA is caused by the fact that
the good initial solution is quickly replaced by structurally worse solutions of equal or better fitness.
Put differently, it is caused by the poor fitness-distance correlation of the LeadingOnes function. We
can by-pass this bottleneck by maintaining a population of solutions around the initial search points.
More precisely, we store for each distance level i the best-so-far solution x(i) at distance exactly i from
the initial search point (which we recall was the good solution from the similar problem instance). In
each iteration, we choose to center the search around the best-so-far search point (with probability
1/2) or we chose one of the x(i) otherwise (applying a uniform selection among all these x(i)). This
way, we prevent the search from drifting away too fast from the old, structurally good solution. We
proved that our approach reduces the expected running time for above-mentioned LeadingOnes
re-optimization problem to O(γδn), where δ is the Hamming distance of the new optimum to the
starting point and γ is an estimated upper bound on this distance. The value of γ determines the
largest distance i at which we store a point x(i).

We also showed in [DDN19] similar results for the optimization of linear functions with changing
constraints and for the minimum spanning tree problem with added or deleted edges.

An interesting follow-up question arising from this work is how the above-sketched ideas can be used in
situations in which the problem instance changes more frequently, and in particular before an optimal
solution for the previous instance has been found.

5.3 One-Shot Optimization for Continuous Optimization

We now leave the world of discrete optimization problems and discuss in this section results for the
optimization of continuous problems f : Rd → R. We start with a theoretical result in Section 5.3.1
and then briefly describe two empirical results in Section 5.3.2. Both sections deal with one-shot
optimization. We recall from Chapter 1 that one-shot optimization investigates situations in which
we evaluate a fixed number of solution candidates x(1), . . . , x(λ) that have to be determined in a
non-adaptive manner prior to the first evaluation.
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5.3.1 Theoretical Result

A simple, yet effective strategy for one-shot optimization is to choose the λ candidates from a normal
distribution N (µ, σ2) centered around an a priori estimate µ of the optimum and using a variance σ2

that is calibrated according to the uncertainty with respect to the optimum. In [MDRT20] we studied
the performance of this strategy when the optimum x∗ is known to be distributed according to the
standard Gaussian N (0, Id) and the objective is to sample a point close to this optimum, in terms of
Euclidean distance. Formulated as a classic optimization task, the problem corresponds to minimizing
the sphere function fx∗ : Rd → R, x 7→ ||x− x∗||2.

A previous result published in [CCD+20] showed that unless the sample size λ grows exponentially
in the dimension d, the median quality of sampling from the prior distribution N (0, Id) is worse than
that of sampling a single point: the center (0, . . . , 0). This raises the question how to optimally scale
the variance σ2, a question that we answered in [MDRT20] in the following way: we derived sufficient
and necessary conditions on the scaling factor σ such that, for x(1), . . . , x(λ) sampled from N (0, σ2),

P
[

min
1≤i≤λ

‖x(i) − x∗‖2 ≤ (1− ε)‖x∗‖2
]
≥ δ,

for some δ ≥ 1/2 and ε > 0 as large as possible. Concretely, we showed that setting σ2 =
min{1,Θ(log(λ)/d)} is asymptotically optimal, as long as λ is sub-exponential, but growing in d. Our
variance scaling factor reduces the median approximation error by a 1−ε factor, with ε = Θ(log(λ)/d).
We also proved that no constant variance nor any variance which scales as ω(log(λ)/d) can achieve
such an approximation error.

We complemented our theoretical analyses by an empirical investigation of the rescaled sampling
strategy. Experiments on the sphere function confirm the superiority of our approach. We also showed
that the rescaled sampling yields good performance on two other benchmark problems, the Cigar and
the Rastrigin function. Finally, we demonstrated that these improvements are not restricted to the
one-shot setting but can also yield performance gains in the initialization of IOHs. More precisely,
we show a positive impact on the initialization of Bayesian optimization algorithms [JSW98] and on
differential evolution [SP97].

5.3.2 Empirical Works

Analyzing the impact of good one-shot optimization techniques on the initialization of surrogate-
assisted optimization techniques was also the focus of our work [BDK20a]. We considered the efficient
global optimization algorithm (EGO [JSW98]) and compared four different initialization strategies,
which sample the initial set of points via uniform sampling, Latin Hypercube Sampling (we used the
“improved” LHS design as suggested in [BG02]), Sobol’ sequences [Sob67], and Halton designs [Hal60],
respectively. We also analyzed the impact of the size of the initial point set, expressed as a percentage
of the total budget. Concretely, we consider six different total budgets n ∈ N := {2x | x ∈ {4, . . . , 9}},
and ten different initial design sizes λ = dk ·ne with k ∈ K := {0.1, 0.2, . . . , 1.0}. Our test bed are the
24 benchmark functions from the BBOB collection [HFRA09] of the COCO environment [HAR+20].
We perform our experiments in five different dimensions d ∈ D := {2, 3, 4, 5, 10}.

Overall, we found that small initial budgets using Halton sampling seem to be preferable over large
budgets for initialization and/or other sampling techniques. However, the performance landscape is
rather unstructured, and further investigations are needed to derive decision rules which sampling
method to prefer in which cases. What concerns the size of the initial point set, our results suggest
an adaptive choice. This is easy to implement in surrogate-assisted optimization techniques, and can
significantly improve performance, as we have demonstrated in our work. In fact, we even identified
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extreme cases in which using the total budget for non-adaptive sampling (i.e., setting k = 1 in the
notation introduced above) outperformed any other choice of k. This also makes the connection to one-
shot optimization, the topic of this section. Our findings strongly suggest to extend our investigations
of the power and limits of adaptive sampling (which we have started for the discrete case by the results
presented in 2.3) to the continuous case. Surrogate-assisted optimization offers an ideal setting for
this research question.

Note that the Halton point sets, which gave the best overall results in [BDK20a], are so-called low-
discrepancy point sets. The discrepancy is a measure for the regularity of distributions, see [DP10,
Mat09, Nie92] for surveys of this important measure from Numerical Analysis.1 Low-discrepancy point
sets have been shown to perform well in one-shot optimization tasks, see [CCD+20] for the current state
of the art and further references. However, despite several favorable comparisons of low-discrepancy
point sets over random sampling or LHS designs, the question if discrepancy correlates well with good
performance in one-shot optimization has not been investigated. We addressed this question in our
work [BDK+20b]. Using again the 24 benchmark functions from the BBOB collection as test bed,
we found that a positive correlation between discrepancy and one-shot performance can indeed be
observed on the global scale, i.e., when aggregating over all the use cases. The precise relationship
between functions and best samples, however, is again fuzzy, and deserves further investigation. Since
one-shot optimization does not allow adaptation, a relationship between high-level features of the
search space (such as its dimension, its (guessed) multimodality, separability, etc.) seems worthwhile
to study.

Apart from one-shot optimization in the classical sense, where the aim is to minimize the simple regret
mini=1,...,λ f(x(i)) − inf f , we also studied in [BDK+20b] one-shot regression (also studied under the

term global surrogate modeling), where the objective is to build a suitable approximation f̂ of the
true objective function f . Here we made the interesting observation that some of 24 specifically
designed point sets (one per each BBOB function) yield surprisingly good approximations f̂ across
the whole benchmark set, i.e., when evaluated on the other 23 BBOB functions that they have not
been optimized for. These results give strong indication that significant performance gains over state-
of-the-art one-shot sampling techniques are possible and that IOHs can be an efficient means to evolve
these (because this is how we obtained the 24 sets).

5.4 IOHprofiler - A Versatile Benchmarking Environment

The vast majority of results described in this thesis are of theoretical nature; i.e., they derive some
properties about the behavior of IOHs using a mathematical approach. As discussed in Section 1.2,
we should nevertheless not forget that such mathematical analyses can only offer one side of algorithm
analysis, often focused on structurally simple benchmark problems and algorithms. We also have to
admit that the mathematical language in which we typically express our findings does not necessarily
appeal to everyone, and may in particular not appeal to practitioners of IOH methods, who are often
not trained to interpret asymptotic running time statements nor to read and interpret mathemati-
cal proofs. For a broader and more complete insight into the working principles of IOHs, but also
for communication purposes, it is therefore desirable to complement our mathematical analyses by
empirical evaluations.

Supporting the empirical analysis and comparison of algorithms through a systematic experimental
design is one of the primary goals of algorithm benchmarking. Algorithm benchmarking addresses

1More precisely, several discrepancy measures exist. For the context of this thesis, we focus on the L∞ star discrep-
ancy measure, which for a given set X measures the largest deviation between the volume of an anchored box ([0, yi])

d
i=1

and the fraction |{x ∈ X | ∀i ∈ [1..d] : xi ∈ [0, yi]}|/n of points that fall inside this box. Some of my works are centered
around the star discrepancy measure: computational aspects are considered in [GWW12, GSW09, DGW14], the gener-
ation of low discrepancy point sets using genetic algorithms in [DR13], and in [DDG18] we derived a probabilistic lower
bound for the star discrepancy of LHS designs. They are not further described here for reasons of space and scope.
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the selection of problem instances that are most suitable for an accurate performance extrapolation,
the experimental setup of the data generation, the choice of the performance indicators and their
visualizations, the choice of the statistics used to compare two or more algorithms, etc. Unfortunately,
algorithm benchmarking can be a rather repetitive and tedious task, especially when it comes to
collecting, comparing, and interpreting performance data.

With the goal to mitigate the time and knowledge investment needed to carry out sound benchmark
studies, the team around Thomas Bäck at Leiden University and I have developed a new benchmarking
environment, which we call IOHprofiler [DWY+18b]. IOHprofiler is designed with a fine-grained, dy-
namic, and multi-faceted performance analysis of IOHs in mind. The tool therefore does not only track
performance data, but records the evolution of control parameters, making IOHprofiler particularly
useful for the analysis, the comparison, and the design of algorithms with dynamic parameters.

IOHprofiler has a modular design, built to integrate various elements of the entire benchmarking
pipeline, ranging from problem (instance) generators and modular algorithm frameworks over auto-
mated algorithm configuration techniques and feature extraction methods to the actual experimenta-
tion, data analysis, and visualization. Notably, IOHprofiler already provides the following components:

• IOHproblems: a collection of benchmark problems. This component currently comprises
(1) the PBO suite of pseudo-Boolean optimization problems suggested in [DYH+20], (2) the 24
numerical, noise-free BBOB functions from the COCO platform [HAR+20], and (3) the Wmodel
problem generator proposed in [WW18].

• IOHalgorithms: a collection of IOHs. For the moment, the algorithms used for the bench-
mark study presented in [DYH+20] are included, but extensions for both combinatorial and
numerical solvers are in progress. Notably, we are working on an extension towards the object-
oriented algorithm framework ParadisEO [CMT04], as well as towards the modular algorithm
frameworks for CMA-ES variants from [vRWvLB16] and for the hybridization between particle
swarm optimization (PSO) and differential evolution (DE) proposed in [BWB20].

• IOHdata: a data repository for benchmark data. This repository currently comprises the
data from the experiments performed in [DYH+20], some selected data sets from the COCO
repository [HAB20], as well as performance data from Facebook’s Nevergrad benchmarking
environment [RT18], which can be fetched from their repository upon request.

• IOHexperimenter: the experimentation environment that executes IOHs on IOHproblems
or external problems and automatically takes care of logging the experimental data. It allows
for tracking the internal parameter of IOHs and supports various logging options to specify the
granularity at which the performance and parameter data is recorded.

• IOHanalyzer: the module which provides detailed statistics about fixed-target running times
and about fixed-budget performance of the benchmarked algorithms on real-valued, single-
objective optimization tasks. Performance aggregation over several benchmark problems is
possible, for example in the form of empirical cumulative distribution functions. Key advan-
tages of IOHanalyzer over other performance analysis packages are its highly interactive design,
which allows users to specify the performance measures, ranges, and granularity that are most
useful for their experiments, and the possibility to analyze not only performance traces, but
also the evolution of dynamic state parameters. Our key design principles are 1) an easy-to-use
software interface, 2) interactive performance analysis, and 3) convenient export of reports and
illustrations. The stable release of IOHanalyzer is available on CRAN.

IOHprofiler is fully open source. It is available on GitHub at [DWY+18c].

Our first use case of IOHprofiler was the comparison of different variants of the (1+λ) EA on OneMax
and LeadingOnes, which we presented in [DYvR+18]. Notably, the results inspired us to improve
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the precision of the running time of the standard (1 + λ) EA (i.e., the version using standard bit
mutation with a static mutation rate of 1/n) and for the (1+λ) EA>0 version, which uses the SBM>0

mutation operator instead.

Theorem 5.4.1 (Theorem 1 in [DYvR+18]). For all n, λ ∈ N the expected optimization time of the
(1 + λ) EA with static mutation rate 0 < p < 1 on the n-dimensional LeadingOnes function is at

most 1 + λ
2

∑n−1
j=0

1
1−(1−p(1−p)j)λ and the expected optimization time of the (1 + λ) EA>0 is at most

1 + (1−(1−p)n)λ
2

∑n−1
j=0

1
1−(1−p(1−p)j)λ .

For λ = 1 both bounds are tight, by results proven in [BDN10, JZ11], respectively. For reasonable
(i.e., not too large) values of λ the bounds in Theorem 5.4.1 are close to tight, see [DYvR+18] for a
detailed discussion.

Extending the empirical results presented in [DYvR+18] for OneMax, we observed in [RABD19]
that none of the algorithms studied in [DYvR+18] achieves stable performance for varying offspring
population sizes λ. That is, while the ranking of algorithms remains identical for all tested problem
dimensions n (we investigate up to n = 100 000), the ranking is heavily influenced by the choice of
λ. This motivated us to suggest a new parameter control technique in [BDR20], which addresses this
influence. In a nutshell, our new control mechanism is a hybrid between a reinforcement learning
strategy and a success-based multiplicative update rule (as discussed in Section 4.3, the latter can
be seen as a generalized one-fifth success rule). The hybrid strategy shows stable performance on
OneMax, for all tested offspring population sizes λ ∈ {2i | i ∈ [0..12]}. For problems different from
OneMax, however, the choice of the minimal “cut-off” mutation rate pmin as well as the dependence
of the update rule on strict improvement or on a successful replacement of the center of search (the
“parent”) can have a decisive influence.

Building on the work [DYvR+18], a number of improvements were subsequently made to IOHpro-
filer, and the first study of an important number experiments was reported in [DYH+20], where we
evaluated twelve benchmark algorithms on 23 different problems in four dimensions. In the mean-
time, IOHprofiler has been used in a number of studies, including [HBS19, YDB19, CSC+19, DD19,
VWDB20, VWBD20, LM20, LGW+20].

In ongoing and future work, we plan to expand the compatibility of IOHprofiler with respect to auto-
mated algorithm configuration and design tools (in particular, we are currently working on interfaces
with irace [LDC+16] and ParadisEO [CMT04], but an important step will also be the selection and
integration of feature selection methods which can guide the automated design on new problems or
problem instances [KHNT19, KT19, MSKH15, JD20]). We also plan on exploiting the fine-grained
performance logs to develop algorithms that show good anytime performance. Finally, we will con-
tinue our efforts to collect scalable and meaningful benchmark problems, and to make them available
through IOHproblems or through interfaces with other benchmarking platforms and problem collec-
tions.



Chapter 6

Outlook

We have summarized in this thesis some of my research activities from the last nine years. Reflecting
the time spend on the different topics, we have mostly focused on two of them, black-box complexity
and parameter control. In the last section we have then summarized some selected activities from
other research themes. We now present what we consider to be general trends in the theory of
sampling-based optimization heuristics, and where we expect the field to develop.

A re-occurring topic in this thesis were high-precision analyses, both for the complexity models
as well as for the performance analysis of IOHs. A key driver of this development are so-called drift
theorems, which allow us to translate bounds on the step-wise progress into performance guarantees for
the whole optimization process. Drift theory has in the last decade developed into the single-most used
method in the analysis of IOHs. See [Len20] for a recent survey of existing results and [MA19, AAG18]
for applications of drift analysis in continuous optimization. We are convinced that drift analysis will
continue to play an important role in the analysis of IOHs also in the next decade. By refining the
conditions under which drift statements can be made, and by gaining in knowledge how to build
suitable potential functions (which measure the progress or the “state” of the optimization process),
we will extend the scope of problems and algorithms for which we can derive performance guarantees.
Not less important, we will continue to see significant gains in the precision of these guarantees, and
this with respect to

• the concentration of the running times (or complexity statements), and stochastic domi-
nation bounds as suggested in [Doe19],

• the dependency of the performance guarantees on the control parameters of the
algorithms, and in particular with respect to more than one control parameter. First steps in
this direction have been made in [GW17], where bounds for the expected running time of the
(1 + λ) EA are given which depend on both the offspring population size λ and the mutation
rate p, and by the lower bounds that we have proven for the (1 + (λ, λ)) GA in [DD18].

• the scope of the performance guarantees: extending optimization time, we will see an in-
creased interest in anytime measures, in terms of fixed-target, fixed-budget, and fixed-probability
statements, but also in terms of aggregated anytime performance measures such as the cumula-
tive distribution functions (CDF), which are standard today, thanks to the COCO benchmarking
environment [HAR+20], in the empirical analysis and comparison of IOHs.

Related to the precision of performance guarantees is the quest for statements “beyond the worst-
case”; that is, results that do not over-emphasize rare pathological cases, but give a realistic estimate
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for a “typical” or a “likely” performance. While for most situations studied in this thesis, the worst-
case assumption did not have any or no significant influence on the performance guarantees (since the
algorithms would treat the instances more or less identically), the question how to aggregate perfor-
mances gains importance when trying to measure, for example, the discrepancy between deterministic
and randomized IOHs.

Fueled by applications in Machine Learning, we expect to see significant progress on sampling-based
approaches for mixed-integer optimization problems. In this context, the theory field has much
to catch up on, given that the by far dominant fraction of theoretical analyses of sampling-based
optimization heuristics assumes either discrete or continuous decision spaces. Luckily, we see in the
example of drift theory that the two communities are converging in terms of analytical methods, so
that we can be optimistic to see running time analyses for mixed-integer optimization problems in the
not-so-far future. Interesting use cases could be hyper-parameter optimization, since this is related to
the parameter tuning and control questions already studied in the theory of IOHs. First progress on
this topic has already been made, see [KLLG19, HOS20] and references mentioned therein.

What concerns parameter control, two important topics are (1) the control of two or more param-
eters and (2) efficient control strategies for multimodal optimization problems, i.e., problems
with several local optima.

Another topic for which we hope to see progress in the coming years is the theoretical analysis of IOHs
which are explicitly not unbiased, but which actively learn influence and correlations between
variables to guide the search, such as the algorithms suggested in [TB20, BMAB20]. Results for such
IOHs would bring the theoretical analyses closer to the algorithms used in practice.

Last but not least, we firmly believe that a reinforced communication between theoreticians
and practitioners of sampling-based optimization methods is much needed, to raise awareness for the
knowledge gained through mathematical and empirical analyses, respectively. As stated in Section 5.4,
we believe that algorithm benchmarking can offer a suitable bridge between the two sub-communities.
In particular, we see the following advantages that theoreticians can expect from using empirical
benchmarking (a more exhaustive list can be found in Section 2 of our survey [BDB+20]):

(1) Science communication and educational purposes: Benchmarking offers a convenient
way to illustrate key insights by means that practitioners and researcher with a non-mathematical
background are much more used to than the “theorem-proof” style of documentation common in
theoretical papers. We are therefore convinced that benchmarking is an essential tool for a better
adoption of insights that the theory of IOHs literature has to offer.
(2) Testing generalization: As we discussed in Section 1.2, theoretical results for sampling-
based optimization heuristics are often restricted to problems and/or algorithms that are not
representative of the complexity encountered in practice. Benchmarking offers a convenient way to
test how far proven performance guarantees or algorithmic behavior extends to other problems. It
also allows to obtain precise running time estimates, as opposed to the asymptotic results typically
sought for by the mathematical approaches.
(3) Generating New Hypothesis: Benchmarking does not only serve demonstration purposes,
but can also be a source for inspiration. We have seen examples in Sections 4.1 and 4.3, where the
performance guarantees proven for the self-adjusting (1 + (λ, λ)) GA and the generalized one-fifth
rule, respectively, were largely inspired by previous empirical studies from [DDE15] and [DW18b],
respectively.
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[ES03] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing. Natural
Computing Series. Springer, 2003.
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[LFKZ14] Ke Li, Álvaro Fialho, Sam Kwong, and Qingfu Zhang. Adaptive operator selection with
bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE
Transactions on Evolutionary Computation, 18:114–130, 2014.

[LGW+20] Q. Liu, W. V. Gehrlein, L. Wang, Y. Yan, Y. Cao, W. Chen, and Y. Li. Paradoxes in
numerical comparison of optimization algorithms. IEEE Transactions on Evolutionary
Computation, 24(4):777–791, 2020.

[Lin64] Bernt Lindström. On a combinatory detection problem i. Mathematical Institute of the
Hungarian Academy of Science, 9:195–207, 1964.

[Lin65] Bernt Lindström. On a combinatorial problem in number theory. Canadian Mathemat-
ical Bulletin, 8:477–490, 1965.
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[LLM07] Fernando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz, editors. Parameter
Setting in Evolutionary Algorithms, volume 54 of Studies in Computational Intelligence.
Springer, 2007.

[LM20] Johannes Lengler and Jonas Meier. Large population sizes and crossover help in dynamic
environments. In Proc. of Parallel Problem Solving from Nature (PPSN’20), volume
12269 of LNCS, pages 610–622. Springer, 2020.

[LS18] Johannes Lengler and Angelika Steger. Drift analysis and evolutionary algorithms re-
visited. Combinatorics, Probability & Computing, 27(4):643–666, 2018.

[LS19] Per Kristian Lehre and Dirk Sudholt. Parallel black-box complexity with tail bounds.
CoRR, abs/1902.00107, 2019.

[LW10] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. In Proc.
of Genetic and Evolutionary Computation Conference (GECCO’10), pages 1441–1448.
ACM, 2010.

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algo-
rithmica, 64:623–642, 2012.

[MA19] Daiki Morinaga and Youhei Akimoto. Generalized drift analysis in continuous domain:
linear convergence of (1 + 1)-ES on strongly convex functions with lipschitz continuous
gradients. In Proc. of Foundations of Genetic Algorithms (FOGA’19), pages 13–24.
ACM, 2019.

[Mat09] Jǐŕı Matoušek. Geometric Discrepancy. Springer, Berlin, 2nd edition, 2009.

[MBC79] Michael D. McKay, Richard J. Beckman, and William J. Conover. A Comparison of
Three Methods for Selecting Values of Input Variables in the Analysis of Output from
a Computer Code. Technometrics, 21:239–245, 1979.
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[SEBB18] Jörg Stork, Ágoston Endren Eiben, and Thomas Bartz-Beielstein. A new taxonomy of
continuous global optimization algorithms, 2018. arXiv e-prints:1808.08818.

[SF96] Jim Smith and Terence C. Fogarty. Self adaptation of mutation rates in a steady
state genetic algorithm. In Proc. of IEEE International Conference on Evolutionary
Computation, pages 318–323. IEEE, 1996.

[Sob67] Ilya Meyerovich Sobol. On the distribution of points in a cube and the approximate
evaluation of integrals. USSR Computational Mathematics and Mathematical Physics,
7(4):86–112, January 1967.
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Chen, Zbigniew Michalewicz, and Xin Yao. Benchmarking optimization algorithms:
An open source framework for the traveling salesman problem. IEEE Computational
Intelligence Magazine, 9(3):40–52, 2014.

[Win11] Carola Winzen. Toward a complexity theory for randomized search heuristics. PhD
thesis, Universität Saarbrücken, 2011.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combinatorics, Probability & Computing, 22:294–318, 2013.



70 BIBLIOGRAPHY

[WW18] Thomas Weise and Zijun Wu. Difficult features of combinatorial optimization problems
and the tunable w-model benchmark problem for simulating them. In Proc. of Genetic
and Evolutionary Computation Conference (GECCO’18, Companion Material), pages
1769–1776. ACM, 2018.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of com-
plexity. In Proc. of Foundations of Computer Science (FOCS’77), pages 222–227. IEEE,
1977.

[YDB19] Furong Ye, Carola Doerr, and Thomas Bäck. Interpolating local and global search
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