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ABSTRACT

In the last decade, the evolution of Deep Learning techniques to learn mean-
ingful data representations for text and images, combined with an important
increase of multimodal data, mainly from social network and e-commerce websites,
has triggered a growing interest in the research community about the joint un-
derstanding of language and vision. The challenge at the heart of Multimodal
Machine Learning is the intrinsic difference in semantics between language and
vision: while vision faithfully represents reality and conveys low-level semantics,
language is a human construction carrying high-level reasoning. Two categories
of work can be distinguished in Multimodal Machine Learning: the first intends
to solve multimodal tasks, such as Image Captioning; the second, which is the
purpose of this thesis, leverages visual information to solve a textual task (and
vice-versa).

One the one hand, language can enhance the performance of vision models. The
underlying hypothesis is that textual representations contain visual information.
We apply this principle to two Zero-Shot Learning tasks. In the first contribution
on ZSL, we extend a common assumption in ZSL, which states that textual
representations encode information about the visual appearance of objects, by
showing that they also encode information about their visual surroundings and
their real-world frequence. In a second contribution, we consider the transductive
setting in ZSL, in which unknown classes and their corresponding images are
known during training (but not their correspondence). We propose a solution to
the limitations of current transductive approaches, that assume that the visual
space is well-clustered, which does not hold true when the number of unknown
classes is high. To do so, we use the CycleGAN model to align textual and visual
distributions in an unsupervised fashion.

On the other hand, vision can expand the capacities of language models. We
demonstrate it by tackling Visual Question Generation (VQG), which extends the
standard Question Generation task by using an image as complementary input, by
using visual representations derived from Computer Vision. We show that image
parts can be represented as word representations in a neural text model (here,
Transformers). In another contribution, we leverage visual information to enhance
textual representations. We expand traditional approaches that only consider
word embeddings, and show that sentence representations can also benefit from
visual semantics.

Finally, we present research perspectives on Multimodal Machine Learning.
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CHAPTER

INTRODUCTION

Contents
1.1 Context . ... ... ... ... 1
1.2 Research Questions . . ... ... ... ... ... . ..... 3
1.3 Contributions and outline of the thesis . . . . ... ... ... .. 7

1.1 Context

Over the last decades, the quantitative explosion of numerical data has induced
a rising interest for the fields of Artificial Intelligence (Al) and Machine Learning
(ML). For example, it is estimated that about 2.5 trillion bytes are created, every
day, on Earth. This data can take various forms: text messages in natural language
(650 million tweets per day on Twitter), images (a billion per day on Facebook),
videos (300 hours of uploaded videos on Youtube per hour), but also audio
recordings, transactions, GPS signals, climatic measures, etc. This exponential
evolution of generated data has gone hand in hand with an exponential evolution
of computing power (Moore’s Law), estimated at a 1 trillion-fold increase from
1956 to 2015. For example, a recent smartphone, with its integrated Graphics
Processing Unit (GPU), has more computing power that the computer that made
moon landing possible in 1969. Large amount of training data, combined with
powerful computers, led to the development of Deep Learning (LeCun et al.
2015), a branch of Machine Learning focused on learning data representations
(representation learning) with multiple layers corresponding to multiple levels of
abstraction. Deep Learning techniques have been successfully applied to the two
most common modalities: text and image .

Natural Language Processing (NLP) is a research field studying models and
techniques able to process automatically textual data. NLP covers a variety of
tasks that are based on textual data, such as sentiment analysis (Pang et al. 2007),
Machine Translation (Bahdanau et al. 2014), summarization (Rush et al. 2015),
etc. To tackle such tasks, automatic methods are required to capture textual
syntax, semantics and lexical properties. The first methods, in the 1970s, relied

1. Throughout this thesis, we will only consider these two modalities.
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on hand-coded set of rules for language (Winograd 1971): these rules were
extremely costly to generate, error-prone, and generalized poorly. After that,
statistical approaches modeled language as a probabilistic model with Markovian
assumptions, where co-occurrence probabilities for words are estimated using
counting techniques (Y. Bengio et al. 2003). However, such methods face important
limitations, especially for rare words that may not be seen in the reference corpus.
Instead, recent approaches based on Deep Learning have focused on learning
textual representations: vectors that encode the semantics of linguistic units at
several levels of granularity — e.g, word (Mikolov et al. 2013b), sentence (Kiros
et al. 2015), document (Le et al. 2014) — that can be used on downstream NLP tasks.
With representation learning, the semantic proximity between textual units is
linked to a geometrical relationship in a vector space. Thus, building meaningful
textual representations is at the core of NLP, as it directly influences performances
on text-related tasks.

Understanding visual data from images is the purpose of Computer Vision (CV).
CV covers a variety of tasks, such as classification (Deng et al. 2009), segmentation
(Hariharan et al. 2014), or object detection (Sermanet et al. 2014). Traditional
methods relied on hand-crafted features (Lowe 2004; Dalal et al. 2005), that
are features obtained using an automatic method, without a learning phase.
Such features were then incorporated in a standard statistical model, such as
Support Vector Machine (SVM) (Tong et al. 2001). Here again, Deep Learning has
enabled to build task-agnostic image representations, that successfully generalize
to downstream tasks, with the use of Convolutional Neural Network (CNN). The
recent success of CNNs in the last decade can be attributed to: new large-scale
datasets such as ImageNet (Deng et al. 2009), technical improvements such as
back-propagation (LeCun et al. 1989) and the rise in computing power. With
CNNs, visual representations are learned from raw pixel data in a hierarchical way.
While first layers detect low-level features like edges or corners, following layers
progressively capture more high-level information, with more detailed elements
(e.g, faces or animals). Similarly to NLP, the quality of visual representations is
paramount in CV as they are used in vision-related downstream tasks.

While there is an abundant literature on textual and visual representation learn-
ing, the study of multimodal representation learning and multimodal tasks (i.e.
tasks that require a joint understanding of text and vision) remain comparatively
under-tackled. However, multimodal tasks have gained in importance in the last
decade, with the emergence of large platforms with multimodal content, such
as social networks (e.g, Facebook, Twitter, Instagram) or e-commerce websites
(e.g, Amazon, Zalando). First concerns consisted in finding alignment between
modalities, to perform Cross-Modal Retrieval: given an image, retrieve the text
with the maximal semantic similarity, and vice versa. Now, a wide variety of
complex multimodal tasks exist, that necessitate joint textual and visual reasoning,
such as Image Captioning, where the goal is to generate a sentence, in natural lan-
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guage, describing an image. In the present thesis, we will explore the current state
of Multimodal Machine Learning, propose contributions on several multimodal
tasks, and propose answers to central issues of Multimodal Machine Learning.

1.2 Research Questions

"What can be shown, cannot be said", writes Ludwig Wittgenstein in his Tracta-
tus logico-philosophicus (Wittgenstein 1922). To show something, means referring to
a visual scene, from the real-world experience. To say something about this scene,
means using language to formulate an abstract description of this concrete situation.
However, language will never be able to convey and describe all subtleties of the
visual world. Indeed, language is a human construction, expressing high-level
semantics, made by humans to address other humans. On the other hand, in
comparison to text, vision faithfully depicts reality, is not subject to interpretation,
and carries low-level semantics.

Linguistic and visual modalities present inherent differences (Grice 1975; Ahn
et al. 2005). In an image, as processed by a computer, the constituting elements are
the pixels: each pixel is defined by its color, given by RGB values, and corresponds
to a light signal captured by a camera. Despite the fact that images possess a
finite number of pixels, the information within a pixel is by nature continuous,
since the content of a pixel could itself be sub-divided into a larger number of
pixels, depending on the resolution of the camera that took the image. In contrast,
the constituting elements of text are words, which are discrete by nature. Indeed,
words are finite in a given language; for example, there is an estimated total of
one million words in the English language, with about 170,000 words in current
use, and about 30,000 words used by each individual.

The structure of both modalities is also intrinsically different. In images,
pixels are understood spatially, in relation with the neighboring pixels in the
four directions (up, down, right, left). At a higher granularity, the distance
between objects in the image, which are themselves constituted of pixels, is
directly linked to the real-world distance between them, with a factor depending
on the orientation of the camera. On the other hand, language is by nature
sequential and follows a unique direction, e.g., a sentence is read from right-to-left
in English, and left-to-right in Arab. The distance between words in the sentence
has no relation with the real-world, but is rather linked to the grammatical relation
between words, e.g., pronouns tend to come before adjectives, that tend to come
before nouns.

Due to the fact that language is a human construction, the information present
in texts and images is intrinsically different. Indeed, there is a bias in language
compared to vision, which is referred in the literature as the Human Reporting
Bias (Gordon et al. 2013): the frequency at which objects, relations, or events occur
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RQ1
NLP helped by CV

Visual Grounding of Language*
Visual Question Generation*
Visual Question Answering
Visual Dialog

Multimodal Machine Translation|

visual common-sense
real-world statistics
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Computer Vision Cross-Modal Tasks Natural Language
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Image Classification Image Captioning Representation Learning
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3 e
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Figure 1.1 — Overview of the Research Questions and of the different multimodal
tasks. * indicate tasks that are tackled as contributions in the present

thesis.
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in natural language are significantly different from their real-world frequency. The
consequence is that real-world statistics derived from textual are significantly
different to those derived from images. This can be explained intuitively: what is
obvious (e.g, bananas are yellow, humans have two legs) is rarely stated in text, since
it is supposed to be known by the human reader; the more an event is expected,
the less it is likely to be conveyed.

From the aforementioned observations, we can infer that the textual and visual
modalities present complementary characteristics, that may be efficiently lever-
aged in Machine Learning, for the mutual benefits of CvV and NLP. This leads us
to three Research Questions that will guide the present thesis:

¢ RQ1: Can vision help to refine language understanding ? Indeed, we can
hint that vision can bring useful common-sense, grounding, and real-world
statistics to NLP models.
Since language is a purely human construction, often disconnected from
a concrete reality, textual models that are trained only on textual data can
lack crucial real-world information and make unrealistic predictions, such
as “the sky is green” (Baroni 2016). Enhancing textual representations using
complementary visual data is the purpose of Visual Grounding of Language.
On the other hand, vision can be a useful complementary source of infor-
mation for tasks that are commonly studied on text only, such as Question
Answering (Weston et al. 2015) or Sentiment Analysis (Pang et al. 2007). For
example, when asked to translate a sentence s from a language to another
(Machine Translation), an image illustrating s may refine the translation
prediction (Multimodal Machine Translation), by proposing a perceptual
reference helping the model to desambiguate words.
The capacity of vision to enhance language comprehension is a central topic
of Chapter 4, Chapter 5 and Chapter 6. In Chapter 4, we investigate whether
textual representations can benefit from visual information when text/image
supervision is weak. In Chapter 5, we are interested in understanding to
which extend vision can help Question Generation. In Chapter 6, we explore
whether sentence representations can benefit from visual grounding, while
most Visual Grounding of Language works consider words.

e RQ2z: Can language help to refine visual understanding ? Language can
serve to bring reasoning capabilities and high-level understanding of real-
world scenes to CV models.

Indeed, language can enhance the visual understanding capabilities of a
model, especially when visual supervision is scarce, as in ZSL (Frome et al.
2013), which extends the traditional Image Classification tasks to classes
that are unknown to the model. Indeed, traditional CV models tend to
rely on a substantial amount of supervised data e.g., ImageNet (Deng et
al. 2009) and MS COCO (T. Lin et al. 2014a), while it is possible to learn
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high-quality textual representations in an unsupervised fashion. Thus, the
natural supervision present in language may help CV systems to refine their
recognition performances.

The capacity of language to enhance visual comprehension is an important
issue in Chapter 3, Chapter 4 and Chapter 5. In Chapter 3 (resp. Chapter 5),
we are interested in determining the presence (and, if possible, the nature) of
visual knowledge present in word representations (resp. Neural Language
Models). In Chapter 4, we are interested in tackling ZSL. when the number
of unknown classes is high.

RQ3: Can modalities be translated into one another ? Navigating between
modalities may shed some light on what makes them different, and bridge
the gap between them.

Historically, one of the first multimodal tasks was Cross-Modal Retrieval:
from a given input (whether text or image), the goal is to find the element
from the other modality that is semantically closest to the input. To do
so, a shared multimodal space has to be built: in this vector space, visual
and textual elements co-exist, and semantic distances can be computed
between them. Methods to produce such spaces is an important problem
in Multimodal Machine Learning: while first methods used statistical tools,
such as Canonical Correlation Analysis (CCA) (Silberer et al. 2012), current
approaches focus on learning local metrics, using, for example, triplet losses
(Socher et al. 2014a).

The more natural cross-modal direction is from images to text: indeed, it
is intuitively easier to translate low-level pixels semantics into high-level
abstraction, rather than the other way around. For example, Image Cap-
tioning (Karpathy et al. 2017) consists in generating a descriptive caption
from an image. This task has been widely studied, in particular using the
encoder-decoder framework (Sutskever et al. 2014): traditionally, the image
is encoded in a vector using a CNN, and this vector is decoded sequentially
into a sentence using a Recurrent Neural Network (RNN).

The other direction, called Text-to-Image Synthesis (Gorti et al. 2018), is much
more challenging. It builds upon the latest developments of Generative
Adversarial Networks (Goodfellow et al. 2014), conditioned by a textual
input, to generate images; due to the difficulty of the task, it has mostly been
tackled within restricted visual domains, such as images of birds or flowers.

The capacity of models to navigate betwen modalities is also a problem
that we tackle in the present thesis, in Chapter 3, Chapter 4 and Chapter 5.
In Chapter 3, we investigate how to make the predictions of cross-modal
model more interpretable, by using specialized sub-models in a Bayesian
framework. In Chapter 4, we tackle a traditional cross-modal task, Cross-
Modal Retrieval, in a fully unsupervised setting, to know whether a latent
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text/image supervision can be used to learn an alignment between modali-
ties. Finally, in Chapter 5, we are interested in studying, when generating a
question, the impact of using images, text or both simultaneously as input.

The inherent differences between language and vision is the challenge at the
core of Multimodal Machine Learning, which is the subject of the present thesis.
An overview is presented in Figure 1.1. Multimodal Machine Learning covers
all tasks that require a joint understanding of language and vision. RQz1 is at
the origin of the first class of multimodal tasks: NLP tasks helped by vision. In
these tasks, vision can either (i) refine language understanding, as in the Visual
Grounding of Language (A. Lazaridou et al. 2015a) task, or (ii) extend standard
NLP tasks to multimodal settings, as in Visual Question Answering (VQA) (Antol
et al. 2015b), Visual Question Generation (VQG) (Y. Li et al. 2018) or Visual Dialog
(Das et al. 2019). RQz is at the origin of the second class of multimodal tasks:
CV tasks helped by language. In these tasks, language brings reasoning capabilities
and semantics to standard CV tasks, as in ZSL. (Norouzi et al. 2014), which extends
the Image Classification task, or Phrase Grounding (Karpathy et al. 2017), which
extends the Object Detection task to phrases in natural language. RQ3 is at the
origin of the third class of multimodal tasks: Cross-Modal Tasks. In these tasks,
modalities are translated into one another, such as in Image Captioning, Text-to-
Image Synthesis or Cross-Modal Retrieval. These three classes are not mutually
exclusive: for example, VOG extends Question Generation, a standard NLP task
(NLP helped by CV) but it also corresponds to a cross-modal setting since an image is
translated into a sentence.

1.3 Contributions and outline of the thesis

The contributions of the present thesis are outlined as follow.

In Chapter 2, we present existing works in Multimodal Machine Learning.
We begin by describing standard uni-modal approaches to encode textual and
visual information, as well as methods to fuse/merge uni-modal data to build
multimodal representations. Then, we review three types of multimodal tasks: (1)
CV aided by NLP: visual understanding tasks that benefit from textual knowledge,
(2) NLP aided by CV: textual understanding tasks either refined using vision,
or extended to a multimodal setting, and (3) Cross-Modal tasks: tasks where
a modality is translated into another. In the following Chapters, we present
novel contributions on various multi-modal tasks: 7SI, Transductive Zero-Shot
Learning (T-ZSL), VQG, and Visual Grounding of Language, which cover the three
groups of aforementioned multimodal tasks. The multimodal tasks of the present
thesis are listed in Table 1.1.

In Chapter 3, we present a contribution in the field of 7ZSL. ZSL extends the
image classification task to classes that are unknown to the model (unseen classes),
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Chapter Task | NLP aided by CV CV aided by NLP Cross-Modal
3 ZSL v’ v’
T-ZSL v’ v’
4 CMR v
VGL v’
5 VQG v v
6 VGL v’

Table 1.1 — Overview of the multimodal tasks covered in the present thesis. VGL
hols for Visual Grounding of Language. CMR holds for Cross-Modal
Retrieval.

thus relying on textual semantics brought by NLP models (CV aided by NLP); it
also is a Cross-Modal Task as it consists in translating a visual input into a textual
output (a class label). Our goal is to identify objects, delimited by bounding boxes,
in images. As standard ZSL methods are solely based on the visual appearance
of objects, we propose to use the visual context around objects to refine the
predictions. To do so, we exploit semantic representations of class labels, and
assume that they both contain information on the appearance of objects, and
on the co-occurrence statistics with other objects in images. This work has been
published: Eloi Zablocki*, Patrick Bordes*, Laure Soulier, Benjamin Piwowarski,
and Patrick Gallinari (2019). “Context-Aware Zero-Shot Learning for Object
Recognition”. In: ICML 2019.

In Chapter 4, we present another contribution in ZSL. More precisely, we tackle
Transductive Zero-Shot Learning (T-ZSL), which is also both a CV aided by NLP task
and a Cross-Modal Task: in this setting, images corresponding to unseen classes are
known to the model, but not their correspondence. We address a current limitation
of T-ZSL models, that only consider datasets with a low number of unseen classes
as they rely on the assumption that the visual space is well-clustered. As this
hypothesis does not stand when the number of unseen classes is high (e.g, in
the ImageNet dataset), we propose to align the textual and visual distributions
with adversarial learning. Our model consists of a CycleGAN objective trained
on unseen classes and a supervised objective trained on seen classes. We also
evaluate our model on a Cross-Modal Retrieval task, and on Visual Grounding
of Language. This work is currently under review at the Pattern Recognition
journal: Patrick Bordes, Eloi Zablocki, Benjamin Piwowarski, and Patrick Gallinari
“Transductive Zero-Shot Learning using Cross-Modal CycleGAN".

In Chapter 5, we present a contribution on VOG. VQG is an adaptation of a
NLP task (Textual Generation) extended to a multimodal setting (NLP aided by CV);
moreover, it can be seen as a Cross-modal task as, in the configuration where only
the image is an input, the goal is to generate a textual output — VQG differs
from Image Captioning in the sense that the textual output is a question, not a
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description. Following recent works that showed the cross-lingual transferability
of large Language Models such as BERT, our objective is to assess the cross-modal
transferability of BERT. To do so, we (i) integrate visual data within BERT similarly
to textual data and (ii) we apply BERT to VQG, which is the most convenient
multimodal task as various inputs can be considered: purely visual, purely textual
and multimodal. To generate a question, we propose BERT-gen, an extension of
BERT able to generate an output based on uni- and/or multi-modal data. This
work is currently under review at the EMNLP 2020 conference: Thomas Scialom*,
Patrick Bordes*, Paul-Alexis Dray, Jacopo Staiano, Patrick Gallinari "BERT Can
See out of the Box: On the Cross-Modal Transferability of Text Representations".

In Chapter 6, we present a contribution on the Visual Grounding of Language
task. VGL aims at enhancing textual representations using visual information: it
is thus a NLP task aided by CV. A large body of work learns multimodal word rep-
resentations; however, the visual grounding of sentences remain under-explored.
We determine the differences between sentences and words: contrarily to words,
sentences can be visually ambiguous, carry non-visual information, or have a
wide variety of paraphrases and related sentences. We derive from these as-
sumptions objective functions, aimed at transfering visual information to sentence
embeddings within an intermediate space, to avoid an over-constrained semantic
space. This work has been published: Patrick Bordes*, Eloi Zablocki*, Laure
Soulier, Benjamin Piwowarski, and Patrick Gallinari (2019). “Incorporating Visual
Semantics into Sentence Representations within a Grounded Space”. In: EMNLP
2019.

Finally, in Chapter 7 we summarize the contributions of this thesis, and propose
research perspectives for Multimodal Machine Learning.
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Chapter abstract

In this Chapter, we give an overview of Multimodal Machine Learning, by
presenting the main issues and by covering a variety of tasks that jointly
leverage language and vision. We first describe techniques to represent textual
data in Neural Language Processing (Section 2.1.1), and visual data in Com-
puter Vision (Section 2.1.2). Then, we present various methods to integrate
jointly textual and visual data within a multimodal framework (Section 2.1.3).
We finally review previous works that tackle the three Research Questions
discussed in the Introduction:
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e RQ1: Can vision help to refine language understanding ? In these
works, the visual modality is used to help the interpretation of language
in another modality (NLP aided by CV); for example, extensions of NLP
tasks such as Visual Question Generation (VQG) (Y. Li et al. 2018),
Visual Grounding of Language (Angeliki Lazaridou et al. 2015), Visual
Question Answering (VQA) (Antol et al. 2015b), Visual Dialog (Das
et al. 2019) or Multimodal Sentiment Analysis (Zadeh et al. 2016)
(Section 2.2).

e RQ2: Can language help to refine visual understanding ? The
textual modality is used to enhance visual reasoning and understanding
(CV aided by NLP); for example, Zero-Shot Learning (Frome et al. 2013),
Visual Relationship Detection (C. Lu et al. 2016b) (Section 2.3).

e RQ3: Can modalities be translated into one another ?: one modal-
ity is translated into another (Cross-Modal tasks), such as Image Cap-
tioning (Bernardi et al. 2016) or Text-to-Image generation (Gorti et al.
2018) (Section 2.4).

2.1 From Mono- to Multi-modal Machine Learning

Traditional machine learning approaches rely on manually-designed data fea-
tures. This feature engineering requires experts, is costly and generalizes poorly to
new tasks. The paradigm of deep learning (LeCun et al. 2015) is different, and
it is at the core of representation learning: the idea is to learn representations by
leveraging large amounts of data, so that these representations encode meaningful
semantic information and can be applied efficiently to downstream tasks.

In this section, we present representation learning techniques for uni-modal
data. First, in the field of Natural Language Processing (Section 2.1.1), which aims
at representing textual data. Then, in the field of Computer Vision (Section 2.1.2),
for visual data. Finally, we show how to build multimodal representations from
uni-modal data (Section 2.1.3).

2.1.1 Natural Language Processing

Natural Language Processing covers all techniques and models that process
textual data — we present traditional NLP tasks in Table 2.1. Thus, Natural
Language Processing (NLP) intends to capture the semantics, grammar and syntax
of language into meaningful representations, and build models that learn such
representations. In this section, we present techniques to learn textual representa-
tions from various granularities: words (Section 2.1.1.1), sentence (Section 2.1.1.2)
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and documents (Section 2.1.1.3). In Section 2.1.1.4, we present language models,
which are tools to estimate probability distributions over sequence of words.

Task

Description

References

Named Entity Recognition
(NER)

Find and classify named entities
in text into pre-defined categories,
such as persons, organizations, loca-
tions, ...

(Guillaume Lample
et al. 2016; Moreno
et al. 2017)

Text summarization

Shorten a text into a summary rep-
resenting the most imporant or rele-
vant information of the original con-
tent

(Rush et al. 2015;
Aries et al. 2019)

Question Answering

Answer questions posed by humans
in a natural language

(Weston et al. 2015;
D. Chen et al. 2017)

Machine translation

Translate a text from one language
to another

(Bahdanau et al.
2014; Artetxe et al.
2018; Guillaume
Lample et al. 2018a)

Dialog systems

Dialog with a human

(Vinyals et al. 20152;
Sordoni et al. 2015)

Sentiment analysis

Identify, extract, quantify affective
states and subjective information

(Pang et al. 2007;
Maas et al. 20115
Pontiki et al. 2016)

Parts-of-Speech (POs) tag-
ging

Label a word in a text as a particu-
lar part of speech (e.g. noun, verb,
adjective ...)

(Petrov et al. 2012;
Nguyen et al. 2016)

Table 2.1 — Examples of NLP tasks. These tasks are conditioned by the quality
of textual representations, that capture the meaning and semantics of

textual data.

2.1.1.1 Word Representations

One-hot embeddings One-hot embedding is the simplest method to encode
a word w. With a pre-defined dictionary of words D = {wy...wy}, the one-hot
embedding of w is defined as the vector t;, = (Ly,—w)Y ;. Thus, this vector is
sparse (all zeros except for a 1). However, semantics are not present in t,,. The
geometrical cosine/inner-product between words that are semantically close, and
the distance between words that are semantically different, is always the same: 0.
These limitations led to the development of distributed word vectors, aimed at
encoding the semantics of a word within reasonable dimensions.

Distributional Semantic Model (DsM) Distributional Semantic Models are
based on the Distributional Hypothesis (Harris 1954), which states that linguistic

13
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Figure 2.1 — Continuous Bag-of-Words (CBOW) and Skip-Gram Models. Illustra-
tion taken from Mikolov et al. 2013a.

items with similar distributions in textual corpora should have similar meanings — in
other terms, a word is characterized by the company it keeps (Firth 1957). In practice,
co-occurrence patterns of words in text are used to learn representations of word
meaning, typically vectors t; in a vector space of fixed dimension d, with 4
generally between 100 and 1000. The most used DSMs are Glove (Pennington et al.
2014), which relies on aggregated global word-word co-occurrence statistics from
a textual corpus, and Wordzvec (Mikolov et al. 2013b). Two objectives, illustrated
in Figure 2.1, can be used in Wordzvec:

e Skip-Gram (Mikolov et al. 2013b): For each word w; occurring at position ¢,
embedded by a vector (its Word2vec representation), the training objective is
to predict the neighboring words in a text corpus, around a window of size
2c:

1 T
‘Cskipfgmm = T Z Z log p(wt+j|wf) (2'1)
t=1 —c<j<c,j#0

The probability p is defined as: p(e|c) « exp(u/.t.), where u. and t, are two
representations learned for each word depending on their role: for each word
w, ty is the Word2vec vector and uy, is the context vector.
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e CBOW (Mikolov et al. 2013a): the training objective is to predict a word wy
given its context:

1 T
Lcpow = T Y logp(w] Y, wpy) (2.2)
t=1 —c<j<c,j#0

Several empirical observations can be made on DSMs:

e Levy et al. 2014 show that DSMs, like Glove and Wordzavec, are equivalent to
an implicit factorization of a word-word co-occurrence matrix; thus, they are
variants of Latent Semantic Analysis (LSA), Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD) algorithms.

e Words that share similar semantics are located in the same regions of the
embedding space

e Some relations between words are linear. For example, Pennington et al. 2014
observe that "king queen = man woman’, in the sense that tyj,o — fqueen ~
tman — twoman. Similarly, as illustrated in Figure 2.2, Mikolov et al. 2013b show
that fp1adrig — tSpain X tparis — tFrance- More PfeCisel}’, t Madrid — tSpain — tparis
is closer to tryguce than to any other word.

e If two word spaces are built on two separate languages, using the same
word representation model, then both spaces share similar structures *. This
allows for efficient semi- or un-supervised alignment of word vectors between
distinct languages, as done in bilingual lexicon induction such as Smith et al.
2017 and G. Lample et al. 2018.

Standard models such as Word2Vec and Glove map each word to a fixed point
in a vector space, and the relationship between words is generally computed using
cosine similarity. This does not account for the uncertainty of words (e.g., food
is a broad concept that cover many aspects, whereas rice is more specific) and
asymetrical relations between words, like inclusion (e.g., Bach is part of composer).
To address this issue, Gaussian word embeddings (Vilnis et al. 2014) propose to
represent words by densities learned in the space of Gaussian distributions.

ELMo (Peters et al. 2018) presents a new paradigm: contextualized word represen-
tations. Here, the embedding of a word in a sentence is a function of the entire
sentence, not just the word itself. To do so, a Bidirectional Long-Short Term Mem-
ory (LSTM) (see Section 2.1.1.2) is trained on a large text corpus on a Language
Model task. ELMo representations of each word are a linear combination of all
internal layers of the LSTM for the corresponding token.

1. G. Lample et al. 2018 shows that it depends on the closeness between languages, e.g, French
is closer to English than Czech

15



16 MULTIMODAL MACHINE LEARNING: BACKGROUND
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Figure 2.2 — Two-dimensional PCA projection of the 1000-dimensional Skip-gram
vectors of countries and their capital cities. Illustration taken from
Mikolov et al. 2013b.

Evaluation of word representations

There exist various methods to evaluate

word representations. On the one hand, unsupervised methods directly use word
vectors to compute a score. On the other hand, supervised methods learn a
classifier, generally evaluated by cross-validation. Examples are given in Table 2.2.

e Semantic relatedness (unsupervised method): determines whether the ge-
ometric distance between words given by the word model correlates with
human judgements. In these tasks, we start from benchmarks annotated
by humans — e.g, WordSim353 (Finkelstein et al. 2002), MEN (Bruni et al.
2014), SimLex-999 (F. Hill et al. 2015), SemSim and VisSim (Silberer et al.
2014) — where couple of words are given a similarity score between o and
10. For each couple of word, the predicted similarity score given by the word
model is defined by the cosine similarity between both words. The semantic
relatedness score is defined as the Spearman correlation between human

ground-truth judgments and predicted similarities.
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Jon
AT ot
word 1 word 2 | Similarity word Ov‘(“m& W\?& ﬂsp
football tennis 6.63 bear 1 0 O
stock  phone 1.62 butterfly | 1 o o
coast  forest 3.15 scooter [0 1 1
jaguar cat 7.42 shawl | o o o
journey voyage 9.29 wrench |0 1 o
(a) (b)

word Conc. word1 word 2 | worda wordb

leopard 7.00 Madrid Spain | Paris  France

quiet 3.70 king queen | man  woman

awareness | 2.61 make making | run  running

envelope | 5.75 cat kitten dog puppy

hound 6.83 loose lost speak  spoken

(©)

(d)

Table 2.2 — Word evaluation benchmarks: (a) Semantic relatedness; examples from
WordSim353 (Finkelstein et al. 2002). (b) Feature-norm prediction; ex-
amples from McRae et al. 2005. (c) Concreteness prediction; examples
from USF (Nelson et al. 2004). (d) Analogy prediction.

e Analogy prediction: It determines whether relations between words in
language can be found in the vector space, e.g, if tking — tqueen = tman — twoman-

e Concreteness prediction (supervised method): The goal is to predict to
which extent a word is abstract or concrete (ground-truth scores have been
made by human annotators) given the word representations. This is done on
the USF dataset (Nelson et al. 2004) (3260 English words).

e Feature-norm prediction (supervised): The goal is to predict characteristics
of objects (e.g, has legs, is green) given their word representation. There are
417 entities, with a total of 43 characteristics divided into 9 categories (taste,

sound, tactile, color, etc.).

For contextualized word embedding models like ELMo, evaluations are made
by integrating ELMo embeddings to pre-existing NLP models, on tasks such
as Question Answering on the Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al. 2016), or Named Entity Recognition (NER) on the CoNLL 2003
NER task (Sang et al. 2003).

17
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2.1.1.2 Sentence representations

Architectures Over the last years, several approaches have been proposed to
learn semantic representations for sentences. The most naive approach is the
Bag-of-Words (Bow) model: a sentence s = wj...w, is represented as a sum (or
weighted average) of the one-hot embeddings if its words. This approach has the
same limitations of one-hot encodings (no encoded semantics); in addition, the
information of word order is not encoded. This is a problem for sentences, as
word order can be determinant, e.g, Lee Harvey Oswald assassinated JFK and JFK
assassinated Lee Harvey Oswald have entirely different meanings. Neural approaches
have been proposed to tackle these issues.

Since sentences are intrinsically sequential, a tool to leverage sentences are
Recurrent Neural Network (RNN). Unlike classical neural networks, which assume
the inputs to be independent, RNNs make use of sequential data and perform the
same task on every word of a sentence x;...x7. The key element is the hidden state
ht, which acts as a memory and is computed based on the input at the current
state x; and the previous state h;_1:

hy = f(LIxt + W]’lt) (2.3)

The output o; is calculated with the hidden state: oy = o(V,.ht +b,). The
sentence embedding correponds to the last hidden state /.

Standard RNNs suffer from limitations: as the gap between the relevant infor-
mation and the point where it is needed grows, RNNs become unable to connect
the information due to the vanishing gradient problem (Y. Bengio et al. 1994). To
tackle this issue, LSTM networks (Hochreiter et al. 1997) have been designed. The
LSTM is a RNN aimed at handling long-term dependencies. The key element of
the LSTM is the cell state ¢;, which acts like a conveyor belt flowing long-term
information. The network can remove or add information to the cell state using:

e a forget gate, deciding which information is to be thrown away from the cell
state: ft = (T(Wf.[htfl, xt] + bf)

e an input gate, deciding which information is to be stored in the cell state:
it = U(Wi-[ht—lr Xt] + bz)
This gate also generates candidate values, that could be added to the state:
C; = oc(We.[hy—1, x¢] + be)

e an output gate, deciding which part of the cell state to output: o; =
o (Wo.[ht—1, x¢] + bo)

The cell state c; is updated using a combination of its past state ¢;_; (moderated
by the forget gate f;) and the candidate state c/t (moderated by the forget gate i;):
Ct = ft-ct—l + it.Ct
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To simplify the complex structure of the LSTM, a more efficient architecture
has been proposed, that does not rely on a memory unit: the Gated Recurrent
Unit (GRU) (Cho et al. 2014). This network combines the forget and input gates
into an update gate and merges the hidden state and the cell state. The next hidden
state is a linear combination of the previous hidden state and the state update:

W=01-2YOnt+7 @Et (2.4)

where the update gate is zf = o(W;[h'"!,x!]). The state update is defined by:
W= tanh(W[rf © hf~1, x])), where 1! is a reset gate: r! = (W, [h'~1, x']).

Since traditional RNNs read words from right to left, the representation of the
sentence tends to forget the beginning of the sentence. Following this consid-
eration, bidirectional RNNs (Schuster et al. 1997) aim at learning a symmetric
sentence representation, able to incorporate information from both the beginning
and the end. For a sequence of T words, a bidirectional RNN computes a set of T
vectors h;, which is the concatenation of a forward RNN and a backward RNN that
read the sentences in two opposite directions.

The Transformer (Vaswani et al. 2017) proposes a different paradigm than the
RNN: using only attention mechanisms, and discarding recurrent and convolu-
tional techniques entirely. The motivation is twofold: first, attention has proven
useful to model long-term dependencies (Bahdanau et al. 2014; Y. Kim et al.
2017) (a long-standing issue for RNNs); second, the Transformer enables efficient
parallelization possibilities for training, unlike RNNs that are inherently sequential.

The Transformer follows the encoder-decoder framework (Sutskever et al. 2014):
it is composed of a series of encoding layers and a series of decoding layers, with
each layer having independent weights. The novelty and the fundamental building
block of the Transformer is the self-attention layer: its goal is to encode each word
with an attention over all tokens of the previous layer. The self-attention layer
takes n word vectors as input, and outputs n word vectors, that are written as
linear combinations of a transformation of the input vectors.

In the Transformer, each encoding layer is composed of: (i) a self-attention
layer and (ii) a feed-forward neural network applied to each token vector of the
sequence. The encoder output is used at each decoding time step in the encoder-
decoder attention blocks. Each decoder layer is composed of (i) a self-attention
layer, (ii) an encoder-decoder attention — helping the decoder to focus on relevant
parts of the input sentence — and (iii) a feed-forward network. At each decoding
step, the input of the decoder are the target tokens decoded up to the current
step. The first decoder input is a special token "beginning of sentence"; at step k,
there are k tokens wj, ...wy as input: the output of the decoder at step k is taken as
the next token wy 1. The process stops when a special token "end of sentence" is
encountered.
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got back

' N
...... strange _<eos>

<eos> This was strange

Figure 2.3 — Skip-Thought objective. Illustration taken from Kiros et al. 2015.

Learning procedures Historically, first methods relied on supervised approaches
to learn sentence representations. In supervised techniques, the principle is to
apply sentence representations to a supervised task, using varying architectures
such as recursive networks (Socher et al. 2013), convolutional networks (Kalch-
brenner et al. 2014) or self-attentive networks (Zhouhan Lin et al. 2017). The
common limitation of such methods, as pointed out in (Kiros et al. 2015), is that it
produces highly task-dependent sentence vectors; for this reason, we will focus
on unsupervised techniques in the following.

Unsupervised approaches, by benefiting from large amount of training data,
tend to produce universal and task-independent representations: FastSent (Felix
Hill et al. 2016), Word Information Series (Arroyo-Ferndndez et al. 2019), Universal
Sentence Encoder (D. Cer et al. 2018) are notable examples.

SkipThought (Kiros et al. 2015) — illustrated in Figure 2.3 — proposes an
extension of the distributional hypothesis at the sentence level: sentences that
appear in similar places in text tend to have similar meanings. Thus, the training
objective aims, for each sentence, at predicting the neighboring sentences in a vast
text corpus: the Toronto BookCorpus (Yukun Zhu et al. 2015), composed of 11K
unpublished books and about 71M sentences. It extends the Word2Vec principle
to the sentence level: the encoder-decoder tries to reconstruct the surrounding
sentences of an encoded passage. The authors use a RNN encoder with GRU
activations and an RNN decoder with a GRU.

More recently, the QuickThought (Logeswaran et al. 2018) model, instead of
training an encoder-decoder to predict neighboring sentences, adopts a different
approach: a sentence representation is trained to select the adjacent sentence
among three candidate sentences, among which two are negative samples.

Evaluation of sentence representations To evaluate sentence representations,
two types of evaluations exist:

e Semantic relatedness: two benchmarks are used: Semantic Textual Simi-
larity (STS) (D. M. Cer et al. 2017) and Sentences Involving Compositional
Knowledge (SICK) (Marelli et al. 2014a) — examples given in Table 2.5. They
both consist of pairs of sentences that are associated with human-labeled sim-
ilarity scores. STS is subdivided into three textual sources: Captions contain
concrete sentences describing daily-life actions, whereas the others contain
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Positive Negative

a taut , intelligent psychological drama | might best be enjoyed as a daytime soaper
an imaginative comedy/thriller plodding , peevish and gimmicky

a fascinating and fun film a soulless , stupid sequel . . .

Table 2.3 — MR examples

Positive Negative
"I still don’t think it is a trade secret," he said yesterday. Dusty had battled kidney cancer for more than a year.
"We don’t think that there is a trade secret here." Dusty had surgery for cancer and had a kidney removed.

Table 2.4 — MSRP examples

more abstract sentences: news headlines in News and posts from user fo-
rums in Forum.The Spearman correlations are measured between the cosine
similarity of our learned sentence embeddings and human-labeled scores.

e Classification: a logistic regression classifier is learned from the extracted
sentence embeddings, and the classification accuracy is reported. The tasks
are the following: Multi-Perspective Question Answering (MPQA) (Wiebe
et al. 2005), Movie Review (MR) (Pang et al. 2005) — examples given in
Table 2.3 — , Subjectivity /Objectivity (SUBJ) (Pang et al. 2004), Customer
Reviews (CR) (M. Hu et al. 2004), binary sentiment analysis on Stanford
Sentiment Treebank (SST) (Socher et al. 2013), paraphrase identification on
Microsoft Research Paraphrase (MSRP) (Dolan et al. 2004) — examples given
in Table 2.4 — as well as two entailment classification benchmarks: Stanford
Natural Language Inference (SNLI) (Bowman et al. 2015) and SICK (Marelli
et al. 2014b).

2.1.1.3 Document Representation

Going beyond the sentence level, document representations have been learned.
This granularity level is the most challenging, as documents are aggregates of
sentences, that can present different semantics and themes.

Sentence 1 Sentence 2 Similarity
A black and brown cat is eyeing a fly The man is eating cereal 1
A dog is emerging from a lake An animal is emerging from a lake 4.6
A dog is running through the snow  No dog is running through the snow 3.1
A kid is splashing in the pool A kid is splashing in the ocean 4.1
Two children are playing A kid is splashing in the ocean 2

Table 2.5 — SICK examples
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Historically, Term Frequency-Inverse Document Frequency (TF-IDF) has been
used to represent documents in the Information Retrieval field (Salton et al. 1984;
Jones 2004; Vulic et al. 2015). TF-IDF aims at measuring how important is a word
to a document in a collection of corpus. It is composed of (i) a term frequency (TF)
— measuring the number of occurrences of a word in a document — multiplied
by (ii) the logarithm of the inverse document frequency (IDF) — measuring how
much information the word provides, IDF is the number of documents in the
corpus containing that word. Intuitively, common words like the will have a high
TF but a very low IDF since it is present in all documents. Thus, a high TF-IDF
means that the word is representative of the given document. Once the TF-IDF of
all words in all documents have been computed, a vocabulary is fixed and each
document is represented by a vector containing their TF-IDF values for each word
of the vocabulary. The limitation of this approach is that the order of words is not
considered; it also does not encode semantics.

To solve this issue, the ParagraphVector (Le et al. 2014) model has been proposed:
it is close to the Word2Vec model (Mikolov et al. 2013b) and is frequently used
to encode the semantics of variable-length documents. The training objective is:
(i) to predict a word given its context, (ii) to predict words that appear in a small
window by leveraging a vector representation of the document. Unlike other
works, here, sentences are seen as basic units of documents, whereas sentences are
usually seen as a composition of words. (Le et al. 2014) extends the CBOW idea and
learns fixed-length feature representations by introducing a distributed sentence
indicator. Each sentence is represented by a dense vector which is trained to
predict words in the document. The downside of this method is that the sentence
indicator has to be estimated at test time.

2.1.1.4 Language Models

Language Models are models that assign probabilities to sequences of words
P(wj...wy). Their goal is not directly to learn representations, but since the 2000s,
they often rely on textual representations (in general, word embeddings). The
foundation of language models is the following equation:

P(wy..wn) = [ [ P(wi|wy...wi_1) (2-5)
i=1

N-gram A n-gram is defined as a sequence of n consecutive words. N-gram
models use a Markovian assumption, by supposing that the words necessary to
predict w; are the n last words (Y. Bengio et al. 2003). Given this assumption,
Equation 2.5 can be re-written as:

n

P(wlwn) = HP(wi|wn_1_i...wi_1) (26)
i=1
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The value of P(w;|w;,_1_;...w;_1) can be estimated by the number of co-occurrences

of the n-gram w,_;_;..w;_1,w; divided by the number of co-occurrences of
Wy—1—i.--w;j—1, where co-occurrences are computed on vast text corpus. The
n-gram model considers word order, and is simple to implement since it only
involves counting. However, it faces several limitations: (i) when 7 is high, the
number of samples to gather for estimating reliably the distribution is high; (ii)
some particular n-grams may not be present in text corpus, thus leading to a prob-
ability of 0 — this problem is alleviated with a smoothing techniques (Manning
et al. 2008).

Neural Language Model To alleviate the issues of the n-gram model, the Neural
Language Model (NLM) has been proposed.

Historically, RNNs (Y. Bengio et al. 2003) have been used to model word co-
occurrence probabilities, by using continuous representations of words. The
hidden state h; at time i aims at synthesizing previous history of the sequence.
Thus, NLMs rely on the following estimation:

P(ZUZ'_H \wl...w,') (o exp(Vo.hi + bo) (2.7)

More recently, following the success of Transformers, NLMs have relied on Trans-
former architectures, in particular with OpenAI GPT (Radford et al. 2018) and
BERT (Devlin et al. 2019). Moreover, for these models, the paradigm is different:
unlike feature-based approaches (e.g., SkipThought), which learn textual represen-
tations that are used directly (without fine-tuning) on task-specific architectures,
these model use a fine-tuning approach: they introduces minimal task-specific
parameters, and fine-tune all model parameters on downstream tasks.

In OpenAl GPT (Radford et al. 2018), a Transformer is trained to predict the
next token; each token can only attend to previous tokens. However, this approach
faces an important limitation, as its left-to-right architecture prevents tokens from
attending to future tokens.

BERT (Devlin et al. 2019) — illustrated in Figure 2.4 — alleviates the problem
of the uni-directionality of OpenAl GPT by proposing a new objective called
Masked Language Model (MLM). Under MLM, some words, that are randomly
selected, are masked; the training objective aims at predicting them. The authors
also train their model on a next sentence prediction task. In BERT, words are
embedded within an Embedding Layer, that converts them into vectors of a fixed
dimension d (here, d = 768 for BERT-BASE and d = 1024 for BERT-LARGE).
As illustrated in Figure 2.5, each word is embedded by the sum of (i) a token
embedding, (ii) a segment embedding, indicating in which sentence the word
is, (iii) a position embedding, encoding the position of the word in the input
sequence — indeed, as BERT is a Transformer, the order information might be
lost without this token. These vectors are fed as input of a 12-layer Transformer.
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ﬁp Mask LM Mask LM NLI /@@AD Star/End SpaN
Y %

BERT

BERT

Masked Sentence A - Masked Sentence B Question P Paragraph
K Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.4 — BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. Illustration taken from Devlin et al. 2019.
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Figure 2.5 — BERT input representations. Illustration taken from Devlin et al. 2019.

Furthermore, the authors propose to use two special tokens: [SEP] separates
sentences in the input sequence, and [CLS] is append at the beginning of the input
sequence, and constitutes a global sequence embedding, that is often fed as input
for discriminative downstream tasks.

2.1.2 Computer Vision

Computer Vision covers a variety of tasks that deal with the understanding
of visual data — throughout this thesis, we only consider data from images.
Computer Vision encompasses a variety of tasks, some of which are listed in
Table 2.6.

To deal with these tasks, it is necessary to represent the images in meaningful
semantic spaces: this is the focus of the present section. We present traditional
hand-crafted features for images in Section 2.1.2.1, and deep representations with
Convolutional Neural Networks in Section 2.1.2.2.
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Description
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References

Image classification

Determine the right class of an im-
age among a pre-defined set of la-
bels

Deng et al. 2009;
Krizhevsky et al.
2012; Szegedy et al.
2016a

Object Localization

Determine the position of a given
object in an image

Uijlings et al. 2013;
Girshick et al. 2014

Object Detection

Finding instances of objects in an
image

Sermanet et al. 2014;
S. Ren et al. 2017;
Redmon et al. 2016

Semantic Segmentation

Label each pixel in the image by a
category label

Hariharan et al.
2014; J. Long et al.
2015; Hariharan
et al. 2015

Image Synthesis

Generating targeted modifications
of existing images or entirely new
images

Radford et al. 2016;
Oord et al. 2016; ].
Zhu et al. 2017

Image Colorization

Converting a grayscale image to a
full color image

R. Zhang et al. 2016;
Cheng et al. 2015

Table 2.6 — Examples of Computer Vision tasks. These tasks are conditioned by
the quality of visual representations, that capture the meaning and
semantics of visual data.

2.1.2.1 Hand-crafted Features

Before the rise of Convolutional Neural Networks, images were processed
using hand-crafted features, i.e. features obtained without a learning phase, and
that are used with standard Machine Learning (ML) models, e.g, naive Bayes
or Support Vector Machine (SVM) (Tong et al. 2001). Since pixel information is
rarely semantically relevant, and necessitates huge memory storage, hand-crafted
approaches aim at finding local features that are later aggregated to build global
image features.

The first step to represent an image is feature detection, i.e. detecting image
keypoints, or salient regions of an image (often found at edges and changes of
color intensity). The second step, feature description, aims at generating a vector
able to represent these features. An important challenge is to produce features
that are robust to the various appearances an object can have in images, due to the
change of luminosity, rotation of the camera, distortion of the object, etc. A well-
known effort toward that direction is the Scale-Invariant Feature Transform (SIFT)
(Lowe 2004) model. The goal of SIFT is to produce visual features that are robust to
object distortions, intensity changes, and point of view. To do so, images undergo
convolutions of various Gaussian kernels at different scales: the produced SIFT
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Figure 2.6 — Convolutional Neural Network. In that case, a VGG network (Si-
monyan et al. 2014). [llustration taken from Durand 2017.

features are invariant to scaling and rotation transformations. Histogram of
Oriented Gradient (HOG) (Dalal et al. 2005) is another local feature descriptor.
In this technique, occurrences of gradient orientations are counted in localized
portions of an image. Unlike SIFT, the descriptors are computed on a dense grid
of cells that are uniformly spaced, and the accuracy is further improved by using
ovelapping local constrast normalization.

The third step is codebook generation. In this step, all feature descriptors are fed
into an unsupervised clusterization algorithm, e.g, k-means clustering, to generate
codewords (i.e. visual objects).

In the final step, images are represented using a Bag of Visual Words (BoVW)
model (Qiu 2002). Thus, an image is embedded as a sparse vector with 1s at
the positions of visual words. Hoewever, as in the BoW model for sentences, the
structure of the image is ignored, whereas the position of objects in an image
is paramount to understand visual semantics. Moreover, the design of feature
descriptors is often task-dependent, i.e. filter banks include expert knowledge
(Y. M. Lu et al. 2007). Hand-crafted methods thus require human intervention,
and produce visual features that do not generalize to other tasks.

2.1.2.2 Convolutional Neural Networks

The Convolutional Neural Network (CNN) (Fukushima et al. 1982) is a famous
example of the success of deep learning over hand-crafted features. The paradigm
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is thus to learn high-quality image features that are not task-specific, and that can
be applied to downstream tasks. A CNN is a hierarchical neural network, and aims
at learning high-level abstractions by stacking a series of layers: the first layers
detect corners and edges, whereas the final layers can recognize precise object
(e.g, a face, a dog, a cat). With CNNs, the feature extraction phase is shunned:
the input is the image and, when the CNN is trained on a classification task, the
output is a distribution of probability over a set of visual objects fixed in advance.

The basic CNN architecture (illustrated in Figure 2.6) includes four basic compo-
nents:

e Convolution layer: In this layer, various filters are used to convolve the whole
image, producing a series of feature maps. The convolution operator has useful
properties in the case of images: commutativity, associativity, distributivity
and multiplicative identity. As noted in (Zeiler et al. 2014), the convolution
operation (i) enables a reduced number of parameters due to weight sharing
in a feature map, (ii) learns correlations among neighboring pixels, (iii)
produces invariant features toward the location of the object

e Non-linear activation layer: following the discovery of the limitations of the
tanh and sigmoid activation functions, that lead to a vanishing gradient
problem, the Rectified Linear Unit ReLU(x) = max(x,0) is commonly used
in current CNNs, as it solves the vanishing gradient problem and allows for a
better and faster training

e Pooling Layer: this layer reduces the number of spatial dimensions of the
feature maps

o Fully-connected Layer: it is the last layer of the CNN, that takes as input the
output of the final pooling layer and outputs a probability distribution over
the visual classes of the dataset.

The success of CNNs over the last decade can be attributed to several factors:

¢ the back-propagation algorithm, proposed in LeCun et al. 1989. This algo-
rithm calculates the gradient of the loss function by applying the chain rule,
thus computing the gradient one layer at a time, starting from the last layer,
and avoiding redundant calculations

e efficient regularization techniques, such as drop-out (Nitish et al. 2014), in
which some nodes are randomly ignored during training to avoid over-fitting

e the creation of large-scale image datasets such as ImageNet (Deng et al. 2009)
(1.4M images corresponding to 1K classes), Visual Genome (Krishna et al.
2017) (100K images with fine-grained annotations) and MS COCOT. Lin et al.
2014a (180K training images with 5 corresponding captions each)
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e the exponential increase of computing power with Graphics Computing Units
(GPUs) allowing for fast convolution and matrix multiplication operations.

The architecture of CNNs has evolved into integrating more and more layers in
the last decade. The first CNNS, such as LeNet (Lecun et al. 1998) and AlexNet
(Krizhevsky et al. 2012) (first CNN architecture to even win the ImageNet chal-
lenge) had respectively 8 and 7 layers, whereas more recent CNNs such as VGG
(Simonyan et al. 2014) and GoogleNet (Szegedy et al. 2015) have respectively 16
and 19 layers. The development of new architectures for visual tasks is still active.
For example, using residual layers, CNNs like ResNet (K. He et al. 2016) can learn
even deeper networks (152 layers). In the latest CNN developments, a Neural
Architecture Search Network (NASNet) (Zoph et al. 2018) is used to determine
the optimal architecture via reinforcement learning, leading to a smaller model
size and lower complexity.

2.1.3 Building multimodal representations from mono-modal
representations

In Section 2.1.1, we presented standard ways to produce textual representations,
and in Section 2.1.2, standard ways to produce visual representations. In the
multimodal tasks that we present in the rest of this Chapter, both textual and
visual information have to be leveraged jointly. Thus, there is a need to build
multimodal representations possibly from uni-modal representations: this is the
purpose of the present section.

In Section 2.1.3.1, we present fusion techniques, where information from both
modalities has to be aggregated into a unique vector, generally to be decoded
into an output. This is useful in tasks like Visual Question Answering (VQA)
(Section 2.2.2.2) or Multimodal Machine Translation (MMT) (Section 2.2.2.4), that
have both a textual and a visual input.

In Section 2.1.3.2, we present techniques to build a shared multimodal space. This
is often used in tasks such as Cross-Modal Retrieval (Section 2.4.4) or Zero-Shot
Learning (zSL) (Section 2.3.1), where images and texts are projected into a common
representation space, in which similarities can be computed between elements
from both modalities.

Finally, in Section 2.1.3.3, we present a recent approach to jointly integrate
textual and visual information: Multimodal NLMs, that follow the success of BERT
(Devlin et al. 2019). This approach is different from the fusion and shared as it is not
oriented toward learning representations, but rather extends the NLM principle to
multimodal data.



2.1 FROM MONO- TO MULTI-MODAL MACHINE LEARNING

2.1.3.1 Fusion

Multimodal fusion aims at producing a multimodal representation when given a
textual and a visual representation as input. A multimodal fusion function is thus
a function fy, parameterized by 6, which takes as input a textual representation ¢
(of dimension d;) and a visual representation v (of dimension d,) and outputs a
vector fy(t,v). The problematic of multimodal fusion is at the core of the VQA task
(see Section 2.2.2.2). Indeed, in VQA, the input is an image (visual) and a question
(textual), and the model has to process these two elements to choose an answer.

Concatenation The simplest way to combine textual and visual information is
to concatenate textual and visual representations:

fo(t,v) =td0 (2.8)

where @ designates the concatenation operator (in that case, 8 = ). This
approach is used, for example, in the GroundSent model (Kiela et al. 2018) (see
Section 2.2.1 for more detail)— a baseline model for one of our contributions
(see Chapter 6) —, in which the final multimodal sentence representation is the
concatenation of a purely-textual SkipThought vector (obtained from textual data)
and a grounded one (obtained with an Image Captioning dataset).
To extract more meaningful representations, some methods learn a Multi-Layer
Perceptron (MLP) — of parameters 8 — on top of the concatenated vector:

fo(t,v) = MLPy(t © v) (2.9)

This method is used, for example, in the MDN-VQG model (Patro et al. 2018a)
for Visual Question Generation — a baseline model for one of our contributions
(see Chapter 5) — where a caption embedding vector and an image embedding
vector are fusioned using Equation 2.9. The resulting multimodal vector is used
to condition a decoder module that produces a question.

Element-wise product t and v can also be combined using a simple element-
wise product, which suggests that d, = d;:

fo(t,o) =tO0 (2.10)

where © designates the element-wise product operation.

This technique is used in some VOA works (Antol et al. 2015a; J. Kim et al. 2016;
R. Li et al. 2016), where v is the image vector and f the question vector; fy(t,v) is
usually used as input of a classifier to determine an answer.

Bilinear models To allow for more complex interactions to occur between
modalities, t and v can also be fusioned using a tensor Ty € R xdmxdy.

fo(t,0) = t.Tpv (2.11)
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This is often done in VOA (see Section 2.2.2.2) (Fukui et al. 2016; J. Kim et al.
2017). Due to the high dimension of the tensor Ty, some approaches attempt to
simplify the learning of Ty by decreasing the number of parameters, for example
with Tucker decomposition techniques (Ben-younes et al. 2017) or a stack of
low-rank matrice (Z. Yu et al. 2017).

2.1.3.2 Shared spaces

In shared spaces approaches, images and texts are mapped to a common represen-
tation space. In this space, comparisons can be made between elements of distinct
modalities (Weston et al. 2010; J. Wu et al. 2017): thus, this is a fundamental aspect
of multimodal machine learning. Such a space can enable, given queries from
one modality, to retrieve elements from another modality via a nearest neighbor
search. This is commonly the case in Zero-Shot Learning (see Section 2.3.1), where
a shared space is learned and, given an image, the class label which is closest to
the projected image is retrieved. Learning meaningful shared spaces is at the core
of the Cross-Modal Retrieval field (see Section 2.4.4).

Global alignment methods In global alignment methods, two mappings are
learned to map the textual and visual space to a joint space, so that regions that
are semantically similar across modalities are mapped closely in the common
representation space.

Historically, Canonical Correlation Analysis (CCA) was one of the first used
methods (Silberer et al. 2012; Gong et al. 2014). CCA aims at finding linear
combinations between two sets of observations which have maximum correlation
with each other. It also reduces the dimensionality of textual and visual data
while preserving the most important interactions between them.

More formally, let T € RN*4 3 matrix of N textual observations, and V €
RN*4> the matrix of the corresponding visual observations. The goal of CCA is
to find two projection matrices P; € R"*4 and P, € R"*% (with n < min(d,, d;)),
such that the original data T and V can be projected in a common space of
dimension n with T.P] and V.P!. This is done by first finding two vectors
t; € R* and v; € R% that maximize the correlation p(x,y) = corr(T.xT, V.yT).
T.t] and V.ol are called the first pair of canonical variables. Then, two new
vectors f; and v; that maximize p subject to the constraint that they are to be
uncorrelated with the first pair of canonical variables; they are called second pair
of canonical variables. The procedure is repeated 1 times and the (t;)""_; (resp the
(v;)!,) are the rows of P (resp. Py).

CCA has been used in many multimodal tasks; for example, in Visual Grounding
of Language (see Section 2.2.1) (Silberer et al. 2012; Silberer et al. 2013; Felix Hill
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Figure 2.7 — Triplet Loss. Illustration taken from B. Hu et al. 2018.

et al. 2014b; Loeub et al. 2016) and Cross-Modal Retrieval (see Section 2.4.4)
(Andrew et al. 2013; F. Feng et al. 2014).

Local metric learning methods Local metric learning methods enforce local
constraints on the structure of the common multimodal space. Rather than relying
on global constraints — like CCA which aims at maximizing the correlation
between modalities — these methods adopt a ranking point of view, by ensuring
that two corresponding elements are close, while two unrelated elements are far.
As the goal is to learn a distance d between elements, these approaches are under
the umbrella of metric learning (Xing et al. 2002).

In a constrastive (or pairwise) loss, given two elements (v, t) from both modalities,
the objective is to (i) minimize their distance d(v, t) if they match (y = 1) and (ii)
to maximize it if they do not (y = 1), by ensuring that their distance is superior to
a margin y > 0. This is done using a hinge-loss function (Hadsell et al. 2006):

Lpgirvise = Y, y-d(x1,x2) + (1 —y).[y —d(x1,x2) | N (2.12)

Y,X1,X2

In a triplet loss (illustrated in Figure 2.7), the objective is, given a fixed anchor v,
to enforce that the distance d(v, t¥) between v and its corresponding t7 is superior
to the distance d(v, t") between v and a negative element t", by a margin +:

‘Ctriplet - Z [’)’ + d(v, tp) - d(v, tn)J 4 (2-13)

v, tP "

The triplet loss in commonly used in many multimodal tasks. For example,
Frome et al. 2013 use it in ZSL (see Section 2.3.1) to learn a projection of an image
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vector in a textual semantic space. In Socher et al. 20144, a triplet loss learns
an alignment between images and captions. Carvalho et al. 2018 show, in the
retrieval field, that triplet losses outperform pairwise losses.

In the present thesis, we explore an alternative at shared space approaches (see
Chapter 6). To do so, we propose novel loss functions aiming at preserving the
structure of the visual and textual spaces, without learning an explicit projection
between them.

2.1.3.3 Multimodal Language Models

Following the success of large language models such as BERT (Devlin et al. 2019)
across a variety of NLP tasks, several research efforts have focused on the design
of multimodal versions of such language models to address multimodal tasks,
such as VOA. Thus, Multimodal Language Models extend standard NLMs — that
are applied only on textual data — to multimodal data. They are all extensions of
BERT (which is based on the Transfomer architecture), due to the success of BERT
in NLP and the success of attention mechanisms in Computer Vision (K. Xu et al.
2015; H. Xu et al. 2016).

The first attempt in that direction was VideoBERT (C. Sun et al. 2019), a joint
video and text model, is pre-trained on a huge corpus of YouTube videos, and
applied to action classification and video captioning tasks on the YouCook II
dataset (L. Zhou et al. 2018). The video is treated as a “visual sentence" (each
frame being a “visual word") that is processed by the BERT Transformer, using a
special token to signal the beginning of the visual sentence. The model is trained
with classic BERT objectives, adapted to the multi-modal setting (word and frame
masking), along with a multi-modal alignment task (where the goal is to assess
whether a video and a sentence are entailed).

Concerning models jointly treating information from images and text, visual
features extracted from the image are used as “visual words", and a [SEP] special
token is employed to separate textual and visual tokens. In the literature, visual
features are object features extracted with a Faster R-CNN (S. Ren et al. 2017) -
with the notable exception of Kiela et al. 2019 who used pooling layers from a
CNN.

A first body of work exploit single-stream Transformers in which visual features
are incorporated in a BERT-like Transformer: this is the case for VisualBERT
(L. H. Li et al. 2019) — illustrated in Figure 2.8 —, VL-BERT (W. Su et al. 2019),
Unicoder-VL (G. Li et al. 2019) and B2T2 (Alberti et al. 2019).

Other works, such as ViLBERT (J. Lu et al. 2019) and LXMERT (Tan et al. 2019) —
illustrated in Figure 2.9 — have investigated two-stream approaches: these models
employ modality-specific encoders built on standard Transformer blocks, which
are then fused into a cross-modal encoder.
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Figure 2.8 — VisualBERT: A Simple and Performant Baseline for Vision and Lan-
guage. Illustration taken from L. H. Li et al. 2019.
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In all models, a token embedding encodes the modality, so that visual and
textual features can by distinguished by the Transformer encoder.
Among these models, e.g, differences mainly lie in:

1. the pre-training datasets considered — image datasets such as Visual Genome
(Krishna et al. 2017), captioning datasets such MS COCO (T. Lin et al. 2014b)
or Conceptual Captions (P. Sharma et al. 2018), VOA datasets such as VOA2.0
(Teney et al. 2016), GQA (Hudson et al. 2019), VG-QA (Yuke Zhu et al. 2016)

2. the pre-training tasks — MLM, sentence-to-image matching, masked lan-
guage feature classification, VOA — and (iii) downstream tasks — visual
commonsense reasoning, VOA, image-text retrieval, grounding phrases, etc.

Interestingly, none of the aforementioned models have been used for generation
tasks, due to the intrinsic limitation of BERT which is an encoder, and not an
encoder-decoder. The construction of a Multimodal Neural Model able to generate
a sentence using BERT is the purpose of one of our contributions, see Chapter 5.
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2.2 NLP aided by Computer Vision (RQ1)

NLP representations, as presented in Section 2.1.1, come from models that
have been trained exclusively on textual data. As shown in Section 2.2.1.1, this
leads to a lack of common-sense in textual representations. Thus, Computer
Vision can be used to enhance NLP representations (Section 2.2.1), but it also
can be used to extend current NLP tasks in a multimodal setting, such as Visual
Question Generation (VOG) (Section 2.2.2.1), VQA (Section 2.2.2.2), Visual Dialog
(Section 2.2.2.3) or MMT (Section 2.2.2.4).

2.2.1 Visual Grounding of Language

2.2.1.1 Motivation

To understand the way language conveys meaning, the traditional approach
consists in considering language as a purely symbolic system based on words and
syntactic rules (Chomsky 1980; Burgess et al. 1997). However, (Fincher-Kiefer
2001; W. Barsalou 1999) insist on the intuition that language has to be grounded
in the real world and perceptual experience. Harnad 1990 illustrates this idea
with a thought experiment: imagine that you want to learn Chinese and the only
source of information at your disposal is a Chinese dictionary; since you don’t
know the meaning of any symbol, your learning experience with the dictionary
would be an endless and useless go-round.

The importance of real-world grounding is stressed in (Gordon et al. 2013),
where an important bias is reported: the frequency at which objects, relations, or
events occur in natural language are significantly different from their real-world frequency.
For example, authors remark that the action of murdering is mentioned four times
more than an every-day action such as breathing in text, as shown in Table 2.7.
This can lead to important distortions in artificial common-sense learning. Indeed,
common-sense information such as "bananas are yellow" or "the moon is round"
are rarely explicitely stated in text, as this type of information is supposed to
be known by the (human reader). Similarly, unusual facts such as "the sun rises
today" are not mentioned as they are not surprising. However, machines that
based their understanding of language by studying vast text corpora might not
capture common-sense knowledge. Thus, leveraging visual resources, in addition
to textual resources, is a promising way to acquire common-sense knowledge
(X. Lin et al. 2015; Yatskar et al. 2016) and cope with the bias between text and
reality.

Cognitive psychology and neuroscience works have shown that the human
understanding of language is heavily grounded in perception. Indeed, humans,
through their senses, have access to perceptual information when learning of
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Word Teraword  Knext Word Teraword  Knext
Spoke 11,577,917 372,042 Hugged 610,040 11,453
Laughed 3,905,519 179,395 Blinked 390,692 21,973
Murdered | 2,843,529 16,890 Was late 2,843,529 16,890
Inhaled 984,613 5,617 Exhaled 368,922 31,168
Breathed 725,034 41,215 Was on time | 23,997 14

Table 2.7 — Illustration of the Human Reporting Bias, reproduced from Gordon
et al. 2013. Count of the number of times that A person may < x > in
Teraword and Knext text corpora.

words, leading some cognitive scientists to state that the meaning of words
is embodied in sensory-motor processing (De Vega et al. 2012). For example,
Pulvermiiller 2005 show that reading/hearing action verbs such as kick or lick
activates the regions of the brain corresponding to these actions (the leg and the
tongue regions, respectively). In Therriault et al. 2009, subjects are presented an
image of a pumpkin, and are asked to name the object; when the image is orange,
the word pumpkin is said rapidly by the subjects, but when the image is grayscale,
the answer is slowed down; when the image has the wrong color (e.g, blue), the
answer is slowed down even more.

In the following, we present techniques to learn textual representations at two
levels of granularity: words in Section 2.2.1.2 and sentences in Section 2.2.1.3.

2.2.1.2 Multimodal word representations

This section explains how to build general-purpose word meaning represen-
tations (embeddings) for words, constructed using information from several
modalities, in this context: language and images. The intuition behind those
models is that textual and visual data have systematic biases with respect to
the way they encode information about concepts. Thus, the exploitation of both
modalities may lead to more balanced representations.

The non-textual inputs most commonly used to ground language in perception
and/or vision are:

e Feature-norms (Silberer et al. 2012; Silberer et al. 2013). Feature norms are a list
of attributes for an object. They include physical and functional properties
associated with the referents of words. The typical datasets for that are the
McRae (McRae et al. 2005) dataset (property norms for 500 concrete nouns,
with 2,526 properties in total) and the CSLB property norms (semantic
properties for 638 concepts) (Devereux et al. 2013).

o Co-occurrence patterns of words in image tags: Some works use the indirect
grounding of language in images using co-occurrence patterns of words
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in image tags and captions. This is the case of the Word2Vec extension
model proposed in Felix Hill et al. 2014a where the visual inputs are in fact
perceptual features given in the ESP-Game dataset (Ahn et al. 2005) (10,000
images each annotated with a list of lexical concepts that appear in the image,
20,515 distinct tags with an average of 4 tags per image). Felix Hill et al.
2014b and Bruni et al. 2012a use the ESP-Game dataset as well.

e Natural images. Bag of Visual Words (BovWw) with SIFT features have been
widely used until the raise of representations obtained with CNN. Kiela
et al. 2014b shows that CNN features are better suited than Bovw for multi-
modal semantic evaluation on tasks such as word similarity and relatedness
evaluation.

Based on these inputs, a variety of multimodal word representation models
have been designed. They can be divided into two groups: joint models and
sequential models.

Joint models: Early Fusion Joint models directly learn a joint representation
from textual and visual inputs.

In Bayesian techniques, the main assumption is that, in documents (e.g., online
news), images and surrounding texts have been generated using a shared set
of latent variables or topics. Most Bayesian techniques are extensions of Latent
Dirichlet Allocation (LDA): the topics are inferred from the joint distribution of
textual and visual words, as in Yansong Feng et al. 2010; Roller et al. 2013; Silberer
et al. 2013.

Autoencoders have also been used. For example, in Silberer et al. 2014, by
concatenating learned representations from two unimodal autoencoders (one for
text and one for the visual modality), a multimodal embedding is learned. A
semi-supervised criterion is added to perform a classification task based on the
representation: this allows to learn representations capable of discriminating
between different objects. This model can be used for classification and to infer a
modality if it is missing (based on the other one).

Some models propose an extension of the Skip-Gram model (Mikolov et al.
2013b). Felix Hill et al. 2014a base their model on the assumption that frequency of
appearance of concrete concepts correlates with the likelihood of "experiencing" it
in the world. Thus, perceptual information about a concrete concept is introduced
to the model when-ever that concept is encountered in textual modality. Based
on external sources, perceptual information is associated with concrete concepts.
Concrete words representations are then trained to predict context as in the
classical Word2Vec approach and to predict the perceptual features. This amounts
to linguistic-context re-weighting.

A. Lazaridou et al. 2015a present the Multi-Modal Skip-Gram model, illustrated
in Figure 2.10. It is an extension of the Word2Vec Skip-Gram model and use
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Figure 2.10 — Combining Language and Vision with a Multimodal Skip-gram
Model. Illustration taken from A. Lazaridou et al. 2015a.

authentic image analysis as proxy to perceptual information — instead of the
feature-norms used in Felix Hill et al. 2014a. The global objective is a linear
combination of a Word2vec objective Lj;,, (Equation 2.2) and a visual objective
Lision Which is a ranking triplet loss (Equation 2.13) that brings together the
projection of word embeddings to their corresponding visual embeddings.

Sequential Models Sequential models separately construct visual and textual
representations and then combine them using different techniques.

A simple way to combine textual and visual representations is to concatenate
them (Silberer et al. 2013; Bulat et al. 2016) (Section 2.1.3.1). This fusion method
is also known as middle fusion. In Kiela et al. 2014a, textual representations
(learned with Word2Vec skip-gram) are concatenated to visual representations
(obtained with the pre-softmax features given by a pre-trained Convolutional
Neural Network).

In Collell et al. 2017, a cross-modal projection function f is learned to map
word embeddings to their corresponding visual representations — average of 100
CNN representations using images retrieved with Google Images. This approach
is illustrated in Figure 2.11. With this model, even abstract words can benefit from
visual grounding. The multimodal embedding m,, of a word w is obtained by
concatenating the word embedding t;, and its projection f(t;):

My = ty @f(tw) (2.14)

Bruni et al. 2012b and Bruni et al. 2014 consider Singular Value Decomposition
(SVD) as a way to fuse modalities. The textual and visual representations are first
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Figure 2.11 — Imagined Visual Representations as Multimodal Embeddings. Illus-
tration taken from Collell et al. 2017.

concatenated and then projected onto a lower dimensionality latent space using
SVD.

Silberer et al. 2012, Silberer et al. 2013 and Felix Hill et al. 2014b consider
Canonical Correlation Analysis (Section 2.1.3.2) as a way to project textual and
visual spaces in a common one. Loeub et al. 2016 propose the Residual CCA
method as an improvement: they suggest that important information is also to be
found in the dissimilar components of the mono-modal signals. These components
are lost in the common space learned by the classical CCA. To use these dissimilar
components, they use a residual approach and consider t, = t —t' and v, = v — ¢
where t' and v’ are projections of t and v in the common representation space
given by the CCA.

Reichart et al. 2013 and Felix Hill et al. 2014b use weighted gram matrix combination
to fuse linguistic and perceptual information. Given a modality, a weighted gram
matrix is constructed. L;; = S(F;, Fj).¢(r;).¢(r;) were S is a cosine similarity and
¢ is a quality score of the representations, which reflects the importance of a
concept relative to other concepts. Each word representation in the set is thus
mapped into a new space of dimension determined by the concept list. There are
several advantage to this method: (i) the relative nature of semantics (we generally
require models to determine relations between concepts relative to others) is
directly encoded since representations are projected onto a space defined by the
set of concepts themselves; (ii) dense and fixed size representations are obtained.
The final fusion embedding is obtained with a symmetric product of linguistic
and perceptual weighted gram matrices.
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Figure 2.12 — The GroundSent model for learning visually grounded sentence
representations. Illustration taken from Kiela et al. 2018.

2.2.1.3 Multimodal sentence representations

While the literature on multimodal word representations is abundant, there are
comparably fewer works on the visual grounding of sentences. In this thesis, we
present a contribution on this task: this is the purpose of Chapter 6.

Chrupala et al. 2015 propose the IMAGINET model that learns a visually
grounded language model. A multi-task objective is used to simultaneously
predict the visual representation of a sentence and the next word in the sentence
(language model). This model uses the order of the words thanks to the two GRU
recurrent networks and learns meaning representations for individual words.

The GroundSent model of Kiela et al. 2018 is close to IMAGINET and additionally
hypothesizes that associated captions ground the meaning of a sentence. This
model is illustrated in Figure 2.12. In this work, the authors learn a bidirectional
LSTM fy, parameterized by 6, to encode sentences. Their model is sequential: the
multimodal sentence representation is the concatenation of (i) a purely-textual
SkipThought vector obtained from textual data, and (ii) grounded sentence vectors
obtained with two objectives (that can be combined): Cap2Cap and Capz2Img,
trained on a captioning dataset (MS COCO) D = (I1,S), where each image I is
associated with its caption S.

Cap2Cap ensures that sentences with a similar visual meaning share a common
representation. For two sentences S and S’ describing a similar image, Cap2Cap
relies on an encoder-decoder framework: the input sentence S is encoded by the
sentence encoder fy to give the vector fy(S), which is used to condition an encoder
that predicts sequentially the words of sentence S'.
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Capz2Img ensures that visual semantics are incorporated in sentence represen-
tations. The loss function is a max-margin ranking objective, aiming at bringing
together the projection of the sentence representations fy(S) to their correspond-
ing image I (represented with the penultimate layer of a pre-trained ResNet) in a
common multimodal representation space.

2.2.2 Extensions of NLP tasks using visual information

In this section, we describe various tasks that extend standard NLP tasks by
using complementary visual information.

2.2.2.1 Visual Question Generation

The text-based Question Generation task has been largely studied by the NLP
community (Rus et al. 2010; Rajpurkar et al. 2016; Q. Zhou et al. 2017; Du et al.
2017; Song et al. 2017; Y. Zhao et al. 2018; Scialom et al. 2019). However, its
visual counterpart, VOG, has been comparatively less explored than standard
well-known multi-modal tasks such as VOA (H. Xu et al. 2016), Visual Dialog (Das
et al. 2017a), or Image Captioning (X. Chen et al. 2015). VOG is thus an extension
of a purely-textual task: Textual Generation, which is why we classify it in "NLP
aided by CV". However, the "Cross-Modal" description could also be applied
to VOG. Indeed, in most VOG papers (Patro et al. 2018a; Patro et al. 2019; Patro
et al. 2020), several configurations are considered: (i) the input is a caption of the
image — this setting corresponds to the standard Textual Generation task, (ii)
the input is the caption and the image — this setting corresponds to a standard
multimodal extension of a NLP task (such as Multimodal Machine Translation for
example), and (iii) the input is the image — this setting corresponds to a cross-
modal configuration, where a modality is translated into another modality (except
that here the generated text is not a description/caption, but is of a different
nature).

From a practical standpoint, the VOG task has several applications: robots
or Al assistants could ask questions rooted in multi-modal data (e.g. fusing
conversational data with visual information from captors and cameras), in order
to refine their interpretation of the situation they are presented with. It could also
allow systems relying on knowledge-bases to gain visual common sense and deal
with the Human Reporting Bias (Misra et al. 2016), which states that the content
of images and text are intrinsically different, since visual common sense is rarely
explicitly stated in text.

The VOG task was first introduced by Y. Yang et al. 2015 in their Neural Self Talk
model: the goal is to gain knowledge about an image by iteratively generating
questions (VQG) and answering them (VQA). The authors tackle the task with a
simple RNN conditioned on the image.
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Figure 2.13 — Multimodal Differential Network for Visual Question Generation.

Illustration taken from Patro et al. 2018a.

Suitable data for the VOG task can come from standard image datasets on which
questions have been manually annotated, such as VQGcoco, VQGeiickr, VQGping
(Mostafazadeh et al. 2016) , each consisting of 5000 images with 5 questions per
image. Alternatively, VOG samples can be derived from VQA datasets, such as
VQA1.0 (Teney et al. 2016), by “reversing” them (taking images as inputs and
questions as outputs).

A variety of approaches have been proposed. Mostafazadeh et al. 2016 use
a standard Gated Recurrent Neural Network, i.e. a CNN encoder followed by
a GRU decoder to generate questions. S. Zhang et al. 2017 aim at generating,
for a given image, multiple visually grounded questions of varying types (what,
when, where, etc.); similarly, Jain et al. 2017 generate diverse questions using
Variational Auto-Encoder (VAE). In Y. Li et al. 2018, VQG is jointly tackled with
its dual task (VQA), just as Y. Yang et al. 2015. In (Patro et al. 2018a; Patro et al.
2019), the image (processed by a CNN) and the caption (processed by a LSTM)
are combined in a fusion module, followed by a LSTM decoder to generate the
question, leading to state-of-the-art results on the VQG task on VQA1.0 data. This
approach is illustrated in Figure 2.13. More recently, Patro et al. 2020 incorporate
multiple cues — place information obtained from PlaceCNN (B. Zhou et al. 2018),
caption, tags — and combine them within a deep Bayesian framework where the
contribution of each cue is weighted to predict a question, obtaining the current
state-of-the-art results on VQGcoco.
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Al System bananas

What is the mustache
made of?

Figure 2.14 — Visual Question Answering. Illustration taken from https://
visualqga.org.

2.2.2.2 Visual Question Answering

VQA (Malinowski et al. 2014; Gao et al. 2015; H. Xu et al. 2016; M. Ren et al.
2015; L. Ma et al. 2016; J. Lu et al. 2016; Noh et al. 2016; Fukui et al. 2016; Shih
et al. 2016; Patro et al. 2018b) — illustrated in Figure 2.14 — aims at evaluating
the visual reasoning capabilities of visual models. Given an image and a question
in natural language, the VOA task — proposed in (Malinowski et al. 2014) — aims
at determining the right answer among a set of pre-defined answers; it is thus
seen as a classification task.

In the first Vanilla VOA model (Antol et al. 2015a), images features, produced
with a CNN, and question features, produced with a LSTM, are combined using
element-wise operations, later used to determine the correct answer. In the
Stacked Attention Network (Z. Yang et al. 2016), an attention mechanism is added
using the softmax output of the intermediate question feature, which enables the
model to focus on the relevant portion of the image via multiple-step reasoning.
Teney et al. 2018 (VOA 2017 challenge winner) first use an object detection model
— Faster R-CNN (S. Ren et al. 2017) —in VQA to narrow down visual features and
thus produce better attention over the image. Pythia v1.0 (Y. Jiang et al. 2018) (VOA
2018 challenge winner) builds upon Teney et al. 2018 while proposing several
improvements: in the model architecture, the learning rate schedule, the image
features and data augmentation. In C. Wu et al. 2019, a new module is added in
the VOA framework: a Differential Network, whose goal is to refine visual and
textual features and reduce observation noise.

The VOA task present several challenges. First, whether learned model have
strong visual reasoning capabilities is a central question. In that regard, certain
works even target special kinds of reasoning: for example, the images of the
Compositional Language and Elementary Visual Reasoning diagnostics (CLEVR)
dataset (Johnson et al. 2017) contain 3-D solids of various shapes and colors, and
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Figure 2.15 — Visual Dialog. Illustration taken from https://visualdialog.org.

2

the questions involve complex geometrical understanding (e.g, What size is the
cylinder that is left of the brown metal thing that is left of the big sphere?). Second, the
bias toward training data might lead models to ignore the image. Ramakrishnan
et al. 2018 indeed show that even purely-textual models, trained only on textual
data, manage to get high scores by just focusing on the question. Then, the
question of the interpretability of models is important, to understand why models
made such predictions; attention modules are a first step toward that goal (Cadene
et al. 2019). Finally, multimodal fusion strategies are at the heart of VQA, as both
textual input (the question) and visual input (the image) have to be fused to
produce an answer, which is also of textual nature.

2.2.2.3 Visual Dialog

Introduced in Das et al. 2017a (who created the VisDial dataset) the Visual
Dialog task (Das et al. 2017a; Vries et al. 2017; Strub et al. 2017; Das et al. 2019)
requires an Al agent to hold a meaningful dialog with humans in natural language
about visual content. In practice, given an image, a dialog history, and a follow-up
question about the image, the task is to answer the question. The Visual Dialog
task is illustrated in Figure 2.15. The Visual Object Discovery through Visual Dialog
task, introduced in Vries et al. 2017 along with the GuessWhat?! dataset, is a
variation of the Visual Dialog task. The goal is to locate an unknown object in an
image by asking a series of natural language question to an agent.

In Visual Dialog, most methods use an encoder-decoder (Sutskever et al. 2014)
framework. The encoder model fuses visual and textual information; it can
consist of: late-fusion, a hierarchical recurrent network, a memory network (three
methods proposed in (Das et al. 2016)), early answer fusion (Jain et al. 2018),
history-conditional image attention (J. Lu et al. 2017), and sequential co-attention
(Q. Wu et al. 2018). The decoder aims at producing an answer in natural language;
it usually consists either of a generative decoder like a RNN (Das et al. 2016) or a
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Ein Vogel fliegt
, iiber das Wasser
A bird flies
over the water

Figure 2.16 — Multimodal Machine Translation. Illustration taken from http:
//statmt.org/wmt18/multimodal-task.html.

discriminative decoder that ranks answer candidates using a cross-entropy loss
(Das et al. 2016) or a ranking-based multi-class loss (J. Lu et al. 2017). Some
methods include Reinforcement Learning (Das et al. 2017b; Chattopadhyay et
al. 2017) to train two agents to play image guessing games in a collaborative
manner. Others use generative models like Generative Adversarial Network (GAN)
(Goodfellow et al. 2014) to produce answers that are not distinguishable from
human answers (Q. Wu et al. 2018), or VAE (Kingma et al. 2014b) to generate
diverse answers (Massiceti et al. 2018).

2.2.2.4 Multi-modal Machine Translation

MMT is an extension of the Machine Translation task, where the input consists
of an image and a descriptive caption in language A, and the goal is to predict a
translation of the caption in language B. Thus, the image serves as a perceptual
reference that can help the model to better understand the original caption, des-
ambiguate some words and thus refine the translation. For example, if the image
shows a man running close to a band of water, and the caption is: A man runs on a
river bank, the word bank is polysemous and could refer to the meaning: financial
institution. However, the image can refine the understanding of bank, and the
model can translate it by rive, in French. The Multimodal Machine Translation
task is illustrated in Figure 2.16.

Various approaches have been proposed for MMT: (i) models based on multi-
modal attention using features extracted by CNNs (Caglayan et al. 2016; Calixto
et al. 2016; Libovicky et al. 2017; Helcl et al. 2018), (ii) cross-modal interactions
with spatially-unaware global features (Calixto et al. 2017; M. Ma et al. 2017) and
(iii) the use of regional features extracted with object detection networks (Huang
et al. 2016; Gronroos et al. 2018). However, several works have pointed out the
fact that the visual modality has not a substantial contribution to the translation
performances compared to purely-textual models (Gronroos et al. 2018; Barrault
et al. 2018; Lala et al. 2018). Moreover, Elliott 2018 showed that, even when
replacing the input image by an unrelated image, the translation performance
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does not suffer significant performances. Caglayan et al. 2019 demonstrate that
MMT datasets have to be designed so that modalities are complementary rather
than redundant: in that case, the visual modality increases the robustness of the
machine translation model by mitigating errors in the input sentence.

Even though the contribution of the visual modality is still unclear in the MMT
task, some researchers have relied on the assumption that vision could serve as
a bridge between languages, as people can always recognize the same objects
in the real world, whatever the language. Following this intuition, Nakayama
et al. 2017 propose to perform Unsupervised Machine Translation using images as
pivot, by learning to project the input sentence into a visual space (using an Image
Captioning dataset in language A), and then learning to generate the output
sentence from the visual vector (using an Image Captioning dataset in language
B). Following the latest developments of Unsupervised Machine Translation
(Guillaume Lample et al. 2018a), Y. Su et al. 2019 perform Unsupervised Machine
Translation, to help desambiguate the meaning of sentences, using a method close
to (Guillaume Lample et al. 2018b).

2.3 Computer Vision aided by NLP (RQ2)

In standard Computer Vision tasks, such as Image Classification (Deng et al.
2009) or object detection task (Uijlings et al. 2013), objects are just defined by a
class id, not by their semantics. For example, the output of a standard CNN is a
distribution of probability over 1000 pre-defined objects, but it is unable to take
into account the semantics of objects to generalize its knowledge to unknown
classes (if dog is part of the vocabulary but not puppy, the model is not able to
recognize puppies in images).

This is an important limitation, as the human understanding of the visual world
relies on a wide variety of priors that can be found in language. A good example
of this fact can be found when a human is confronted to a scene where some
object is partially hidden or hard to see. Given the other objects in the context,
and using their common-sense knowledge, humans are generally able to narrow
down the set of possibilities and determine the correct object — applying such
contextual approaches is the purpose of one of our contribution, see Chapter 3.

In this section, we present Computer Vision tasks that benefit from NLP knowl-
edge.

2.3.1 Recognizing visually unknown objects (ZSL)

7SL is a task that extends a standard Computer Vision task (image classification),
to configurations where some classes are unknown to the model. Thus, the model
has to take the semantics of object classes into account, using class representations

45



46

MULTIMODAL MACHINE LEARNING: BACKGROUND

derived from NLP models. This is why we classify ZSL as a "Computer Vision
aided by NLP" task. But it can also be seen as a Cross-Modal Task (see Section 2.4),
since it is a Cross-Modal Retrieval task: from a visual input (an image), the goal is
to retrieve the corresponding class label, which is of textual nature.

In the present thesis, we present two contributions to the Zero-Shot Learning
field. In Chapter 3, we leverage the visual context around objects to refine the
predictions of the zZSL model. In Chapter 4, we adapt the CycleGAN model to
perform Transductive Zero-Shot Learning.

2.3.1.1 Motivation

Over the last decade, the exponential evolution of computing power, combined
with the creation of large-scale image datasets such as ImageNet (Farhadi et al.
2009a), has enabled Convolutional Neural Networks (Lecun et al. 1998) to reach
their full power, with recent improvements (Zoph et al. 2018; Real et al. 2019)
pushing forward the classification performance every year. However, as noted in
(Frome et al. 2013), such models have several drawbacks: they are unable to make
predictions that fall outside of the set of training classes, their training requires a
large number of examples for each class, and despite outmatching humans on the
ImageNet challenge, they are unable to mimic the human capacity to generalize
prior knowledge to recognize new classes.

2.3.1.2 The zSL task

To cope with these limitations, Zero-Shot Learning approaches (Farhadi et al.
2009b; Mensink et al. 2012; Frome et al. 2013; Fu et al. 2015b; E. Zablocki et al.
2019) have been proposed. In ZSL, two sets of classes are distinguished: the seen
classes, for which examples are available during training, and the unseen classes,
for which no labeled images are available. The information learned using seen
classes can be generalized to unseen ones by leveraging auxiliary knowledge,
which semantically relates seen and unseen classes, e.g. attributes (Ferrari et al.
2007; Parikh et al. 2011; Farhadi et al. 2009b) , or textual embeddings of class
labels (Frome et al. 2013). Evaluation is then carried out on the unseen classes. The
key of ZSL is to use auxiliary knowledge to semantically relate classes from the
seen and unseen classes; thus, class labels are embedded in a a common semantic
representation space. The ZSL approach is illustrated in Figure 2.17.

The usual procedure in ZSL (Frome et al. 2013) consists in (1) learning a mapping
between the visual and the textual space so that images and class labels can be
semantically related, (2) performing a nearest neighbor search to find the closest
unseen class corresponding to a projected image. Pioneering works focused on
hand-crafted attributes for the textual space (Parikh et al. 2011) e.g, “IsBlack’,
‘HasClaws’. Since this involves costly and error-prone human labelling, most
current works use word vector spaces (Norouzi et al. 2014), such as Word2vec
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Figure 2.17 — Zero-Shot Learning. Illustration taken from Jurie et al. 2017.

(Mikolov et al. 2013b), which do not suffer from these limitations or Glove
(Pennington et al. 2014); concerning images, most ZSL works use CNNs to embed
them in a visual embedding space (Fu et al. 2014; Akata et al. 2015; Fu et al. n.d;
Bucher et al. 2016; Romera-Paredes et al. 2015; Z. Zhang et al. 2015; Lampert et al.
2014) by taking the penultimate layer.

Datasets The vast majority of ZSL works (Lampert et al. 2014; Z. Zhang et al.
2015) are evaluated on attribute datasets, namely AWA1 (Farhadi et al. 2009b),
AWA:2 (Yongqin Xian et al. 2019), CUB (Welinder et al. 2010), SUN (Patterson et al.
2012), aPY (Farhadi et al. 2009b). In these datasets, images are manually annotated
given a set of pre-defined attributes, and class vectors are thus derived from these
manual annotations; and the total number of classes (both seen and unseen) is
relatively small (espectively 50,50,200,717 and 32). The ImageNet dataset is more
challenging: it contains 14M images and about 20K unseen classes.

Linear projections The first ZSL approaches learned a linear projection of visual
features in the textual space, like DeViSE (Frome et al. 2013). In this model, a
max-margin ranking objective is used to learn a cross-modal projection f between
an image V and the semantic representation w; of its class label i, using the
following loss function:

Lpevise =YY |7 = fV)Tw +f(V)ijJ+) (2.15)

iV

where j is a negative class label sampled uniformly, w; its representation, and vy
is an hyperparameter margin. The DeViSE model is illustrated in Figure 2.18. The

DeViSE model serves as the basis for one of our contributions on zSL, in Chapter 3.

Hybrid Methods Other models, like CONSE (Norouzi et al. 2014) or SYNC
(Changpinyo et al. 2016) express image as a mixture of other classes features
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Figure 2.18 — DeViSE: A Deep Visual-Semantic Embedding Model. Illustration
taken from Frome et al. 2013.

(hybrid models). CONSE (Norouzi et al. 2014) propose to embed images as a
convex combination of the word embeddings of the top classes retrieved by a CNN.
More precisely, for a given image, let us call p(i) the distribution over the seen
classes i € [1,|S7|] output by the CNN, and Tk the indices of the K most probable
classes. The representation v of an image is then

vconse = ), plili € Tg).w; (2.16)
ieTk

where w; is the label of class i and p(i|i € Tx) « p(i). The CONSE model serves
as the basis for one of our contributions on zSL, in Chapter 4.

Going further than CONSE, SYNC (Changpinyo et al. 2016) adopts the point
of view of manifold learning: classifiers for unseen classes are built by combining
classifiers of phantom classes, that are embedded both in the semantic space and
the model space. In the model space, seen and phantom classes form a weighted
bipartite graph.

Non-linear cross-modal functions More recently, non-linear relations between
modalities are investigated (Ba et al. 2015; Xian et al. 2016), as in EXEM (Chang-
pinyo et al. 2017) where a kernel-based regressor is learned: it maps semantic
representations to visual exemplars while ensuring that the semantic space is
clustered efficiently.

Exploiting WordNet information Recent ZSL models tackling the ImageNet
ZSL task rely on the exploitation of the WordNet knowledge graph of ImageNet
synsets as (X. Wang et al. 2018; Kampffmeyer et al. 2019) using Graph Convolu-
tional Networks (Bruna et al. 2014; Defferrard et al. 2016; Kipf et al. 2017). The
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Figure 2.19 — Visual Relationship Detection with Language Priors. Illustration
taken from C. Lu et al. 2016a.

complementary information of the hierarchy of ImageNet classes enable these
models to reach state-of-the-art performances.

2.3.2 Visual Relationship Detection

Visual Relationship Detection (VRD) (M. A. Sadeghi et al. 2011; C. Lu et al.
2016b; F. Sadeghi et al. 2015; Jung et al. 2019; R. Yu et al. 2017) aims at detecting
visual relations in images, in the form of triplets subject, predicate, object (e.g, man,
holding, baseball bat) where subject and object are elements of the image and predicate
explains their relationship.

As noted in Jung et al. 2019, VRD faces several challenges. First, many triplets
have very rarely (or never) been seen in the training data; thus, understanding
separately the meanings of objects and predicates is paramount. Second, an object
may take various appearances depending on the triplet: e,g. the object chicken
in both triplets man, eating, chicken and chicken, eating, corn has very different
appearance. Finally, models are penalized when the predicted answer is not the
ground-truth answer, even when both are semantically close (e.g, under vs below
or close to vs next to).

To tackle these limitations, language knowledge is used in VRD works, in order
to distill external textual priors in the visual model. For example, in (C. Lu
et al. 2016b), the predicates are projected in a representation space where they
are embedded to reflect their semantics; by combining object embeddings with
predicate embeddings, even unseen triplets can be given non-null probabilities
by the model, and the semantics of the whole triplet is taken into account. In
(R. Yu et al. 2017), linguistic statistics extracted from the VRD dtraining dataset
and Wikipedia are extracted to estimate the conditional probability of a predicate
given a subject,object pair; this knowledge is then distilled in the model.
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Figure 2.20 — Image Captioning. Illustration taken from K. Xu et al. 2015.

2.4 Cross-Modal Tasks (RQ3)

A cross-modal task is a task where a modality is somewhat translated into
another. The image-to-text configuration corresponds to the Image Captioning
task (Section 2.4.1), and the text-to-image configuration to the Text-to-Image
Synthesis task (Section 2.4.2). In the Cross-Modal Retrieval task (Section 2.4.4),
both configurations are made possible, except that the goal is not to generate an
element from the other modality, but to retrieve the semantically closest element
in a pre-defined set.

2.4.1 Image Captioning

Image Captioning (Socher et al. 2014a; Vinyals et al. 2015b; Karpathy et al. 2017;
K. Xu et al. 2015; Fang et al. 2015; X. Chen et al. 2015; Johnson et al. 2016; Yan et al.
2016) aims at generating a description in natural language given an image; thus,
it evaluates global scene understanding capabilities of models. The challenges
tackled by the Image Captioning task involve: the recognition of objects in the
image, understanding their relations (spatial organization, actions, movements),
selecting information worth to be mentioned — an important aspect stressed in
the Human Reporting Bias (Gordon et al. 2013) — and describing it in fluent
natural language. The Image Captioning task is illustrated in Figure 2.20.

Most methods adopt an encoder-decoder framework (Sutskever et al. 2014), in
which a CNN encodes an image into a vector in a latent space, and a RNN decodes
it to sequentially generate a caption. Attention mechanisms have been used to
refine this strategy (K. Xu et al. 2015; Engilberge et al. 2018), so that the model
can focus on the relevant parts of the image while generating the caption. As
Image Captioning is a text generation task, it is evaluated using standard metrics
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like BiLingual Evaluation Understudy (BLEU) (Papineni et al. 2002) and Metric for
Evaluation of Translation with Explicit ORdering (METEOR) (Banerjee et al. 2005).
Thus, some works (Ranzato et al. 2016; Z. Ren et al. 2017) use Reinforcement
Learning to optimize these metrics, which are non-differentiable.

The Image Captioning task is at the origin of some variants. For example, in
the Dense Captioning task (Johnson et al. 2016), the goal is to generate a sentence
describing a region within the image, rather than the whole image. More recently,
the Unsupervised Image Captioning task has been considered (Yang Feng et al.
2019), where the alignment between images and captions is unknown during
training. To do so, a sentence corpus teaches the model to generate plausible
sentences via adversarial training, while the knowledge of a pre-trained visual
concepts detector is distilled into the model via reinforcement learning; moreover,
a cycle-consistency objective ensures that generated captions are semantically
consistent with the image.

The Image Captioning task suffers from some problems. First, biases have
been observed toward the training set: models tend to use contextual cues rather
than focusing on the appearance of objects in the image, in particular for genders
(Hendricks et al. 2018). Then, evaluation metrics like BLEU and METEOR have
intrinsic limitations, pointed out in Novikova et al. 2017, as they do not correlate
well with human judgments. Thus, Image Captioning might not be sufficient to
evaluate visual reasoning and scene understanding capabilities.

2.4.2 Text-to-lmage Synthesis

Text-to-Image Synthesis (Reed et al. 2016b; H. Zhang et al. 2017; Gorti et al.
2018) is the inverse task of Image Captioning: starting from a sentence (e.g,
this is a flower with round purple upward facing petals), the goal is to generate an
image that illustrates that sentence. This task was proposed following the recent
developments of GAN (Goodfellow et al. 2014) — that have shown substantial
results in image generation (Radford et al. 2016) and image-to-image translation
(J. Zhu et al. 2017) — and conditional GANs (Mirza et al. 2014), that learn to
approximate the distribution of data by conditioning on an input.

Most Text-to-Image Synthesis works use conditional GANs to generate images
conditioned on a textual input (Reed et al. 2016b; H. Zhang et al. 2017; Dash et al.
2017; H. Zhang et al. 2019) — textual descriptions are in general encoded using
SkipThought vectors (Kiros et al. 2015) or Char-CNN-RNN embeddings (Reed et al.
2016a). Reed et al. 2016b are the first to condition GANs using textual descriptions
instead of class labels. H. Zhang et al. 2019 introduce a two-stage method to
generate images. In Stage 1, a GAN G1 conditioned on textual description produces
a low-resolution 64*64 image. In Stage 2, the input is the image generated by
Stage 1, and another GAN G2 produces a high-resolution 256*256 realistic image.
However, as noted in Gorti et al. 2018, generated images don’t always reflect
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Figure 2.21 — Text-to-Image-to-Text Translation using Cycle Consistent Adversarial
Networks. Illustration taken from Gorti et al. 2018. G1, G2 are the
stage 1 and stage 2 generator. F is the caption generator.

the meaning of the sentence given as input with the aforementioned models.
Following the success of CycleGAN (J. Zhu et al. 2017), that has been largely
adopted in uni-modal settings (Y. Lu et al. 2017; Almahairi et al. 2019; J. Zhao et al.
2019), Gorti et al. 2018 propose to use a cycle-consistency loss to ensure a closer
correspondence between images and sentences. To do so, they use a captioning
network F that, by taking as input the generated image, generates a describing
caption, which is then compared to the initial sentence. The latter approach is
illustrated in Figure 2.21.

Due to the high difficulty of the task, most papers tackling Text-to-Image
Synthesis use datasets that have a limited semantic range, for example the Oxford
VGG 102 Flower Dataset (Nilsback et al. 2008) (only flower pictures) or the CUB
dataset (Welinder et al. 2010) (only bird images). The Text-to-Image Synthesis
is thus more challenging than Image Captioning, as (i) task-wise, generating
meaningful images is more difficult than generating correct sentences in natural
language, and (ii) evaluation-wise, the set of images corresponding to a given
sentence is extremely large.

2.4.3 Grounding phrases in Images

Grounding textual elements in visual data (Karpathy et al. 2017; Kong et al. 2014;
Plummer et al. 2017; R. Hu et al. 2016) aims at localizing a word /phrase/sentence/paragraph
in an image by determining a a relevant bounding box. Thus, it is close to the
object detection task (Uijlings et al. 2013; Girshick et al. 2014; S. Ren et al. 2017),
which is a traditional Computer Vision task, except that in this task textual se-
mantics have to be incorporated to understand and localize complex queries such
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as: a small boy or a cat eating a mouse. It should not be confused with the Visual
Grounding of Language task, described in Section 2.2.1, which aims at enhancing
textual representations using visual information.

The general procedure (R. Hu et al. 2016; Mao et al. 2016) consists in generating
candidate locations for objects, and computing the similarity scores between the
image regions and the textual query. Thus, it is close to the image-to-sentence
matching task (see Section 2.4.4). This task is usually performed using the
Flickr3oK Entities dataset (Plummer et al. 2015): an augmentation of the Flickr3oK
dataset (Young et al. 2014), with bounding boxes for all noun phrases present in
textual descriptions. Along with the new dataset, Plummer et al. 2015 propose
a simple baseline: a CCA model to linearly project image and textual features by
maximizing their correlation. L. Wang et al. 2016 introduce a Deep Structure-
Preserving Embedding for image-sentence matching that they apply to phrase
grounding. R. Hu et al. 2016 propose a Spatial Context Recurrent ConvNet, in
which a caption generation model is used to score the phrase on a set of proposed
boxes. The GroundR model (Rohrbach et al. 2016) adds a reconstruction loss, that
ensures that the retrived bounding box can predict the initial textual phrase, thus
penalizing a wrong location choice.

2.4.4 Cross-Modal Retrieval

Cross-Modal Retrieval aims at bridging the visual and textual modalities: either
a text is given as input, and the goal is to retrieve the semantically closest image
(Text-to-Image), or an image is given as input, and the goal is to retrieve the
semantically closest text (Image-to-Text). Due to the explosion of all kind of
multimodal content on the Internet (images, video, texts), Cross-Modal Retrieval
presents important real-life applications (K. Wang et al. 2016). While first methods
used statistical tools, such as Canonical Correlation Analysis (Hardoon et al. 2004)
or kernel-based methods (Akaho 2006; Weiran Wang et al. 2016), deep learning
approaches have been used to learn the common cross-modal representation space
(Andrew et al. 2013; Weiran Wang et al. 2015; Peng et al. 2016; Wei et al. 2017; Peng
et al. 2018; Qi et al. 2018; Gu et al. 2018) following the success of Deep Learning
(LeCun et al. 2015). Cross-Modal Retrieval is usually performed by representing
images and texts in a common semantic space, in which a distance between them
can be computed.

A variety of methods have been designed for Cross-Modal Retrieval: they
all rely on aligned data between text and images. There are (i) unsupervised
approaches (Andrew et al. 2013; E. Feng et al. 2014; Weiran Wang et al. 2015), (ii)
pairwise approaches (D. Zhai et al. 2012; X. Zhai et al. 2013; ]. Wang et al. 2015)
and (iii) supervised approaches (K. Wang et al. 2016; A. Sharma et al. 2012).

In unsupervised methods, the only information that is used to build common
data representation are co-occurrence patterns between text and images; for
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Figure 2.22 — Cross-Modal retrieval using a common semantic space. Illustration
taken from Pereira et al. 2014.

example, CCA (see Section 2.1.3.2) and its derivatives Deep CCA (DCCA) (Andrew
et al. 2013), Correspondence Auto-encoder (Corr-AE) (F. Feng et al. 2014).

In pairwise approaches, text/image pairs are used to learn a metric able to
efficiently compare samples from both modalities; for example, Multi-view Metric
Learning with Global consistency and Local smoothness (MVML-GL) method
(D. Zhai et al. 2012), the Joint Graph Regularised Heterogeneous Metric Learning
(JGRHML) method (X. Zhai et al. 2013) and the Modality-Specific Deep Structure
(MSDS) method (J. Wang et al. 2015).

In supervised approaches, the goal is to learn discriminative representations,
able to separate classes in the common representation space, by exploiting label
information. For example, Wei Wang et al. 2016 present a Multi-modal Deep
Neural Network, where images are embedded with a CNN and texts with a NLM,
learned with a combination of intra-modal losses (capturing semantic relationships
within each modality) or inter-modal losses (capturing semantic relationships
across modalities). Some works also use adversarial losses as a complement of
supervised losses, to enforce that distributions of both modalities are consistent in
the common representation space. Adversarial learning can be performed either
as a refinement once a standard triplet max-margin loss has been learned (R. Liu
et al. 2019), or since the beginning of training (L. He et al. 2017; B. Wang et al.
2017).
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To reduce the storage cost of Cross-Modal Retrieval models, binary-valued
approaches have been proposed by using binary hash codes. This is done via
Cross-Modal Hashing (Kumar et al. 2011; Ding et al. 2014; D. Zhang et al. 2014;
Zijia Lin et al. 2015), a method in which data points from one modality are mapped
into a Hamming space of binary codes where the similarity in the original space
is preserved. Q. Jiang et al. 2017 extend Cross-Modal Hashing by using deep
features instead of hand-crafted ones.

2.5 Positioning

In Chapter 3, we propose a contribution to ZSL (Section 2.3.1). We are interested
in determining what visual information is encoded in word embeddings (RQ2).
Standard ZSL assume that textual representations encode information about the
visual appearance of objects: this prior linguistic knowledge is used to recognize
objects that are unknown to the model. Our goal is to show that these textual
representations also encode information about the visual context of objects (i.e.
knowledge about which objects co-occur in images) or their visual frequence. To
do so, we introduce a new task: context-aware zero-shot learning, where the goal
is to determine the class of an object (unknown to the model) delimited by a
bounding box in the image, while taking into account its visual context (2?).

In Chapter 4, we propose a contribution to Transductive Zero-Shot Learning
(T-zSL), a setting of ZSL where images and class labels of unseen classes are
available during training, but the correspondence between them is unknown. In
this contribution, we are interested in studying how multimodal tasks can benefit
from visual and textual data when supervision is weak (RQ1,RQ2,RQ3) — in
addition to T-ZSL, we also tackle Cross-Modal Retrieval and Visual Grounding of
Language in settings where text/image is weak, or even non-existent. Current
T-ZSL models generally rely on methods that cluster the space of unseen classes,
and thus these approaches only work when the number of unseen classes is
relatively low. We tackle this limitation by proposing an approach based on the
CycleGAN model (J. Zhu et al. 2017), where the distribution of unseen classes
is aligned to the distribution of their corresponding images with adversarial
learning.

In Chapter 5, we present a contribution on Visual Question Generation (Sec-
tion 2.2.2.1). We explore whether BERT representations can generalize their
knowledge to a multimodal task (RQz), in that case: VOG. Thus, we extend the
BERT model to a generation framework, that we call BERTgen, and incorporate
visual information within the model as if it were of textual nature.

In Chapter 6, we tackle Visual Grounding of Language (RQ1) and propose
to learn multimodal sentence representations (Section 2.2.1.3). We explore an
alternative to shared space approaches (Section 2.1.3.2), as we argue that a shared
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space over-constrains the learned space in the case of sentences. To do so, we
introduce two objectives aimed at preserving the structure of both spaces in an
intermediate space.
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Chapter abstract

Zero-Shot Learning (ZSL) aims at classifying unlabeled objects by leveraging
auxiliary knowledge, such as semantic representations. A limitation of pre-
vious approaches is that only intrinsic properties of objects, e.g. their visual
appearance, are taken into account while their context, e.g. the surrounding
objects in the image, is ignored. Following the intuitive principle that ob-
jects tend to be found in certain contexts but not others, we propose a new
approach, context-aware ZSL, that leverages semantic representations in a
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new way to model the conditional likelihood of an object to appear in a given
context. Finally, through extensive experiments conducted on Visual Genome,
we show that contextual information can substantially improve the standard
ZSL approaches and is robust to unbalanced classes.

The work in this Chapter has led to the publication of a conference paper:

e Eloi Zablocki, Patrick Bordes, Laure Soulier, Benjamin Piwowarski, and
Patrick Gallinari (2019). “Context-Aware Zero-Shot Learning for Object
Recognition”. In: ICML 2019.

3.1 Introduction

Traditional Computer Vision models, such as Convolutional Neural Networks
(CNNs) (Lecun et al. 1998), are designed to classify images into a set of predefined
classes. Their performances have kept improving in the last decade, namely on
object recognition benchmarks such as ImageNet (Deng et al. 2009), where state-
of-the-art models (Zoph et al. 2018; Real et al. 2019) have outmatched humans.
However, training such models requires hundreds of manually-labeled instances
for each class, which is a tedious and costly acquisition process. Moreover,
these models cannot replicate humans’ capacity to generalize and to recognize
objects they have never seen before. As a response to these limitations, Zero-Shot
Learning (7SL) has emerged as an important research field in the last decade
(Farhadi et al. 2009b; Mensink et al. 2012; Fu et al. 2015b; Kodirov et al. 2017).
Zero-Shot Learning has been covered in the Background Chapter of this thesis
(Section 2.3.1). In the object recognition field, ZSL aims at identifying an object
class for which no supervised data is available, by using knowledge acquired
from another disjoint set of classes, for which corresponding visual instances
are provided. In the literature, these sets of classes are respectively called target
and source domains — terms borrowed from the transfer learning community.
Generalization from the source to the target domain is achieved using auxiliary
knowledge that semantically relates classes of both domains, e.g. attributes or
textual representations of the class labels.

Previous ZSL approaches only focus on intrinsic properties of objects, e.g. their
visual appearance, by the means of handcrafted features — e.g. shape, texture,
or color — (Lampert et al. 2014) or distributed representations learned from text
corpora (Akata et al. 2016; Y. Long et al. 2017). The underlying hypothesis is that
the identification of entities of the target domain is made possible thanks to the
implicit principle of compositionality, a.k.a. Frege’s principle (Pelletier 2001) — an
object is formed by the composition of its attributes and characteristics — and
the fact that other entities of the source domain share the same attributes. For
example, if textual resources state that an apple is round and that it can be red
or green, this knowledge can be used to identify apples in images because these
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characteristics (‘round’, ‘red’) could be shared by classes of the source domain
(e.g, ‘round’ like a ball, ‘red” like a strawberry...).

We believe that visual context, i.e. the other entities surrounding an object,
also explains human’s ability to recognize an object that has never been seen
before. This assumption relies on the fact that scenes are compositional in the sense
that they are formed by the composition of objects they contain. Some works
in Computer Vision have exploited visual context to refine the predictions of
classification (Mensink et al. 2014) or detection (Bell et al. 2016) models. The use of
contextual information in Computer Vision has been detailed in the Background
Chapter, ??. To the best of our knowledge, context has not been exploited in ZSL
because, for obvious reasons, it is impossible to directly estimate the likelihood of
a context for objects from the target domain — from visual data only. However,
textual resources can be used to provide insights on the possible visual context in
which an object is expected to appear. To illustrate this, knowing from language
that an apple is likely to be found hanging on a tree or in the hand of someone
eating it, can be very helpful to identify apples in images.

In this paper, our goal is to leverage visual context as an additional source of
knowledge for ZSL, by exploiting the distributed word representations (Mikolov
et al. 2013b) of the object class labels. More precisely, we adopt a probabilistic
framework in which the probability to recognize a given object is split into three
components:

e a visual component based on its visual appearance (which can be derived from
previous ZSL models),

e a contextual component exploiting its visual context,
e a prior component, which estimates the frequency of objects in the dataset.

As a complementary contribution, we show that separating prior information in
a dedicated component, along with simple yet effective sampling strategies, leads
to a more interpretable model, able to deal with imbalanced datasets. Finally, as
traditional ZSL datasets lack contextual information, we design a new dedicated
setup based on the richly annotated Visual Genome dataset (Krishna et al. 2017).
We conduct extensive experiments to thoroughly study the impact of contextual
information.

3.2 Chapter Questions

This Chapter is linked to the following Research Questions, as defined in the
Introduction of the present thesis:

o RQ2 (Can language help to refine visual understanding ?): The main assumption
in ZSL is that language representations contain information about the visual
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Figure 3.1 — The goal is to find the class (in the target domain) of the object
contained within the blue image region V. Its context is formed
of labeled objects from the source domain (red plain boxes) and of
unlabeled object from the target domain (red dashed boxes).

appearance of objects. In this Chapter, we challenge this assumption by
proposing a new one: language representations also contain information about the
visual context of objects in images, as well as on the frequence of objects in images.
This assumption leads us to a new task (context-aware ZSL) and a new model
that we evaluate extensively.

e RQ3 (Can modalities be translated into one another?): ZSL is a Cross-Modal task,
as an image is translated into a class label. In this Chapter, we are interested
in showing that the quality of this translation depends on the criterion that we
choose. Indeed, our model is modular, with three separate and interpretable
modules, that are specialized on different criterions: visual appearance, visual
context and frequence. We propose a method to weigh the contributions of
each module and propose an optimal image-to-text translation.

As a result, we derive two Chapter Questions (CQ) that we strive to answer
throughout this Chapter:

e CQ1: What visual information about objects is encoded in textual representa-
tions ?

e CQ2: How can cross-modal models be more interpretable ?

3.3 Context-aware Zero-Shot Learning

In the present section, we formalize the context-aware Zero-Shot Learning
setting.
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Let O be the set of all object classes, divided in classes from the source domain S
and classes from the target domain T. The goal of our approach — context-aware
ZSL — is to determine the class i € 7 of an object contained in an image I, given
its visual appearance V and its visual context C. The image I is annotated with
bounding boxes, each containing an object. Given the zone V containing the object
of interest, the context C consists of the surrounding objects in the image. Their
classes can either belong to the source domain (C N S) or to the target domain
(CNT). Note that the class of an object of C NT is not accessible in ZSL, only its
visual appearance is.

3.3.1 Model overview

We tackle this task by modeling the conditional probability P(i|V,C) of a class
i given both the visual appearance V and the visual context C of the object of
interest. Given the absence of data in the target domain, we need to limit the
complexity of the model, for generalizability’s purpose. Accordingly, we suppose
that V and C are conditionally independent given the class i — we show in the
experiments (Section 3.5) that this hypothesis is acceptable. This hypothesis leads
to the following expression:

P(i|V,C) < P(V|i)P(Cl|i)P(i) (3.1)

where each conditional probability expresses the probability of either the visual
appearance V or the context C given class 7, and P(i) denotes the prior distribution
of the dataset. Each term of this equation is modeled separately.

The intuition behind our approach is illustrated in Figure 3.1, where the blue
box contains the object of interest. Here, the class is apple, which belongs to the
target domain 7. The visual component, which focuses on the zone V, recognizes
a tennis ball due to its yellow and round appearance; apple is ranked second. The
prior component indicates that apple is slightly more frequent than tennis ball, but
the frequency discrepancy may not be high enough to change the prediction of
the visual component. In that case, the context component is discriminant: it
ranks objects that are likely to be found in a kitchen, and reveals that an apple is
far more likely to be found than a tennis ball in this context.

Precisely modeling P(C|.), P(V|.) and P(.) is challenging due to the ZSL setting.

Indeed, these distributions cannot be computed for classes of the target domain
because of the absence of corresponding training data. Thus, to transfer the
knowledge acquired from the source domain to the target domain, we use a
common semantic space, namely WordzVec (Mikolov et al. 2013b), where source
and target class labels are embedded as vectors of RY, with d the dimension of
the space. It is worth noting that we propose to separately learn the prior class
distribution P(.) with a ranking loss (in Section 3.3.3). This allows dealing with

61



62

LEVERAGING VISUAL KNOWLEDGE WITHIN LANGUAGE FOR COMPUTER VISION

imbalanced datasets, in contrast to ZSL. models like DeViSE (Frome et al. 2013).
This intuition is experimentally validated in Section 3.5.2.

3.3.2 Description of the model’s components

Due to both the ZSL setting and the variety of possible context and/or visual ap-
pearance of objects, it is not possible to estimate directly the different probabilities
of Equation 3.1. Hence, in what follows, we estimate quantities related to P(C|.),
P(V|.) and P(.) using parametric energy functions (LeCun et al. 2006). These
quantities are learned separately, as described in Section 3.3.3. Finally, we explain
how we combine them to produce the global probability P(.|C, V) in Section 3.3.4.

Visual component The visual component models P(V|i) by computing the
compatibility between the visual appearance V of the object of interest, and the
semantic representation w; of the class i.

Following previous ZSL works based on cross-modal projections (Frome et al.
2013; Bansal et al. 2018), we introduce fy,,, a parametric function mapping an
image to the semantic space:

fo, (V) = Wy.CNN(V) + by € RY (3.2)

where CNN(V) is a vector in R%isual, output by a pretrained CNN truncated at the
penultimate layer, Wy is a projection matrix (€ R¥*%isual) and by a bias vector
— in our experiments, dyisya1 = 2048. The probability that the image region V
corresponds to the class i is set to be proportional to the cosine similarity between
the projection fg, (V) of V and the semantic representation w; € RY of i:

log P(V|i;0v) e cos(fg, (V) w;) := log Pyisual (3.3)

Context component The context component models P(C|i) by computing a
compatibility score between the visual context C, and the semantic representation
w; of class i. More precisely, the conditional probability is written:

log P(Cli;0c) o fo.(C,w;) = for (hG%(C) ® w;)
= lOg Pvcontext (3-4)

where heé (C) € R? is a vector representing the context, §c = {6};63} are pa-
rameters to learn, and @ is the concatenation operator. To take non-linear and
high-order interactions between hag (C) and w; into account, feé is modeled by a
2-layer Perceptron. We found that concatenating heé (C) with w; leads to better
results than a cosine similarity, as done in Equation 3.3 for the visual component.
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To specify the modeling of h9(2: (C), we propose various context models depending
on which context objects are considered and how they are represented. Specifically,
a context model is characterized by (a) the domain of context objects that are
considered (i.e. source S or target 7)) and (b) the way these objects are represented,
either by a textual representation of their class label or by a visual representation
of their image regions. Accordingly, we distinguish:

e The low-level (L) approach that computes a representation from the image region
Vi of a context object. This produces the following context models:

Sp = {WCCNN(Vk) +bclkeC ﬂS}
Tr = {WcCNN(Vy) +bclk e CNT}

e The high-level (H) approach which considers semantic representations wy of
the class labels k of the context objects (only available for entities of the source
domain). This produces context models:

Sy = {wk|k€CﬂS} and Ty = {wk|k€CﬁT}

Note that Ty is not defined in the zero-shot setting, since class labels of objects
from the target domain are unknown; yet it is used to define Oracle models
(Section 3.4.3).

These four basic sets of vectors can further be combined in various ways to
form new context models (for instance: S; U T, Sy U S, Sy U Sy U Ty, etc.). At
last, h(,% averages the representations of these vectors to build a global context

representation. For example, /1 (CsyuT, ) equals:

1

m [ Z w; + Z (WC.CNN(V]') + bc)]

(iVi)eCs  (j,VyeCr

where | - | denotes the cardinality of a set of vectors.

Context | Word emb. CNN rep. CNN rep.
Model | known obj. known obj. unknown obj.

K; v’

Ky v’

U, v

Ky +Uy v v’

K: + U, v’ v’

Koit + Uy v v v

Table 3.1 — Context models
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Prior component  The goal of the prior component is to assess whether an entity
is frequent or not in images. We estimate P(i) from the semantic representation
w; of class i:

log P(i; 0p) < fo,(w;) := 108 Pyrioy (3:5)

where fy, is a 2-layer Perceptron that outputs a scalar.

3.3.3 Learning

In this section, we explain how we learn the energy functions fy_, fg, and fy,.
Each component (resp. context, visual, prior) of our model is assigned a training
objective (resp. Lc, Ly, Lp). As the components are independent by design,
they are learned separately. This allows for a better generalization in the target
domain, as shown experimentally (Section 3.5.2). Besides, ensuring that some
configurations are more likely than others motivates us to model each objective
by a max-margin ranking loss, in which a positive configuration is assigned a
lower energy than a negative one, following the learning to rank paradigm (Weston
et al. 2011). Unlike previous works (Frome et al. 2013), which are generally based
on balanced datasets such as ImageNet and thus are not concerned with prior
information, we want to avoid any bias coming from the imbalance of the dataset
in L¢ and Ly, and learn the prior separately with Lp. In other terms, the visual
(resp. context) component should focus exclusively on the visual appearance (resp.
visual context) of objects. This is done with a careful sampling strategy of the
negative examples within the ranking objectives, that we detail in the following.
To the best of our knowledge, such a discussion relative to prior modeling in
learning objectives — which is, in our view, paramount in imbalanced datasets
such as Visual Genome — has not been done in previous research.

Positive examples are sampled among entities of the source domain from the
data distribution P*: they consist in a single object for Lp, an object/box pair for
Ly, an object/context pair for L. To sample negative examples j from the source
domain, we distinguish two ways:

(1) For the prior objective Lp, negative object classes are sampled from the
uniform distribution U:

Lp= ill%)*jilﬁu Lvp — fop (wi) + fo, (w)) | (3.6)

Noting Aj; := fg,(w;) — fo,(w;), the contribution of two given objects i and j to
this objective is:

P*(i) | vp + AjiJ 4+t P*(j) [vp — AﬁJ n
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If P*(i) > P*(j), i.e. when object class i is more frequent than object class j, this
term is minimized when Aj; = —7p, i.e. fo,(w;) = fo,(w;) +vp > fo,(w;). Thus,
?prior(.; fp) captures prior information, as it learns to rank objects based on their
frequency.

(2) For the visual and context objectives, negative object classes are sampled
from the prior distribution P*(.):

Ly :i,V]EP*jE?* [rv—=fo, (V) "wi + for (V) "] (3.7)
Lc - E, ]_ll%* [vc— fo (C,wi) + fo (C,wj)| . (3.8)

Similarly, the contribution of two given objects i, j and a context C to the
objective L¢ is:

PP () [ P(CIE) [yv + fac (C,w0)) = fo (C i)
+P*(Clj) vy + fac (Cw) = fac (Cwy)] ]

Minimizing this term does not depend on the relative order between P*(i) and
P*(j); thus, Eontext(c |.;0c) does not take prior information into account. Moreover,
P*(Cli) > P*(C[j) implies that fo.(C,w;) > fo.(C,w;).

The alternative, as done in DeViSE (Frome et al. 2013), is to sample negative
classes uniformly in the source domain in the objective Ly. Thus, if the prior
is uniform, DeViSE directly models P(.|V); otherwise, Ly cannot be analyzed
straightforwardly. Besides, the contributions of visual and prior information are
mixed. However, we show that learning the prior separately and imposing the
context (resp. visual) component to exclusively focus on contextual (resp. visual)
information is more efficient (Section 3.5.2).

3.3.4 Inference

In this section, we detail the inference process. The goal is to combine the pre-
dictions of the individual components of the model to form the global probability
distribution P(.|V,C). In Section 3.3.3, we detailed how to learn the functions fy_,
fo, and fy,, from which log Peontext, log ﬁvisual and log P;,rior are deduced respec-
tively. However, the normalization constants in Equation 3.3, Equation 3.4 and
Equation 3.5, which depend on the object class i in the general case, are unknown.
As a simplifying hypothesis, we suppose that these normalization constants are
scalars that we respectively note ac, ay and ap. This leads to:
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Figure 3.2 — 3D visualization of the unnormalized log-probabilities of each com-
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To see whether this hypothesis is reasonable, we did some post-hoc analysis
of one of our model, and plotted in Figure 3.2 the values log Pmsual, log Peontext
and log Ppmr for positive (red points) and negative (blue points) configurations
(i, V,C) of the test set of Visual Genome. We observe that positive and negative
triplets are well separated, which empirically validates our initial hypothesis.

Hyper-parameters ac, ay and ap are selected on the validation set to compute
P(.|C,V). To build models that do not use a visual/contextual component, we
simply select a subset of the probabilities and their respective hyperparameters.
For example:

P(|C) & (Eontext)“c (ﬁprior)ap (3.10)

3.4 Experimental protocol

3.4.1 Data

To measure the role of context in ZSL, a dataset that presents annotated objects
within a rich visual context is required. However, traditional ZSL datasets, such
as AWA (Farhadi et al. 2009b), CUB-200 (Wah et al. 2011) or LAD (B. Zhao et al.
2018), are made of images that contain a unique object each, with no or very
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little surrounding visual context. We rather use Visual Genome (Krishna et al.

2017), a large-scale image dataset (108K images) annotated at a fine-grained
level (3.8M object instances), covering various concepts (105K unique object
names). This dataset is of particular interest for our work, as objects have richly
annotated contexts (31 object instances per image on average). In order to shape
the data to our task, we randomly split the set of images of Visual Genome into
train/validation/test sets (70%/10%/20% of the total size).

To build the set O of all objects classes, we select classes which appear at least
10 times in Visual Genome and have an available Word2vec representation. O

contains 4842 object classes; it amounts to 3.4M object instances in the dataset.

This dataset is highly imbalanced as 10% of most represented classes amount to
84% of object instances. We define the level of supervision psyp as the ratio of the
size of the source domain over the total number of objects:

Psup = 1S|/]0] (3.11)

For a given pgyp ratio, the source S and target 7 domains are built by randomly
splitting O accordingly. Every object is annotated with a bounding box and we

use this supervision in our model for entities of both source and target domains.

To facilitate future work on context-aware ZSL, we publicly release data splits and
annotations *.

3.4.2 Evaluation methodology and metrics

We adopt the conventional setting for ZSL, which implies entities to be retrieved
only among the target domain 7. Besides, we also evaluate the performance of
the model to retrieve entities of the source domain S (with models tuned on the
target domain).

The model’s prediction takes the form of a list of n classes, sorted by decreasing
probability; the rank of the correct class in that list is noted . Depending on the
setting, n equals |7 | or |S|. We define the First Relevant (FR) metric with:

2

FR =
n—1

(r—1) (3.12)

To further evaluate the performance over the whole test set, the Mean First
Relevant (MFR) metric is used (Fuhr 2017). It is computed by taking the mean
value of First Relevant (FR) scores obtained on each image of the test set. Note that
the factor % rescales the metric such that the MFR score of a random baseline
is 100%, while the MFR of a perfect model would be 0%. The MFR metric has the

1. https://data.lip6.fr/context_aware_zsl/
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advantage to be interval-scale-based, unlike more traditional Recall@k metrics
or Mean Reciprocal Rank (MRR) metrics (Ferrante et al. 2017), and thus can be
averaged; this allows for meaningful comparison with a varying psup.

3.4.3 Scenarios and Baselines

Model scenarios Model scenarios depend on the information that is used in
the probabilistic setting: &, C, V or both C and V. When contextual information
is involved, a context model * is specified to represent C, which we note C,.
The different context models are x € {Sy, Sy, Ty, Sy U Ty, Sy U T, SL USy U T}
For clarity’s sake, we note our model M. For example, M(CsHuTL, V) models
the probability P(Cs,ur, |.)P(V|.)P(.) as explained in Section 3.3.4, M(V) models
P(V|.)P(.), and M(@) models P(.).

Oracles To evaluate upper-limit performances for our models, we define Oracle
baselines where classes of target objects are used, which is not allowed in the zero-
shot setting. Note that every Oracle leverages visual information. We consider the
following Oracle models:

o True Prior: This Oracle uses, for its prior component, the true prior distribution
P*(i) o X—j computed for all objects of both source and target domains on the
full dataset, where #i is the number of instances of the i-th class in images
and M is the total number of images.

. N L Hi
PTruePrior(l|C/ V) = P(V|Z)P (l) X P(V|Z)M (313)

e Visual Bayes: This Oracle uses P*(.) for its prior component as well. Its
context component uses co-occurrence statistics between objects computed

; . . . #(c,i) .
on the full dataset: P"™(C|i) = [I.ec Peo-oc(c|i) where Peo-oc(cli) = #Ecc#li) is the
probability that objects ¢ and i co-occur in images, with #(c, i) the number of

co-occurrences of ¢ and i.

#(c, i)
HcH#i

PVisualBayes(i’Cr V) = Pim(C‘i)P(Vﬁ)P*(i) X H P(V’l)% (3.14)

ceC

o Textual Bayes: Inspired by (S. Bengio et al. 2013), this Oracle is similar to
Visual Bayes, except that its prior P**!(.) and context component P'***(.|C) are
based on textual co-occurrences instead of image co-occurrences: Peo-oc(c|i) is
computed by counting co-occurrences of words ¢ and i in windows of size 8
in the Wikipedia dataset, and P*(i) is computed by summing the number
of instances of the i-th class divided by the total size of Wikipedia.
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PrextualBayes (i|C, V) = P*(Cli) P(V i) P**(i) (3.15)

e Semantic representations for all objects: M(Cs,,ur,,, V) uses word embeddings of
both source and target objects. It is an oracle model because, in ZSL, we do
not have access to the class labels of target objects.

Baselines We consider the following baselines:

e M(C @ V): To study the validity of the hypothesis about the conditional
independence of C and V, we introduce a baseline where we directly model
P(C,V|.)P(.). To do so, we replace, in the expression of Ly (Equation 3.7),
fa, (V) by the concatenation of 1(C) and fg, (V) projected in R? with a 2-layer
Perceptron.

e DeViSE(V): To evaluate the impact of our Bayesian model (Equation 3.1) and
our sampling strategy (Section 3.3.3), we compare against DeViSE (Frome
et al. 2013). DeViSE(V) is different from M()) because negative examples in
Ly are uniformly sampled, and the prior P(.) is not learned.

e DeViSE(C @ V): similarly to M(C @ V), we define a baseline that does not
rely on the conditional independence of C and V, using the same sampling
strategy as DeViSE. This is done by replacing, in the expression of the visual
loss Ly (Equation 3.7), fs, (V) by fg, (V) @ h(C), and by projecting this vector
in RY using a 2-layer Multi-Layer Perceptron (MLP).

e M(Cy,V): To understand the importance of context supervision, i.e. annota-
tions of context objects (boxes and classes), we design a baseline where no
context annotations are used. The context is the whole image without the
zone )V of the object, which is masked out. The associated context model is
x = I with h(Cz) = g9,(I\ V) ; ge, is a parametric function to be learned. This
baseline is inspired from (Torralba et al. 2010), where global image features
are used to refine the prediction of an image model.

3.4.4 Implementation details

For each objective L¢, Ly and Lp, at each iteration of the learning algorithm,
5 negative entities are sampled per positive example. Word representations are
vectors of R, learned with the Skip-Gram algorithm (Mikolov et al. 2013b)
on Wikipedia. Image regions are cropped, rescaled to (299x299), and fed to
CNN, an Inception-v3 CNN (Szegedy et al. 2016a), whose weights are kept fixed
during training. This model is pretrained on ImageNet (Farhadi et al. 2009a).
As a result, every ImageNet class that belongs to the total set of objects O was
included in the source domain S. Models are trained with Adam (Kingma et al.
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Target domain 7 Source domain &
Psup | 10%  50%  90% 10%  50%  90%

Model Probability

Random U 100 100 100 100 100 100
M(2) P(.) 386 237 13.8| 120 106 @ 11.2
M(V) P(V|.)P(.) | =205 107 6.0 1.5 2.6 3.6
M(Cs,,) P(C|.)P(.) 28,7 14.4 9.1 4.2 4.3 4.4
M(Cs,, V) P(C|.)P(V|.)P(.) | 181 9.0 5.2 1.1 1.9 2.4
oc (%) 11.6 16.4 12.1 23.7 27.3 31.5

Table 3.2 — Evaluation of various information sources, with varying levels of
supervision. MFR scores in %. é¢ is the relative improvement (in %)
of M(Cs,,, V) over M(V). Entities are retrieved only among entities of
the domain at hand.

2014a) and regularized with a L2-penalty; the weight of this penalty decreases
when the level of supervision increases, as the model is less prone to overfitting.
All hyper-parameters are cross-validated on classes of the target domain, on the
validation set.

3.5 Results

3.5.1 The importance of context

In this section, we evaluate the contribution of contextual information, with
varying levels of supervision psup. We fix a simple context model (the model Sy,
which uses high-level information of source classes) and report MFR results with
Psup = 10,50,90% in Table 3.2 for every combination of information sources: &,
V, C and (C,V) — we observe similar trends for the other context models.

Results highlight that:

o Contextual knowledge acquired from the source domain can be transferred to
the target domain, as M(Cs,,) significantly outperforms the Random baseline.

. . . . . MFR
o As expected, it is not as useful as visual information: M(V) < M(Cs,, ), where
MFR .
< means lower MFR scores, i.e. better performances.

e However, Table 3.2 demonstrates that contextual and visual information are
complementary: M(Cs,,, V) outperforms both M(Cs,,) and M(V).

e Interestingly, as the learned prior model M(@) is also able to generalize, we
show that visual frequency can somehow be learned from textual semantics,
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Target domain 7 Source domain &
Psup | 10%  50%  90% 10%  50%  90%

Model Probability

Random U 100 100 100 100 100 100
M(@) P(.)| 396 263 169 6.6 868 109
M(V) P(V|.)P(.)| 210 118 6.9 0.9 2.3 3.5
M(Cs,,) P(C|.)P(.) 286 150 107 3.5 3.9 4.4
M(Cs,, V) P(C|.)P(V|.)P(.)| 18.2 9.4 6.0 0.8 1.8 2.4
oc (%) 13.4 20.2 13.4 13.8 24.4 31.5

Table 3.3 — MFR scores in the generalized ZSL setting. Entities are retrieved
among every possible entities (from both the source and target domain)

which extends previous work where word embeddings were shown to be a
good predictor of textual frequency (Schakel et al. 2015).

When psyp increases, we observe that all models are better at retrieving objects
of the target domain (i.e. MFR decreases), which is intuitive because models are
trained on more data and thus generalize better to recognize entities from the
target domain.

Besides, when psyp increases, the context is also more abundant. This explains:

e the decreasing MFR values for model M(Cs,,) on T,

e the increasing relative improvement éc of M(Cs,,, V) over M(V) on S.

However, on the target domain, we note that c does not monotonously increase
with psyp. A possible explanation is that the visual component improves faster
than the context component, so the relative contribution brought by context to
the final model M(Cs,,, V) decreases after psyp = 50%. Since the highest relative
improvement ¢ (in 7) is attained with psyp = 50%, we fix the standard level
of supervision psyp = 50% in the rest of the experiments; this amounts to 2421
classes in both source and target domains.

In Table 3.3, we report results obtained when both source and target object
classes exist in the retrieval space: this setting amounts to generalized zero-shot
learning. The aforementioned observations still hold true in the generalized setting.
Indeed, due to the nature of the retrieval metric, for a given model, MFR score are
extremely close whether retrieval is performed in the source domain or in both
the source and target domain.
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Model Probability | T S
.. Textual Bayes P ClP(V|.)P®Y(.) | 14.54 6.73
< M(Csyury, V) P(Cs,ury [ )PV )P() | 757 2.53
g True Prior P(V|.)P*(.) | 4.92 2.63

Visual Bayes P™(C|)P(V].)P*(.) | 3.40 2.11
@ DeViSE(V) P(.|V) | 10.73 3.62
£ DeViSE(Cs, © V) P(.|Cs,, V) | 1011 3.11
% M(Cs, @ V) P(Cs,, V|.)P(.) | 10.07 1.85
R M(CLV) P(Ci|.)P(V])P() | 9.19 2.13

M(V) P(V|)P(.) | 10.72 2.64
2 M(Cs,, V) P(Cs,|.)P(V|.)P(.) | 9.01 2.05
. M(Cr,, V) P(Cr,|.)P(V].)P(.) | 9.00 2.13
2 M(Cs,, V) P(Cs, [ )P(V[)P() | 896 102
5 M(CSLUTL/ ) P(CSLUTL|-)P(V|-)P(-) 8.60 1.93
© M(Cs,ur., V) P(Cs,ur, |-)P(V].)P(.) | 852 1.86

M(CSHUSLUTL/V) P(CSHUSLUTL")P(V")P(‘) 8'31 1.79

Table 3.4 — Evaluation of baselines, scenarios and oracles MFR performances

(given in %). psup = 50%. Oracle results, written in italics, are not
taken into account to determine the best scores, written in bold.

3.5.2 Modeling contextual information

In this section, we compare the different context models; results are reported in
Table 3.4.
First, underlying hypotheses of our model are experimentally tested:

e Modeling context and prior information with semantic representations (mod-

els M(Cy, V)) is far more efficient than using direct textual co-occurrences, as
shown by the Textual Bayes baseline, which is the weaker model despite being
an Oracle.

We show that the hypothesis on the conditional independence of C and V is
acceptable, as separately modeling C and V gives better results than jointly

modeling them (i.e. M(Cs,,, V) < M(Cs, & V)).

We observe that our approach M(V) is more efficient to capture the imbal-
anced class distribution of the source domain, compared to DeViSE(V); in-

deed, on S, True Prior =~ M(V) (2.63 vs 2.64), whereas True Prior E3 DeViSE(V)
(2.63 vs 3.62). Even if the improvement is only significant for the source
domain S, it indicates that separately using information sources is clearly a
superior approach to further integrate contextual information.
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Second, as observed in the case of the context model Sy (Section 3.5.1), using
contextual information is always beneficial. Indeed, all models with context
M(Cy, V) improve over M(V) — which is the model with no contextual infor-
mation — both on target and source domains. In more details, we observe that
performances increase when additional information is used:

e when the bounding boxes annotations are available: all of our models that
use both C and V outperform the baseline M(Cy, V), which could also be
explained by the useless noise outside the object boxes in the image and the
difficulty of computing a global context from raw image,

e when context objects are labeled and high-level features are used instead of

low-level features, e.g. S HM<FRS L and Sy U THM<FRS g UTr,

e when more context objects are considered (e.g. S U TLMQRS L),

e when low-level information is used complementarily to high-level information

(e.g. SLUSHU TLM<FRS L UTr). As a result, the best performance is attained for
M(Cs,us,ut,, V), with a 22% (resp. 32%) relative improvement in the target
(resp. source) domain compared to M(V).

We note that there is still room for improvement to approach ground-truth
distributions for objects of the target domain (e.g, towards word embeddings able
to better capture visual context). Indeed, even if our models outperform True Prior
and Visual Bayes on the source domain, these Oracle baselines are still better on
the target domain, hence showing that learning the visual context of objects from
textual data is challenging.

3.5.3 Qualitative Experiments

To gain a deeper understanding of contextual information, we compare in
Figure 3.3 the predictions of M()V) and the global model M(C, V). We randomly
select five classes of the target domain and plot, for all instances of these classes
in the test set of Visual Genome, the distribution of the predicted ranks of the
correct class (in percentage); we also list the classes that appear the most in the
context of these classes. We observe that, for certain classes (player, handle and
field), contextual information helps to refine the predictions; for others (house and
dirt), contextual information degrades the quality of the predictions.

First, we can outline that visual context can guide the model towards a more
precise prediction. For example, a player, without context, could be categorized
as person, man or woman; but visual context provides important complementary
information (e.g, helmet, baseball) that grounds person in a sport setting, and thus
suggests that the person could be playing. Visual context is also particularly
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FRI%) - — M(V)
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player handle field house +dirt

g oo person door grass tree grass
= .2 : )

S g % man cabinet =zebra window player
S §§, helmet fridge tree grass man

*ao'é g © baseball wall building 1light helmet
= © shirt tooth giraffe man ground

Figure 3.3 — Boxplot representing the distribution of the correct ranks (First Rel-
evant in %) for five randomly selected classes of the target domain,
with the context model S; U Sy U T1. Below are listed, by order of
frequency, the classes that co-occur the most with the object of interest
(classes of T in green; S in red).

relevant when the object of interest has a generic shape. For example, handle,
without context, is visually similar to many round objects; but the presence of
objects like door or fridge in the context helps determine the nature of the object of
interest.

To get a better insight on the role of context, we cherry-picked examples where
the visual or the prior component is inacurrate and the context component is able
to counterbalance the final prediction (Figure 3.4). In (i), for example, the visual
component ranks flower at position 223. However, the context component assesses
flower to be highly probable in this context, due to the presence of source objects
like vase, water, stems or grass, but also target objects like the other flowers around.
At the inference phase, probabilities are aggregated and flower is ranked first.

It is worth noting that our work is not without limitations. Indeed, some classes
(such as house and dirt) have a wide range of possible contexts; in these cases,
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pl) | Pl | PO IPCY,C)

. lilies 1. needle 1. tree 1. flower

. flower 2. fingertip 2. woman 2. tip

. garden 3. kitten 3. car 3. hair

. carnations || ...

. orchids 223. flower 8. flower 29. needle

rel) | PovL) | PO PAY,C)
1. water 1. filters 1. tree 1. boat

. river 2. connector || 2. woman

. sea 3. indicator ||3. car 31. water

. boat 1757. boat 25. boat a7e. filters

pcl) || PVl || PO PAY,C)

. jetliner 1. flight 1. tree 1. airplane

. engines 2. KLM 2. flight

. air 3. jetliner 256. airplane || 3. runway

. airplane 4. air

. rotor 11. airplane || 1717. jetliner | 5. hand

Figure 3.4 — Qualitative examples where the global model M(Cs, us,,ur,, V) cor-
rectly retrieves the class (7 classes only).

context is not a discriminating factor. This is confirmed by a complementary
analysis: the Spearman correlation between the number of unique context objects
and dc, the relative gain of M(Cs,,, V) over M(V), is p = —0.31. In other terms,
contextual information is useful for specific objects, which appear in particular
contexts; for objects that are too generic, adding contextual information can be
a source of noise. This suggests, as an extension of the model, to add a specific
module indicating whether contextual information should be used (based, for
example, on the prediction of the prior module about the frequence of the object).

Additional examples are given in Figure 3.5, when an object occurs in an
environment in which it is unexpected. For example, we have a picture of a kitchen
where the object of interest to be predicted is “books”. Given only the surrounding
environment, predicted objects are logically related to the environment of a
kitchen (“freezer”, “oven”, ...), and the correct label is badly ranked (because
it is unexpected in such an environment). However, the model M(V) retrieves
the correct label, given only the region of interest. Finally, integrating contextual
information in the final model M(Cs, us,,uT,, V) leads to worse performances over

M(V).
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recl) | Pl | PCY) PY,C)
1. freezer 1. shelving 1. books 1. table
2. ovens 2. books 2. boxes 2. room
3. heater 3. bookshelf || 3. wall 3. boxes
4. ... 4. cartons 4. shelving || ---
981. books || 5. papers 5. table 40. books

Pcl) || PV | P(V)[P(IV,0)

1. specks 1. sole 1. tree 1. hand
2. whiskers 2. mold 2. canopy || 2. wall

3. paws 3. scrape 3. hand 3. nose
4. ... 4. leaves 4. wall

1242. leaves | 5. branch 5. leaves | 74. leaves

Figure 3.5 — Qualitative analysis: negative examples where the use of the con-
text leads to degraded predictions, i.e. examples where model
M(Cs,us,urt,, V) is worse than the simpler model M(V) (T classes
only).

3.6 Conclusion and Perspectives

3.6.1 Summary of the contributions

In this paper, we introduced a new approach for ZSL: context-aware ZSL, using
data from Visual Genome. The goal is to determine the class of an object —
delimited with a bounding box in an image — (that may not be known to the
model) by using the complementary information of the visual context around this
object. We proposed a corresponding model, based on three components: (i) a
visual component that processes the visual appearance of objects, (ii) a contextual
component that leverages the other objects of the image and (iii) a prior component
that considers the frequence of objects.

We demonstrated experimentally that using this complementary contextual
information enables to improve the performances of a ZSL. model — in our case,
the standard DeViSE model. We also showed that word representations contain
information about the visual context of objects, and, more surprisingly, about
the frequence of objects in images. Since our model is modular, we can interpret
the contributions of each of the three components, and we provide qualitative
analyzes to show examples where contextual information is useful, or not.

We thus provide the following answers to the Chapter Questions:
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e CQ1: Textual representations, like Wordzvec, encode information about the
visual appearance, the visual context and visual frequence of objects.

e CQ2: Cross-modal models gain from being separated in modules, each
focused on a distinct visual aspect. Bayesian modeling is an example of how
to combine predictions made by model’s components.

3.6.2 Perspectives

In this section, we present research perspectives following the contribution
made in this Chapter.

Context-aware word embeddings In this Chapter, we use Word2Vec (Mikolov
et al. 2013b) vectors for word representations. We show that these vectors encode
some information about (i) the visual appearance of objects and (ii) their visual
context in images.

A ftirst extension would be to separately learn grounded word embeddings and
replace Word2vec vectors by these grounded vectors. With such word vectors, the
model may show higher performances for the visual component of our model.
To learn grounded word embeddings, one must select a group of visual words,
for which images are available during training. In our case, we would consider
seen class labels, as unseen class labels are supposed to be unknown to the
model. To learn such grounded representations, we could use for example, the
imagined sequential model of Collell et al. 2017 or the Multi-Modal Skip-Gram of
A. Lazaridou et al. 2015a. More interestingly, we could use the model presented
in Eloi Zablocki et al. 2018a to learn word representations grounded in context.
Indeed, we could learn such grounded vectors using the contextual information
around objects from seen classes. With such word vectors, the model may show
higher performances for the contextual component.

Another extension, would be to use our context-aware zero-shot learning model
to learn grounded word representations. Such representations may carry infor-
mation about the visual appearance of objects and contextual information. To
do so, we would optimize jointly a Word2Vec loss and the three losses (visual,
contextual and prior components) of our model.

Build a complete Zero-Shot Object Detection framework In the present
Chapter, we suppose that the bounding boxes around objects are given, and
our model uses contextual information around object to determine the class of
an unknown object in the image. Considering a setting where bounding boxes
are not given would be interesting, and would correspond to a Zero-Shot Object
Detection task, as the goal would be to (i) find the objects in the image, and (ii)
determining their class, using their visual appearance and contextual information.
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(i) could be tackled using a Region Proposal Network (RPN), as done in the Faster
R-CNN model (S. Ren et al. 2017). To do (ii), we would need to use our model
in a Generalized ZSL setting, as objects can be either seen or unseen. Moreover,
since there is no ground-truth annotations about the classes of objects, predictions
should be made using the visual appearance of objects and low-level contextual
information, i.e. model M(Cs, UCs,, V).
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Chapter abstract

In Computer Vision, Zero-Shot Learning (ZSL) aims at classifying unseen
classes — classes for which no matching training image exists. Most of ZSL
works learn a cross-modal mapping between images and class labels for seen
classes. However, the data distribution of seen and unseen classes might differ,
causing a domain shift problem. Following this observation, transductive ZSL
(T-ZSL) assumes that unseen classes and their associated images are known
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during training, but not their correspondence. As current T-ZSL approaches
do not scale efficiently when the number of seen classes is high, we tackle
this problem with a new model for T-ZSL based upon CycleGAN. Our model
jointly (i) projects images on their seen class labels with a supervised objective
and (ii) aligns unseen class labels and visual exemplars with adversarial and
cycle-consistency objectives. We show the efficiency of CM-GAN on the
ImageNet T-ZSL task where we obtain state-of-the-art results. We further
validate CM-GAN on a language grounding task, and on a new task that we
propose: zero-shot sentence-to-image matching on MS COCO.

This work is currently under review at the Pattern Recognition Journal:

e Patrick Bordes, Eloi Zablocki, Benjamin Piwowarski, Patrick Gallinari:
"Transductive Zero-Shot Learning using Cross-Modal CycleGAN"

4.1 Introduction

4.1.1 Positioning

In this Chapter, we present a contribution on the exploitation of weak/non-
existent cross-modal alignment in multimodal tasks, either NLP tasks aided by CV,
CV tasks aided by NLP or Cross-Modal tasks. Thus, this Chapter is linked to the
three Research Questions defined in the Introduction of the present thesis.

In the vast majority of cases (see Background Chapter), a direct supervision
between modalities is exploited in multimodal tasks. In this Chapter, we adopt
a new point of view: exploiting unsupervised relationships between modalities.
We focus on the Zero-Shot Learning task, but we also consider the Cross-Modal
retrieval task and the Visual Grounding of Language task in the experimental
section (Section 4.4), thus covering the three groups of multimodal tasks defined
in the Introduction. We thus formulate a Chapter Question (CQ), that we strive to
answer throughout this Chapter:

e CQ: Can multimodal tasks benefit from multimodal data when the cross-
modal supervision is weak, or non-existent ?

4.1.2 Transductive Zero-Shot Learning

As pointed out in Fu et al. 2015a, standard Zero-Shot Learning (ZSL) models
(Section 2.3.1) lead to a domain shift problem: since the sets of seen and unseen
classes are disjoint and potentially unrelated, the learned projection functions
are biased towards seen classes. Transductive Zero-Shot Learning (T-zSL) (D.
Zhou et al. 2003; Wan et al. 2019) attemps to solve this domain shift problem. In
T-ZSL, the unlabeled images corresponding to unseen classes are available during
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Figure 4.1 — Transductive Zero-Shot Learning with Visual Structure Constraint.
[Nlustration taken from Wan et al. 2019.

training (Verma et al. 2017; Ye et al. 2017; Wan et al. 2019). A wide variety of T-ZSL
approaches have been proposed.

Some methods use label propagation (Fujiwara et al. 2014); for example, (Ye et al.
2017) "rectify" a prediction matrix obtained by traditional ZSL (matrix of cosine
similarities between all images and all classes) to cope with the domain-shift using
an affinity matrix that measures semantic distances between all classes. Other
methods, such as DIPL (A. Zhao et al. 2018), project visual features corresponding
to unseen classes close to the closest unseen class representation with a min-
min optimization problem. Another set of methods exploit the natural clusters
in the visual embedding space, such as (Wan et al. 2019) who use a K-means
clustering algorithm to determine the centroids of images corresponding to unseen
classes. This approach is illustrated in Figure 4.1, where Convolutional Neural
Network (CNN) features of images corresponding to the 10 unseen classes of the
AwA2 dataset (Yonggin Xian et al. 2019) are visualized using t-SNE (Maaten et al.
2008); stars correspond to real clusters, other shapes are centers predicted by
various versions of the proposed model. Figure 4.1 illustrates that the visual space
is well-clustered for simple datasets like AwAz2 that have a low number of unseen
classes.

However, current models assume the visual space to be well-clustered, which
is not the case when the number of classes is high, thus explaining why these
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Figure 4.2 — Generating Visual Representations for Zero-Shot Classification. Illus-
tration taken from Jurie et al. 2017.

methods fail to benefit from the transductive setting. Transductive ZSL is chal-
lenging on ImageNet (20K unseen classes) due to the high number of classes.
Indeed, the 20K*20K affinity matrix in Ye et al. 2017 is impossible to invert in
label propagation; well-separatedness of unseen classes in the visual embedding
space is not verified in (Wan et al. 2019), and min-min optimization is extremely
long and only brings additional noise in (A. Zhao et al. 2018), as we show in the
experiments. In the present thesis, we tackle this challenge using a Cross-Modal
CycleGAN model: this is the purpose of Chapter 4.

4.1.2.1 Generative models in ZSL

Another body of work expresses visual features as probability distributions
written conditionally to label representations (Wenlin Wang et al. 2018; Jurie
et al. 2017; Mishra et al. 2018) using generative models such as Variational Auto-
Encoder (VAE) (Kingma et al. 2014b) or Generative Adversarial Network (GAN). As
for previously described approaches, they first rely on a semantic representation
of labels (e.g. Word2Vec representation of the class). A label representation is
used to define a conditional probability distribution over the space of images, or
more precisely of image representations.

Some works generate visual exemplars for unseen classes, that are then fed
to a supervised model, as in Gvf (Jurie et al. 2017) with GANs — illustrated in
Figure 4.2 — or (Mishra et al. 2018) with VAEs. In Xian et al. 2018, the generation
of features and the training of the supervised model is done simultaneously, in an
end-to-end fashion.

Other approaches predict the correct label using a Bayesian approach (Khare
et al. 2019), or by maximizing the variational lower bound of a VAE (Wenlin
Wang et al. 2018). Generative models are usually harder to learn (since they need
to model the visual distribution) and perform worse than their discriminative
counterparts — but they can be used in a transductive ZSL setting.
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4.1.3 Contributions

In the present paper, we tackle transductive ZSL with a high number of unseen
classes, by building upon CycleGan (J. Zhu et al. 2017): image and label distri-
butions are aligned with an adversarial loss while ensuring that the structure of
both spaces is preserved with a cycle-consistency loss. Thus, useful information
is learned from the unseen classes distribution. Our work follows unsupervised
translation works that proved efficient on large-scale uni-modal datasets (G. Lam-
ple et al. 2018), and extends them to a cross-modal setting where

e (P1) the geometry of the visual and textual spaces are essentially different

e (P2) there is a high imbalance between the number of images and the number
of class labels.

In the model that we propose, called Cross-Modal CycleGAN (CM-GAN), two
cross-modal mappings (text-to-image and image-to-text) are learned between a
visual space and a textual space using;:

e (i) a supervised max-margin triplet objective trained on seen classes,

e (ii) an unsupervised CycleGAN objective trained on unseen classes.

We tackle (P1) by representing images as linear combinations of class labels
representations, following the CONSE (Norouzi et al. 2014) approach. This
enables textual and visual distributions to be close and thus adversarial losses to
be learned. We tackle (P2) by using an alternating optimization scheme where we
progressively refine the projection of images and labels.

We show that CM-GAN is successful when the number of unseen classes is
high (Section 4.4.1), namely on the ImageNet T-ZSL task where it achieves SOTA
results. We further validate the efficiency of CM-GAN on a language grounding
task (Section 4.4.2) and on a new task, namely zero-shot image-to-sentence matching,
on MS COCO (Section 4.4.3).

4.2 The Cross-Modal CycleGAN Model

Adversarial learning aims at estimating a mapping between two data distri-
butions, from non-aligned data. In word-to-word translation, (G. Lample et al.
2018) learn to align two unpaired word spaces from different languages using
an adversarial loss. In image-to-image translation, CycleGAN (J. Zhu et al. 2017)
has been widely adopted (Y. Lu et al. 2017; Almahairi et al. 2019; J. Zhao et al.
2019); it adds to the adversarial objectives a cycle-consistency objective to constrain
mappings to be somewhat invertible. Despite being widely used with uni-modal
data, CycleGAN has rarely been applied to cross-modal translation, with some
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Figure 4.3 — Model overview; our goal is to learn two mapping functions T and V
between a visual space V and a textual space T, where class labels
are either seen (in red) or unseen (in green).

exceptions such as speech-to-text alignment (Chung et al. 2018). However, unlike
speech and text, image and text have different semantics. To cope with this
problem, our model represents images with CONSE embeddings.

In this section, we present our CM-GAN model for Transductive Zero-Shot
Learning, illustrated in Figure 4.3. Images are embedded in a visual space V, and
class labels are embedded in a textual space 7. Our goal is to learn cross-modal
functions T and V such that T projects images to their corresponding class labels
and V projects class labels to their corresponding images. Once such functions
have been learned, retrieval is made indifferently in V or 7 using a nearest
neighbor search. Due to the ZSL setting, labels either belong to the seen classes
S (marked in red in Figure 4.3) or unseen classes U7 (green). We note Sy and
Uy their corresponding images.

4.2.1 Data Representations

The first issue that needs to be addressed is to embed modalities so that textual
and visual distributions are somewhat close and admit a meaningful mapping,
as in (G. Lample et al. 2018) where two unpaired Word2vec spaces from distinct
languages are aligned using adversarial losses. We present below our choices for
text and image representations.

Class labels representation Classes are represented with the Skip-Gram em-
bedding of their label (Mikolov et al. 2013b). We call Ty the Wordzvec function,
trained on Wikipedia, that takes a word as input and outputs a vector of R,
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with d = 500. If the textual space contains sentences S instead of words, they are
represented by the sum of their word embeddings:

s = Z To(w) (4.1)

wesS

Image representation  We call V the image embedding function, which trans-
forms an input image into a vector of R?. We argue that visual representations
should be “homogeneous” to the classes embeddings so that distributions can be
mapped on one another. Thus, we propose to use the CONSE model (Norouzi et
al. 2014), in which an image is represented as a convex combination of class label
embeddings. More precisely, for a given image, let us call p(i) the distribution
over the seen classes i € [1,|S7|] output by the CNN, and Tk the indices of the K
most probable classes. The representation of an image is then:

Vo(v) = ) plili € T)To(w:) (4-2)
ieTk

where w; is the label of class i and p(i|i € Tx) « p(i).

To assess our intuition that CONSE leads to a visual space that is semantically
close to the textual (Wordzvec) modality, we conduct a preliminary experiment
by comparing CONSE to other visual representations, namely CNN (K. He et al.
2016) and DeViSE (Frome et al. 2013), and report results in Table 4.1. To do so,
we use the p,;s metric, that we define in Chapter 6, which measures the similarity
of two sets of vectors even if they do not share a joint embedding space. More
precisely, we set:

Pois(S) = p(cos(t, '), cos(v,v')) (4-3)

where p is the Pearson correlation and pairs v, f and ¢/, ' are aligned and sampled
from S; similarly, p,is(U4) can be defined when pairs are sampled from unseen
data. The discrepancy between S and U/ is due to the fact that the seen set S is
used as supervision to learn the various models of Table 4.1; thus, modalities are
better aligned for seen classes. We observe that CONSE leads to a better similarity
between modalities, which confirms preliminary results where adversarial losses
failed to produce meaningful models when applied to CNN or DeViSE vectors.

Having set the initial representations of classes and images, we now proceed to
define the learning objectives.

4.2.2 Supervised Loss

The supervised loss leverages the information of seen classes, as illustrated in
Figure 4.4. The correspondence between images and seen class labels is a many-
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Model S U
Random 11.6 11.6
CNN K. He et al. 2016 30.7 29.4
DeViSE Frome et al. 2013 | 53.8 36.9
CONSE Norouzi et al. 2014 | 92.1  45.9

Table 4.1 — Preliminary experiment: comparison of visual representations. The
metric is pyis (in %) computed on ImageNet’s S (1K seen classes) and
U (20K unseen classes) — the higher the better. CONSE and DeViSE
were re-implemented.

T

R

/ . Sup
20

qup

Figure 4.4 — The supervised objective learns to projects images (resp. class labels) to
their corresponding class labels (resp. images) for seen classes.

to-one correspondence, that can be exploited using a standard max-margin triplet
loss ,Csup — commonly used (Frome et al. 2013) to bring closer elements from
distinct modalities in a common space:

Lowp= E (|7 —cos(T(d),F)+ cos(T(9),{)]

oto= t— +

+ [y —cos(d, V(F) +cos(d7,V(E)].) (44)

where v is an image with ¢ its label sampled from the seen images, and v~ and ¢~
are negative examples sampled from the set of images and labels respectively. We
denote 0 (resp. ) the current representation of the image v (resp. of label t) that
we define precisely in Section 4.2.4. The margin v is set to o.5.



4.2 THE CROSS-MODAL CYCLEGAN MODEL

> / N

T

Figure 4.5 — The unsupervised objective is a CycleGAN objective used in the unseen
classes to align the visual and textual distributions.

4.2.3 Adversarial and Cycle-Consistency Losses

The transductive/unsupervised loss aims at capturing information from the unseen
classes, as illustrated in Figure 4.5. Since there is no known mapping between
unseen class labels and their corresponding images, we can only use the distri-
bution of images and classes to aligh modalities. We use CycleGan (J. Zhu et al.
2017), which has proven useful in the unpaired image-to-image translation task.
The learned mappings are the cross-modal functions T and V, and discriminators
in each modality Dy, and D7. The CycleGan objective consists of (i) adversarial
losses in both spaces Lg,, and £§an to align the textual and visual distributions
and (ii) a cycle-consistency loss L. weighted by a scalar A, to ensure that the
mappings are somewhat reversible:

Legan = L"gan + Egan +AeLe (4-5)

The individual losses write as follows:

L = B [logDr (i) + E [log(1 —~Dr(T(2)] 46)
Lion = B, 0Dy (0)] + E llog(1~ Dy(V(D)] 47)
Lo= E (IT(VB) =l + E [1V(T() ]2 49)

where U7 and Uy are the textual and visual distributions for unseen classes. V'
aims at generating visual representations that are indistinguishable from vectors
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of Uy, whereas the discriminator Dy aims at distinguishing elements from )
and elements from V(U7). As in (Goodfellow et al. 2014), V aims at minimizing
£tG AN’ and the discriminator Dy, aims at maximizing it in an adversarial fashion.

4.2.4 Learning

To learn the cross-modal functions T and V, we adopt an alternate iterative
learning procedure, as preliminary experiments showed that jointly optimizing
Lecgan and Lgyp leads to highly unstable training. Instead of learning T and V' in
one step, we refine these mappings iteratively by composing the functions Ty and
Vi learned at each optimization step k, giving rise to the global mappings Ty and
V}. Thus, the supervised and unsupervised losses (Equation 4.4 and Equation 4.5)
are optimized using data from the previous step: 9 = T;_1(v) for each image
v and £ = V_,(t) for each class label t; these representations are fixed to avoid
over-fitting.

Supervised step During a supervised step k, we optimize Ty and V; — modeled
as 2-layer Perceptrons — with Equation 4.4. We notice experimentally that our
validation measure (Section 4.3.4) is optimal when retrieval is performed in the
textual space 7, probably due to the many-to-one mapping that provides T with
significantly more training data than Vj as input (1.3M images vs 1K seen classes).
Thus, we do not use the learned V;, and we set Ty = T o Ty_; and V} = V,_;.

Unsupervised/transductive step During an unsupervised step k, we optimize
Ti and Vi — modeled as 2-layer Perceptrons — with Equation 4.5. We notice
experimentally that our validation measure is optimal when retrieval is performed
in the visual space V, probably because the discriminator Dy, has significantly
more training data on which to be trained (13M images vs 20K unseen classes),
thus leading to a better cross-modal Vi. Consequently, we don’t use the learned
Ty, and we set T, = Ti_1 and Vi, = V0 V1.

Outcome When the unsupervised validation criterion (see Section 4.3.4) shows
no improvement at the end of a step K, training is stopped, and we obtain the
final functions Vk and Tx.



4.3 EXPERIMENTAL PROTOCOL

4.3 Experimental Protocol

4.3.1 Datasets

ImageNet ImageNet (Farhadi et al. 2009a) consists of 14.2M images, corre-
sponding to 21841 classes, 1000 of which are seen classes, and the rest unseen.
Among all unseen classes, we keep 20345 classes that have a Word2vec embedding
(compound words are averaged); we used the same word embeddings and same
classes as (Changpinyo et al. 2016). We note ImageNet-Full the dataset with all
20345 unseen classes. Among these classes, 2-hop (resp. 3-hop) consists of 1509
(resp. 7678) classes within two (resp. three) hops of a seen class in WordNet — it
is thought that classes further away from seen ones (e.g. 3-hop) are harder to learn.
We also consider ImageNet-360, which is widely adopted among the ZSL literature
because it is substantially smaller and allows comparison with the literature (360
unseen classes, with 400K images).

MS COCO We use the MS COCO dataset (T. Lin et al. 2014b) to tackle a new
task that we introduce in this paper, that we call zero-shot sentence-to-image matching.
We suppose that no text-to-image correspondence is known, and we evaluate
our model on cross-modal retrieval. This task is interesting as (i) no supervised
information can be used, (ii) it features sentences instead of words, and (iii) it
extends ZSL to a very high number of classes (as many classes as sentences). The
training set consists of 118K images, with 5 captions per image. Evaluation is
performed over 1K images (along with the corresponding 5K captions) from the
test set of MS COCO.

4.3.2 Evaluation Metrics

In the experiments, we consider the two standard evaluation settings: Zero-Shot
Learning (ZSL), in which the image label is searched among unseen classes U/;
and the more challenging Generalized Zero-Shot Learning (G-ZSL) where the
class is searched among seen and unseen classes.

Following (A. Zhao et al. 2018) , we use the Recall at rank k € {1,2,5,10,20}
metric — noted Ry — defined as the percentage of images for which the correct
label is present in the top k predictions of the model.

Furthermore, following (E. Zablocki et al. 2019), we use the Mean First Relevant
(MFR) metric to evaluate our model scenarios, as this metric is more stable than
Ry and is not sensitive to the number of classes, thus enabling fine-grained model
comparisons. MFR is defined as the mean value of the rank of the correct class
among the model’s predictions, averaged over the set of test images /)y and
linearly re-scaled so that the random model has a 50% score:
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where K = |U7| for ZSL and K = |Uy| + |S7| for G-ZSL.

4.3.3 Baselines

For ImageNet, we compare CM-GAN to the standard models DeViSE (Frome
et al. 2013), CONSE (Norouzi et al. 2014), SYNC (Changpinyo et al. 2016) and
EXEM (Changpinyo et al. 2017), to state-of-the-art models Gvf (Jurie et al. 2017)
and DIPL (A. Zhao et al. 2018), and to VAE-based models VZSL (Wenlin Wang
et al. 2018), CVAE-ZSL (Mishra et al. 2018) and SE-ZSL (Verma et al. 2018). All
reported results are extracted from the original papers, which explains that we
could not report all metrics for all models. For DIPL, SOTA on ImageNet-360, we
re-implement their model to get ImageNet-Full scores.

For MS COCO, as our unsupervised setting is new in the literature, we only
compare to a supervised baseline, for which we suppose that the sentence-to-
image alignment is known and the Ls,, objective is optimized to map CONSE
representation to the corresponding sentence vectors.

In the experiments performed on MS COCO, our validation criterion is the
unsupervised criterion described in (G. Lample et al. 2018): the mean cosine
similarity between a set of images and their predicted sentences (from a selected
1K images/ 5K captions of the validation set). Due to the absence of supervised
data, there is no iterative process, but only one unsupervised step where L¢4, is
optimized.

4.3.4 Implementation Details

In the experiments performed on ImageNet-Full and ImageNet-360, our vali-
dation metric is the value of the max-margin triplet loss Ls,, computed on the
seen classes, to avoid the over-fitting of the unsupervised loss — we compute
separately both rows of Equation 4.4 to determine in which space retrieval is
optimal (cf Section 4.2.4). This metric is used to determine A, € {1,5,10} and the
stopping step. Our final model is optimal at K = 6 steps. Selected parameters for
the unsupervised steps are respectively A = 1,10, 1.

All images were processed with Inception-V3 (Szegedy et al. 2016a) to build
CONSE embeddings.
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4.4 Results

In this section, we perform extensive experiments to show the effectiveness of
CM-GAN on the ImageNet T-ZSL task (Section 4.4.1) — on which a post-analysis
on word embeddings is provided (Section 4.4.2) and on a task we introduce:
zero-shot sentence-to-image matching on MS COCO (Section 4.4.3).

4.4.1 Zero-Shot Learning on ImageNet

Quantitative results on ImageNet-Full are provided in Table 4.2 for the ZSL and
G-ZSL tasks, and results on ImageNet-360 are provided in Table 4.3 for ZSL.

For ZSL, CM-GAN generally outperforms all models on All, 3-hop and 2-hop —
results on these benchmarks are increasing due to the rising visual and semantic
proximity of the class labels to the seen class labels, confirming previous works
findings. We notice that Gvf, which generates novel visual exemplars, shows
better performances than models that learn linear or non-linear cross-modal
projections (DeViSE, EXEM) or hybrid models such as CONSE or SYNC. On
ImageNet-360, CM-GAN outperforms methods than rely on generative models
and VAEs such as VZSL, CVAE-ZSL and SE-ZSL, thus proving that our approach
based on CycleGAN captures interesting information from the distribution of
unseen classes. We observe that CM-GAN outperforms DIPL* on ImageNet-Full,
and DIPL outperforms CM-GAN on ImageNet-360. Indeed, DIPL’s transductive
loss aims at bringing closer visual features to the closest class label among unseen
classes: while this method efficiently constrains the solution when the number
of unseen classes is low (360), its nearest neighbor search over a large number of
classes (20K) may bring additional noise that degrade ZSL results.

Comparing G-ZSL to ZSL allows to analyze whether a model has a tendency to
predict seen classes first. For G-ZSL, because they are based on nearest neighbor
search, CONSE, CONSE* and CM-GAN perform worse than Gvf (a classifier over
seen and unseen classes) at low recall ranks. Interestingly, our re-implementation
CONSE*, which is based on a better CNN than the original CONSE, is even more
penalized. At higher ranks, we notice that CM-GAN eventually outperforms
Gvf for G-ZSL, showing that the cross-modal functions are correctly learned,
albeit with a slight overfit towards seen classes. This confirms findings made in
(Yonggin Xian et al. 2019) for CONSE, which shares the same results tendencies
than CM-GAN — expected as our model builds upon CONSE (Section 4.2.1).

To further analyze our model, we provide an ablation study in Table 4.4.
We report models where losses L, Loan + Ac.Le, Lgan and Ly are optimized
individually. Init. corresponds to the initialization of our model, with CONSE
embeddings as visual features; in other terms, using functions Tp and Vj defined
in Section 4.2.1. We observe that:
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Model R1 R2 R5 R10 Rzo
CONSE 1.4 2.2 3.9 5.8 8.3
CONSE* | 176 2.8 477 7.07 10.04
DeViSE 0.8 1.4 2.5 3.9 6.0

— SYNC 1.5 2.4 4.5 7.1 10.9
< DIPL* 1.47 252 482 759 11.52
EXEM 1.8 2.9 5.3 8.2 12.2

Gvt 1.90 3.03 5.67 831 13.14
CM-GAN | 199 318 576 8.64 12.57
CONSE 2.7 4.4 7.8 115 16.1
CONSE* | 343 522 896 1296 18.21

S DeViSE 1.7 2.9 5.3 8.2 125
%I & SYNC 2.9 4.9 9.2  14.2 20.9
g ) DIPL* 281 502 987 1564 221
N EXEM 3.6 5.9 10.7 16.1  23.1
Gvf 3.58 5.97 11.03 16.51 23.88
CM-GAN | 3.88 6.15 11.25 16.66 23.4
CONSE 9.4 151 24.7 327 41.8
CONSE* | 10.67 15.58 25.24 34.29 45.31
DeViSE 6.0 100 181 264 364

& SYNC 10.5 167 286 401 52.0
) DIPL* 10.46 16.79 28.23 39.4 52.08
EXEM 12.5 19.5 32.3 43.7 55.2

Gvf 13.05 21.52 33.71 43.91 57.31
CM-GAN | 13.7 20.96 33.73 45.51 56.31
CONSE 0.2 1.2 3.0 5.0 7.5

— | CONSE* | 0.13 141 362 597 8.93
E’ < Gvf 1.03 1.93 4.98 6.23 10.26
v CM-GAN | 0.16 15 424 7.28 11.28
8 CONSE 0.2 2.4 5.9 9.7  14.3
'Nc o | CONSE* | 021 265 6.76 10.77 16.01
g & Gvt 1.99 4.01 6.74 11.72 16.34
'T% CM-GAN | 026 265 17.94 13.73 20.56
z CONSE 0.3 7.1  17.2  24.9 33.5
@ o CONSE* | 0.17 6.3  16.37 24.67 34.45
< Gvf 4.93 13.02 20.81 3148 45.31
CM-GAN | 0.18 7.06 22,55 34.17 46.86

Table 4.2 — ZSL and G-ZSL results on ImageNet-Full. Models marked with * were

re-implemented.
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Model Rs
DeViSE Frome et al. 2013 12.8
ConSE Norouzi et al. 2014 15.5
VZSL Wenlin Wang et al. 2018 | 23.1
CVAE-ZSL Mishra et al. 2018 | 24.7
SE-ZSL Verma et al. 2018 25.4
DIPL A. Zhao et al. 2018 31.7
CM-GAN 25.9

Table 4.3 — ZSL results on ImageNet-360.

Model zhop 3hop All 2hop 3hop All

Random 50 50 50 50 50 50

Init. CONSE 8.88 12.37 15.35 | 9.88 12.71 15.65
cycle L. 732 10.84 1387 | 781 11. 14.3
gan Lean 7.51 11.41 14.25 |7.57 11.03 13.68
cgan Loy +Ac.Le | 734 1073 13.34 | 7.72 1079 13.32
sup Lsup 583 8.88 11.07|6.06 887 11.13
CM-GAN 5.17 8.23 998 | 53 8.17 9.97

Table 4.4 — Ablation study. Measure: MFR (the lower the better).

e sup > cgan: the supervised step is better than the unsupervised step, which
is expected since the alignment information is used;

e cgan > gan and cgan > cycle, which indicates that both cycle-consistency and
adversarial losses are complementary;

e CM-GAN > sup and CM-GAN > cgan, which shows the benefits of the
alternating learning process;

e our final model CM-GAN is the best scenario.

The complementarity of supervised and transductive objectives is illustrated
in Figure 4.6: we randomly sample five unseen classes and visualize the evolu-
tion of their textual and visual representations at each model optimization step
(Section 4.2.4): between even and uneven (resp. uneven and even) steps, visual
centroids (resp. class labels) are moving. We observe that modalities align with
each supervised (i,iii,v) and unsupervised (ii,iv,vi) iteration.

4.4.2 Learning Grounded Word Representations with CM-GAN

In this section, we provide a post-analysis of Section 4.4.1 and further validate
CM-GAN by applying it to the visual grounding of language task (A. Lazaridou et al.
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Figure 4.6 — PCA visualization of visual and textual data (represented in the
same space) along with model’s iterations for five randomly sampled
unseen classes. Circle: centroid of visual features. Cross: class label.

Model MEN SemSim SimLex VisSim WordSim Conc. | Avg.

X 68 60 33 49 62 63 55.8

Veup (X) 69 66 34 57 59 59 | 573

X & Vsup(X) 70 69 36 58 59 58 | 583
Virans (X) 70 62 35 51 62 62 57

X ® Virans(X) 72 69 37 55 58 64 | 59.2
Voup(X) @ Vigans(X)| 70 69 36 58 59 58 | 583

Table 4.5 — Grounded vectors evaluation. Concatenated vectors were projected
with PCA so that all vectors have the same dimension.

2015b), which aims at enhancing textual representations using visual information
— see Section 2.2.1 of the Background Chapter for an overview of Visual G round-
ing of Language. Unlike previous models, that leverage direct correspondence
between words and images, we also exploit unsupervised information. In this
section, based on our CM-GAN model trained on ImageNet (Section 4.4.1), we
learn grounded word representations using information from seen and unseen
classes. For a word embedded as X € R3* with Wordavec, we note Viyp(X)
(resp. Virans(X)) the cross-modal projection of X learned using a supervised (resp.
transductive) step. (Collell et al. 20177) has shown that X (purely textual as it is
learned using Wordzavec on textual corpus only) and its projection in a visual
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space (which is said to be grounded since visual information has been incorporated)
have complementary information, that can be exploited by concatenating them.
Thus, we also evaluate various concatenation combinations between X and its
grounded projections.

Evaluations are reported in Table 4.5 for standard word embeddings bench-
marks, as done in (Collell et al. 2017) we use WordSim353 (Finkelstein et al. 2002),
MEN (Bruni et al. 2014), SimLex-999 (F. Hill et al. 2015), SemSim and VisSim (Sil-
berer et al. 2014), along with the concreteness prediction task on the USF dataset
(Nelson et al. 2004). We observe that grounded vectors (i.e. Virans(X) and Vgup (X))
tend to outperform X on all benchmarks except Concreteness, and that the infor-
mation present in X and the grounded vectors is complementary, as X @& Virans(X)
(resp. X @ Vsup (X)) outperforms both X and Virans(X) (resp. Vsyp(X)). Interest-
ingly, we notice that X @ Virans(X) gives the highest performance, thus showing
the efficiency of exploiting unsupervised visual information using CM-GAN.

4.4.3 Zero-Shot Sentence-to-lmage Matching

Text to Image Image to Text
Model MEFR Rl R5 RIO MFR Rl R5 RlO
Rand. 50 0.1 0.5 1 50 0.1 0.5 1

CONSE | 203 3.3 139 23.5| 14.1 28 12.3 20.2
Lean 21 4.2 157 252 | 14.1 3.1 151 23.7
L. 183 4.7 143 24 | 11.3 3.7 16.6 27.3
Legan | 1507 5.7 17.2 27.7 | 111 41 155 27.7
Lsup 73 83 263 39.8| 45 7.1 281 44.7

Table 4.6 — Cross-modal retrieval results on MS COCO.

In this section, we demonstrate that CycleGan can align the visual and textual
modalities without any supervision. We also show that CM-GAN can be applied to
other settings than ImageNet: (i) replacing words by sentences, and (ii) with as
many classes as training examples (590K sentences).

We evaluate several scenarios of our model on the standard cross-modal retrieval
task: given a sentence, retrieving the closest image (Text to Image) and vice versa
(Image to Text settings) — see Section 2.4.4 of the Background Chapter for an
overview of Cross-Modal Retrieval — in Table 4.6. We observe that:

e the initialization (CONSE) already shows substantial improvement compared
to the Random baseline,

e models based on CycleGAN improve performances compared to the CONSE
model, due to the beneficial action of the CycleGAN loss,

95



96

LEVERAGING WEAK/NON-EXISTENT CROSS-MODAL SUPERVISION

e CM-GAN has much lower performance than the Supervised baseline (where
Esup is learned), which is intuitively expected.

4.5 Conclusion

4.5.1 Summary of the contributions

In this Chapter, we propose a new model for Transductive ZSL, and evaluate it
on ImageNet, which has a high number of unseen classes (20K). Our model relies
on a supervised loss to align seen classes data, and a transductive CycleGAN loss
to align unseen classes data. We demonstrate that:

e CM-GAN is very efficient on the ImageNet T-ZSL task, with state-of-the-art
results,

e visual and textual modalities can be somewhat aligned without supervision
on a zero-shot sentence-to-image task on MS COCO,

e textual representations can be enhanced using CM-GAN.
We thus provide the following answer to the Chapter Question:

e CQ: There is meaningful information to be exploited in the similarities be-
tween textual and visual distributions, even in cases where there is no direct
text/vision supervision. We showed it for three multimodal tasks: Transduc-
tive Zero-Shot Learning, Zero-Shot Image-to-Sentence Matching and Visual
Grounding of Language.

4.5.2 Perspectives

In this section, we present research perspectives following the contribution
made in this Chapter.

Zero-shot sentence-to-image matching In the present Chapter, we performed
zero-shot sentence-to-image matching by training a Cross-Modal CycleGAN
model on MS COCO data. We represented a sentence by the sum of its word
embeddings, and we represented images using a convex combination of the most
probable class labels embeddings, with the CONSE model (Norouzi et al. 2014).
We showed that the CycleGAN model could, without any supervision, capture
some text/vision alignment; however, improvements compared to the CONSE
initialization could be done with a new method to encode sentence, able to take
into account word order.
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An interesting perspective would be to encode sentences and images using
BERT. To encode images using BERT, we can use the model that we propose in
Chapter 5, in which an image is seen as a sequence of objects, and object features
are projected into BERT’s embedding layer using a cross-modal linear layer. The
only learnable parameters would be the latter linear projection layer. Chapter 5
gives us some hints that this method may show good results, as BERT contain
abstractions that generalize across modalities.

Zero-Shot Learning from Noisy Text Description Even though ZSL is mostly
focused on classifying images with class labels (e.g, Abyssinian cat, dog, traffic light),
some works (Elhoseiny et al. 2017; Yizhe Zhu et al. 2018) have proposed, instead,
to consider noisy text descriptions e.g, The Parakeet Auklet is a small (23cm) auk with
a short orange bill that is upturned ... We could apply our CrossModal CycleGAN
model to this task: to do so, we would need to select useful information in the
text (visual words like small or orange for example) and represent the text as a
weighted linear combination of these salient words. We could even consider a
fully unsupervised configuration (as done in the zero-shot text-to-image matching
task) in which we do not use a direct supervision between images and textual
descriptions.
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Chapter abstract

Pre-trained language models such as BERT have recently contributed to
significant advances in Natural Language Processing tasks. Interestingly,
while multilingual BERT models have demonstrated impressive results, recent
works have shown how monolingual BERT can also be competitive in zero-shot
cross-lingual settings. This suggests that the abstractions learned by these
models can transfer across languages, even when trained on monolingual data.
In this paper, we investigate whether such generalization potential applies
to other modalities, such as vision: does BERT contain abstractions that
generalize beyond text? We introduce BERT-gen, an architecture for text
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generation based on BERT, able to leverage on either mono- or multi- modal
representations. The results reported under different configurations indicate
a positive answer to our research question, and the proposed model obtains
substantial improvements over the state-of-the-art on two established Visual
Question Generation datasets.

This work is currently under review at the EMINLP 2020 conference:

e Thomas Scialom*, Patrick Bordes*, Paul-Alexis Dray, Jacopo Staiano, Patrick
Gallinari "What BERT sees: Cross-Modal Transfer for Visual Question Gener-
ation”.

5.1 Introduction

5.1.1 Positioning

In the present Chapter, we explore the cross-modal capabilities of language
models, by applying a state-of-the-art language model — BERT (Devlin et al. 2019)
— to a multimodal task: Visual Question Generation. This contribution is linked
to the following research questions:

e RQ1 (Can vision help to refine language understanding ?): Visual Question Gener-
ation is a multimodal extension of the Question Generation task: it is thus a
NLP task aided by CV. One of the challenge is to determine whether the visual
modality enables to generate more salient questions compared to a textual in-
put. Studying the impact of vision can be done (i) quantitatively using ablation
studies and (ii) qualitatively using attention visualizations.

e RQ2 (Can language help to refine visual understanding ?): The main question in this
Chapter is whether the BERT model, which is trained on textual data, possesses
abstractions that generalize to the visual modality. To test this hypothesis, we
propose to integrate visual data within BERT without pre-training, using a
simple linear layer, and to evaluate the resulting Multimodal BERT model on
the VQG task.

e RQ3 (Can modalities be translated into one another?): In VQG, the goal is to
generate a meaningful question from a multimodal input. A question is different
than a caption in the sense that it does not summarize the high-level content
of an image, but rather extends its content, or tries to clarify some grey areas.
To understand the contribution of each modality regarding the quality of the
generated question, we evaluate three versions of our model: (i) textual input
only, (ii) visual input only and (iii) textual and visual input simultaneously.
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As a result, we derive Chapter Questions (CQ) that we strive to answer through-
out this Chapter:

e CQ1: Does the visual modality help to generate more meaningful question in
the Question Generation task?

e CQ2: Does BERT contain abstractions that generalize to the visual modality?

e CQ3: What is the impact of each modality when generating a question?

5.1.2 Visual Question Generation

In the Artificial Intelligence community, several works have investigated the
longstanding research question of whether textual representations encode visual
information. On the one hand, a large body of research called language grounding
considers that textual representations lack visual commonsense (Baroni 2016), and
intend to ground the meaning of words (A. Lazaridou et al. 2015a; G. Collell et al.
2017) and sentences (Kiela et al. 2018; P. Bordes et al. 2019) in the perceptual world.
In another body of work, textual representations have successfully been used
to tackle multi-modal tasks (Baltrusaitis et al. 2019) such as Zero-Shot Learning
(E. Zablocki et al. 2019), Visual Question Answering (Malinowski et al. 2014) or
Image Captioning (Socher et al. 2014b). Following the latter line of research, in
this paper we evaluate the potential of pre-trained language models to generalize
in the context of Visual Question Generation (VQG) (Mostafazadeh et al. 2016).

The Visual Question Generation task — that we present in Section 2.2.2.1 of the
Background Chapter — allows us to investigate the cross-modal capabilities of
BERT: unlike Image Captioning (where the input is only visual) or VQA (where
the input is visual and textual), VQG is a multi-modal task where input can
be textual and/or visual. VQG data usually includes images and the associated
captions, along with corresponding questions about the image; thus, different
experimental setups can be designed to analyze the impact of each modality.
Indeed, the questions can be generated using i) textual (the caption), ii) visual (the
image), or iii) multi-modal (both the caption and the image) input.

From a practical standpoint, the VQG task has several applications: robots
or Al assistants could ask questions rooted in multi-modal data (e.g. fusing
conversational data with visual information from captors and cameras), in order
to refine their interpretation of the situation they are presented with. It could also
allow systems relying on knowledge-bases to gain visual common sense and deal
with the Human Reporting Bias (Misra et al. 2016), which states that the content
of images and text are intrinsically different, since visual common sense is rarely
explicitly stated in text.
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5.1.3 Mono- and Multi-modal Neural Language Models

The BERT language model (Devlin et al. 2019) is a Deep Bidirectional Trans-
former (Vaswani et al. 2017) pre-trained on textual corpora (BookCorpus and
Wikipedia) using a Masked Language Model (MLM) objective — predicting some
words that are randomly masked in the sentence, along with a sentence entailment
loss. Recent research efforts (Artetxe et al. 2019) have shown how BERT encodes
abstractions that generalize across languages, even when trained on monolingual
data only. This contradicts the common belief (Pires et al. 2019; S. Wu et al. 2019)
that a shared vocabulary and joint training on multiple languages are essential to
achieve cross-lingual generalization capabilities. In this work, we further investi-
gate the generalization potentials of large pre-trained LMs, this time moving to a
cross-modal setup: does BERT contain abstractions that generalize beyond text?

Recently, BERT-based Multi-Modal Language Models have been proposed (J.
Lu et al. 2019; Tan et al. 2019; L. H. Li et al. 2019; W. Su et al. 2019) to tackle
multi-modal tasks, using different approaches to incorporate visual data within
BERT. Some works use single-stream Transformers in which visual features are
incorporated in a BERT-like Transformer, e.g, VisualBERT (L. H. Li et al. 2019),
while others employ modality-specific encoders built on standard Transformer
blocks, which are then fused into a cross-modal encoder, such as ViLBERT (J. Lu
et al. 2019).

5.1.4 Contributions

From the literature on Multimodal Neural Language Models, it is left to explore
whether the cross-modal alignment is fully learned, or it is to some extent already
encoded in the BERT abstractions. Therefore, in contrast with those approaches,
we explicitly avoid using the following complex mechanisms:

o Multi-modal supervision: all previous works exploit an explicit multi-modal
supervision through a pre-training step; the models have access to text/image
pairs as input, to align their representations. In contrast, our model can switch
from text-only to image-only mode without any explicit alignment.

o [mage-specific losses: specific losses such as Masked Rol (Region of Interest)
Classification with Linguistic Clues (W. Su et al. 2019) or sentence-image pre-
diction (L. H. Li et al. 2019) have been reported helpful to align visual and text
modalities. Instead, we only use the original MLM loss from BERT (and not its
entailment loss).

e Non-linearities: we explore a scenario in which the only learnable parameters,
for aligning image representations to BERT, are those of simple linear projection
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layer. This allows us to assess whether the representations encoded in BERT
can transfer out-of-the-box to another modality.

Furthermore, to the best of our knowledge, this paper is the first attempt to
investigate multi-modal text generation using pre-trained language models. We
introduce BERT-gen, a text generator based on BERT, that can be applied both
in mono and multi-modal settings. We treat images similarly to text: while a
sentence is seen as a sequence of (sub)word tokens, an image is seen as a sequence
of objects associated to their corresponding positions (bounding boxes). We show
how a simple linear mapping, projecting visual embeddings into the first layer, is
enough to ground BERT in the visual realm: text and image object representations
are found to be effectively aligned, and the attention over words transfers to
attention over the relevant objects in the image.

Our contributions can be summarized as follows:

1. we introduce BERT-gen, a novel method for generating text using BERT, that
can be applied in both mono and multi-modal settings;

2. we show that the semantic abstractions encoded in pre-trained BERT can
generalize to another modality;

3. we report state-of-the art results on the VQG task;

4. we provide extensive ablation analyses to interpret the behavior of BERT-gen
under different configurations (mono- or multi- modal).

5.2 Model

In VQG, the objective is to generate a relevant question from an image and/or its
caption. The caption Xy is composed of M tokens txty, ..., txty; these tokens can
be words or subwords (smaller than word) units depending on the tokenization
strategy used. As BERT uses subword tokenization, throughout this paper we
will refer to subwords as our tokenization units.

The proposed model is illustrated in Figure 5.1. In Section 5.2.1, we detail
how images are incorporated in the Transformer framework. In Section 5.2.2, we
present BERT-gen, a novel approach to use BERT for text generation.

5.2.1 Representing an Image as Text

In this work, we treat textual and visual inputs similarly, by considering both as
sequences. Since an image is not a priori sequential, we consider the image X,
as a sequence of object regions imgj, ...,imgy, as described below.

The images are first processed as in Tan et al. 2019: a Faster-RCNN (S. Ren
et al. 2017), pre-trained on Visual Genome (Krishna et al. 2017), detects the
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/ ObJeCtS/ / Caption
/(v1sual tokens) // (textual tokens)
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Figure 5.1 — Model overview. Captions are encoded via BERT embeddings, while
visual embeddings (blue) are obtained via a linear layer, used to
project image representations to the embedding layer dimensions.

N = 36 most salient regions (those likely to include an object) per image. The
weights of the Faster-RCNN are fixed during training, as we use the precomputed
representations made publicly available ' by Anderson et al. 2018. Each image is
thus represented by a sequence of N = 36 semantic embeddings fi, ...fy (one for
each object region) of dimension 2048, along with the corresponding bounding box
coordinates by, ...byy of dimension 4. With this approach, the BERT attention can
be computed at the level of objects or salient image regions; had we represented
images with traditional CNN features, the attention would instead correspond
to a uniform grid of image regions without particular semantics, as noted in
Anderson et al. 2018. To build an object embedding o; encoding both the object
region semantics and its location in the image, we concatenate f; and b; (j € [1, N]).
Hence, an image is seen as a sequence of N = 36 visual representations (each
corresponding to an object region) oy, ..., ony. Object region representations o; are
ordered by the prediction certainty of the object detected, and the model has
access to their relative location in the image through the vectors b;.

To investigate whether our BERT-based model can transfer knowledge beyond
language, we consider image features as simple visual tokens that can be presented
to the model analogously to textual token embeddings. In order to make the o;
vectors (of dimension 2048 + 4 = 2052) comparable to BERT embeddings (of
dimension 768), we use a simple linear cross-modal projection layer W of dimensions

1. https://github.com/peteanderson80/bottom-up-attention
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2052 x 768. The N object regions detected in an image, are thus represented as
Ximg = (W.o01, ..., W.on). Once mapped into the BERT embedding space with W,
the image is seen by the rest of the model as a sequence of units with no explicit
indication if it is a text or an image embedding.

5.2.2 BERT-gen: Text Generation with BERT

We cast the VQG task as a classic sequence-to-sequence (Sutskever et al. 2014)
modeling framework:

T
Pow(Y|X) =] ] Pow (X, y<t) (5.1)
=1

where the input X = Xy, in caption-only mode, X = Ximg in image-only mode,
and X = Ximg @ Xixt in a multi-modal setup; Y = yy,...,yr is the question
composed of T tokens. ® are the parameters of the BERT model *; W represents
the weights of the linear layer used for projecting visual input to the BERT
embedding layer.

As mentioned earlier, BERT is a Transformer (Vaswani et al. 2017) encoder
pre-trained using the Masked Language Model (MLM) objective: tokens within
the text are replaced with a [MASK] special token, and the model is trained to
predict them. Since BERT was not trained with an unidirectional objective, its
usage for text generation is not straightforward.

To generate text, Yang Liu et al. 2019 propose to stack a Transformer decoder,
symmetric to BERT. However, the authors report training difficulties since the
stacked decoder is not pre-trained, and propose a specific training regime, with
the side-effect of doubling the number of parameters. Dong et al. 2019 opt for an
intermediate step of self-supervised training, introducing a unidirectional loss.
As detailed below, we propose a relatively simpler, yet effective, method to use
BERT out-of-the-box for text generation.

Decoder We simply use the original BERT decoder as is, initially trained to
generate the tokens masked during its pre-training phase. It consists in a feed-
forward layer, followed by normalization, transposition of the embedding layer,
and a softmax over the vocabulary.

Next Token Prediction At inference time, to generate the first token of the
question y1, we concatenate [MASK] to the input tokens X, then encode X & [MASK]
with the BERT encoder, and feed the output of the encoder to the decoder; y;
is the output of the decoder for the [MASK] token. Subsequently, given y;, we

2. We use the smaller architecture released, BERT-base (12 layers), pre-trained on English cased
text.
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concatenate it to the input tokens and encode X @ y; & [MASK] to predict the next
token ;. This procedure is repeated until the generation of a special token [E0S]
signaling the end of the sentence.

Attention Trick As we iteratively concatenate the generated tokens, the BERT
omni-directional self-attention mechanism would impact, at every new token,
the representations of the previous tokens. To counter that, we use a left-to-right
attention mask, similar to the one employed in the original Transformer decoder
(Vaswani et al. 2017). For the input tokens in X, we apply such mask to all the
target tokens Y that were concatenated to X, so that input tokens can only attend
to the other input tokens. Conversely, for target tokens y;, we put an attention
mask on all tokens v, allowing target tokens y; to attend only to the input tokens
and the already generated target tokens.

This novel method allows to use pre-trained encoders for text generation. In this
work, we initialize our model with the parameters from BERT-base. Nonetheless,
the methodology can be applied to any pre-trained Transformer encoders such as
RoBERTa (Yinhan Liu et al. 2019), or Ernie (Y. Sun et al. 2019).

Modality-specific setups The proposed model can be used in either mono- or
multi- modal setups. This is accomplished by activating the textual and/or visual
modules.

5.3 Experimental Protocol

Our main objective is to measure whether the textual knowledge encoded in
pre-trained BERT can be beneficial in a cross-modal task. Thus, we define the
three experimental setups that follow from each other, which we refer to as Step 1,
2, and 3:

1. Caption only Deactivating the Visual embedding (see Figure 5.1), the model
has only access to textual input, i.e. the caption. The model is initialized with the
BERT weights and trained according to Equation 5.1.

2. Image only Conversely, deactivating the Textual embedding module (see
Figure 5.1), the model has only access to the input image, not the caption. To
indicate the position t of img; in the sequence, we sum the BERT positional
embedding of ¢ to the visual representation of img;, just as we would do for a text
token txt;. The model is initialized with the weights learned during step 1. All
BERT-gen © weights are frozen, and only the linear layer W is learnable. Hence, if
the model is able to learn to generate contextualized questions w.r.t. the image, it shows
that a simple linear layer is enough to bridge the two modalities.
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3. Image + Caption The full model is given access to both image and cap-
tion inputs. In this setup, we separate the two different inputs by a special
BERT token [SEP]. Thus, the input sequence for the model takes the form of
[CLS],imgy, ...,imgnN, [SEP], txty, ..., txtpr.

In step 1, only BERT-gen ®© parameters are learned, as no image input was
given. In step 2, W is trained while keeping © frozen. Finally then, in step 3, we
fine-tune the model using both image and text inputs: the model is initialized
with the parameters ® learned during step 1 and the W learned during step 2,
and we unfreeze all parameters.

Ablations Additionally, we report results obtained with: Image only (unfreeze),
where the BERT-gen parameters © are not frozen; and Image+Caption (from scratch)
where the model is learned without the intermediate steps 1 and 2: the BERT-gen
parameters O are initialized with the weights from pre-trained BERT while W is
randomly initialized.

5.3.1 Datasets

We conduct our experiments using two established datasets for Visual Question
Generation:

VQGcoco Introduced by Mostafazadeh et al. 2016, it contains 2500 training
images, 1250 validation images and 1250 test images from MS COCO (T. Lin et al.
2014b); each image has 5 corresponding questions and 5 ground-truth captions. 3

VQA The Visual Question Answering (Teney et al. 2016) dataset can be used
to derive VQG data (Y. Li et al. 2018). The task is reversed: instead of answering
the question based on the image (VQA), models are called to generate a relevant
question given the image (VQG). Also based on MS COCO, it contains 82783
training images, 40504 validation images and 81434 testing images. In VQA1.0,4
each image has 3 associated questions. Since the test set of MS COCO does
not contain ground-truth captions, we generated artificial captions for it using
NeuralTalkz2 (Karpathy et al. 2017), which is a standard image captioning model:
for fair comparison, we used exactly the same model > as Patro et al. 2019 (MDN-
Joint).

3. Publicly available at https://www.microsoft.com/en-us/download/details.aspx?id=
53670

4. Publicly available at https://visualqa.org/vqa_vl_download.html

5. Publicly available at https://github.com/karpathy/neuraltalk?
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5.3.2 Baselines

We compare the proposed model to the following:

Sample (Y. Yang et al. 2015) Questions are generated by a RNN conditioned
on the image: at each generation step, the distribution over the vocabulary is
computed and used to sample the next generated word. This baseline enables to
generate diverse questions over the same image, as the word selection process is
non-deterministic.

Max (Y. Yang et al. 2015) Using the above model, selecting words with maximum
probability from the computed distribution.

MDN-Joint  (Patro et al. 2019) State-of-the-art model on VQA1.0, based on joint
usage of caption and image information.

MC-SBN (Patro et al. 2020) State-of-the-art on VQGcoco. The model jointly
leverages on multiple cues (the image, place information, caption, tags) to generate
questions.

5.3.3 Metrics

We report the following metrics for all experiments, consistently with previous
works:

BiLingual Evaluation Understudy (BLEU) (Papineni et al. 2002) A precision-
oriented metric, originally proposed to evaluate machine translation. It is based
on the counts of overlapping n-grams between the generated sequences and the
human references.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (C.-Y. Lin 2004)
The recall-oriented counterpart to BLEU metrics, again based on n-gram overlaps.

Metric for Evaluation of Translation with Explicit ORdering (METEOR)  (Baner-
jee et al. 2005) The harmonic mean between precision and recall w.r.t. unigrams.

As opposed to the other metrics, it also accounts for stemming and synonymy

matching.

Consensus-based Image Description Evaluation (CIDEr)  (Vedantam et al. 2015a)
Originally designed for Image Captioning, it uses human consensus among the
multiple references, favoring rare words and penalizing frequent words. This fea-
ture is particularly relevant for our task, as the automatically generated questions
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often follow similar patterns such as “What is the [...] ?". Indeed, we verify experi-
mentally (cf Table 5.1 and Table 5.2) that the CIDEr metric is the most discriminant
in our quantitative results.

5.3.4 Implementation details

All models are implemented in PyText (Aly et al. 2018). For all our experiments
we used a single NVIDIA RTX 2080 Ti GPU, a batch size of 128 and 5 epochs. We
used the Adam optimizer with the recommended parameters for BERT: learning
rate is set at 2¢ 7> with a warmup of 0.1. The most computationally expensive
experiment is the step 3 described above: for this model, completion of one epoch
demands 30 seconds and 2 minutes for VQGcoco and VQA datasets, respectively.
Metrics were computed using the Python package released by Du et al. 2017.°

5.4 Results

’\) o "
Model S tep %&0’& q)&@’b q)\f"\{b %\?pbc \lo‘}& \@@ R ¥
Sample 38.8 - - - 342 127  13.3
Max 59.4 - - - 493 178 33.1
MDN-Joint 65.1 - - - 520 22,7 33.1
Caption 1 75.41 56.49 43.26 32.28 66.18 26.51 43.560
Image 2 (freeze) 73.62 53.54 39.37 27.44 64.34 24.36 29.58
Image 2 (unfreeze) 73.97 55.07 42.20 31.76 65.70 26.36 41.43
Image+Cap. 3 75.59 56.88 43.96 33.35 66.71 26.76 44.99
Image+Cap. 3 (f. scratch) 75.84 56.42 43.53 32.85 66.30 25.92 38.81

Table 5.1 — Quantitative VQG results on VQA1.0. We report results from previous
works in the upper block, and those obtained by our proposed models
in the bottom block.

In Table 5.1, we report quantitative results for the VQG task on VQA1.0 (where
captions are automatically generated). The Caption only model already shows
strong improvements for all metrics over state-of-the-art models. For this text-only
model, the impressive performance can mostly be attributed to BERT, demonstrat-
ing once again the benefits obtained using pre-trained language models. In our
second step (Image only), the BERT © parameters are frozen and only those of
the cross-modal projection matrix W are learned. Despite using a simple linear

6. https://github.com/xinyadu/nqg/tree/master/qgevalcap
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layer, the model is found to perform well, generating relevant questions given
only visual inputs.

This suggests that the conceptual representations encoded in pre-trained lan-
guage models such as BERT can effectively be used beyond text. Further, we report
an additional Image only experiment, this time unfreezing the BERT parameters
© — see Step 2 (unfreeze) in Table 5.1. As could be expected, since the model is
allowed more flexibility, the performance is found to further improve.

Finally, in our third step (Image + Caption), we obtain the highest scores, for
all metrics. This indicates that the model is able to effectively leverage the
combination of textual and visual inputs. Indeed, complementary information
from both modalities can be exploited by the self-attention mechanism, making
visual and textual tokens interact to generate the output sequences. Again, we
additionally report the results obtained bypassing the intermediate steps 1 and 2:
for the model denoted as Step 3 (from scratch) (last row of Table 5.1), ©® parameters
are initialized with the original weights from pre-trained BERT, while the W
matrix is randomly initialized. Under this experimental condition, we observe
lower performances, a finding that consolidates the importance of the multi-step
training procedure we adopted.

Model Step %\*@&, %\Q@ %&& %V@b( \LQ\}O(J &/\&% o
MDN-Joint 36.0 249 168 104 41.8 234 507
MC-SBN 40.7 - - - - 226 -
Caption 1 7458 54.94 43.33 34.36 64.09 29.76 77.70
Image 2 (freeze) 69.57 49.93 38.23 20.54 61.01 27.03 57.38
Image 2 (unfreeze) | 74.34 55.26 43.47 34.41 64.63 29.17 72.18
Image+Cap. 3 70.96 50.83 39.20 30.29 61.87 27.65 62.77
Image+Cap. 3 (f. scratch) | 64.18 42.88 30.19 20.14 56.99 23.32 30.99
Human 86 - - - - 60 -

Table 5.2 — Quantitative VQG results on VQGcoco. We report results from pre-
vious works in the upper block, and those obtained by the our pro-
posed models in the middle block. Human Performance is taken from
Mostafazadeh et al. 2016.

In Table 5.2, we report quantitative VQG results on VQGcoco. These are
globally consistent with the ones above for VQA1.0. However, we observe two
main differences. First, a bigger relative improvement over the state-of-the-art.
As the efficacy of pre-trained models is boosted in small-data scenarios (Radford
et al. 2018), this difference can be explained by the smaller size of VQGcoco.
Second, we note that the Caption only model globally outperforms all other
models, especially on the discriminant CIDEr metric. This can be explained by
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Read. Caption Rel. Image Rel.
Caption only 4.9 4.72* 4.25%
Image only 4.77  3.87 4.32%
Image + Caption | 4.89  4.06* 4.69*
Human 4.83 3.64 4.9

Table 5.3 — Human evaluation results for three criterions: readability, caption rel-
evance and image relevance. Two-tailed t-test results are reported in
comparison to "Human" (*: p < 0.05).

the fact that, in VQGcoco, the captions are human-written (whereas they are
automatically generated for VQA1.0) and, thus, of higher quality; moreover, the
smaller size of the dataset could play a role hindering the ability to adapt to
the visual modality. Nonetheless, the strong performances obtained for Step 2
compared to the baselines highlight the effectiveness of our method to learn a
cross-modal projection even with a relatively small number of training images.
Finally, the model Image+Caption (from sratch) obtains the worst performances,
showing the interest of proceeding to a step-by-step learning process, especially
for the CIDEr metric (30.99 vs 77.70 for Step 1).

Human Evaluation To get more in-depth understanding of our models, we
report human assessment results in Table 5.3. We randomly sampled 50 images
from the test set of VQA1.0. Each image is paired with its caption, the human-
written question used as ground-truth, and the output for our three models:
Caption only, Image only and Image+Caption. We asked 3 human annotators to
assess the quality of each question using a Likert scale ranging from 1 to 5, for
the following criteria: readability, measuring how well-written the question is;
caption relevance, how relevant the question is w.r.t. to the caption; and, image
relevance, how relevant the question is toward the image. For caption and image
relevance, the annotators were presented with only the caption and only the
image, respectively.

We observe that all evaluated models produce well-written sentences, as readabil-
ity does not significantly differ compared to human’s questions. Unsurprisingly,
the Caption only model shows a higher score for caption relevance, while the rela-
tively lower image relevance score can be explained by the automatically generated
and thus imperfect captions in the VQA1.0 dataset. Comparatively, the Image
only model obtains lower caption relevance and higher image relevance scores; this
indicates that the cross modal projection is sufficient to bridge modalities, allow-
ing BERT to generate relevant questions toward the image. Finally, the Image +
Caption model obtains the best image relevance among our models, consistently the
quantitative results reported in Table 5.1 and Table 5.2.
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5.5 Model Discussion

What does the model look at? To interpret the behavior of attention-based
models, it is useful to look at which tokens are given higher attention (Clark et al.
2019). In Figure 5.2, we present two images A and B, along with their captions
and the three generated questions corresponding to our three experimental setups
(Caption only, Image only and Image + Caption). For this analysis, we average the
attention vectors of all the heads in the last layer, and highlight the textual and
visual tokens most attended by the models.

For both images, the Caption only model attends to salient words in the caption.
The Image only model remains at least as much relevant: on image A, it generates
a question about a table (with an unclear attention). Interestingly, for image B,
the Image only model corrects a mistake from step 1: it is a woman holding an
umbrella rather than a man, and the attention is indeed focused on the woman in
the image. Finally, the Image + Caption model is able to generate fitting questions
about the image, with relatively little relevance to the caption: for image A, Image
+ Caption the model generates “What time is it?" while paying attention to the
clock; for image B, Image + Caption generates “What is the color of the umbrella ?",
focusing the attention on the umbrella. The captions of either samples include no
mentions of clocks or umbrellas, further indicating effective alignment between
visual and textual representations.

Cross-modal alignment = We carry out an additional experiment to analyze the
text/vision alignment for each model. Figure 5.3 shows the cross-modal similarity
Xsim for different model scenarios, computed at each BERT-base layer from 1 to
12. We define the cross-modal similarity Xj;, as the cosine similarity between
the vector representations of both modalities. For all models (Random Transformer,
Caption only, Image only, Image+Caption), these vectors are the two continuous
space representations from a model when given as input either i) an image, or ii)
its corresponding caption. Please note that, for Random Transformer and Caption
only, visual embeddings are computed with a matrix W that is random. We
represent these captions and images vectors with the special BERT token [CLS],
following previous works (Reif et al. 2019) where [CLS] is used to represent the
entire sequence.

The reported values correspond to the average cross-modal similarity calculated
for all the examples of VQGcoco test set. In addition to the setups described in
Section 5.3 (Caption-only, Image-only and Image + Caption), we also report X, for
Random Transformer, a BERT architecture with random weights. As expected, its
Xsim 18 close to zero.

All the other models are based on BERT. As suggested by Tenney et al. 2019,
the first layers in BERT tend to encode lower-level language information. This
might explain why the models have similar X,;,, scores up to the gth layer, and
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A room with a desk and a laptop
(1) What is the color of the desk ?

(2) What is the color of the table ?
(3) What time is it ?

A group of people standing on a street

(1) What is the man holding ?
(2) What is the woman holding ?
(3) What is the color of the umbrella ?

Figure 5.2 — Qualitative Analysis. We show the outputs of the three steps of our
model, using two samples from the VQA1.0 test set.
1) Caption only; 2) Image only; 3) Image + Caption. Words and
object regions with maximum attention are underlined and marked,
respectively. Color intensity is proportional to attention.
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Xsim
0.7+

0.6 -

Image + Caption
0.5

0.4 Image only

0.3 Caption only

y/

0.1

Random Transformer

0.0 1

layer

1 2 3 4 5 6 7 8 9 10 11 12
Figure 5.3 — Cross-modal similarity Xg;,, between images in VQGcoco and corre-
sponding captions at each BERT encoding layer. Captions and images

are embedded here using the [CLS] special token.

diverge afterwards: the weights for those layers remain very similar between our
fine-tuned models.

For the last layer (I = 12), we observe that Caption only < Image only <
Image + Caption. The interpretation is the following. The Caption only model has
never seen images during training, and therefore is not able to encode meaningful
semantic information of images. Still, its reported X;;,, > 0 can be attributed to the
fact that, when fine-tuned on the Visual Question Generation (VOG) task during
Step 1, BERT-gen encodes task-specific information in the [CLS] token embedding
(e.g. a question ends with a “?" and often begins with “What/Where/Who").
Image only > Caption only can be explained by the learning of the cross-modal pro-
jection W. However, since BERT is not fine-tuned, the model learns a “contortion”
allowing it to align text and vision. Finally, Image + Caption > Image only can be
attributed to BERT fine-tuning, contributing to an increase in the observed gap,
and its emergence in earlier layers.

5.6 Conclusion

5.6.1 Summary of the contributions

We investigated whether the abstractions encoded in a pre-trained BERT model
can generalize beyond text. We proposed BERT-gen, a novel methodology that
allows to directly generate text from out-of-the-box pre-trained encoders, either in



5.6 CONCLUSION

mono- or multi- modal setups. Moreover, we applied BERT-gen to Visual Question
Generation, obtaining state-of-the-art results on two established datasets. We
showed how a simple linear projection is sufficient to effectively align visual and
textual representations.

We thus provide the following answers to the Chapter Questions:

e CQ1: We showed that the visual modality enables to generate better questions:
thanks to the attention module, our model can focus on relevant elements of
the image and ask meaningful questions.

e CQ2: BERT contains abstractions that generalize beyond text, as a simple linear
layer is sufficient for reaching substantial results on VQG.

e CQ3: We showed, using human evaluation, that using both modalities simulta-
neously as input enables to generate questions that are highly relevant toward
the image. Similarly, quantitative results highlight that the text+vision input
setting reaches highest performances.

5.6.2 Perspectives

In this section, we present research perspectives following the contribution
made in this Chapter.

Apply BERTgen to other generative multimodal tasks In this Chapter, we
extended the BERT model to generate sequential output, and apply it to the
VQG task. We derive three configurations: caption-to-question, image-to-question
and image+caption-to-question. Other multimodal tasks could be tackled with
BERTgen.

For the Image Captioning task — see Section 2.4.1 of the Background Chapter
for an overview — we could first train BERTgen with a caption-to-caption task
(train the model to predict a synonym caption). Then, we could train BERTgen in
an image-to-caption configuration, by just learning a linear layer to project images
into BERT embedding layer. Finally, we could fine-tune our model by training
on caption+image-to-caption. Obtaining BERTgen’s results for Image Captioning
could enable us to: (i) further demonstrate the cross-modal capabilities of BERT,
and (ii) compare to state-of-the-art captioning models, that do not rely on BERT.

Does BERT'’s contain abstractions that generalize to other modalities than
vision? In this Chapter, we showed that BERT contains abstractions can gen-
eralize to the visual modality. Considering other modalities than vision is an
interesting research perspective. For example:
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e speech data: As speech corresponds to natural language, semantics would be
close to BERT’s abstractions, so we expect BERTgen to show substantial cross-
modal capabilities.

e audio data: For generic (ii) audio data, we could train BERTgen to generate a
description in natural language (or a question) about an audio scene (a recording
taken from a real-world location, or from a movie). Here, the recording would be
decomposed in a series of shorter audio elements, sequentially fed to BERTgen.

e video data: we could tackle Video Question Generation (Y. Wang et al. 2019),
which is a recent and under-explored task. Instead of considering sequentially
objects of the image as done in this Chapter, we could consider the video as
a sequence of frames, with each frame projected to BERT’s embedding layer
using a linear projection.
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Chapter abstract

Language grounding is an active field aiming at enriching textual represen-
tations with visual information. Generally, textual and visual elements are
embedded in the same representation space, which implicitly assumes a one-to-
one correspondence between modalities. This hypothesis does not hold when
representing words, and becomes problematic when used to learn sentence
representations — the focus of this paper — as a visual scene can be described
by a wide variety of sentences. To overcome this limitation, we propose to
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transfer visual information to textual representations by learning an inter-
mediate representation space: the grounded space. We further propose two
new complementary objectives ensuring that (1) sentences associated with
the same visual content are close in the grounded space and (2) similarities
between related elements are preserved across modalities. We show that this
model outperforms the previous state-of-the-art on classification and semantic
relatedness tasks.

The work in this Chapter has led to the publication of a conference paper:

e Patrick Bordes*, Eloi Zablocki*, Laure Soulier, Benjamin Piwowarski, and
Patrick Gallinari (2019). “Incorporating Visual Semantics into Sentence
Representations within a Grounded Space”. In: EMINLP 2019.

6.1 Introduction

6.1.1 Positioning

In this Chapter, we present a contribution of the Visual Grounding of Language
task, for which we provide an overview in the Section 2.2.1 of the Background
Chapter. This Chapter is linked to RQ1: Can vision help to refine language un-
derstanding? Indeed, the majority of grounding works focus on learning word
representations. In this contribution, we consider a higher level of granularity:
sentences. As a result, we derive a Chapter Question (CQ) that we strive to answer
throughout this Chapter:

e CQ: Can visual semantics be transferred within sentence representations ?

6.1.2 Visual grounding of language

Representing text by vectors that capture meaningful semantics is a long-
standing issue in Artificial Intelligence. Distributional Semantic Models (Mikolov
et al. 2013b; Peters et al. 2018) are well-known recent efforts in this direction, based
on the distributional hypothesis (Harris 1954). They rely on large text corpora to learn
word embeddings. At another granularity level, having high-quality and general-
purpose sentence representations is crucial for all models that encode sentences
into semantic vectors, such as the ones used in machine translation (Bahdanau
et al. 2014) or relation extraction (H. Wang et al. 2019). Moreover, encoding
semantics of sentences is paramount because sentences describe relationships
between objects, and thus convey complex and high-level knowledge better than
individual words (Norman 1972).

Relying only on text can lead to biased representations and unrealistic predic-
tions such as “the sky is green” (Baroni 2016). Besides, it has been shown that
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human understanding of language is grounded in physical reality and perceptual
experience (Fincher-Kiefer 2001). To overcome this limitation, an emerging ap-
proach is to ground language in the visual world: this consists in leveraging visual
information, usually from images, to enrich textual representations.
Leveraging images resulted in improved linguistic representations on intrinsic
and downstream tasks (Bruni et al. 2014; Silberer et al. 2014). In most of these
approaches, cross-modal projections are learned to incorporate visual semantics in
the final representations (Angeliki Lazaridou et al. 2015; Collell et al. 2017; Kiela
et al. 2018). These works rely on paired textual and visual data and the hypothesis
of a one-to-one correspondence between modalities is implicitly assumed: an
image of an object univocally represents a word. However, there is no obvious
reason implying that the structure of the two spaces should match. Indeed, Collell
et al. 2017 empirically show that cross-modal projection of a source modality does
not resemble the target modality in terms of its neighborhood structure. This is
especially the case for sentences, where many different sentences can describe a
similar image. Therefore, we argue that learning grounded representations with
projections to a visual space is particularly inadequate in the case of sentences.

6.1.3 Contributions

To overcome this issue, we propose an alternative approach where the structure
of the visual space is partially transferred to the textual space. This is done by
distinguishing two types of complementary information sources. First, the cluster
information: the implicit knowledge that sentences associated with the same image
refer to the same underlying reality. Second, the perceptual information, which is
contained within high-level representations of images. These two sources of infor-
mation aim at transferring the structure of the visual space to the textual space.
Besides, to preserve textual semantics and to avoid an over-constrained textual
space, we propose to incorporate the visual information to textual representations
using an intermediate representation space that we call grounded space, on which
cluster and perceptual objectives are trained.

Our contributions are the following:

1. we define two complementary objectives to ground the textual space, based on
implicit and explicit visual information;

2. we propose to incorporate visual semantics through the means of an intermedi-
ate space, within which the objectives are learned;

3. we perform quantitative and qualitative evaluations on several transfer tasks,
showing the advantages of our approach with respect to previous grounding
methods.

1. In the Computer Vision community, grounding can also refer to the task of linking phrases
with image regions (Xiao et al. 2017), but this is not the focus of the present Chapter.
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Figure 6.1 — Model overview. Red circles indicate visual clusters. Red arrows represent
the gradient of the cluster loss, which gathers visually equivalent sentences
— the contrastive term in loss L¢ is not represented. The green arrow
and angles illustrate the perceptual loss, ensuring that cosine similarities
correlate across modalities. The origin is at the center of each space.
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6.2 Incorporating visual semantics within an inter-
mediate grounded space

6.2.1 Model overview

In this work, we aim at learning grounded representations by jointly leveraging
the textual and visual contexts of a sentence. We note S a sentence and s = F(S; ')
its representation computed with a sentence encoder F! parametrized by 6. We
follow the classical approach developed in the language grounding literature at
the word level (Angeliki Lazaridou et al. 2015; Eloi Zablocki et al. 2018b), which
balances a textual objective £7 with an additional grounding objective Lg:

L£(6',0") = L7 (6") + Lg(6',6") (6.1)

The parameters 0 of the sentence encoder F' are shared in L7 and Lg, and
therefore benefit from both textual and grounding objectives. 6’ denotes extra
grounding parameters, including the weights of the image encoder F'. Note that
any textual objective £ and sentence encoder F t can be used. In our experiments,
we choose the well-known SkipThought model (Kiros et al. 2015), trained on a
corpus of ordered sentences.

In what follows, we focus on the modeling of the grounding objective Lg,
learned on a captioning corpus, where each image is associated with several cap-
tions. Grounding approaches generally leverage visual information by embedding
textual and visual elements within the same multimodal space (Silberer et al. 2014;
Kiela et al. 2018). However, it is not satisfying since texts and images are forced to
be in one-to-one correspondence. Moreover, a caption can:

1. have a wide variety of paraphrases and related sentences describing the same
scene (e.g., the kitten is devouring a mouse versus a cat eating a mouse),
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2. be visually ambiguous (e.g., a cat is eating can be associated with many different
images, depending on the visual scene/context),

3. carry non-visual information (e.g., cats often think about their meals).

Usual grounding objectives, that embed sentences in the visual space, can
discard non-visual information (3) through the projection function. They can
handle (1) by projecting related sentences to the same location in the visual space.
However, they are over-sensitive to visual ambiguity (2), because ambiguous
sentences should be projected to different locations of the visual space, which is
not possible with current grounding models.

To overcome this lack of flexibility, we propose the following approach, illus-
trated in Figure 6.1. To cope with (1), sentences associated with the same image
should be close — we call this cluster information. To cope with (2), we want
to avoid projecting sentences to a particular point of the visual space: instead,
we require that the similarity between two images in the visual space (which is
linked to the “context discrepancy”) should be close to the similarity between
their associated sentences in the textual space. We call this perceptual information.
Finally, as we want to preserve non-visual information in sentence representations
(3), we make use of an intermediate space, called grounded space, that allows
textual representations to benefit from visual properties without degrading the
semantics brought by the textual objective L.

6.2.2 Grounding space and objectives

In this section, we introduce more formally the grounded space and the different
information (cluster and perceptual) captured in the grounding loss Lg.

Grounded space The grounded space relaxes the assumption that textual and
visual representations should be guided by one-to-one correspondences. It rather
assumes that the structure of the textual space might be partially modeled on the
structure of the visual space. Thus, instead of directly applying the grounding
objectives on a sentence s embedding, we propose to train the grounding objective
Lg on an intermediate space called grounded space. Practically, we use a projection
q(s; 9;) of a sentence s from the textual space to the grounded space. We denote
it ¢(s) for simplicity, where ¢ is a multi-layer perceptron with input s = F!(S; 6")
and parameters Gé (Gé C ).

Cluster information (C;) The cluster information leverages the fact that two
sentences describe, or not, the same underlying reality. In other words, the goal is
to measure if two sentences are visually equivalent (assumption (1) in Section 3.1)
without considering the content of related images. For convenience, two sentences
are said to be visually equivalent (resp. visually different) if they are associated
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with the same image (resp. different images), i.e. if they describe the same (resp.
different) underlying reality. We call cluster a set of visually equivalent sentences.
For instance, in Figure 6.1, sentences The tenniswoman starts on her serve and The
woman plays tennis are visually equivalent and belong to the same cluster.

Our hypothesis is that the similarity between visually equivalent sentences (s,s™)
should be higher than visually different sentences (s, s~ ). We translate this hypothesis
into the constraint in the grounded space: cos(g(s), g(s™)) < cos(g(s),g(s7)).
Following (Karpathy et al. 20177; Carvalho et al. 2018), we use a max-margin
ranking loss to ensure the gap between both terms is higher than a fixed margin
(cf. red elements in Figure 6.1) resulting in the cluster loss L¢:

Le=Y |y—cos(gls), g(s) + cos(g(s), g(s), (6.2

(s,87,57)

where s (resp. s7) is a randomly sampled visually equivalent (resp. different)
sentence to s. This loss function is also used in the cross-modal retrieval literature
to enforce structure-preserving constraints between sentences describing a same
image (L. Wang et al. 2016).

Perceptual information (P;)  The cluster hypothesis alone ignores the structure
of the visual space and only uses the visual modality as a proxy to assess if two
sentences are visually equivalent or different. Moreover, the ranking loss L;
simply drives apart visually different sentences in the representation space, which
can be a problem when two images have a closely related content. For instance,
the baseball and tennis images in Figure 6.1 may be different, but they are both
sports images, and thus their corresponding sentences should be somehow close
in the grounded space. Finally, it supposes that we have a dataset of images
associated with several captions.

To cope with these limitations, we consider the structure of the visual space and
use the content of images. The intuition is that the structure of the textual space
should be modeled on the structure of the visual one to extract visual semantics.
We choose to preserve similarities between related elements across spaces (cf. green
elements in Figure 6.1). We thus assume that the similarity between two sentences in
the grounded space should be correlated with the similarity between their corresponding
images in the visual space. We translate this hypothesis into the perceptual loss Lp:

Lp = —p({simSy,}, {sim, }) (63)

: : oatext 2 oim
where p is the Pearson correlation, sim; = cos(g(sk,), §(sx,)) and simp?, =

cos(ix,, ir,) are respectively textual and visual similarities computed over several
randomly sampled pairs of matching sentences and images.
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Grounded loss  Taking altogether, the grounded space and cluster/perceptual
information leads to the grounding objective Lg(6',6') as a linear combination of
the aforementioned objectives:

Lg(04,60") = acLc(6',6") +apLlp(6',6%) (6.4)

where ac and ap are hyper-parameters weighting contributions of £¢ and Lp.
' corresponds to all the grounding-related parameters, i.e. those of the image

encoder F’ and of the projection function g (i.e., 9;).

6.3 Evaluation protocol

6.3.1 Datasets

Textual dataset. Following (Kiros et al. 2015; Felix Hill et al. 2016), we use the
Toronto BookCorpus dataset as the textual corpus. This corpus consists of 11K
books, and 74M ordered sentences, with an average of 13 words per sentence.

Visual dataset. We use the MS COCO (T. Lin et al. 2014a) dataset as the visual
corpus. This image captioning dataset consists of 118K/5K/41K (train/val/test)
images, each with five English descriptions. Note that the number of sentences in
the training set of COCO (590K sentences) only represents 0.8% of the sentence
data in BookCorpus, which is negligible, and the additional textual training data
cannot account for performance discrepancies between textual and grounded
models.

6.3.2 Baselines and Scenarios

In the experiments, we focus on one of the most established sentence models:
SkipThought (noted T) as the textual baseline: the parameters of the sentence em-
bedding model are obtained by minimizing £7. Then, we derive several baselines
and scenarios based on T, each representing a different approach of grounding.
Since our focus is to study the impact of grounding on sentence representations,
all baselines and scenarios share the same representation dimension d; = 2048
and are trained on the same datasets (cf. Section 6.3.1). We also report a textual
model of dimension % that we call Ty(p4, to compare with the GroundSent model
of (Kiela et al. 2018).

Model Scenarios. We test variants of our grounding model presented in Sec-
tion 6.2, all based on T: T + Cq, T+ Py, T + Cg + Py, where Cq (resp. Pg) represents
the loss L¢ (resp. Lp). We also consider scenarios where ¢ equals the identity
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function (no grounded space), which we note C;;, P;;, C;s + Pjy, etc. Finally, we
also performed preliminary analysis learning only from the visual modality: C, 4,

Po/ia, Cqria + Py ia-

Baselines. We adapt two classical multimodal word embedding models for sen-
tences. Accordingly, models from the two existing model families are considered:
Cross-modal Projection (CM): Inspired by Angeliki Lazaridou et al. 2015, this
baseline learns to project sentences in the visual space using a max-margin loss:

Y [7 +cos(f(s),i7) —cos(f(s),is)] ,
(S/iS/i_)
where f is a MLP, 9/ is a fixed margin, i, is the image corresponding to the sen-
tence s, and i~ is a non-matching image. Similarly to our scenarios, the sentence
encoder is initialized with T.

Sequential (SEQ): Inspired by Collell et al. 2017, we learn a linear regression model
(W, b) to predict the visual representation of an image, from the representation
of a matching caption. The grounded word embedding is the concatenation of
the original SkipThought vector T and its predicted (“imagined”) representation
WT + b, which is projected using a PCA into dimension d;.

In both cases, the parameters to be learned, in addition to the sentence encoder,
are the cross-modal projections — and the sentence representation is obtained by
averaging word vectors.

GroundSent Model We re-implement the GroundSent models of Kiela et al.
2018, obtaining comparable results. The authors propose two objectives to learn
a grounded vector: (a) Capz2Img: the cross-modal projections of sentences are
pushed towards their respective images via a max-margin ranking loss, and
(b) Cap2Cap: a visually equivalent sentence is predicted via a LSTM sentence
decoder. The Cap2Both objective is a combination of these two objectives. Once
the grounded vectors are learned, they are concatenated with a textual vector
(learned via a SkipThought objective) to form the GS-Img, GS-Cap and GS-Both
vectors.

6.3.3 Evaluation tasks and metrics

In line with previous works (Kiros et al. 2015; Felix Hill et al. 2016), we consider
several benchmarks to evaluate the quality of our grounded embeddings:

Semantic relatedness. We use two semantic similarity benchmarks: Semantic
Textual Similarity (STS) (D. M. Cer et al. 2017) and Sentences Involving Composi-
tional Knowledge (SICK) (Marelli et al. 2014a), which consist of pairs of sentences
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that are associated with human-labeled similarity scores. STS is subdivided into
three textual sources: Captions contain concrete sentences describing daily-life
actions, whereas the others contain more abstract sentences: news headlines
in News and posts from user forums in Forum. The Spearman correlations are
measured between the cosine similarity of our learned sentence embeddings and
human-labeled scores.

Classification benchmarks.  All extrinsic evaluations are carried out using the
SentEval pipeline (Conneau et al. 2018). The tasks are the following: Multi-
Perspective Question Answering (MPQA) (Wiebe et al. 2005), Movie Review (MR)
(Pang et al. 2005), Subjectivity /Objectivity (SUBJ) (Pang et al. 2004), Customer
Reviews (CR) (M. Hu et al. 2004), binary sentiment analysis on Stanford Sentiment
Treebank (SST) (Socher et al. 2013), paraphrase identification on Microsoft Research
Paraphrase (MSRP) (Dolan et al. 2004) as well as two entailment classification
benchmarks: Stanford Natural Language Inference (SNLI) (Bowman et al. 2015)
and SICK (Marelli et al. 2014b). For each dataset, a logistic regression classifier is
learned from the extracted sentence embeddings, and we report the classification
accuracy.

Structural measures. To probe the learned grounded space, we define struc-
tural measures, and report their values on the validation set of MS COCO (5K im-
ages, 25K captions). First, we report the mean Nearest Neighbor Overlap (mNNO) met-
ric, as defined in G. Collell et al. 2018, that indicates the proportion of shared near-
est neighbors between image representations and their corresponding captions in
their respective spaces. To study perceptual information, we define p,;s, the Pearson
correlation p(cos(s, s’), cos(vs, vy)) between images and their corresponding sen-
tences’ similarities. For cluster information, we introduce Ciytrq = Eo =, [c05(s,s')],
which measures the homogeneity of each cluster, and Cinter = Eo, 20, [c05(s, )],
which measures how well clusters are separated from each other.

6.3.4 Implementation details

Images are processed using a pretrained Inception-v3 network (Szegedy et al.
2016b) (d; = 2048). The model is trained with ADAM (Kingma et al. 2014a) and
a learning rate [, = 8.10~*. As done in Kiros et al. 2015, our sentence encoder
is a GRU with a vocabulary of 20K words, represented in dimension 620; we
perform vocabulary expansion at inference. All hyperparameters are tuned using
the Pearson correlation measure on the validation set of the SICK benchmark:
v =19"=05 ac = ap = 0.01, d;, = 512; functions f and g are 2-layer MLP. As
done in (Kiela et al. 2018), we set d; = 2048.
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Query: A woman sitting on stone steps with a suitcase full of books.

Grounded model Textual model
(2 A woman sitting on stairs has a suitcase full of books. A young woman sitting cross legged on an apartment sofa.
(2 A woman reads a book while sitting on steps A woman sitting on a couch in front of a laptop.

near a suitcase full of books. A il sitti b \d sui
R . i irl sitting next to three old suitcases.
(2 The woman is setting on the steps with a case of books. NAe e

A woman sitting inside of an open suitcase. A woman standing on a tennis court holding a racquet.

N A woman sitting on the ground next to luggage. Q The woman is setting on the steps with a case of books.

Q Query image NN(, arest image (2 A young woman sits near three suitcases of luggage. A woman standing on a tennis court holding a racquet.

Figure 6.2 — Nearest neighbors of a selected sentence in the validation set of MS
COCO, for both grounded and purely textual models. Q is the query
image, N is the nearest neighbor of Q in the visual space. Sentences
that are caption of Q or N are prefixed with Q or N.

e coast slum basilica e ballroom e music studio

Figure 6.3 — t-SNE visualization on CMPlaces sentences for a set of randomly
sampled visual scenes. Left: textual model T. Right: grounded model

6.4 Experiments and Results

Our main objective is to study the contribution brought by the visual modality to
the grounded sentence representations. Hence, we do not attempt to outperform
purely textual sentence encoders from the literature.

We show that textual models can benefit from grounding approaches without
requiring any changes to the original textual objectives L1. We report quantitative
and qualitative insights (Section 6.4.1), and quantitative results on the SentEval
benchmark (Section 6.4.2).
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Structural measures Semantic relatedness
SR PRt
SCIMIE O CIRRe

Space Model | mNNO puis  Cinter Cintra| © ) S ) SICK
T 100 4.1 542 70.1| 30 41 36 21 51
CM (text) | 24.2 128 417 748 | 52 76 42 37 55
Textual Py 21.1 37.9 42.2 69.3 | 45 66 41 34 54
Cis 27.5 10.5 2.9 847 | 60 83 45 20 55

Cy+Piyy |279 258 67 826| 61 8 46 28 57

Visual CM (vis.) | 27.1 192 1.5 858 | 56 78 40 34 55
Pe 21.3 324 439 733 | 45 66 41 37 53

Grounded C, 286 94 11 885 | 62 83 46 29 59
C;+ Py 289 291 47 875| 63 84 48 33 60

Table 6.1 — Intrinsic evaluations carried out on the grounded space for models
with ¢ = MLP; the textual space for T, CM (text) and models with
g = id. The visual space for CM (vis). CM (text) and CM (vis) refer to
the same model, the only difference is the space in which the measures
are calculated (given in the parenthesis)

6.4.1 Study of the grounded space

We study the impact of the various grounding hypotheses on the structure of
the grounded space, using intrinsic measures. In Table 6.1, we report the structural
measures and the semantic relatedness scores of the baselines, namely T and CM,
and on the various scenarios of our model. The textual loss is discarded to isolate
the effect of the different grounding hypotheses.

The impact of grounding We investigate the effect of grounding on sentence
representations. Results highlight that all grounded models improve over the
baseline T. Moreover, our model Cq + P, is generally the most effective regarding
the mNNO measure and semantic relatedness tasks.

Influence of concreteness ~ To understand in which cases grounding is useful, we
compute the average visual concreteness ¢ of the STS benchmark, which is divided
in three categories (Captions, News, Forum). This is done by using a concreteness
dataset built by Brysbaert et al. 2013 consisting of human ratings of concreteness
(between 0 and 5) for 40,000 English words; for a given benchmark, we compute
the sum of these scores and average over all words that are in the concreteness
dataset. The performance gain A between Cg + Py, and T are observed when
the visual concreteness ¢ is high: for Captions (¢ = 3.10), the improvement is
substantial: (A = +43); for benchmarks with a lower concreteness (News with
¢ = 2.61 and Forum with ¢ = 2.39), the improvement is smaller (A = +12). Thus,
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grounding brings useful complementary information, especially for concrete
sentences.

t-distributed Stochastic Neighbor Embedding (t-SNE) visualization ~ This finding
is also supported by a qualitative experiment showing that grounding sentences
clusters together similar visual situations. Using sentences from Cross-Modal
Places (CMPlaces) (Castrejon et al. 2016), which describe visual scenes (e.g., coast,
shoe-shop, plaza, etc.) and are classified in 205 scene categories, we randomly
sample 5 visual scenes and plot in Figure 6.3 the corresponding sentences using
t-SNE (Maaten et al. 2008). We notice that our grounded model is better able to
cluster sentences that have a close visual meaning than the text-only model. This is
reinforced by the structural measures computed on the five clusters of Figure 6.3:
Cinter = 19, Cintra = 22 for T, Cinter = 11, Ciptrg = 27 for Cg + P,. Indeed, Cipter
(resp. Cintra), is lower (resp. higher) for the grounded model C; + P, compared to
T, which shows that clusters corresponding to different scenes are more clearly
separated (resp. sentences corresponding to a given scene are more packed).

Nearest neighbors search ~ Furthermore, we show in Table 6.2 that concrete
knowledge acquired via our grounded model can also be transferred to abstract
sentences. To do so, we manually build sentences using words with low con-
creteness (between 2.5 and 3.5) from the USF dataset (Nelson et al. 2004). Then,
nearest neighbors are retrieved from the set of sentences of Flickr3oK (Plummer
et al. 2015). In this sample, we see that our grounded model is more accurate than
the purely textual model to capture visual meaning. The observation that visual
information propagates from concrete sentences to abstract ones is analogous to
findings made in previous research on word embeddings (Felix Hill et al. 2014a).

Neighboring structure  To illustrate the discrepancy on the mNNO metric ob-
served between Cq + P¢ and T, we select a query image Q in the validation set of
MS COCO, along with its corresponding caption S; we display, in Figure 6.2, the
nearest neighbor of Q in the visual space, noted N, and the nearest neighbors of S
in the grounded space. With our grounded model, the neighborhood S is mostly
made of sentences corresponding to Q or N.

Query ‘ Textual model Grounded model
Two people are in love | Two people are fencing indoors A couple just got married and are taking a picture with family
A man is horrified A man and a woman are smiling A teenage boy wearing a cap looks irritated
This is a tragedy A group of people are at a party ~ Men doing a war reenactment

Table 6.2 — Qualitative study. Nearest neighbor of a given query among Flickr3oK
sentences.
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Hypotheses validation =~ We now validate our hypotheses (cf. Section 6.2.1) on
the grounded space, using the Cross-Modal Projection baseline (CM) and our
model scenarios as outlined in Table 6.1. For fair comparison, metrics for the
baseline CM are estimated either on the visual or the textual space depending
on whether our models rely on the grounded space (g) or not (id). These results
correspond to the rows CM (text) and CM (vis.) in Table 6.1.

Results highlight that:

1. Using a grounded space is beneficial; indeed, semantic relatedness and mNNO
scores are higher in the lower half of Table 6.1, e.g., C; > C;y, Py > Pjy and
Cg + Pg > Ciy + Piy;

2. Solely using cluster information leads to the highest C;;;,, and lowest Ciyyer,
which suggests that C, is the most efficient model at separating visually different
sentences;

3. Using only perceptual information in P, logically leads to highly correlated
textual and visual spaces (highest p,;s), but the local neighborhood structure is
not well preserved (lowest Ci,r4);

4. Our model C, + P, is better than CM at capturing cluster information (higher
Cintra, lower Ciyer) and perceptual information (higher p,;s). This also translates
in a higher mNNO measure for C, + P,, leading us to think that the conjunction of
both perceptual and cluster information leads to high correlation of modalities,
in terms of neighborhood structure. Moreover, this high mNNO score results in
better performances for our model C, + P, in terms of semantic relatedness.

6.4.2 Evaluation on transfer tasks

We now focus on extrinsic evaluation of the embeddings. Table 6.3 reports
evaluations of our baselines and scenarios on SentEval (Conneau et al. 2018), a
classical benchmark used for evaluating sentence embeddings. Before further
analysis, we find that our grounded models systematically outperform the textual
baseline T, on all benchmarks, which shows the first substantial improvement
brought by grounding and visual information in a sentence representation model.
Indeed, models GS-Cap, GS-Img and GS-Both from (Kiela et al. 2018), despite im-
proving over T4, perform worse than the textual model of the same dimension
T — this is consistent with what they report in their paper.

Our results interpretation is the following:

1. our joint approach shows superior performances over the sequential one, con-
tirming results reported at the word level (Eloi Zablocki et al. 2018b). Indeed,
both sequential models, GS models (Kiela et al. 2018) and SEQ (inspired from
(Collell et al. 2017)) are systematically worse than our grounded models for all
benchmarks.
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Model MR CR SUB] MPQA MRPC SST SNLI SICK| AVG

Kiros et al. 20157 T1024 72.7 75.2 90.6 84.7 71.8/79.2 76.2 68.8 79.3| 77.4
Kiela et al. 2018" GS-Cap 72.0 76.8 90.7 85.5 72.9/80.6 76.7 73.7 82.9| 78.4
Kiela et al. 2018" GS-Img 74.5 79.3 90.8 87.8 73.0/80.3 80.0 72.2 80.9| 79.8
Kiela et al. 2018" GS-Both 72.5 75.7 90.7 85.4 72.9/81.3 76.7 72.2 81.4| 78.4
Kiros et al. 20157 T 75.9 79.2 92.0 86.7 72.2/80.2 81.8 72.0 81.1| 80.1
Lazaridou et al. 20157 T+ CM 77.6 81.4 92.6 88.3 73.5/81.1 82.0 73.0 81.4| 81.1
Collell et al. 2017+ SEQ 76.1 79.8 92.5 86.7 70.0/79.5 81.7 67.3 76.7| 78.9
T+ Py 77.5 81.5 927 88.4 73.7/81.3 824 724 81.1| 81.2

T+ P, 77.8 81.8 93.0 88.1 73.3/81.6 83.5 72.8 82.2| 81.6

. T4 Cyy 77.5 81.6 92.8 88.3 72.9/80.5 822 73.1 82.3| 81.3

Model scenarios T+Cq 77.3 81.5 92.8 88.6 73.6/81.1 82.6 74.1 82.6| 81.6
T+Ciyy+Pyy | 773 81.2 93.0 88.4 73.0/80.6 82.5 73.5 82.1| 81.4

T+Cy+P; | 77.4 815 93.0 88.1 73.2/80.9 82.7 73.9 82.9| 81.6

Table 6.3 — Extrinsic evaluations with SentEval All models give sentences in
dimension d; = 2048 (except Tygp4). ‘AVG’ stands for the average
accuracies reported in the other columns. Models noted ‘+” have been
re-implemented (we report higher scores than the one given in the
original papers). Models noted ‘}’" are baselines which have been
adapted to the case of sentences.

2. Preserving the structure of the visual space is more effective than learning
cross-modal projections; indeed, all our models outperform T 4+ CM on average
(‘AVG’ column).

3. Making use of a grounded space yields slightly improved sentence represen-
tations. Indeed, our models that use the grounded space (¢ = MLP) can take
advantage of more expression power provided by the trainable ¢ than models
which integrate grounded information directly in the textual space (g = id).

4. Among our model scenarios, T + P, has maximal scores on the most tasks;
however, it shows lower scores on SNLI and SICK, which are entailment tasks.
Models using cluster information C, are naturally more suited for these tasks
and hence obtain higher results.

5. The combined model T + C; + P shows a good balance between classification
and entailment tasks.
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6.5 Conclusion

6.5.1 Summary of the contributions

We proposed a multimodal model aiming at preserving the structure of visual
and textual spaces to learn grounded sentence representations. Our contributions
include:

1. leveraging both perceptual and cluster information

2. using an intermediate grounded space enabling to relax the constraints on the
textual space.

Our approach is the first to report consistent positive results against purely
textual baselines on a variety of natural language tasks.
We can answer to the Chapter Question:

e CQ: Visual semantics can be transferred within sentence representations, as we
showed both quantitatively and qualitatively.

6.5.2 Perspectives

In this section, we present research perspectives following the contribution
made in this Chapter.

Using videos to ground language As human gain a grounded understanding
of the meaning of words and sentences, they always witness actions rather than
still images. Moreover, the understanding of action verbs is done with the
temporal dimension, in addition to the visual modality. Thus, we can hint that
videos, rather than images, may lead to better grounded sentence representations.
Inspiration from recent developments of Multimodal Neural Language Models,
such as VideoBERT (C. Sun et al. 2019), may lead to better grounded sentence
representations, able to better capture temporal aspects of language.
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7.1 Summary and Contributions

In the present thesis, we addressed central themes of Multimodal Machine
Learning, that we organized in the Introduction in three global Research Ques-
tions:

e RQ1: Can vision help to refine language understanding ?
e RQ2: Can language help to refine visual understanding ?
e RQ3: Can modalities be translated into one another?

In each Chapter, we covered a specific aspect of these RQ; the Chapter Questions
addressed throughout this thesis are given in Table 7.1.

In Chapter 3, we showed that textual representations, like the Word2Vec model
(Mikolov et al. 2013b), contain visual information about objects, that can be
exploited in a Zero-Shot Learning (ZSL) setting. We showed, by proposing a new
task — context-aware ZSL — along with a corresponding model, that textual
representations contain information on (i) the visual appearance of objects, (ii)
the visual context around objects in images and (iii) the frequency of objects in
images, thus answering the question: What visual information is encoded in word
embeddings?. In context-aware ZSL, the goal is to determine the class of an object,
delimited by a bounding box in the image, by taking into account the other objects
of the image. To understand the influence of (i), (ii) and (iii), we formulate the ZSL
problem using Bayesian modeling, with a visual, contextual and prior component
that have separate goals and distinct learning objectives. We thus answer: How

133



134

CONCLUSION

Chapter RQ1 RQ2 RQ3
Leveraging Visual Knowledge within What visual information is How can cross-modal models
Language for Computer Vision encoded in word embeddings ? be more interpretable ?

Leveraging Weak/Non-existent Can multimodal tasks benefit from multimodal data when
Cross-Modal Supervision cross-modal supervision is weak, or non-existent ?
On the Cross-Modal Transferability Is vision helpful for Do language models How do modalities affect
of Language Models Question Generation? contain visual information ? Question Generation?
Grounding language in vision: Can visual semantics be trans-
the case of Sentences -ferred to sentence representations ?

Table 7.1 — Research Questions addressed in the present thesis

can cross-modal models be more interpretable? by proposing a modular model which
enables an accurate understanding of the model’s prediction. We show that using
contextual information leads to a 22% relative improvement on the Mean First
Relevant (MFR) metric, compared to the standard DeViSE model (Frome et al.
2013), that only focuses on the visual appearance of objects. This work and results
have been published at ICML 2019.

In Chapter 4, we answer the question: Can multimodal tasks benefit from multimodal
data when cross-modal supervision is weak, or non-existent? positively by tackling
various multimodal tasks in settings with weak supervision: (i) Transductive
Zero-Shot Learning (T-ZSL) on the full ImageNet dataset (20K unseen classes),
(ii) Zero-Shot Cross-Modal Retrieval on MS COCO and (iii) Visual Grounding
of Language. To do so, we adapt CycleGAN (J. Zhu et al. 2017) to align textual
and visual distributions when no supervision is available. Our model for T-ZSL,
that we call Cross-Modal CycleGAN, combines a CycleGAN objective, trained
on unseen data, with a supervised objective, trained on seen data. We show
that using adversarial learning enables to exploit unsupervised multimodal data,
and compares favorably to other approaches when the number of classes is high.
Cross-Modal CycleGAN (i) obtains state-of-the-art results on the challenging
ImageNet dataset, (ii) learns some cross-modal alignment on MS COCO when
no correspondence is known between images and sentences, and (iii) learns
meaningful grounded textual representations without supervision between words
and images. This work is currently under review at IJCAI 202o0.

In Chapter 5, we explore the cross-modal transferability capabilities of Language
Models. Following recent works that show that BERT (Devlin et al. 2019) contains
abstractions that generalize across languages (Artetxe et al. 2019), our goal is to
show that it also contains abstractions that generalize across modalities. To do
so, we tackle a multimodal task: Visual Question Generation (VQG) and design a
multimodal version of BERT, able to leverage both textual and visual inputs. We
answer: Do language models contain visual information? positively. Indeed, in our
model, we integrate visual elements in BERT by treating vision at the same level
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as language: we use a simple linear layer to project visual representations in BERT
embedding layer. We show that this model is sufficient to obtain substantial results
on VOG. We also answer: Is vision helpful for Question Generation? positively, with
quantitative and qualitative results: we showed that the visual modality refines
question predictions and that the attention process of BERT can focus on relevant
elements of the image. Finally, we demonstrate that using both modalities as
input (an image along with its corresponding caption) leads to the highest-quality
questions, which answers: How do modalities affect Question Generation? Our model
obtains state-of-the-art performances on two standard VOG datasets. This work is
currently under review at ICML 202o0.

In Chapter 6, we tackle Visual Grounding of Language (VGL) at the sentence level.
By listing the differences between sentences and words: — sentences have a wide
variety of synonym sentences carrying th same visual information, can be visually
ambiguous and can carry non-visual information — we derive two training
objectives to learn grounded sentence representations: a (i) cluster objective, that
bring together sentences that contain the equivalent visual information, and a
(ii) perceptual objective, that uses the content of images to preserve the structure
of the visual space within the grounded representation space. In addition, we
propose to use an intermediate grounded space to relax the implicit assumption
that modalities should have a one-to-one correspondence. Our approach is the
tirst to report consistent improvement over purely textual baselines on a variety of
textual tasks (+1.3 on average on SentEval), thus answering positively: Can visual
semantics be transferred to sentence representations? This work has been published at
EMNLP 2019.

7.2 Open questions and perspectives

7.2.1 Extensions and perspectives of our approaches

Designing meaningful metrics to compare text and vision When learning a
shared multimodal space (Section 2.1.3.2), measuring the quality of the cross-
modal alignment is straightforward, using the tools of Information Retrieval e.g,
Recall /Precision/F1 metrics, or First Relevant (FR)/MFR.

However, very few work have explored ways to measure the differences between
a visual and a textual representation spaces, when they are separated. As an
example, G. Collell et al. 2018 proposed to mNNO metric: mNNO measures
the proportion of nearest neighbors shared between two corresponding from
both modalities, in average. In Chapter 6 and Chapter 4, we use the p,;; metric
(Equation 4.3), which measures the correlation between the similarities of a pair
of corresponding elements across modalities.
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Such metrics could lead to interesting applications. First, new methods could
be invented to learn cross-modal alignments without explicit projection between
spaces — Chapter 6 is a first attempt toward that goal. At longer term, we could
have a quantitative understanding of the semantic differences between text and
vision using carefully-designed metrics.

Learning grounded relation representations Learning representations for rela-
tions — in the form (subject,predicate,object) (s, p,0) — has emerged as an important
issue in the last decade, with the TransE (A. Bordes et al. 2013), TransH (Z. Wang
et al. 2014) and TransR (Y. Lin et al. 2015) models, which learn relation embeddings
for Knowledge Bases. Focusing on visual relations — either spatial elements like
below, under, behind or action verbs such as eating, hugging — would bring impor-
tant improvements to many multimodal task that require visual reasoning, as in
Visual Question Answering (VQA), VOG, or Visual Relationship Detection (VRD).
For example, one could imagine a framework in which (i) a Faster R-CNN (S.
Ren et al. 2017) detects objects in images, (ii) a relation module detects most
probable relations between objects, and (iii) this information is fed to a decoder
that generates a relevant caption, a question or an answer.

Learning grounded relation representations could be done using Visual Genome
data (Krishna et al. 2017), as this dataset contains fine-grained annotations of
images: labeled bounding boxes along with relations between objects. Once
meaningful representations for objects, predicates and subjects have been learned,
probabilities of triplets (s, p,0) could be computed. Thus, it would be possible
to estimate the plausibility of certain relations compared to others, following
works such as F. Sadeghi et al. 2015. For example, we could estimate that
(man,riding,horse) is more probable than (dog,riding horse), (man,eating,horse) or
(man,riding,dog).

7.2.2 Research perspectives

Leveraging abstract scenes One key-insight in recent works is that low-level
information in not needed in order to learn common sense, but rather high level
semantic features. Hence, working with abstract scenes (clipart images where the
position, pose and attributes of objects is known) is an interesting way to gain
accurate high-level information (Kottur et al. 2016; Vedantam et al. 2015b), that
may be difficult to acquire from noisy natural images. To do so, a toy dataset is
created with an ontology of objects and possible actions.

Various applications have been proposed: learning occurence/co-occurence
of objects (Zitnick et al. 2013; Zitnick et al. 2016), dynamics of objects (Fouhey
et al. 2014), fine-grained interactions between pairs of people (Antol et al. 2014),
classify common sense assertions as plausible or not (Vedantam et al. 2015b;
Kottur et al. 2016) and imagine abstract scenes corresponding to text (X. Lin et al.
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2015; Kottur et al. 2016). The latter task is especially interesting to incorporate
visual common-sense in NLP models: it has so far been tackled using simple tools
(considering sentences as a sum of word embeddings), and would benefit from
latest improvements in Natural Language Processing (NLP), such as the BERT
model (Devlin et al. 2019).

Fine-grained understanding of the visual content of textual representations
There is still work to be done to design fine-grained tasks and benchmarks to
understand in more detail what type of visual information is contained in textual
representations. An interesting tentative is the feature-norm task using the McRae
dataset (see Section 2.1.1.1), where an ontology of properties is defined, that are
grouped in domains such as Tactile, Color or Shape. With this task, a high score
in each regarding an aspect, for example Color, hints that textual representations
encode useful information about the color of objects.

A step further would be to understand whether word representations encode
relationships between objects. For example, we can propose the following task:
given two objects s and p, predicting the most probable relationship between these
objects. This task would require to train a model: for example, a 1-layer MLP
classifier, that takes as input the concatenation of the representations t; and ¢, of
s and p, and outputs a distribution over a finite set of pre-defined relationships
(e.g., riding, below, eating).

At the sentence level, the only task commonly used to assess the visual content
of sentence representations is the Cross-Modal Retrieval (CMR) task, as done
in Kiros et al. 2015. The construction of a dataset containing sentences labeled
with visual categories, like the McRae dataset for words, would be helpful to
refine our understanding of grounded sentence representations, and would extend
Chapter 6.

At another granularity level, by taking inspiration from our VOG method pre-
sented in Chapter 5, Neural Language Model (NLM)s can be evaluated by (i)
integrating visual content with a cross-modal linear layer (that projects visual
tokens into the embedding layer), (ii) leaving the weights of the NLM constant,
and (iii) learning the cross-modal projection on a multimodal task. In Chapter 5,
we considered VOG; other tasks can be used, like Image Captioning, or VOA. This
would enable to evalute the capacity of NLMs to tackle specific visual tasks, and
thus gain a deeper understanding of the visual content of large Language Models.

7.2.3 Longer-term research directions

Image Synthesis using human cues  As explained in Section 2.4.2, Text-to-Image
synthesis is a difficult task that is often restricted to very specific domains (e.g.,
birds or flowers pictures). While there is still little work on general-domain Text-
to-Image synthesis, like MS COCO data, B. Li et al. 2019 proposed an interesting
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direction: a word-level discriminator is used to provide fine-grained supervisory
feedback to the image generator, in order to control parts of the image synthesis.

A step further would be to provide a human feedback, in natural language, to
orient image generation. Thus, using human cues, the model would be oriented
toward the image that the human subject has in mind. The ideal process is the
following: from an input sentence s, an image I; = G(s) is generated; then, given
I;, a human feedback sentence s’ is given to the model, from which the model
produces Iy = G(s'|L;, s), by refining the image I; using feedback s’, and so on.
To learn such a model, a dataset containing s, I, s, Iy examples would have to be
built, by first proposing a pair of sentences s, s’ and then taking two pictures of
the same scene, with some variations between I; and .

Generating visually plausible sequences Many NLP tasks, such as Question
Answering or Dialog Systems, involve reasoning and common-sense knowledge.
As (i) the model cannot use a visual support, contrarily to their multimodal
counterparts (Visual Question Answering and Visual Dialog), and (ii) training is
performed only on textual data, the model may lack visual common-sense and
generate un-relevant questions/answers in some situations.

Generally, when the decoder of a NLP model sequentially generates a sentence,
a beam search (Freitag et al. 2017; Wiseman et al. 2016) is performed, where the
principle is to keep a limited set of node explorations. At the end, the criterion to
select the most probable sequence is a purely textual criterion: it has to maximize
a probability P(x1, ..., x,) given by a neural language model (generally trained
on textual data). At this stage, adding an additional visual criterion might lead
the model to generate more visually-plausible sentences. This could be done via
an evaluation of the plausibility of the visual relations P(s, p,0) for triplets s, p, 0
present in generated sentences (see Section 7.2.1). For example, in a conversational
setting, the question Did you enjoy riding horses when you were a kid? may get a
stronger visual probability than the question Did you enjoy riding dogs when you
were a kid?.

Moreover, visual logic derived from abstract scenes could be used. Indeed, we
proposed, earlier in this Section, a perspective where simple abstract scenes could
be built from sentences with a concrete/visual content. Being able to navigate
between sentences and abstract scenes would enable NLP models to gain visual
common-sense: by (i) translating a sentence into an abstract scene, (ii) evaluate
the plausibility of the scene, and what are its probable outcomes and (iii) translate
back into the space of sentences.
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