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A B S T R A C T

Natural Language Generation (NLG) is the subfield of Natural Language Process-
ing, where the task is to produce natural language outputs. Despite the important
progress fostered by the application of Deep Learning, generated texts are still
inconsistent and contain factual inconsistencies. At the root cause, we argue in
this thesis that deep learning models in NLG suffers from inherent flaws in al-
gorithms, which limits their efficiency. At training time, the standard training
strategy, Teacher Forcing, induces the so called exposure bias, a mismatch with in-
ference time, where the errors accumulate. Moreover, NLG suffers from a second
flaw: its the automatic evaluation does not reflect well human judgement.

In this thesis, we explore how to improve both evaluation and training in NLG
toward more reliable systems. In particular, we propose a Question Answering
based metric. We show how this metric can be used as a reward in a Reinforce-
ment Learning setup to improve NLG models. Toward this objective, we also
explore learned rewards that are the discriminators, and introduce several new
algorithms that benefit NLG during training and decoding times. In particular,
we propose to combine Monte Carlo Tree Search with Generative Adversarial
Networks, resulting in state-of-the-art models.
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I N T R O D U C T I O N

1.1 Natural Language Generation

Natural Language Generation (NLG) is a subfield of Natural Language Process-
ing, whose goal is to produce natural language outputs. NLG enables to automate
manual, data-driven processes, with applications including complex report writ-
ing, automatic summarization, chatbot, or machine translation. NLG is already
widely used daily by several hundred millions of people.1

The interest of NLG is deeply rooted in NLP, for which the first experiments
consisted of human-computer dialogue systems, such as ELIZA (Weizenbaum
1966) and SHRDLU (Winograd 1980). But it was not until the late 1970s that
the first natural language text generation programs were developed, leveraging
on Template based approaches i.e. rule based models (McKeown 1980). These
methods are limited because 1) they require human expertise, and 2) they cannot
be generalized. However, given the task complexity, these methods have long
dominated the field (Reiter and Dale 1997), before the recent success of Deep
learning.

Deep learning approaches have opened the way for significant achievements
in Natural Language Generation. Under the most popular paradigm, sequence to
sequence models (Sutskever et al. 2014) are trained with Maximum Likelihood
Estimation (MLE) via Teacher Forcing (Williams and Zipser 1989), a strategy that
uses ground truth as input.

Despite significant advances, in the last few years, state-of-the-art models were
and still are known to be de-generated, with outputs containing repetitions and
even nonfactual information i.e. hallucination (Holtzman et al. 2019).

Among the culprits is a limitation of Teacher Forcing (Williams and Zipser
1989): the loss is computed at a token level while the aim is to produce complete
sequences. Moreover, while a single ground-truth reference is considered correct,
several realizations of the same content may exist. Finally, the model is subject
to the Exposure Bias (Ranzato et al. 2015a), i.e. a mismatch between training and

1https://www.cnet.com/tech/services-and-software/google-translate-now-serves-
200-million-people-daily/

1

https://www.cnet.com/tech/services-and-software/google-translate-now-serves-200-million-people-daily/
https://www.cnet.com/tech/services-and-software/google-translate-now-serves-200-million-people-daily/
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inference distributions – in the latter, the model has no access to ground truth
for the previously generated tokens. The literature has considered this mismatch
responsible for the lower quality observed when generating longer sequences (S.
Bengio et al. 2015; Lamb et al. 2016).

To mitigate MLE limitations, many attempts toward the optimisation of a
sequence-level loss have been considered (S. Bengio et al. 2015; Ranzato et al.
2015a). Because sequence-level metrics in NLG are not differentiable, e.g. BLEU
or ROUGE, Reinforcement Learning (RL) is a natural choice to be applied to
text generation tasks (Ranzato et al. 2015a; Paulus et al. 2017), considering those
metrics such as the reward.

However, the design of reliable metrics for natural language generation (NLG)
systems is very challenging, and is still an open research problem. Novikova et al.
(2017b) and Peyrard (2019) recently showed that metrics do not correlate well
with human judgments, and argued for the development of new ones.

The core of the problem lies in the fact that for a given document, it often
exists more than one unique way to write a correct output, e.g. a summary or a
translation. Thus, when only a single reference is given – as is typically the case
for large-scale NLG datasets used to train deep learning models, the correlation
of standard automatic evaluation metrics with human judgments is low (Louis
and Nenkova 2013).

For these reasons, n-gram based metrics, such as ROUGE (C.-Y. Lin 2004), are
known to poorly reflect human preference (Louis and Nenkova 2013; Novikova
et al. 2017b; Paulus et al. 2017; Bhandari et al. 2020). Finally, it is crucial for
an effective summarization to generate texts that are factually consistent with
their source documents. However, this aspect is not measured by n-grams based
metrics.

When it comes to training a model, a reliable metric is even more important than
for evaluation. Hence, when n-gram based metrics are used in a Reinforcement
setup to train a model, this yields to poorer generation and higher degradation
compared to the MLE counterparts (Paulus et al. 2017). This shows that, we
cannot rely on those metrics as RL rewards. To overcome these drawbacks, better
rewards are thus necessary (Paulus et al. 2017).

In this thesis, we first propose to optimise metrics and explore the positive
impact they have when used as a reward. Although these new metrics allow
to improve NLG models, the potential for improvement is capped due to the
imperfection of the proposed measures.

To overcome this, (Ziegler et al. 2019) proposed to directly reward systems using
human judgment. Although this approach performs very well and approximates
the best possible reward, it is obviously not a viable solution in practice, given
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the large amount of human annotation to provide for each training. However, it
attests that, with perfect rewards, one can achieve excellent levels of performance.
In this thesis, we explore a natural alternative, that do not require human judg-
ments: a discriminator reward aiming to distinguish if a text sounds human or
is likely generated by a machine. We propose different methods to integrate the
discriminator both at training time – corresponding to a Generative Adversarial
Networks (Goodfellow et al. 2014) – and at inference time – empowering decoding
strategies like Beam Search. Both strategies mitigate the exposure bias, leading to
improvement in NLG.

1.2 Contributions

At the core of this thesis, we aim at mitigating the exposure bias. In this Section,
we briefly describe the contributions in this direction.

• Thomas Scialom, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano.
"Answers Unite! Unsupervised Metrics for Reinforced Summarization Mod-
els." Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). 2019.

This paper corresponds to the Chapter 3. We propose a new metric based
on Question Answering that is shown to measure the quality of evaluated texts
more accurately than previous works. In addition, our proposed metric has the
desirable feature of not requiring any gold-reference to be computed.

Leveraging on this new metric, we propose a reinforcement model for abstrac-
tive summarization, and report further improvement with respect to its baseline.

• Thomas Scialom, Paul-Alexis Dray, Patrick Gallinari, Sylvain Lamprier, Ben-
jamin Piwowarski, Jacopo Staiano, Alex Wang. "QuestEval: Summarization
Asks for Fact-based Evaluation" Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). 2021.

This paper corresponds to Chapter 4. We extend the Question Answering metric
presented in Chapter 3, and report a dramatic improvement in terms of perfor-
mance when evaluating Summarization. Furthermore, we show how to extend
the metric beyond Summarization, on other textual tasks like Text Simplification,
as well as multimodal and multilingual setups.
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• Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski,
Benjamin and Staiano, Jacopo. "Discriminative Adversarial Search for Ab-
stractive Summarization". Proceedings of the 37th International Conference
on Machine Learning (ICML). 2020.

This paper corresponds to the Chapter 5. We explore two research questions:
i) can a discriminator learn to accurately classify sequences? ii) can it help the
generation process. We propose a new decoding mechanism that is empowered
by a discriminator in addition to the standard generator. Our Cooperative decoding
strategy enables to mitigate the exposure bias without retraining the generator.
Finally, we report improvement over other standard decoding mechanism such
as Beam Search.

• Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski,
Jacopo Staiano. "ColdGANs: Taming Language GANs with Cautious Sam-
pling Strategies". Part of Advances in Neural Information Processing Sys-
tems 33 (NeurIPS 2020). 2020.

This paper corresponds to the Chapter 6. Language GANs are a natural way to
mitigate the Exposure Bias. In Language GANs, because of the discrete nature of
text, the task is framed under Reinforcement Learning, where the reward is the
discriminator prediction for the generated sequence. This setup leads to a difficult
and unstable training, usually resulting in poor performance compared to MLE
training. In this work, we introduce a new sampling strategies for language GANs
that for the first time compared favorably w.r.t. MLE.

• Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski,
Jacopo Staiano. "To Beam Or Not To Beam: That is a Question of Cooperation
for Language GANs". Part of Advances in Neural Information Processing
Systems 34 (NeurIPS 2021). 2021.

This paper corresponds to the Chapter 7. We propose a new GAN framework
where the discriminator signal is passed to the generator in a novel way, allowing
more stability. We do so by sampling via the cooperative decoding strategy pre-
sented in Chapter 5. In addition, we introduce a more sophisticated cooperative
process based on Monte Carlo Tree Search, which obtains state-of-the-art results.
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N AT U R A L L A N G U A G E G E N E R AT I O N W I T H
D E E P L E A R N I N G

abstract

Natural Language Generation (NLG) is a sub-field of Natural Language Processing,
where a system goal is to generate text. It encompasses several tasks like Machine Trans-
lation (MT), Summarization, or Dialogue. In this Chapter, we present how NLG has been
modelized, from Recurrent Neural Networks to the current Transformers. We discuss
in depth the standard training and decoding methods. In particular, we highlight an
important mismatch between both, known as the exposure bias, which is the primary
limitation of NLG systems, that this thesis focus on mitigating. Finally, we present the
metrics used to evaluate NLG.

2.1 Natural Language Processing

NLG belongs to the Natural Language Processing (NLP) field, a branch of com-
puter science and artificial intelligence that aims at giving computers the ability
to interact with Natural Language.

In addition to NLG, the second important sub-field in NLP is Natural Language
Understanding (NLU). NLU deals with machine reading comprehension and en-
compasses the tasks of classification, relation extraction, name entity recognition
or part of speech tagging.

Text are seen like discrete sequences from which we can extract statistics, such
as the number of occurrences of the words or n-grams, or other predefined lin-
guistic features. The main method to encode text numerically as vectors, before
the Deep Learning dominance was one-hot encoding. In this approach, each ele-
ment in the vector corresponds to a unique word (token) in the corpus vocabulary.
Then, if the token at a particular index exists in the document, that element is
marked as 1. Otherwise, it’s 0. This can be seen as a Boolean bag-of-words.

Many works have focused producing high quality dense representations. Among
those, one-hot encoding is the most emblematic. It requires a representation with
a vector dimension equals to the vocabulary space (often 50,000 in English for

5
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instance) and lack of semantic. To mitigate these issues, Tomas Mikolov et al.
(2013) proposed Word2vec, allowing a dense representation of the tokens. The
token embeddings are created via a two-layer neural network. In this task, the
objective is to predict a word given its context, i.e. some window of words. Once
training has converged, the encoding in the hidden layer is used as the vector
representation for the text.

Once vectorized, different NLU algorithms can be used to represent texts. In
particular, standard Machine Learning algorithms such as Support Vector Machine
(Noble 2006) or a Naive Bayes classifier, are widely used for different NLU tasks
like sentiment analysis. Nowadays, Deep Learning architectures have become the
new standard, exploiting dense representations such as Word2vec or its extensions
with contextualized representations.

2.1.1 Natural Language Generation

Natural Language Generation (NLG) corresponds to any task requiring to gener-
ate text, in contrast to Natural Language Understanding. NLG is mostly condi-
tional with tasks like Machine Translation, Dialogue, or Summarization.

2.1.1.1 Two cases: extract or generate

Some NLG tasks like Summarization or Question Answering can be decomposed
in two main modeling families, extractive and abstractive methods. The former
consists of coping content from the source, while in the former the model can
generate any texts like humans.

Extractive Natural Language Generation is a technique to produce an output
based on extracted piece from the source text. In the context of Summarization, it
can be compared to copying down the most salient sentences of a text, an intuition
developed by Mihalcea and Tarau (2004) who proposed the TextRank algorithm.
Inspired by PageRank (Page et al. 1999), TextRank builds a graph of sentences
within a text based on their cooccurrences. Then, it assigns an importance score
for each sentence based on a random walk on the resulting graph. The most
important nodes of the graph are considered as the ones that best describe the
text.

In the context of Question Answering, popular datasets have been built to
enhance extractive approaches. This is the case for SQuAD (Rajpurkar et al. 2016),
where the answer to a question is a span contained in the context.

The main advantage of extractive methods is that the extracted parts are by
definition mostly grammatically correct. However, the expressiveness of the model
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is strongly limited since models can only generate an output by copying words
from their input.

2.1.1.2 Generative Language Modeling

Toward more expressiveness, abstractive methods have been developed, enabling
any possible output to be generated by the model. Abstractive summarization
techniques tend to mimic the process of ‘paraphrasing’ from a text. Generated
texts using this technique have the potential to look more human-like. However,
there is no guarantee regarding the correctness of the produced output, and
training fluent models can be challenging, as detailed all along this Thesis.

At the core of generative methods, Language modeling (LM) is the use of
various statistical and probabilistic techniques to determine the probability of a
given sequence s of N words occurring in a text:

P (s) =
N∏
i=1

p(si|∀s < i,X) (2.1)

where X is the input context in conditional NLG, e.g. the text to be summarized
or translated. When the text is empty we are in the case of unconditional NLG.

The first statistical LM relies on statistics about N-grams. A probability distri-
bution for a sequence of n is calculated, where n defines the size of the "gram",
i.e. the sequence of words being assigned a probability. For example, if n = 5, all
the sub-sequence of 5 tokens in a text constitutes the n-grams. The model then
assigns probabilities using sequences of length n. Hence, n can be thought of as
the amount of context the model is considering.

2.1.1.3 Training and Decoding

While n-gram uses discrete representation of Language, deep learning allows
for continuous space representations, e.g. leveraging Word2vec embedding. The
main paradigm is arguably Seq2Seq models (Sutskever et al. 2014), that we present
extensively in Section 2.2.

Constrary to many ML problems, there is an asymmetry in the way NLG
models are trained and then used for inference.

Training: Teacher Forcing In the context of Natural Language Generation
(NLG), a majority of approaches propose sequence to sequence models trained
via maximum likelihood estimation; Teacher Forcing (Williams and Zipser 1989)
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Figure 2.1: Illustration of the Exposure Bias: mismatch between training and simu-
lation conditions. 1) without Teacher Forcing (Top), and 2 with Teacher
Forcing (bottom).

strategy is used during training: ground-truth tokens are sequentially fed into the
model to predict the next token.

Teacher Forcing uses the ground truth tokens to condition the prediction, since
only these tokens from the train set are known. However, using the ground truth
imply that the error does not accumulate. This leads to a mismatch at inference
time, where the error can accumulate, since the reference is not available, as
illustrated in Figure 2.1. We discuss this mismatch more in depth later (Section
2.4.1).

Decoding At decoding time, two different approaches are commonly used in
NLG: Sampling and Beam Search. They respectively correspond to two different
objectives, sampling from the distribution or generating the most likely one.

Sampling To obtain diverse outputs, it is common to sample tokens from the
learned distribution. In particular, this is mandatory when there is no input at all,
i.e. Unconditional NLG, to introduce stochasticity (e.g. GPT (Radford et al. 2019)).
However, the longer the sequence, the more likely to sample a token from the tail
of the distribution, causing degeneration (Holtzman et al. 2019). To mitigate this
issue, common practices are to lower the Softmax Temperature and/or keeping
only the Top K tokens (Fan et al. 2018), or those covering the Top P probability
mass (Holtzman et al. 2019).
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Figure 2.2: Example of a generation using BeamSearch with a width
of 2 and 1 (greedy). Image from HuggingFace https:
//discuss.huggingface.co/t/is-beam-search-always-better-
than-greedy-search/2943

Beam Search is the standard algorithm to find the sequence maximising the
output probability. It works by maintaining a set of K candidates at each step
of the generation. Its usage suits better conditional NLG tasks, where we are not
interested in the diversity as we would for unconditional generation, but rather
in the correctness of the generation.

This decoding algorithm allows to select the sequence with the highest proba-
bility, offering more flexibility than a greedy approach, i.e. K=1. Beam search has
contributed to performance improvements of state-of-the-art models for many
tasks, such as Neural Machine Translation, Summarization, and Question Gener-
ation (Ott et al. 2018; Dong et al. 2019).

Most models however generate incorrect sentences even with beam search. To
deal with these cases, external rules are usually added to further constrain the gen-
eration, like the inclusion of a length penalty factor (Y. Wu et al. 2016). Hokamp
and Q. Liu (2017) reported improvements when adding simple lexical constraints
to beam search. Observing that neural models are prone to repetitions, while
human-produced summaries contain more than 99% unique 3-grams, Paulus et
al. (2017) introduced a rule in the beam forbidding the repetition of 3-grams.
Whether trained from scratch (Paulus et al. 2017; Gehrmann et al. 2018) or based
on pre-trained language models (Dong et al. 2019), the current state-of-the-art
results in abstractive summarization have been achieved using length penalty and
3-grams repetition avoidance.

https://discuss.huggingface.co/t/is-beam-search-always-better-than-greedy-search/2943
https://discuss.huggingface.co/t/is-beam-search-always-better-than-greedy-search/2943
https://discuss.huggingface.co/t/is-beam-search-always-better-than-greedy-search/2943
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Figure 2.3: Diagram of a RNN. Compressed (left) and unfolded (right) basic
recurrent neural network. Illustration taken from Wikipedia https:
//en.wikipedia.org/wiki/Recurrent_neural_network.

The fact that models require those decoding heuristics to enhance the genera-
tion clearly indicates a flaw in the training process. In this thesis, we show some
alternative ways by learning implicitly the decoding rules.

2.2 Neural Architectures for NLG

In this section, we focus on NN for NLG which are the current state of the art.

Recurrent Neural Networks Recurrent Neural Networks (RNN) (Rumelhart et
al. 1986) are a class of Neural Networks that process each element of a sequence
progressively, maintaining a hidden vector representation of the sequence at each
step. These latent representations play the role of an internal memory of what
has been seen previously, and are used as inputs in the next steps. We present an
illustration of their architecture in Figure 2.3.

RNNs were designed to process sequential data in tasks such as spatio-temporal
modeling (Xingjian et al. 2015), video prediction (Srivastava et al. 2015), or NLP
(Tomas Mikolov et al. 2010; Tomáš Mikolov et al. 2011; Sutskever et al. 2014).

Formerly, RNN is a function parametrized by θ, where θ = {b,W,U} has the
form:

h(t) = tanh(b+Wh(t−1) +Ux(t)) (2.2)

where x(t) represents the corresponding token, is computed from step t, and
h(t−1) is the previous hidden state. That way, each hidden state ht is updated
auto-regressively by the previous one (ht−1) and the current input x(t).

This yields a fully differentiable model, whose parameters θ can approximate
the training distribution via Maximum Likelihood Estimation (MLE). The pa-
rameters are learned via gradient ascent, specifically with the Backpropagation
Through Time (BPTT) algorithm (Williams and Zipser 1995), that consists in un-
folding the RNN by successively processing the inputs x(t) and applying Equation

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
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Figure 2.4: Example of an LSTM architecture (illustration taken from Wikipedia
https://commons.wikimedia.org/wiki/File:LSTM.png).

2.2. Gradients are then backpropagated through the successive updates of h(t),
and accumulated in order to update θ.

We can see from Equation 2.2 that BPTT can lead gradients to explode or vanish,
as noted by Y. Bengio et al. (1994) and Pascanu et al. (2013). Given the derivation
of the objective function with respect to W , this weight matrix is multiplied n

times by itself, with n the number of steps processed. Hence, if the greatest eigen-
value is less than 1, gradients will exponentially converge to 0. Conversely, if any
eigenvalue is strictly greater to 1, gradients will exponentially diverge to∞.

LSTM To overcome the aforementioned limitation for RNN, and to better
model long range dependencies, Hochreiter and Schmidhuber (1997) proposed
the Long Short Term Memory, a more sophisticated implementation of RNN, de-
picted in Figure 2.4. In LSTM, it, ft, ot are respectively the input gate, forget gate
and output gate at step t, ct represents the cell state (memory), at time step t, and
c̃t the candidate for cell state:

it = σ (wi [ht−1, xt] + bi)

ft = σ (wf [ht−1, xt] + bf )

ot = σ (wo [ht−1, xt] + bo)

c̃t = tanh (wc [ht−1, xt] + bc)

ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot ∗ tanh

(
ct
)

(2.3)

LSTM memory cell refers to one of the two halves of an LSTM layer’s hid-
den state: it’s the portion of the hidden state that is only modified by addi-

https://commons.wikimedia.org/wiki/File:LSTM.png
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Figure 2.5: Example of a Seq2Seq architecture. (illustration taken from Wikipedia
suriyadeepan.github.io).

tion/subtraction, and tends to preserve information for a relatively long time,
hence vanishing gradients.

The gates control the passage of information at certain points in the network,
by multiplying the current states with an activation sigmoid function, for which
values are limited to ]0, 1[. Hence, a gate lets information pass if the value is
close to 1, and blocks it if the value is close to 0. This gate mechanism solves the
gradient problems of RNNs, by breaking the multiplicative sequential gradient
dependence.

Sequence To Sequence Many tasks in NLG consist in transforming a text
into another text. For instance, in Summarization, where the input is a document
composed of N tokens (x1, ...xn), the goal is to generate a summary composed of
T tokens (y1, ...yt).

To deal with such data, Sutskever et al. (2014) proposed the Seq2Seq architec-
ture, composed of two blocks:

1. an encoder, represented by an LSTM, that encodes the input, representing
it by its successive hidden states;

2. a decoder, which is an LSTM whose initial state is the final state of the
Encoder LSTM, i.e. the context vector of the encoder’s final cell is the input
of the first cell of the decoder network. Using this initial state, the decoder
starts generating the output sequence, and these outputs are also taken into
consideration for future outputs, in an auto-regressive process.

We depict the architecture in Figure 2.5. This architecture has been widely
adopted by the community fpr several tasks, from Machine Translation (Sutskever
et al. 2014) to Summarization (Chopra et al. 2016).

Attention Mechanism While LSTMs help mitigating the flaws of vanilla RNNs,
they still lack to deal well with all the past information (Cho et al. 2014). Hence,
given the last hidden state of an encoder, hK , the decoder cannot take into account

suriyadeepan.github.io
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Figure 2.6: Diagram of the Attention Mechanism illustrated with a ma-
chine translation example. Illustration taken from Medium
https://medium.com/syncedreview/a-brief-overview-of-
attention-mechanism-13c578ba9129.

properly the farthest inputs (e.g. x1 or x2). Another problem is that there is no
way to give more importance to some of the input words compared to others
while translating the sentence.

This bottleneck problem arises with the use of a fixed-length hidden state vector,
where the decoder has limited access to the information provided by the input
sequence. This is especially problematic for long sequences. To address these
issues, Bahdanau et al. (2014) introduced the attention mechanism, where the
idea is to not only rely on the last hidden state of the encoder, but instead use a
context vector c(t) that dynamically changes at each step i:

c(i) =
N∑
j=1

αijhj (2.4)

where h1, ..., hN are the encoder’s hidden states, and αij is the attention at step i
for input j, defined as: defined as:

αij =
exp (eij)∑N
k=1 exp (eik)

, (2.5)

with eij = a (si−1, hj) is the output score of a feedforward neural network de-
scribed by the function that attempts to capture the alignment between input at j
and output at i. We depict the attention mechanism in Figure 2.6.

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
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Figure 2.7: Illustration of the Transformer architecture.

Initially applied to Machine Translation (Bahdanau et al. 2014), the attention
mechanism has proven to largely improve Seq2Seq architectures in a wide range
of tasks such as summarization (Rush et al. 2015) or Image Captioning (You et al.
2016).

Transformers Thanks to the attention mechanism and the Seq2Seq architecture,
great progresses have been achieved in NLG. However, based on LSTM, those
models still suffer from the vanishing/exploding gradient problem. Moreover,
one of their limitation is the computational cost at training time. Due to the auto-
regressive nature for the LSTMs, to obtain the hidden state for a token at step t,
one need to wait the computation of every previous hidden states h1, ...ht−1.

Vaswani et al. (2017) proposed a new Seq2Seq architecture, namely the Trans-
former, solely based on the attention mechanism and feed forward layers, that
enables parallelisation, allowing to scale training for Seq2Seq compared to its re-
current neural network counterparts. We present the overall architecture in Figure
2.7.

Transformers have rapidly become the de-facto standard in NLG, leading to
impressive progress, due to their high scalability and flexibility, resulting in state-
of-the-art performance in a wide range of tasks.

For that reason, most of the models presented in this thesis rely on these well-
established architectures.

In transformers, this encoder-decoder architecture is composed by stacking a
series of so called Transformer blocks on top of each other. Each block is charac-
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terized by a self-attention module. Given an input sequence of length n encoded
as a matrix X ∈ Rn×d, the output of the self-attention layer is defined as:

α = Softmax
(

QK⊤
√
d

)
V (2.6)

where Q, K and V are the Query, Key and Value matrices obtained by a linear
transformation of X. More intuitively, the attention matrix, A = QK⊤, provides
text-based similarity scores for all pairs of tokens in the sequence, while each

row in Softmax
(

QK⊤
√
d

)
represents a distribution that indicates information from

input token (V) for the relative importance of context items for building the
representation of token (Q).

2.3 Automatic Evaluation

Humans tend to evaluate NLG systems on a variety of dimensions like Fluency,
Coherence or Correctness. However, human evaluation is time-consuming, hence
automatic metrics are central in measuring progress in NLG. Despite their obvious
utility, however, there is no known metric (or set of metrics) that adequately
reflects human intuitions across the growing spectrum of NLG-relevant tasks.

2.3.1 Metrics

Numerous metrics have been proposed to evaluate NLG systems. Several surveys
have proposed interesting taxonomies (Sai et al. 2020; Kocmi et al. 2021) to group
metrics regarding some fundamental distinctions, such as being parametric (i.e.
supervised) w.r.t rule-based, acting at the sequence level versus at a token-level,
or the token representation being neural based versus n-gram based.

In this section, we start by presenting the n-gram based metrics, which are
arguably the most widely employed metrics to compare generative models. We
then present more recent metrics leveraging neural representations of sequences.

N-Grams based Metrics

- BLEU (Papineni et al. 2002) measures the overlap of n-grams between two
texts. It is arguably the most reported metric on Machine Translation, as it is
precision oriented.
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- ROUGE (C.-Y. Lin 2004) stands for Recall-Oriented Understudy for Gisting
Evaluation. Similarly to BLEU, is based on the count of overlapping n-grams, but
is recall oriented. Therefore, it is the de-facto metric on Summarization. In partic-
ular, ROUGE-N is based on the count of overlapping n-grams, while ROUGE-L
accounts for the longest common sub-sequences between the candidate and its
corresponding reference(s). Formally, ROUGE-N is defined as:

ROUGE −N =

∑
S∈SH

∑
gn∈S Cm (gn)∑

S∈SH

∑
gn∈S C (gn)

(2.7)

where SH is the set of human summaries, S is an individual human summary,
gn is an N-gram and C(gn) is the number of co-occurrences of gn in the manual
summary and generated summary.

- METEOR (Lavie and Agarwal 2007) was proposed to address one limitation
in BLEU: it provides scores at the sentence level, conversely to BLEU that seeks
correlation at the corpus level.

- BERTScore N-grams based metrics are limited in measuring similarities in a
discrete space, leading to several flaws such as not taking into account synonyms.
To mitigate this issue, zhang2019bertscore leverage on neural representation in
the latent space of BERT to compute the similarity between the tokens.

- Language Modeling Perplexity the perplexity of the evaluated text is often
reported to measure fluency from a Language Model, e.g using GPT2 (Radford
et al. 2019).

Statistics Beyond metrics, it can also be interesting to compare models regard-
ing some statistical properties on the ground truth, using some simple measures:

• Length: The number of n-grams in the text;
• Repetitions: the number of n-grams that are repeated, normalised by length;
• Abstractness: number of n-grams not present in the source text, normalised by

the length.

2.3.2 Metrics Limitations

Automated metrics (presented in Section 2.3.1) suffer from known limitations.
Sulem et al. (2018) showed how BLEU metrics do not reflect meaning preserva-
tion, while Novikova et al. (2017a) pointed out that, for NLG tasks, they do not
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map well to human judgements, obtaining very low correlations with human
annotators on a wide range of tasks.

Similar findings have been reported for ROUGE, in the context of abstractive
summarization (Paulus et al. 2017). The main culprit is that for the same input
several correct outputs are possible. Nonetheless, in most datasets, the generated
output is often compared to a single human reference, given the lack of annotated
data. For the metrics that are usually reported by the community, (e.g. ROUGE
for summarization), the correlation with respect to human judgments is arguably
still unsatisfactory. In the (Fabbri et al. 2020) study, for measuring factualness,
no metric correlates more with humans that only 0.1 (Pearson Coefficient). This
makes the automatic evaluation for NLG an open research question.

2.4 The Exposure Bias: A Mismatch Between Train-
ing and Inference

2.4.1 Exposure Bias

As presented Section 2.2, the standard algorithm to train NLG models is Teacher
Forcing (Williams and Zipser 1989). Ground-truth tokens are sequentially fed into
the model to predict the next token. Conversely, at inference time, ground-truth
tokens are not available, and the model only has access to its previous outputs.
The literature (S. Bengio et al. 2015; Ranzato et al. 2015b) referred to this mismatch
as the exposure bias. This bias is severe as mistakes accumulate with generated
tokens, leading to a divergence between the distribution seen at training time,
resulting in poor generation.

2.4.2 Mitigating the Exposure Bias

Several research efforts have tackled the exposure bias caused by Teacher Forcing.
Inspired by Venkatraman et al. (2015), S. Bengio et al. (2015) proposed a variation
of Teacher Forcing wherein the ground truth tokens are incrementally replaced by
the predicted words. Given that only one reference is available, this introduces a
new mismatch when computing the loss, this time between the generated tokens
used to condition the model, and the target tokens. Conversely, at training time,
Lamb et al. (2016) proposed Professor Forcing to overcome this limit, which
uses adversarial domain adaptation to encourage the dynamics of the recurrent
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network to be the same when training the network and when sampling from the
network over multiple time steps.

Metrics optimisation A more principled way to deal with this problem is to
optimize sequence level metrics like ROUGE Paulus et al. (2017) and BLEU Ran-
zato et al. (2015a), instead of optimizing at a token level trough MLE. Since those
metrics are non-differentiable, to optimize them one has to rely on Reinforcement
Learning. The reward is then directly the metric of interest.

Following the standard RL actor-critic scheme (Konda and Tsitsiklis 1999), with
r(Y ) the reward function for an output sequence Y, the loss to be minimized is
defined as:

Lrl = (r(Ŷ )− r(Y s))
m∑
t=0

log p(yst |ys0, ..., yst−1, X) (2.8)

where X is the input document to condition the model, and r(Ŷ ) corresponds
to the baseline reward, given the baseline output Ŷ , here to lower the variance
and allowed faster learning. We can see that minimizing Lrl is equivalent to
maximizing the conditional likelihood of the sampled sequence Y s if it obtains a
higher reward than the baseline Ŷ , thus increasing the reward expectation of our
model.

In Mixer, Ranzato et al. (2015a) chose BLEU, the standard metric to evaluate
Machine Translation: the reward of the sequence corresponds to the BLEU score.
Paulus et al. (2017) applied the same method to Summarization, using this time
ROUGE.

As a drawback, all these approaches suffer from the aforementioned limitations
of ill-defined reward metrics, such as BLEU or ROUGE (Paulus et al. 2017). While
the results improved in terms of ROUGE, human evaluation has shown that
the generated summaries were worse in term of fluency than the MLE baseline.
The model learns to take advantage of metric biases, while being less correct
according to human judgement. One direction we are investigating in this thesis
is to develop metrics that reflect better human judgement.

Language GANs Since metrics are not reliable, considering a learned discrim-
inator might be an alternative. In theory, a perfect discriminator would be able
to judge if an output corresponds to the data distribution or not. Discriminators
could therefore be an interesting alternative reward compared to other metrics.

However, to be effective, we need to train the discriminator D jointly with the
generator G, framing the task as a GAN. In this setup, the generator and the
discriminator play a min-max game where the former try to generate data as
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similar as possible to the real data, while the later tries to distinguish between the
generated data and the real data:

min
G

max
D

V (D,G) = min
G

max
D

(
Ex∼Pdata (x)[logD(x)] + Ez∼Pg(z)[log(1−D(G(z)))]

)
(2.9)

where Pdata is the probability distribution of the training dataset and Pg of the
generator.

Because of the discrete nature of text, continuous data cannot propagate the
discriminator signal to the generator, as opposed to images GANs. For that reason,
Yu et al. (2016) proposed to use Policy-Gradient reinforcement learning to learn
the data generation of discrete samples. In their work, language GANs discrimi-
nators are thus the reward function within a Reinforcement Learning approach
as follow:

Lrl = (D(Ŷ )−D(Y s))
m∑
t=0

log p(yst |ys0, ..., yst−1, X) (2.10)

where the reward function D is a discriminator and X the input context.

Unfortunately, Language GANs are known for their instability, due to the un-
avoidable sparsity of a discriminator reward. A large body of works have pro-
posed denser rewards: ranking or comparative discriminators (Che et al. 2017;
Li et al. 2017; W. Zhou et al. 2020), using a sequential discriminator where the
rewards are provided at each time step of the generation (Semeniuta et al. 2018;
Masson d’Autume et al. 2019a).

Despite of those efforts, Language GANs in 2020 still under-performed MLE
(Caccia et al. 2020). In this thesis, we introduce a new sampling strategies to
stabilise the training process, allowing to empirically obtain competitive results
in Language GANs over MLE.

Discriminators in NLG Beyond GANs, discriminators have been on a broad
range of tasks. Recent works have applied text classifiers as discriminators for
different NLG tasks. Kryscinski et al. (2019b) used them to detect factual consis-
tency in the context of abstractive summarization; Zellers et al. (2019) applied
discriminators to detect fake news, in a news generation scenario, reporting high
accuracy (over 90%). Clark et al. (2019) proposed to train encoders as discrimina-
tors rather than language models, as an efficient alternative to BERT (Devlin et al.
2019). They obtained better performances while improving in terms of training
time. Abstractive summarization systems tend to be too extractive (Kryściński et
al. 2018), mainly because of the copy mechanism (Vinyals et al. 2015). To improve
the abstractiveness of the generated outputs, Gehrmann et al. (2018) proposed
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to train a classifier to detect which words from the input could be copied, and
applied it as a filter during inference.

2.4.3 Conclusion

In conclusion, despite important progress this last five years, NLG still suffers
from large flaws, from its training to its automatic evaluation.

Regarding training, the standard approach, MLE, introduces a mismatch with
the inference time, the Exposure Bias, that causes a degradation the generated
texts. Approaches to overcome the Exposure Bias also suffer from their own
limitations, and fall short to obtain competitive results with MLE.

Regarding the evaluation, metrics fail to accurately measure the quality of an
evaluated text, and are not correlating well with human judgement.

In this thesis, we propose new metrics based on Question Answering allowing
to automatically evaluate NLG more accurately. Beyond evaluation, we also show
that those metrics can serve to improve the training process as well. To go a step
further in mitigating the exposure bias, we also leverage on discriminators to
improve the generation process trough GANs.
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abstract

Abstractive summarization approaches based on Reinforcement Learning (RL) have re-
cently been proposed to overcome classical likelihood maximization. RL enables to con-
sider complex, possibly non-differentiable, metrics that globally assess the quality and
relevance of the generated outputs. ROUGE, one of the most used metric, is known to
be biased toward lexical similarity as well as from suboptimal accounting of fluency and
readability. In this Chapter, we explore and propose alternative evaluation measures: the
reported human-evaluation analysis shows that the proposed metrics, based on Question
Answering, favorably compares to ROUGE – with the additional property of not requiring
reference summaries. Training a RL-based model on these metrics leads to improvements
(both in terms of human or automated metrics) over current approaches that use ROUGE
as a reward.

• Thomas Scialom, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano. "Answers
Unite! Unsupervised Metrics for Reinforced Summarization Models." Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). 2019.

3.1 Introduction

Summarization is one of the popular NLG tasks, where the objective is to generate
short but relevant and informative texts given a variable-length inputs.

Recent - at the time of this work - research (Paulus et al. 2017; Pasunuru and
Bansal 2018; Arumae and F. Liu 2019) have proposed to use evaluation metrics –
and ROUGE in particular – to learn the model parameters through Reinforcement
Learning (RL) techniques. This makes the choice of a good evaluation metric even
more important. Unfortunately, as discussed in Section 2.3, ROUGE is known to
incur several problems: in particular, its poor accounting for fluency and read-
ability of the generated abstracts, as well as its bias towards lexical similarity

21
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(Ng and Abrecht 2015). To emphasize the latter point, since ROUGE evaluates a
summary against given human references, summarization models incur the risk
of being unfairly penalized: a high quality summary might still have very few
tokens/n-grams in common with the reference it is evaluated against.

In this Chapter, we propose to overcome n-gram matching based metrics, such
as ROUGE, by developing metrics which are better predictors of the quality of
summaries. The contributions of this part can be summarized as follows:

• Extending recent works (Eyal et al. 2019; P. Chen et al. 2018), we introduce
new metrics, based on Question Answering, that do not require human
annotations.

• We report a quantitative comparison of various summarization metrics,
based on correlations with human assessments.

• We leverage the accuracy of the proposed metrics in several reinforcement
learning schemes for summarization, including two unsupervised settings:
in-domain (raw texts from the target documents) and out-of-domain (raw texts
from another document collection).

• Besides a quantitative evaluation of the generated summarizes, we qualita-
tively evaluate the performances of the different approaches through human
assessment.

Our main results can be summarized as follows:

1. We show that fitting human judgments from carefully chosen measures
allows one to successfully train a reinforcement learning-based model, im-
proving over the state-of-the-art (in terms of ROUGE and human assess-
ments).

2. we show that dropping the requirement for human-generated reference
summaries, as enabled by the proposed metrics, allows to leverage texts in
a self-supervised manner and brings clear benefits in terms of performance.

Section 3.2 reviews related summarization systems and presents our proposed
approaches. Section 3.3 introduces the metrics. Section 3.4 presents our experi-
mental results and discussions.

3.2 Summarization Models

Abstractive summarization systems were originally designed as a post-processing
of an extractive system – by compressing sentences (Nenkova 2011). A lot of
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activity takes place nowadays in designing neural networks sequence to sequence
architectures (Sutskever et al. 2014), which allow to consider the problem as
a whole rather than a two-step process. Such models reached state-of-the-art
performance. To tackle the summarization task, which deals with a long text
and possibly out-of-vocabulary tokens, See et al. (2017) proposed to leverage an
attention over the input (Bahdanau et al. 2014), as well as a copy mechanism
(Vinyals et al. 2015).

One problem of sequence-to-sequence models is that they tend to repeat text in
the output. To deal with this problem, (See et al. 2017) use a coverage mechanism,
and Paulus et al. (2017) introduced Intra-Decoder Attention with the same goal of
avoiding duplicate information within the output sequences.

More recently, the model proposed by See et al. (2017) was further extended
(Gehrmann et al. 2018), with the addition of an attention mask during inference: a
pre-trained sequence tagger trained to select which input tokens should be copied
and used to filter the copy mechanism. Such a filter, called Bottom-Up Copy At-
tention, was shown to help prevent copying from the source text sequences that
are too long, hence resulting in more abstractive summaries. On the CNN/Daily
Mail dataset, (Gehrmann et al. 2018) found this two-step process to yield signifi-
cant improvements in terms of ROUGE – resulting in the current state-of-the-art
system. We base our experiments on this model.

To overcome limitations of MLE, approaches based on reinforcement learning
have recently been proposed, allowing the models to learn via reward signals, as
described in Section 2.2. Ranzato et al. (2015a) used the REINFORCE algorithm
(Williams 1992) to train RNNs for several generation tasks, showing improve-
ments over previous supervised approaches. Narayan et al. (2018b) used such
an approach in an extractive summarization setting, learning to select the most
relevant sentences within the input text in order to construct its summary. (Paulus
et al. 2017) combined supervised and reinforcement learning, demonstrating im-
provements over competing approaches both in terms of ROUGE and on human
evaluation. However, the main limit of these works is that they rely on standard
summarization metrics which are known to be biased.
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3.3 Question Answering as a metric for Summariza-
tion

3.3.1 Question-Answering based Metrics

Question-Answering is related to summarization: the first work in this direction
(H. Wu et al. 2002) introduced the notion of Answer-Focused Summarization,
where answers to relevant questions on the source text are used to build the
corresponding summary. Based on the intuition that a good-quality summary
should provide the answers to the most relevant questions on a given input text,
several works have proposed to adapt Question Answering (QA) for summary
quality evaluation.

In that vein, (Pasunuru and Bansal 2018) proposed to measure if answers con-
tain the most salient tokens. Then, (Eyal et al. 2019) proposed APES, a novel metric
for evaluating summarization, based on the hypothesis that the quality of a gen-
erated summary is linked to the number of questions (from a set of relevant ones)
that can be answered by reading it. In their proposed setup, two components are
thus needed: (a) a set of relevant questions for each source document; and (b) a
QA system. For each summary to assess, questions are successively generated
from a reference summary, by masking each of the named entities present in this
reference, following the methodology described in (Hermann et al. 2015). This re-
sults in as many triplets (input, question, answer) as named entities present in the
reference summary, where input denotes the summary to assess, question refers to
the sentence containing the masked entity and answer refers to this masked entity
to retrieve. Thus, for each summary to assess, different metrics can be derived
to assess the ability of the QA system to retrieve the correct answers. Bellow, we
present in particular the F1 score and the QA confidence.

F1 score For each triplet, an F1 score is computed according to the responses
retrieved by the considered QA system. This score, commonly used for QA eval-
uation (Rajpurkar et al. 2016), measures the average overlap between predictions
and ground truth answers. For each summary to assess, the final score is the
average of the F1 score computed over each triplet. In the following, we denote
this metric as QAfscore(sup).

QA confidence Complementary to the F1 score, we propose to also consider
the confidence of the QA system in its retrieved answer. This corresponds, for
each triplet, to the probability of the true answer according to the QA model.
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Confidence scores are averaged for each summary to assess over its associated
triplets. In the following, we denote this metric as QAconf (sup).

Besides considering the simple presence of the expected answers in the gen-
erated summary, QA-based metrics also account to some extent for readability.
They indeed require that the considered QA system, trained on natural language,
be able to find the answer in the input to assess, despite the variability of the
generated texts.

Extension to the unsupervised setting While being a useful complement to
ROUGE, the two QA-based metrics described above still need human-generated
summaries, which can be a limitation when training systems on data not anno-
tated. We investigate and propose extending the previously described QA-based
approach in an unsupervised setting.

With this aim, we extend the above metrics at the document level (more precisely,
questions and answers are generated from the source article text rather than from
the reference summary), dispensing of the need for human-generated reference
summaries. Thus, we propose two unsupervised QA-based metrics, to which
we refer to as QAfscore(unsup) and QAconf (unsup). Accounting for both quality
and informativeness of a generated summary, those metrics have the appealing
property of not requiring reference summaries.

3.3.2 Quantitative Analysis

To evaluate our QA based metrics, we exploit human judgments obtained for 3

types of automatically generated summaries by Paulus et al. (2017) on 100 samples
of the CNN/Daily Mail summarization dataset (see detail in section 3.4.1), in
terms of readability (how well written the summary is) and relevance (how well
does the summary capture the important parts of the article). The summaries are
generated by the three different systems proposed in the original work. Those
samples have been scored, via Amazon Mechanical Turk, for Readability and
Relevance (scores from 1 to 10 for both metrics).

Baseline Metrics We consider the following metrics as baseline to compare our
proposed Question-Answering based Metrics: ROUGE, Novelty and Language
Modeling, as described in Section 3.3. We also consider TextRank: Automated
summarization started with the development of extractive text summarization
models. Many unsupervised models, that aim at computing a score between
a sentence and document(s) were developed – the score attempting to reflect
whether the sentence should be selected for building a summary (Nenkova 2011).
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Readability Relevance
Readability 1.0 0.77 **
Relevance 0.77 ** 1.0
ROUGE-1 (sup) 0.14 * 0.18 **
ROUGE-2 (sup) 0.12 * 0.18 **
ROUGE-L (sup) 0.13 * 0.18 **
TextRank (unsup) 0.14 * 0.13 **
Novelty (unsup) -0.13 * -0.1 *
Bert LM (unsup) 0.21 ** 0.08 *
QAfscore (sup) 0.14 * 0.19 **
QAconf (sup) 0.19 ** 0.23 **
QAfscore (unsup) 0.08 0.2 **
QAconf (unsup) 0.33 ** 0.31 **

Table 3.1: Spearman’s ρ for the different metrics w.r.t. Readability and Relevance
(*: p < .05, **: p < .005).

Such scores can thus be used as a proxy of the summary quality. We chose Tex-
tRank (Mihalcea and Tarau 2004) – an extractive non-parametric summarization
system inspired by PageRank (Page et al. 1999) – since it is well performing for
extractive tasks and could be easily adapted for our needs. The algorithm builds
a graph of sentences within a text based on their co-occurrences. Then, it assigns
an importance score for each sentence based on a random walk on the resulting
graph. The most important elements of the graph are considered as the ones that
best describe the text. As a derivative usage, we propose to consider these im-
portance scores to assess the quality of abstractive summaries in our study. This
metric is referred to as TextRank in the following.

In Table 3.1, we report Spearman’s rank correlations on this data, where we
compare summaries rankings obtained according to the assessed metrics. Scores
render the ability of the various metrics to reproduce human preferences (in terms
of readability and relevance). First, we observe that readability and relevance
are naturally intertwined: intuitively, an unreadable summary bears very little
information, one of the facts that explains the high correlation between readability
and relevance.

From this correlation analysis against human judgments, we observe that, as
expected, the Language Model metric captures readability better than ROUGE,
while falling short on relevance.

On the other hand, the results obtained using the proposed QA-based metrics
indicate their potential benefits especially under the unsupervised setting, with
QAconf and QAfscore capturing readability and relevance better than all the other
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reported metrics, including ROUGE. We thus conclude that the proposed metrics,
which favorably correlate with readability and relevance wrt human evaluation, are
worth of a deeper experimental investigation.

3.3.3 Learned Metric

Since metrics appear to correlate differently with human assessments, we propose
now to assess if they could be combined efficiently. To that aim, we leverage the
qualitative data obtained by Paulus et al. (2017) – which compounds to 50 samples
evaluated by annotators in terms of readability and relevance – to learn an aggregate
metric for evaluation. We use a Ridge regression (with a regularization λ = 1) to
learn to predict the geometric mean of readability and relevance from the metrics
defined above. The geometric means was chosen since we want the generated
summary to be both readable and relevant.

We randomly sampled 50% of the data to fit the linear model with various
subsets of our base metrics. Then, we measured the correlation w.r.t. the expected
geometric mean on the remaining 50% data. We performed this procedure 1000

times. Our experiments show that the best performing set of metrics consists of
ROUGE-L in conjunction with QAconf and QAfscore, both computed at an article-
level, and hence unsupervised.

This learned metric is defined as (with unsup versions of QA-based scores):

αROUGEL + βQAconf + δQAfscore (3.1)

with α = 0.8576, β = 2.274 and δ = 0.6413.

3.4 Question Answering as a Reward to Reinforce

In this Section, we evaluate the effect of substituting the ROUGE reward in the
reinforcement-learning model of (Paulus et al. 2017) by our proposed QA-based
metrics (section 3.3). We, moreover, study the effect of using metrics that do not
necessitate human-generated summaries.

3.4.1 Data Used

Task-specific corpora for building and evaluating summarization models asso-
ciate a human-generated reference summary with each text provided. We resort
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to the CNN/Daily Mail (CNN-DM) dataset (Hermann et al. 2015; Nallapati et al.
2016) for our experiments. It includes 287,113 article/summary pairs for train-
ing, 13,368 for validation, and 11,490 for testing. The summary corresponding
to each article consists of several bullet points displayed on the respective news
outlet webpage. In average, summaries contain 66 tokens (σ = 26) and 4.9 bullet
points. Consistently with See et al. (2017) and Gehrmann et al. (2018), we use the
non-anonymized version of the dataset, the same training/validation splits, and
perform truncation of source documents and summaries to 400 and 100 tokens,
respectively.

To assess the possible benefits of reinforcing over the proposed QG-based met-
ric, which does not require human-generated reference summaries, we employ
TL;DR1, a large-scale dataset for automatic summarization built on social me-
dia data, compounding to 4 Million training pairs (Völske et al. 2017b). Both
CNN-DM and TL;DR datasets are in English.

3.4.2 Models

For all our experiments, we build on top of the publicly available OpenNMT
implementation2, consistently with Gehrmann et al. (2018) to which we refer to
as a baseline. The encoder is composed of a one-layer bi-LSTM with 512 hidden
states, and 512 hidden states for the one-layer decoder. The embedding size is set
at 128. The model is trained with Adagrad, with an initial learning rate of 0.15,
and an initial accumulator value of 0.1. We continue training until convergence;
when the validation perplexity does not decrease after an epoch, the learning rate
is halved. We use gradient-clipping with a maximum norm of 2.

Gehrmann et al. (2018) showed that increasing the number of hidden states
leads to slight improvements in performance, at the cost of increased training time;
thus, as reinforcement learning is computationally expensive, we build on top of
the smallest model – nonetheless, we include the largest model by Gehrmann
et al. (2018) in our discussion of results.

All the experimented reinforcement approaches use the mixed training objec-
tives defined in equation 3.2, with the ML part corresponding to the previously
described baseline model pretrained on the CNN-DM dataset. Compared models
differ on the considered reward signals. They also differ on their use of additional
unsupervised data, either In-Domain or Out-of-Domain, as discussed below.

1https://tldr.webis.de
2http://opennmt.net/OpenNMT-py/Summarization.html

https://tldr.webis.de
http://opennmt.net/OpenNMT-py/Summarization.html
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3.4.3 Mixed Training Objectives

Paulus et al. (2017) consider a mixed loss Lml+rl combining supervised and rein-
forcement learning schemes:

Lml+rl = γLrl + (1− γ)Lml (3.2)

where Lrl is the the reinforcement loss (see Equation 2.8), and Lml the maximum
likelihood. As ROUGE is the most widely used evaluation metric, Paulus et al.
(2017) used ROUGE-L as the reward r for the Lrl function and tested the following
three different setups:

• ML: the model trained with Lml (γ = 0);

• RL: the model trained with Lrl (γ = 1);

• ML+RL: the model trained with Lml+rl (γ = 0.9984).

The human evaluation conducted on the three models shows that RL performs
worse than ML, and ML+RL performs best for both readability and relevance. The
authors also conclude that “despite their common use for evaluation, ROUGE
scores have their shortcomings and should not be the only metric to optimize on
summarization model for long sequences", which is translated in the very high
optimal γ.

We show in the following that using a more sensible metric to optimize leads
to a better model, and to a lower γ.

3.4.3.1 Reward Signals

The three reward signals used throughout our experiments, are detailed below:

1. ROUGE: We use only ROUGE-L as reward signal within the baseline archi-
tecture, consistently with Paulus et al. (2017);

2. QAlearned: Conversely, we compute the reward by applying the learned co-
efficients to the three components of the learned metric, as obtained in
Section 3.3.3.

3. QAequally: We apply the mixed training objective function, using as a reward
the three metric components of the learned metric (ROUGE-L, QAconf , and
QAfscore) equally weighted: this corresponds to setting a value of 1 for α, β
and δ in Eq. 3.1. This allows to see to which extent learning is sensitive to
fitting human assessments.
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For (2) and (3), we set γ (Eq. 3.2) to 0.53. This shows that, compared to (Paulus
et al. 2017), we do not need to use NLL to avoid the model from generating
unreadable summaries.

3.4.3.2 In-Domain vs Out-of-Domain

We experiment with the proposed QAconf and QAfscore metrics in an unsupervised
fashion, as they can be computed at article level – i.e. without accessing the
reference human-generated summaries. We investigate the potential benefits of
using this approach both in-domain and out-of-domain: for the former, we resort to
the test set of the CNN-Daily Mail (CNN-DM) dataset; for the latter, we leverage
the TL;DR corpus.

As the CNN-Daily Mail is built from mainstream news articles, and the TL;DR
data comes from social media sources, we consider the latter as out-of-domain in
comparison. From the latter, which includes circa 4 million samples, we randomly
draw sample subsets of size comparable with CNN-DM for training, validation
and testing splits.

Due to computational costs, we restrict these experiments to the model trained
under reinforcement using the QAlearned metric. Under this setup, the model has
access at training time both to:

• supervised samples for which a reference summary is given (and thus all met-
rics, including ROUGE and NLL, can be computed as a training objective),
coming from the training set of CNN-Daily Mail corpus ;

• unsupervised samples, for which no reference is available, thus allowing to
only compute QAconf (unsup) and QAfscore(unsup). Three unsupervised set-
tings are considered in the following:

TL;DR, corresponding to the out-of-domain setting where we use articles from
the TL;DR dataset;

CNN-DM (VAL), corresponding to an in-domain setting where we use texts
from the validation set from the CNN/Daily Mail dataset;

and, CNN-DM (TEST) for an in-domain setting where we use the articles
from the test set (thus containing texts used for evaluation purposes).

While all the data is from the CNN-DM train dataset in the supervised setups,
for the unsupervised setups, we set the proportion of unsupervised data to 50%
(either CNN-DM VAL, CNN-DM TEST for in-domain or TL;DR for out-of-domain

3We have run experiments with γ = 0.5, and γ = 0.9984 as Paulus et al. (2017); we report here
the best performance which was obtained with the former.
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R-1 R-2 R-L QAfscore QAconf

See et al. (2017) 39.53 17.28 36.38 - -
Gehrmann et al. (2018) 41.22 18.68 38.34 - -
ML+RL Paulus et al. (2017) 39.87 15.82 36.90 - -
RL Paulus et al. (2017) 41.16 15.75 39.08 - -
Pasunuru and Bansal (2018) 40.43 18.00 37.10 - -
Y.-C. Chen and Bansal (2018) 40.88 17.80 38.54 - -
baseline 42.24 17.78 37.44 14.91 40.12

+ ROUGE 45.62 16.30 41.60 13.64 37.90

+ QAequally 43.36 18.06 38.33 16.06 41.01

+ QAlearned 42.71 17.81 37.94 15.19 41.39

+ QAlearned + TL;DR 42.75 17.57 37.88 15.75 41.54

+ QAlearned + CNN-DM (VAL) 43.00 17.66 38.23 16.16 41.75

+ QAlearned + CNN-DM (TEST) 42.74 17.25 37.96 16.17 42.14

Table 3.2: Comparison with previous works. On top, we report the results ob-
tained by Gehrmann et al. (2018) using their largest architecture, as
well as those by See et al. (2017). Next, we report results recently ob-
tained by reinforcement learning approaches. Finally, we indicate the
scores obtained by our baseline – the “small" model by Gehrmann et al.
(2018) – and the six reinforced models we build on top of it.

data). Thus, for 50% of the data, the model has access only to the QAconf and
QAfscore reward signals, since the ROUGE-L reward can only be computed on
supervised batches.

Therefore, for all the unsupervised setups, in order to keep consistency in the
reward signal throughout the training, we multiply by a factor of 2 the weight
associated with ROUGE-L when this reward is computable, and set it to 0 other-
wise.

3.4.4 Results

In Table 3.2, we report the results obtained from our experiments in comparison
with previously proposed approaches. We observe that, unsurprisingly, reinforc-
ing on ROUGE-L allows to obtain significant improvements over the state-of-the-
art, in terms of ROUGE but at the cost of lower QA-based metrics. Conversely,
reinforcing on the proposed metric improves consistently all its components
(ROUGE-L, QAconf and QAfscore).

However, increasing the reward does not necessarily correlate with better sum-
maries. The human inspection as reported by (Paulus et al. 2017) shows that the
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generated summaries reinforced on ROUGE-L are consistently on the low end in
terms of readability and relevance.

A closer inspection of the generated summaries revealed that the sequences gen-
erated by this model seem to qualitatively degrade as the number of produced
tokens grows: they often start with a reasonable sub-sequence, but quickly di-
verge towards meaningless outputs. This can be explained by the aforementioned
drawbacks of ROUGE, which are likely amplified when used both as evaluation
and reward: the system might be optimizing for ROUGE, at the price of losing
the information captured with the NLL loss by its language model.

We hence conducted a human evaluation for the different setups, reported in
Table 3.3, assessing their outputs for readability and relevance in line with Paulus
et al. (2017). We randomly sampled 50 articles from the CNN-DM test set; since
the learned metric used in our experiments is derived from the subset manually
evaluated in Paulus et al. (2017) we ensured that there was no overlap with it.
For each of those 50 articles, three English speakers evaluated the summaries
generated by the 7 different systems reported in Table 3.2.

We observe that reinforcing using the proposed metric – which includes QA
based metrics, leads to comparable performance in terms of ROUGE w.r.t. state-
of-the-art approaches, while clear benefits emerge from the results of the human
evaluation: a significant improvement in terms of relevance, particularly when
leveraging in-domain data in an unsupervised setup. Not surprisingly, we observe
an improvement for our model when reinforced through the learned metric com-
pared to the one equally weighted. The slightly lower relevance scores observed
for the QAlearned w.r.t. QAequally are consistent with the lower ROUGE-L and
QAfscore reported in Table 3.2. This is explained by the lower coefficients for
ROUGE-L and QAfscore (see 3.3.3), and the relatively stronger correlation of those
two metrics with relevance (see Table 3.1).

Consistently with the figures reported in Table 3.2, the human evaluation results
– reported in Tables 3.3 and 3.4 – confirm the progressive improvements of our
different proposed models when using unsupervised data closer to the test set
documents:

• adding unsupervised data from the out-of-domain TL;DR brings a slight
improvement using QAlearned;

• when it comes to the same domain (i.e. CNN-DM validation) the improve-
ments increase;

• finally, when unsupervised samples come from the same set as those used
for testing, we observe even better results.
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Readability Relevance
human reference 7.27* 7.4**
baseline 7.07 5.82

+ ROUGE 2.14** 5.48**
+ QAequally 5.94** 6.34**
+ QAlearned 6.96 6.21**
+ QAlearned + TL;DR 6.60* 6.26**
+ QAlearned + CNN-DM (VAL) 6.40* 6.75**
+ QAlearned + CNN-DM (TEST) 6.89 6.80**

Table 3.3: Human assessment: two-tailed t-test results are reported for each model
compared to the baseline (∗ : p < .01, ∗∗ : p < .001).
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baseline * / ** -
+ ROUGE ** / ** ** / ** -
+ QAequally ** / ** ** / ** ** / ** -
+ QAlearned ** / ** - / ** ** / ** ** / - -
+ QAlearned + TL;DR ** / ** * / ** ** / ** ** / - * / - -
+ QAlearned + CNN-DM (VAL) ** / ** * / ** ** / ** ** / * ** / ** - / * -
+ QAlearned + CNN-DM (TEST) ** / ** - / ** ** / ** ** / * - / ** - / * * / - -

Table 3.4: Human assessment: two-tailed t-test results are reported for each model
pair for Readability / Relevance (∗ : p < .01, ∗∗ : p < .001).

These results show that using the proposed QA-based metrics, that do not depend
on reference summaries, allows to leverage raw text data; and, that fine-tuning
(without supervision) on the documents to be summarized is beneficial.

To elaborate further, we notice that applying the learned coefficients for 3.1 to
the results obtained by models reinforced on QAlearned and QAequally, see Table 3.2,
we obtain very similar scores (namely, 136.43 for QAequally and 136.4 for QAlearned).
However, the qualitative analysis reported in Tables 3.3 and 3.4 shows that while
they perform similarly in terms of relevance, a significantly lower score for read-
ability is obtained using QAequally. This can be explained by the stronger weight of
ROUGE_L for this setup, a fact which might lead to a degradation of the quality
of the output consistently with the observations reported in (Paulus et al. 2017)
as well as in our ROUGE experiment.
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Another observation from Tables 3.3 and 3.4 is that while QAlearned performs
significantly better in term of readability than QAlearned + CNN-DM (VAL), the
opposite holds for relevance. This could be explained by the setup difference dur-
ing training: as detailed in section 3.4.3.2, for unsupervised setups (i.e. QAlearned +
CNN-DM (VAL)) only the QA-based metrics are computed for the portion of data
for which no reference is available. While testing (TEST) and validation (VAL)
splits come the same dataset (CNN-DM), we observe that using the samples
from TEST in an unsupervised fashion allows for maintaining comparably high
relevance compared to QAlearned + CNN-DM (VAL), while also obtaining similar
readability to QAlearned. This shows the possible benefits that can be obtained by
exposing the model to the evaluation data in unsupervised setups. To further
study our unsupervised metrics, we performed additional experiments on the
TL;DR corpus. We observed more than one absolute point of improvement w.r.t
CNN-DM TEST in terms of ROUGE-L, QAfscore (unsup) and QAconf (unsup).

This indicates that the proposed unsupervised metrics allow the model to better
transfer to new domains such as TL;DR. These results pave the way for leveraging
large numbers of texts, in a self-supervised manner, to train automatic summa-
rization models.

3.5 Conclusions

We have presented the analysis of novel QA-based metrics4, and have shown
promising results when using them as a reward in a RL setup. Crucially, those
metrics do not require a human reference, as they can be computed from the
text to be summarized. From our experiments this proves particularly beneficial,
allowing to leverage both in-domain and out-of-domain unlabeled data.

The promising results obtained indicate a path towards partially self-supervised
training of summarization models, and suggest that progress in automated ques-
tion generation can bring benefits for automatic summarization.

4A python package is available at https://www.github.com/recitalAI/summa-qa.

https://www.github.com/recitalAI/summa-qa
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abstract

Summarization evaluation remains an open research problem: current metrics such
as ROUGE are known to be limited and to correlate poorly with human judgments. To
alleviate this issue, we proposed SumQA in the previous Chapter, an evaluation metric
which relies on question answering models to assess whether a summary contains all the
relevant information in its source document. Though promising, the proposed approach
fails to correlate significantly better than ROUGE with human judgments, preventing it
to be used as a reliable evaluation metric. It nevertheless provided a better RL reward
than ROUGE.

In this Chapter, we extend SumQA and propose a unified framework, named QuestE-

val. In contrast to established metrics such as ROUGE or BERTScore, QuestEval does
not require any ground-truth reference. Nonetheless, QuestEval substantially improves
the correlation with human judgments over four evaluation dimensions (consistency, co-
herence, fluency, and relevance), as shown in extensive experiments. Codes and models
are publicly available.1

• Thomas Scialom, Paul-Alexis Dray, Patrick Gallinari, Sylvain Lamprier, Benjamin
Piwowarski, Jacopo Staiano, Alex Wang. "QuestEval: Summarization Asks for Fact-
based Evaluation" Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP). 2021.

4.1 Introduction

While we have presented SumQA in the previous chapter, an alternative version
has been proposed later by A. Wang et al. (2020).

Although these works have introduced an interesting and novel method to
evaluate summarization, with encouraging preliminary results, none of those
metrics is found to perform better than ROUGE on a large study conducted by
Fabbri et al. (2020): automatic evaluation of summarization systems remains an
open research problem (Kryscinski et al. 2019a).

1https://github.com/ThomasScialom/QuestEval
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Figure 4.1: Illustration of the QuestEval framework: the blue area corresponds
to the precision-oriented framework proposed by A. Wang et al. (2020).
The orange area corresponds to the recall-oriented SummaQA. We
extend it with a weighter component for an improved recall (red area).
The encompassing area corresponds to our proposed unified approach,
QuestEval.

Inspired by these works, and motivated to take up the challenge of summa-
rization evaluation, we propose QuestEval, a new reference-less metric, which
is found to improve the correlation with humans judgments. Our contributions
are as follows:

• We show that, by unifying the precision and recall-based QA metrics (as
defined in Section 4.3), we obtain a more robust metric;

• We propose a method to learn the saliency of the generated queries, allowing
to integrate the notion of information selection;

• We evaluate QuestEval on two corpora containing annotated summaries
from CNN/Daily Mail and XSUM datasets. The proposed metric obtains
state-of-the-art results in terms of correlation with humans judgments, over
all the evaluated dimensions. Notably, QuestEval is effective at measur-
ing factual consistency, a crucial yet challenging aspect for summarization.
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4.2 A Question-Answering based Framework

The QuestEval framework we introduced in this Chapter accounts for both factual
consistency and relevance of the generated text, without requiring any human
reference. QuestEval consists of a Question Generation component QG and a
Question Answering component QA, described in this section and depicted in
Figure 4.1.

4.2.1 Question Answering

There has been significant progress on factoid question answering after the ex-
periments conducted in the previous chapter. Models have obtained human-level
performance on benchmarks such as SQuAD (Rajpurkar et al. 2016). Leveraging
on these advancements, our QA component consists of a pretrained T5 model
(Raffel et al. 2019), which generates answers from a source document given a
question to answer. In the following, we refer to QA(r|T, q) as the probability
of the answer r to question q on a text T , and QA(T, q) as the answer greedily
generated from the model.

When a summary is evaluated, there is no guarantee that it contains the answer.
Therefore, it is crucial for the QA model to be able to predict when a question is
unanswerable. Our QA component thus includes the unanswerable token, that we
denote ϵ, among its possible outputs.

4.2.2 Question Generation

For the QG component, rather than simply masking tokens as described in the
previous Chapter, we draw on recent work on neural answer-conditional question
generation (Q. Zhou et al. 2017). The component also consists of a T5 model, fine-
tuned to maximize the likelihood of human questions, given the corresponding
answer and source document.

At test time, given a source document or generated summary, we first select a set
of answers from the text to condition the QG model on. Following A. Wang et al.
(2020), we consider all the named entities and nouns from the source document as
answers. Then, for each selected answer, we generate a question via beam search.2

2We experimented with nucleus sampling (Holtzman et al. 2019) to increase diversity of the
questions, with no success.
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We filter out every question for which the QA model predicts an incorrect
answer. Based on this, we denote QG(T ) the set of question-answer pairs (q, r) for
a text T such that QA(T, q) = r.

4.3 The QuestEval metric

Now that we have specified how to generate questions and answer them, we
describe the metric. In the following, D and S are two sequences of tokens with
D denoting the source document and S the corresponding evaluated summary.

4.3.1 Precision

A summary is deemed inconsistent w.r.t. its source text if, given a question, the
answer differs when conditioned on S or D. Therefore, we define the precision
score for the evaluated summary as:

Prec(D,S) =
1

|QG(S)|
∑

(q,r)∈QG(S)

F1(QA(D, q), r) (4.1)

The F1 score is a standard metric for evaluating factoid question answering
models, and measures the overlap between the predicted answer and the corre-
sponding ground truth. It outputs 1 for an exact match between both answers and
0 if there is no common token. This definition of factual consistency corresponds
to the frameworks proposed by A. Wang et al. (2020) and Durmus et al. (2020).

4.3.2 Recall

While a summary should contain only factual information (precision), it should
also contain the most important information from its source text (recall). Extend-
ing SumQA by introducing a query weighter W , we define recall as:

Rec(D,S) =

∑
q,r∈QG(D)

W (q,D)(1−QA(ϵ|S, q))∑
q,r∈QG(D)

W (q,D)
(4.2)

where QG(D) is the set of all question-answer pairs for the source text D, and
W (q,D) is the weight of query q for text D.

While F1 is accurate, measuring the overlap between the predicted answer
and the corresponding ground truth (Rajpurkar et al. 2016). However, an answer
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could be correctly expressed in different ways, e.g. “ACL” and “Association for
Computational Linguistics”. Unfortunately, the F1 score is 0 in this example.

To sidestep this issue, SumQA use the QA confidence of answerability, i.e.
1 − QA(ϵ), rather than F1 score. Defining recall this way allows to measure an-
swerability independently of the way the answer is expressed, but does not take
into account possible model hallucinations, i.e. the summary could answer the
question incorrectly.

Conversely, when we assess factual consistency, it is not enough for a question
from the summary to be answerable from the source document. The two answers
to this question should also share the same meaning to be factually consistent. While
using answerability allows for more true positives (e.g. “ACL” in the example
above), for precision it is crucial to detect true negatives. This motivates our use
of the F1 score in this case, similar to A. Wang et al. (2020).

Query Weighting In SumQA, all questions are considered equally important,
i.e. the weight W (q,D) = 1 for every query q ∈ QG(D). However, since a summary
necessarily has a constrained length, an effective summary should contain the
most important information from the source. To account for this, we introduce
a question weighter, which is trained to distinguish important questions from
anecdotal ones. We leverage existing summarization datasets to create training
data for the weighter: given a source document D, each question q ∈ QG(D) is
labeled as important if the corresponding human summary contains the answer,
as computed by the QA component applied on the summary (i.e. QA(S, q) ̸= ϵ).

W (q,D) denotes the probability that q is important for D. Note that the ques-
tion weighter only concerns recall, and therefore is not applied when computing
precision.

4.3.3 Unifying Precision and Recall

The final QuestEval score accounts for both the precision and recall by com-
puting their harmonic mean (i.e. the F-Score): 2 Prec·Rec

Prec+Rec
. The QuestEval score

is thus directly comparable with existing evaluation metrics, such as ROUGE or
BLEU, as it lies in the same numerical range.



40 questeval : questions to evaluate

#Ref Consistency Coherence Fluency Relevance Average
ROUGE-1 11 18.1 20.1 14.9 35.6 22.2
ROUGE-L 11 15.7 15.6 13.8 33.4 19.6
METEOR 11 3.3 2.9 7.1 -0.5 3.2
BLEU 11 17.5 22. 13.7 35.6 22.2
BERTScore-f 11 20.3 18.5 21.6 31.9 23.1

ROUGE-1 1 11.0 9.8 7.5 18.9 11.8
ROUGE-L 1 8.2 7.3 5.7 13.5 8.7
BLEU 1 8.9 3.9 4.0 12.7 7.4
BERTScore-f 1 8.7 9.8 10.6 17.9 11.8

SummaQA 0 8.3 8.0 -2.9 26.2 9.9
QAGS (our impl.) 0 20.4 7.7 16.8 9.1 13.7

QuestEvalW=uniform 0 43.7 22.9 28.2 37.5 33.1
w/o QA neg sampl. 0 42.5 22.5 27.7 37.2 32.4

QuestEvalW=learned 0 42.0 24.0 28.4 39.2 33.5
Precision Only 0 46.5 14.0 30.9 22.2 28.4

Recall Only 0 30.5 22.6 19.2 37.6 27.5
NewsQA 0 40.6 22.8 27.7 38.3 33.5

Table 4.1: Summary-level Pearson correlation coefficients for various dimensions
between automatic metrics and human judgments on SummEval. The
top section corresponds to correlations for metrics computed on 11 ref-
erence summaries, as reported in Fabbri et al. (2020). The second section
corresponds to these metrics, but given only one reference: each of the
11 available references is used alone, and the correlations averaged. The
third section corresponds to the QA-based baselines. The bottom sec-
tion corresponds to QuestEval and its ablations.

4.4 Experiments

4.4.1 Summarization Datasets

To evaluate QuestEval, we measure its correlation with human judgments on
different datasets:

SummEval Released by Fabbri et al. (2020), it is one of the largest human-
annotated datasets for summarization. Derived from CNN/Daily Mail (Nallapati
et al. 2016), it consists of 12,800 summary level annotations. To ensure diver-
sity, the summaries were generated from 16 different summarization models,
including extractive and abstractive architectures. To assess quality, three experts
annotated four dimensions: i) Consistency: the proportion of facts in the summary
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corresponding to facts in the original text; ii) Coherence: how well-structured and
well-organized is the summary; iii) Fluency: how fluent the summary is to read;
and, iv) Relevance: the ratio between important and excess information in the
summary.3

QAGS-XSUM A. Wang et al. (2020) released a subset of 239 BART outputs
fine-tuned on XSUM (Narayan et al. 2018a).4 Three annotators measured the
consistency of each summary.

4.4.2 Question Answering & Generation

To train our QG and QA models, we used the SQuAD-v2 (Rajpurkar et al. 2018)
factoid question answering dataset: it is composed of (paragraph, question, an-
swer) triplets, and includes unanswerable questions. Note that QG can be seen
as the dual task for QA: any QA dataset can be used for QG by switching the
generation target from the answer to the question.

Lastly, we found it helpful to train our QA model using additional synthetic
unanswerable questions. This is done by considering a shuffled version of the
dataset, where each question is randomly assigned to a paragraph from another
triplet of the dataset. We consider these additional samples, with flipped contexts,
as unanswerable. All experiments in this work, except otherwise specified, use
this additional data to improve identification of unanswerable queries.

4.4.3 Results

In Tables 4.1 and 4.2 we report the results for QuestEval, along with several
ablations. W = uniform corresponds to setting all questions weights equal. Con-
versely, W = learned corresponds to the weights learned as detailed in §4.3.2. We
report the recall and precision components separately. Finally, for W = learned,
we also report the results given a QA and QG component trained on NewsQA
(Trischler et al. 2016), i.e. a different domain than SQuAD.

In Table 4.1, we observe that, amongst existing metrics, BERTScore achieves the
best average Pearson correlation with human judgements (23.1), slightly above
ROUGE-1 (22.2) and BLEU (22.2). These correlations are obtained when providing
no less than 11 gold references, and averaging results. Given a single reference,
all these correlations are halved. Most of the large scale datasets provide only

3See 4.3 Human Annotations in Fabbri et al. (2020) for more details.
4Note that XSUM provides more abstractive summaries than those of CNN/Daily Mail.
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Metric Consistency

ROUGE-1 13.2
ROUGE-L 8.9
METEOR 10.0
BLEU 5.6
BERTScore 2.5

SummaQA -
QAGS 17.5

QuestEvalW=uniform 30.4
w/o QA neg sampl. 28.5

QuestEvalW=learned 29.0
Precision Only 32.7

Recall Only 13.9
NewsQA 28.2

Table 4.2: Summary-level Pearson correlation coefficients for Consistency between
various automatic metrics and human judgments on QAGS-XSUM. The
top section corresponds to correlations for diverse metrics computed on
one reference summary. The middle section corresponds to QA-based
baselines. The bottom section corresponds to this work.

one reference per example in their test set (e.g. CNN/Daily Mail and XSUM),
a fact that highlights the importance of searching for more reference-efficient
alternatives.

With regards to sample efficiency, QA-based metrics do not require any references.
We expect Relevance to be better measured by Recall oriented metrics, and less
so for Consistency. This is confirmed in the results, where SummaQA correlates
better with Relevance than Consistency (26.2 vs 8.3), and vice versa for QAGS
(9.1 vs 20.4). By unifying and extending the two, QuestEval allows to take both
dimensions into account, improving the average correlation by 18% (28.4 to 33.5).

The dimension benefiting the most from our question weighter is Relevance
(+4%, from 37.5 to 39.2), indicating that our classifier learns which questions target
important information. We discuss this aspect more in depth in section 4.4.4.

Finally, we do not observe significant differences when using a QA and QG
specifically trained on NewsQA. In conclusion, compared to the other metrics,
the improvement is remarkable (33.5 vs 11.8 for BERTScore), allowing better
evaluations of the systems while not even requiring references.

4.4.4 Discussion
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Figure 4.2: Variation of the Pearson correlations between various metrics and
humans, versus the number of references available. QuestEval is
constant, since it is independent from the references.
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important answered Relevance Corr.

✓ ✓ 37.6
✓ ✗ -33.5
✗ ✓ -5.7

Table 4.3: Pearson correlation coefficients between human judgments (for Rele-
vance) and the percentage of important and/or answered questions, on
SummEval data.

Reference-less One of the main limitations for the current metrics is that they
require gold references to compute similarity scores. However, many possible
summaries are valid for one source document. We argue that the universe of
correct outputs is much larger than in other generation tasks such as machine
translation. This explains why the correlations with human judgments are largely
reduced when they are computed with only one reference instead of 11 (see
Table 4.1: BERTScore-f drops from 23.1 to 11.8 in average, and other metrics like-
wise). Unfortunately, assuming the availability of as many as 11 gold references is
not realistic in most scenarios, due to the cost of obtaining reference summaries.

To complement Table 4.1, we report in Figure 4.2 the correlations for the best
baselines as we progressively decrease the number of available gold references
from 11 to 1. For all four dimensions and all the baselines, we observe that
less references result in decreased correlation and increased variance. However,
QuestEval does not require any reference. Therefore, the improvement over the
other metrics grows larger as the number of references used decreases. Further-
more, QuestEval enables the evaluation of systems even when no gold reference
is available.

Query Weighter There is no unique answer to the question “What makes a
good summary?”: it depends on the reader’s point of view, which makes sum-
marization evaluation challenging. For instance, given a contract, the seller and
the buyer could be interested in different information within the same document.
To instantiate the weighter W , we learn a specific dataset policy: “what kind of
questions are likely answered in the CNN/Daily Mail training summaries?" This
is a reasonable heuristic given that editors created the summaries following their
specific policy.

To demonstrate the effectiveness of the weighter, we proceed as follows. We
first consider that a question q ∈ QG(D), generated on the source document, is
important if the probability given by the query weighter is above a threshold, i.e. if
W (D, q) > 0.5. We then say that a question is answered if the probability of being
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Source Document This is the embarrassing moment a Buckingham Palace guard
slipped and fell on a manhole cover in front of hundreds of shocked tourists as
he took up position in his sentry box. [...] The Guard comprises two detachments,
one each for Buckingham Palace and St James’s Palace, under the command of the
Captain of The Queen’s Guard.
Generated Question Where was the Changing of the Guard held?
Weighter prediction Important Question
Answer Span Buckingham Palace

Correct Summary The Queen’s Guard slipped on a manhole cover during the Chang-
ing of the Guard at Buckingham Palace last week. [...]
Predicted Answer Buckingham Palace: ✓

Hallucinated Summary The Queen’s Guard slipped on a manhole cover during the
Changing of the Guard at St James’s Palace last week. [...]
Predicted Answer St James’s Palace: ✗

Incomplete Summary The Queen’s Guard slipped on a manhole cover during the
Changing of the Guard during an embarrassing moment.. [...]
Predicted Answer Unanswerable: ✗

Table 4.4: Sample output from QuestEval: a generated question, it’s predicted
importance given a source document; the corresponding predicted an-
swers to the question, for three different summaries.

unanswerable is below a threshold, i.e. QA(ϵ|S, q) < 0.5. Therefore, a question
can belong to one of four folds, given the two above criteria (important and/or
answered). In Table 4.3, we measure how the percentage of questions belonging
to a specific fold correlates with the Relevance dimension for each generated
summary on SummEval. We observe that the percentage of questions that are
important and answered correlates positively with Relevance, as opposed to the
percentage of questions that are important but not answered. Finally, the percentage
of questions that are answered but not important does not correlate with Relevance.
This indicates that the proposed approach is able to learn what are the questions
that should be asked or not.

We emphasize that W is a flexible component of our framework: it can be
adapted to specific domains and applications. For instance, one could design a
specific W , to focus the evaluation on information about specific entities, such as
people or events.

An Explainable Metric One important feature of QuestEval is its explain-
ability. It is straightforward to investigate 1) what are the important points not
answered in the summary and 2) what are the inconsistencies between the source
document and the summary. We illustrate this in Table 4.4, with a source doc-
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Figure 4.3: Distribution of the log probabilities of answerability – i.e. log(1 −
QA(ϵ|T, q)) – for two QA models. 1) solid lines: a model trained on
SQuAD-v2 without the negative sampled examples. 2) dashed lines: a
model trained on SQuAD-v2 with the negative sampled examples. The
evaluated samples belong to three distinct categories: 1) answerable,
2) unanswerable questions (but present in SQuAD-v2) and 3) the neg-
atively sampled ones (as described in §4.4.1).

ument, from which a question q is generated and answered. According to the
weighter W , q is categorized as important. Three evaluated summaries are then
shown.

The first summary Scorrect is factually consistent with the source document:
the predicted answer QA(Scorrect, q) corresponds to the source document answer
Buckingham Palace. The second summary Shallu is inconsistent with the source
document: the predicted answer QA(Shallu, q) does not correspond to Buckingham
Palace. Finally, the third summary S incomplete does not answer the question, i.e.
QA(Sincomplete, q) = ϵ, and is thus incomplete.

Negative Sampling Effect In Tables 4.1 and 4.2, we observe a decrease of
performance when QuestEval uses a QA model trained without negative sam-



4.4 experiments 47

pling (see Section 4.4.2), from 33.3 to 32.4 on SummEval and from 30.4 to 28.5 on
QAGS-XSUM. In Figure 4.3, we report the distribution of the log probabilities for
the two QA models, trained with and without negative sampling. The QA model
exposed to the negative sampling during training, learns to separate better the
negative sampled questions (for negative, i.e. red lines, the dashed line is more
on the left than the solid line).

Indeed, the unanswerable questions of SQuAD-v2 were written adversarially
by crowd-workers, to look similar to answerable ones. However, in the context of
QuestEval, unanswerable questions are not adversarial: it simply often happens
that the summary does not contain the answer. Therefore, QuestEval deals in
practice with unanswerable questions that look like those built with negative
sampling, rather than adversarial ones. This may explain the improvement of a
QuestEval with a QA model trained with negative sampling.
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Figure 4.4: Pearson correlation with humans on SummEval w.r.t. the QG beam
size.

Computational Complexity Following A. Wang et al. (2020), we generate the
questions with K = 20 beams during decoding and we keep all the different
versions of the questions in the latter steps, which improves correlations. How-
ever, the downside of this is the inference time which increases linearly w.r.t the
beam size. To be widely adopted, a metric should not only correlate with human
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judgment, but also be computationally efficient. In Figure 4.4 we show the vari-
ation of the average correlation with respect to the beam size. The improvement
from K = 1 to K = 20 is small (34.4 to 35.6), and the rank order for the different
systems remains unchanged. Therefore, we believe that using QuestEval with
K = 1 is a reasonable choice, allowing for fast computation while preserving
satisfying correlation with human judgments.

Computational Complexity We believe it is important to develop effective meth-
ods before finding ways to speed them up. Despite being slower than ROUGE,
QuestEval correlates much better with human judgments while not needing actual
human annotators. The current running time with a single RTX 2080 is 2.53sec
per document on average on CNN/DM.

Now that QuestEval effectiveness is confirmed, we plan to focus in future
work on speeding up its implementation. Distilled models seems a promising
direction.5

Moreover, a large space for improvement is possible with implementation tricks,
e.g. caching the results, since always the same questions are generated. In partic-
ular, what takes most of the time is the generation of the questions on the source
document: 1) it is an autoregressive process, and 2) the source document is longer
than the summary, hence contains more questions. However, those questions are
required to be generated only once and for all, since the source document remains
unchanged. By removing it we lower the computation to 1.82sec/doc. We plan to
release an optimised version of QuestEval, including caching ability, as well as re-
leasing all the questions on the development and test sets for XSUM & CNN/DM,
which will reduce the computation cost for future evaluation.

4.5 QuestEval beyond Summarization

In this Chapter, we presented the QuestEval framework applied to evaluate Sum-
marization. However, while beyond the scope of this thesis, QuestEval could
naturally be used as it as a general NLG metric.

In (Scialom et al. 2021), we applied QuestEval to Text Simplification, obtaining
state-of-the-art results.

Beyond Text modality, we could even extend the implementation to a multi-
modal setup, where we would compare not only texts but any kind of objects. We
explored such scenarios in (Rebuffel et al. 2021) and (H. Lee et al. 2021), where
we applied QuestEval to Table To Text and Image Captioning tasks respectively.

5https://efficientqa.github.io/assets/report.pdf

https://efficientqa.github.io/assets/report.pdf
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Beyond English, other languages are characterized by different morphological
structures. Token-level metrics can be very sensitive to such structures: for in-
stance, they are not suitable to evaluate agglutinative languages like Korean (D.
Lee et al. 2020). Conversely, QuestEval could conceptually fit any morphologi-
cal structure.

Toward this multilingual QuestEval, we need 1) mutlilingual corpus, and 2)
mutlingual QA/QG models. To this purpose, in (Scialom et al. 2020), we released
MLSUM, the first multilingual Summarization corpus. In (Riabi et al. 2020), we
proposed a method to improve multilingual QA and QG models. We hope that
these contributions will help to build an efficient multilingual QuestEval.

4.6 Conclusion

We proposed QuestEval, a new reference-less framework to evaluate summa-
rization models, which unifies previous QA-based approaches and extends them
with question weighting, accounting all in one for factual consistency, relevance
and information selection.

Compared to existing metrics, we find that QuestEval correlates dramati-
cally better with human judgments, while at the same time not requiring any
reference. This allows for more accurate comparison between systems. Moreover,
any progress in question answering and generation can directly be applied within
our proposed framework, leading to additional improvements. We make the code
available with the hope that it will contribute to further progress in the field.

Leveraging on this public release, we note that in a very recent work, Gu-
nasekara et al. (2021) already proposed to train summarization systems via RL,
using QuestEval as a reward. According to their results, it leads to 30% reduction
in terms of hallucination.
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abstract

In this Chapter, we introduce a novel approach for sequence decoding, Discriminative
Adversarial Search (DAS), which has the desirable properties of alleviating the effects of
exposure bias without requiring external metrics. Inspired by Generative Adversarial
Networks (GANs), wherein a discriminator is used to improve the generator, our method
differs from GANs in that the generator parameters are not updated at training time and
the discriminator is only used to drive sequence generation at inference time.

We investigate the effectiveness of the proposed approach on the task of Abstractive
Summarization: the results obtained show that DAS improves over the state-of-the-art
methods, with further gains obtained via discriminator retraining. Moreover, we show
how DAS can be effective for cross-domain adaptation. Finally, all results reported are
obtained without additional rule-based filtering strategies, commonly used by the best
performing systems available: this indicates that DAS can effectively be deployed without
relying on post-hoc modifications of the generated outputs.

• Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski,
Benjamin and Staiano, Jacopo. "Discriminative Adversarial Search for Abstractive
Summarization". Proceedings of the 37th International Conference on Machine
Learning (ICML). 2020.

5.1 Introduction

In the previous chapters, we discussed how to alleviating the exposure bias, by
optimizing a sequence level metric. How well does the optimised metric reflect
human judgement is crucial to the success of the resulting model. Our proposed
metrics based on Question Answering, SumQA and its extension, QuestEval,
perform favorably compared to BLEU or ROUGE. Arguably, though, they do not
perfectly reflect human judgments, which limits the potential of their applications
as a reward.

To tackle the exposure bias, Generative Adversarial Networks (GANs) (Good-
fellow et al. 2014) represent a natural alternative to the proposed approaches:

51
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rather than learning from a specific metric, the model learns to generate text that
a discriminator cannot differentiate from human-produced content. However, the
discrete nature of text makes the classifier signal non-backpropagable from the
discriminator to the generator. A solution is to use reinforcement learning, with
the classifier prediction as a reward signal. However, due to reward sparsity and
mode collapse (W. Zhou et al. 2020), text GANs failed so far to be competitive
with state-of-the-art models trained with teacher forcing on NLG tasks (Caccia
et al. 2018; Clark et al. 2019), and are mostly evaluated on synthetic datasets.

Inspired by Generative Adversarial Networks, we propose an alternative ap-
proach for sequence decoding: first, a discriminator is trained to distinguish
human-produced texts from machine-generated ones. Then, this discriminator
is integrated into a beam search: at each decoding step, the generator output
probabilities are refined according to the likelihood that the candidate sequence
is human-produced. This is equivalent to optimize the search for a custom and
dynamic metric, learnt to fit the human examples.

Under the proposed paradigm, the discriminator causes the output sequences
to diverge from those originally produced by the generator. These sequences,
adversarial to the discriminator, can be used to further fine-tune the discrimina-
tor: following the procedure used for GANs, the discriminator can be iteratively
trained on the new predictions it has contributed to improve. This effectively
creates a positive feedback loop for training the discriminator: until convergence,
the generated sequences improve and become harder to distinguish from human-
produced text. In contrast to standard sequence GAN approaches, there is no
divergence in our proposed process. Additionally, our approach allows to dis-
pense of custom rule-based strategies commonly used at decoding time such as
length penalty and n-gram repetition avoidance.

In GANs, the discriminator is used to improve the generator and is dropped at
inference time. Our proposed approach differs in that, instead, we do not modify
the generator parameters at training time, and use the discriminator at inference
time to drive the generation towards human-like textual content.

The main contributions presented in this Chapter can be summarized as:

1. we propose Discriminative Adversarial Search (DAS), a novel sequence de-
coding approach that allows to alleviate the effects of exposure bias and to
optimize on the data distribution itself rather than for external metrics;

2. we apply DAS to the abstractive summarization task, showing that even
without the self-retraining procedure, our discriminated beam search proce-
dure improves over the state-of-the-art for various metrics;

3. we report further significant improvements when applying discriminator
retraining;
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4. finally, we show how the proposed approach can be effectively used for
domain adaptation.

5.2 Discriminative Adversarial Search

The proposed model is composed of a generator G coupled with a sequential
discriminator D: at inference time, for every new token generated by G, the score
and the label assigned by D is used to refine the probabilities, within a beam
search, to select the top candidate sequences.

While the proposed approach is applicable to any Natural Language Generation
(NLG) task, we focus on Abstractive Summarization.

Generator Abstractive summarization is usually cast as a sequence to sequence
task:

Pγ(y|x) =
|y|∏
t=1

Pγ(yt|x, y1:t−1) (5.1)

where x is the input text, y is the summary composed of y1...y|y| tokens and γ

represents the parameters of the generator. Under this framework, an abstractive
summarizer is thus trained using article (x) and summary (y) pairs (e.g., via
log-likelihood maximization).

Discriminator The objective of the discriminator is to label a sequence y as
being human-produced or machine-generated. We use the discriminator to obtain a
label at each generation step, rather than only for the entire generated sequence.
For simplicity, we cast the problem as sequence to sequence, with a slight modifi-
cation from our generator: at each generation step, the discriminator, instead of
predicting the next token among the entire vocabulary V , outputs the probability
that the input summary was generated by a human.

Learning the neural discriminator Dδ, using parameters δ, corresponds to the
following logistic regression problem:

1

|H|
∑

(x,y)∈H

log(Dδ(x, y)) +
1

|G|
∑

(x,y)∈G

log(1−Dδ(x, y)) (5.2)

where H and G are sets of pairs (x, y) of all texts x ∈ X to be summarized
associated to any sub-sequence y (from start to any token index t), respectively
taken from ground truth summaries and generated ones:

H = {(xi, y1:t)|xi ∈ X ∧ y ∈ H(xi) ∧ t ≤ |y|}
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G = {(xi, y1:t)|xi ∈ X ∧ yi ∈ G(xi) ∧ t ≤ |y|}

where xi stands as the i-th text from the training set X and H(xi) and G(xi)

respectively correspond to the associated human-written summary and the set of
every generated summary for text xi.

We refer to Dδ as a sequential discriminator, since it learns to discriminate for
any partial sequence (up to the t tokens generated at step t) of any summary y.
We cut all the summaries to T = 140 tokens if longer, consistently with previous
works (Dong et al. 2019).

5.2.1 Discriminative Beam Reranking

At inference time, the aim is usually to maximize the probability of the output y
according to the generator (Eq. 5.1). The best candidate sequence is the one that
maximizes Pγ(y|x). The beam search procedure is a greedy process that iteratively
constructs sequences from y1 to yn, while maintaining a pool of B best hypotheses
generated so far at each step to allow exploration (when B > 1). At each step
t, the process assigns a score, for every sub-sequence y1:t−1 from the pool B, to
every candidate new token yt from the vocabulary V :

Sgen(ŷ) = logPγ(y1:t−1|x) + logPγ(yt|x, y1:t−1)

where ŷ results from the concatenation of a new token yt at the end of a se-
quence y1:t−1. The B sequences ŷ with best Sgen(ŷ, x) scores are kept to form the
pool of hypotheses at next step. Finally, when all sequences from B are ended
sequences (with the end token $ as the last token ŷ−1), the one with best Sgen score
is returned. The beam size B corresponds to an hyper-parameter which enables
to control exploration and complexity of the process. It ranges between 1 and 5

in the literature.

In our method, we propose a new score SDAS to refine the score Sgen during
the beam search w.r.t. the log probability of the discriminator, such that:

SDAS(ŷ) = Sgen(ŷ) + α× Sdis(ŷ)

where Sdis(ŷ) = log(Dδ(x, ŷ) is the discriminator log-probability that the se-
quence ŷ is human-written; α ≥ 0 is used as a weighting factor. While theoretically
such scores could be computed for the entire vocabulary, in practice applying the
discriminator to all of the |V | × B candidate sequences ŷ at every step t would
be too time-consuming. For complexity purposes, we thus limit the re-ranking to
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Figure 5.1: Algorithm 1 DAS: a Beam Search algorithm with the pro-posed dis-
criminator re-ranking mechanism highlighted.

len_src len_tgt abstr. (%)
CNN/DM 810.69 61.04 10.23

TL;DR 248.95 30.71 36.88

Table 5.1: Statistics of CNN/DM and TL;DR summarization datasets. We report
length in tokens for source (len_src) and summaries (len_tgt). Abstrac-
tiveness (abstr.) is the percentage of tokens in the target summary, which
are not present in the source article.

the pool of the Krerank sequences with best Sgen(ŷ, x) score, as detailed in Algo-
rithm 5.1.

5.2.2 Retraining the Discriminator

Under the proposed paradigm, as mentioned in Section 5.1, the discriminator can
be fine-tuned using the outputs which were found improved via the re-ranking
(see Eq. 5.2.1). Hence, inspired by the GAN, we iteratively retrain the discriminator
given the new predictions until convergence. We detail the retraining procedure
in Figure 5.2. As illustrated, the learning signal is provided to the discriminator in
a positive feedback loop until convergence, enabling to improving the generation
process that combines both the Generator and the Discriminator.

5.3 Experimental Protocol
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Figure 5.2: DAS self-training procedure: the generated examples are improved
by the discriminator, and then fed back to the discriminator in a self-
training loop.

Datasets Consistently with the previous Chapters, we use the CNN/Daily
Mail (CNN/DM) dataset (Hermann et al. 2015; Nallapati et al. 2016), one of most
popular datasets for summarization. For fair comparison, we used the exact same
dataset version as previous works (See et al. 2017; Gehrmann et al. 2018; Dong
et al. 2019).1

Furthermore, to assess the possible benefits of the proposed approach in a
domain adaptation setup, we conduct experiments on TL;DR, a large scale sum-
marization dataset built from social media data (Völske et al. 2017a). We choose
this dataset for two main reasons: first, its data is relatively out-of-domain if
compared to the samples in CNN/DM; second, its characteristics are also quite
different: compared to CNN/DM, the TL;DR summaries are twice shorter and
three times more abstractive, as detailed in Table 5.1. The training set is composed
of around 3M examples and publicly available,2 while the test set is kept hidden
because of public ongoing leaderboard evaluation. Hence, we randomly sampled
100k examples for training, 5k for validation and 5k for test. For reproducibility
purposes, we make the TL;DR split used in this work publicly available.

Generator We build upon the Unified Language Model for natural language
understanding and generation (UniLM) proposed by Dong et al. (2019); it is the
current state-of-the-art model for summarization.3 This model can be described

1Publicly available at https://github.com/microsoft/unilm#abstractive-summarization-
--cnn--daily-mail

2https://zenodo.org/record/1168855
3Code and models available at https://github.com/microsoft/unilm#abstractive-

summarization---cnn--daily-mail

https://github.com/microsoft/unilm#abstractive-summarization---cnn--daily-mail
https://github.com/microsoft/unilm#abstractive-summarization---cnn--daily-mail
https://zenodo.org/record/1168855
https://github.com/microsoft/unilm#abstractive-summarization---cnn--daily-mail
https://github.com/microsoft/unilm#abstractive-summarization---cnn--daily-mail
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as a Transformer (Vaswani et al. 2017) whose weights are first initialised from
BERT. However, BERT is an encoder trained with bi-directional self attention: it
can be used in Natural Language Understanding (NLU) tasks but not directly
for generation (NLG). Dong et al. (2019) proposed to unify it for NLU and NLG:
resuming its training, this time with an unidirectional loss; after this step, the
model can be directly fine-tuned on any NLG task.

For our ablation experiments, to save time and computation, we do not use
UniLM (345 million parameters). Instead, we follow the approach proposed by
the authors (Dong et al. 2019), with the difference that 1) we start from BERT-base
(110 million parameters) and 2) we do not extend the pre-training. We actually
observed little degradation than when starting from UniLM. We refer to this
smaller model as BERT-gen. For our final results we instead use the exact same
UniLM checkpoint made publicly available by Dong et al. (2019) for Abstractive
Summarization.

Discriminator As detailed in Section 5.2, the discriminator model is also based
on a sequence to sequence architecture. Thus, we can use again BERT-gen, initial-
izing it the same way as the generator. The training data from CNN/DM is used
to train the model; for each sample, the discriminator has access to two training
examples: the human reference and a generated summary.

Hence, the full training data available for the discriminator amounts to ∼ 600k

total examples. However, as detailed in the following Section, the discriminator
does not need a lot of data to achieve a high accuracy. Therefore, we only used
150k training examples, split into 90% for training, 5% for validation and 5%
for test. Unless otherwise specified, this data is only used to train/evaluate the
discriminator.

5.4 Preliminary study

High discriminator accuracy is of utmost importance for DAS to improve the
decoding search. In Fig. 5.3 we plot the discriminator accuracy against the gener-
ation step t, with t corresponding to the prediction for the partial sequence of the
summary, y1, ..., yt (see Eq. 5.2). As an ablation, we report the accuracy for a dis-
criminator which is not given access to the source article x. As one would expect,
the scores improve with higher t, from 65% for t = 1 to 98% for t = 140: the longer
the sequence y1, ..., yt of the evaluated summary, the easier it is to discriminate it.
This observed high accuracy indicates the potential benefit of using the discrimi-
nator signal to improve the generated summaries. When trained without access to
the source article x (orange plot), the discriminator has access to little contextual
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Figure 5.3: Accuracy of two discriminators: one is given access to the source
context x while the other is not. The x-axis corresponds to the length
of the discriminated sub-sequences.

and semantic information and its accuracy is lower than a discriminator who has
access to x. In Fig. 5.3, the shaded area between the two curves represents the
discrimination performance improvement attributed to using the source article
x. It increases for 1 ≤ t ≤ 40 and starts shrinking afterwards. After t = 60, cor-
responding to the average length of the human summaries (see Table 5.1), the
performance of the discriminator without context quickly increases, indicating
that the generated sequences contain relatively easy-to-spot mistakes. This might
be due to the increased difficulty for the generator to produce longer and correct
sequences, as errors may accumulate over time.

Krerank DAS-single DAS-retrain
1 (BERT-gen) 27.70±0.3 27.70±0.3

BL
EU

-1

5 27.51±0.3 29.70±0.3
10 29.18±0.3 29.81±0.2
1 (BERT-gen) 11.71±0.1 11.71±0.1

∆
no

v-
1

5 11.22±0.1 10.05±0.2
10 10.83±0.3 9.82±0.1
1 (BERT-gen) -9.84±0.1 -9.84±0.1

∆
le

n

5 -7.24±0.1 -3.05±0.1
10 -3.14±0.1 -1.42±0.1
1 (BERT-gen) -21.49±1.2 -21.49±1.2

∆
re

p-
3

5 -17.54±0.5 -11.26±0.4
10 -13.77±0.8 -10.45±0.4

Table 5.2: Scores obtained with varying Krerank

Impact of Krerank and α To assess the behavior of DAS, we conducted experi-
ments with BERT-gen for both the generator and the discriminator using different
values for α and Krerank. All models are trained using the same training data
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from CNN/DM, and the figures reported in Tables 5.2 and 5.3 are the evaluation
results averaged across 3 runs on three different subsets (of size 1k) randomly
sampled from the validation split. We compare i) BERT-gen, i.e. the model without
a discriminator, ii) DAS-single, where the discriminator is not self-retrained, and
iii) DAS-retrain, where the discriminator is iteratively retrained. As previously
mentioned, for the repetition, novelty and length measures, we report the differ-
ence w.r.t. human summaries: the closer to 0 the better – 0 indicates no difference
w.r.t. human.

The parameter Krerank corresponds to the number of explored possibilities by
the discriminator (see Sec. 5.2.1). With Krerank = 1, no reranking is performed, and
the model is equivalent to BERT-gen. From Table 5.2, for which we set α = 0.5, we
observe that both increasing Krerank and retraining the discriminator help to better
fit the human distribution (i.e. lower ∆): compared to BERT-gen, DAS models
generate more novel words, are shorter and less repetitive, show improvements
over the base architecture, and also obtain performance gains in terms of BLEU.

Table 5.3 reports results for DAS models for Krerank = 10 while varying α. α
controls the impact of the discriminator predictions when selecting the next token
to generate (see Eq. 5.2.1). With α = 0, the discriminator is deactivated and only
the generator probabilities Sgen are used (corresponding to Eq. 5.1): the model
is effectively equivalent to BERT-gen. Consistently with the results obtained for
varying Krerank, we observe: DAS-retrain > DAS-single > BERT-gen for α ̸= 5.
However, when α = 5, BLEU scores decrease. This could indicate that a limit was
reached: the higher the α, the more the discriminator influences the selection of
the next word. With α = 5 generated sequences are too far from the generator
top-p probabilities, selected tokens at step t do not lead to useful sequences in the
best Krerank candidates at the following steps. The generation process struggles
to represent sequences too far from what was seen during training.

5.5 Results and discussion

In our preliminary study, the best performing DAS configuration was found with
Krerank = 10, α = 1. We apply this configuration in our main experiments, for fair
comparison using the state-of-the-art UniLM model checkpoint4. Results on the
CNN/DM test set are reported in Table 5.4.

Confirming our preliminary study, DAS favorably compares to previous works,
for all the metrics. Compared to UniLM, we can observe that both DAS-single and
DAS-retrain are closer to the target data distribution: they allow to significantly
reduce the gap with human-produced summaries over all metrics. The length of

4As publicly released by the authors.
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α DAS-single DAS-retrain
0 (BERT-gen) 27.70±0.3 27.70±0.3

BL
EU

-1

0.5 27.51±0.3 29.70±0.3
1 28.38±0.3 29.25±0.2
5 24.26±0.4 27.47±0.4
0 (BERT-gen) 11.71±0.1 11.71±0.1

∆
no

v-
1

0.5 11.22±0.1 10.05±0.2
1 10.70±0.2 9.33±0.1
5 7.98±0.2 6.57±0.2
0 (BERT-gen) -9.84±0.1 -9.84±0.1

∆
le

n

0.5 -7.24±0.1 -3.05±0.1
1 -4.11±0.1 -3.10±0.1
5 -7.11±0.1 -3.85±0.1
0 (BERT-gen) -21.49±1.2 -21.49±1.2

∆
re

p-
3

0.5 -17.54±0.5 -11.26±0.4
1 -12.85±0.4 -8.93±0.4
5 -2.19±0.3 -5.49±0.3

Table 5.3: Scores obtained with varying α

∆ len ∆ nov-1 ∆ nov-3 ∆ rep-1 ∆ rep-3 R1 RL B1

See et al. - - - - - 36.38 34.24 -
Gehrmann et al. - - - - - 41.22 38.34 -
Kryściński et al. - 10.10 32.84 - - 40.19 37.52 -
UniLM -40.37 8.35 7.98 -27.99 0.12 43.08 40.34 34.24

UniLM (no rules) -45.57 8.58 7.98 -31.41 -6.88 42.98 40.54 34.46

DAS-single -29.75 6.05 2.80 -28.21 -4.60 42.90 40.05 35.69

DAS-retrain -16.81 6.69 2.59 -25.21 -2.40 44.05 40.58 35.94

Table 5.4: Results on CNN/DM test set for the previous works as well as our
proposed models.

∆ len ∆ nov-1 ∆ nov-3 ∆ rep-1 ∆ rep-3 R1 RL B1

UniLM -12.11 27.16 5.49 -6.87 0.19 18.66 15.49 16.91

UniLM (no rules) -13.11 30.16 5.69 -7.87 -3.77 18.76 14.49 17.14

DAS-single -10.76 19.68 4.58 -10.81 -5.05 18.19 13.30 15.41

DAS-retrain -2.72 19.05 1.01 -3.42 -1.33 19.76 14.92 17.59

Table 5.5: Results on TL;DR test set for our proposed model in transfer learning
scenarios.

the summaries are 16.81 tokens in average longer than the human, as opposed
to 40.37 tokens of difference for UniLM and 45.57 without the length penalty.
DAS-retrain is also more abstractive, averaging only 2.59 novel 3-grams less than
the human summaries, as opposed to 7.98 for UniLM. Notably, the proposed
approach also outperforms Kryściński et al. (2018) in terms of novelty, while
their model was trained with novelty as a reward in a reinforcement learning
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setup. UniLM applies a 3-grams repetition avoidance rule, which is why this
model generates even less 3-grams repetitions than human summaries. Without
this post-hoc rule, DAS-retrain generation is less repetitive compared to UniLM.
Incidentally, our approach also outperforms the previous works and achieves, to
the best of our knowledge, a new state-of-the-art for ROUGE.

Figure 5.4: Learning curve for discriminators trained on TL;DR on 1k, 10k and
100k examples. The x-axis corresponds to the length of the discrimi-
nated sub-sequences.

Domain Adaptation Further, in Fig. 5.5, we explore a domain adaptation sce-
nario, applying DAS-retrain on a second dataset, TL;DR. This dataset is built off
social media data, as opposed to news articles as in CNN/DM, and differs from
the latter in several respects, as described in Section 5.3. In this scenario, we keep
the previously used generator (i.e. the UniLM checkpoint trained on CNN/DM),
and only train the discriminator on a subset of TL;DR training samples. This
setup has practical applications in scenarios where limited data is available: in-
deed, learning to generate is harder than to discriminate and requires a large
amount of examples (Gehrmann et al. 2018). A discriminator can be trained with
relatively few samples: in Fig. 5.4 we show the learning curves for discriminators
trained from scratch on TL;DR training subsets of varying size. The samples are
balanced: a training set size of 10k means that 5k gold summaries are used, along
with 5k generated ones. We observe that only 1k examples allow the discriminator
to obtain an accuracy of 82.5% at step t = 1. This score, higher in comparison to
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Figure 5.5: Vocabulary frequency for the k = 100 most frequent words generated
by the models, for CNN/DM (top left) and TL;DR (top right). Distri-
bution of 3-grams repetitions over their position t in the sequence on
CNN/DM (bottom center).

the one obtained on CNN/DM (see Fig. 5.3) is due to the relatively lower quality
of the out-of-domain generator outputs, which makes the job easier for the discrimi-
nator. The results on TL;DR5 (Table 5.5) show larger improvements of DAS-retrain
over UniLM, than on CNN/DM. Due to the high accuracy of the discriminator,
the summaries generated are only 2.72 tokens shorter than the human ones as
opposed to 12.11. They also contain more novelty and less repetitions. In terms
of ROUGE and BLEU, DAS-retrain also compares favorably with the exception
of ROUGE-L. This might be due to the shorter length of DAS-retrain summaries
as compared to UniLM: ROUGE is a recall-oriented metric and ROUGE-L is
computed for the longest common sub-sequence w.r.t. the ground truth.

Discussion In Fig. 5.5 we report the frequency distributions for the different
models and the human summaries. We observe that DAS-retrain comes closer to
the human distribution, followed by DAS-single and significantly outperforming

5Models participating to the public TL;DR leaderboard6 are omitted here, since they are
trained on TL;DR data, and evaluated on a hidden test set. Nonetheless, assuming that the distri-
bution of our sampled test set is similar to that of the official test set, we observe that our approach
obtains comparable performance to the state-of-the-art, under a domain-adaptation setup and
using only 1k training examples – exclusively for the discriminator – over an available training
set of 3M examples.
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UniLM. This shows the benefit of DAS at inference time, to produce relatively
more human-like summaries. Further, the distribution of 3-grams repetition across
their relative position in the sequence – Fig. 5.5 (top right) – shows how the gap
between UniLM and Human increases more than that between DAS-retrain and
human, indicating that our approach contributes to reduce the exposure bias ef-
fect. Rather than exclusively targeting exposure bias (as in Scheduled Sampling
or Professor Forcing), or relying on automatic metrics as in reinforcement learn-
ing approaches, we optimize towards a discriminator instead of discrete metrics:
besides reducing the exposure bias issue, this allows improvements over the other
aspects captured by a discriminator.

5.6 Conclusion

We introduced a novel sequence decoding approach, which directly optimizes
on the data distribution rather than on external metrics. Applied to Abstractive
Summarization, the distribution of the generated sequences are found to be closer
to that of human-written summaries over several measures, while also obtaining
improvements over the state-of-the-art. We report extensive ablation analyses, and
show the benefits of our approach in a domain-adaptation setup. Importantly, all
these improvements are obtained without any costly generator retraining. Our
results highlight the effectiveness of discriminators for text generation. Still, one
of the main limitation comes from the unscalability of the discriminators that
can not output probabilities for all the classes in one pass. In future work, one
could mitigate this limitation, a direction explored in the recent GEDI (Krause
et al. 2020).
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L A N G U A G E G A N S

abstract

As discussed in the previous chapters, at the root of MLE limitations is the mismatch
between training and inference, i.e. the so-called exposure bias. Generative Adversarial
Networks (GANs) can mitigate those limitations but the discrete nature of text has hin-
dered their application to language generation: the approaches proposed so far, based on
Reinforcement Learning, have been shown to underperform MLE.

For that reason, in the previous chapter, we limited the use of a discriminator at in-
ference time only. In this Chapter, In this Chapter, we go one step further and propose
a Language GAN. Departing from previous works, we analyze the exploration step in
GANs applied to text generation, and show how classical sampling results in unstable
training. We propose to consider alternative exploration strategies in a GAN framework
that we name ColdGANs, where we force the sampling to be close to the distribution
modes to get smoother learning dynamics. For the first time, to the best of our knowl-
edge, the proposed language GANs compare favorably to MLE, and obtain improvements
over the state-of-the-art on three generative tasks, namely unconditional text generation,
question generation, and abstractive summarization.

• Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo
Staiano. "ColdGANs: Taming Language GANs with Cautious Sampling Strategies".
Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020).
2020.

6.1 Introduction

In the previous Chapter, we proposed DAS, a new decoding method that leverages
on a discriminator at inference time, without requiring to finetune the generator.
While a desirable feature in some scenarios, not retraining the generator is also
an intrinsic limitation in DAS: the discriminator is limited to rerank only the
sequences close to the generator mode. Arguably, one prefer, when possible, to
improve directly the generator itself.

65
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To mitigate MLE limitations, we have shown in Chapter 3 how Reinforcement
Learning (RL) can be applied to text generation tasks, considering sequence level
metrics as the reward. However, because metrics poorly correlate with human
judgments, the potential for such a RL setup is somehow limited. To this end,
Ziegler et al. (2019) proposed to directly reward systems using human judgment.
Although this approach performs very well and approximates the best possible
reward, it is obviously not a viable solution in practice. However, it attests that,
with perfect rewards, one can achieve excellent levels of performance.

A natural alternative, not requiring human judgments, is to frame the problem
under the Generative Adversarial Network (GAN) paradigm (Goodfellow et al.
2014), which has been used successfully for image generation (Brock et al. 2018).
For text, modeled as a sequence of discrete symbols, a naive computation of the
gradients is however intractable. Hence, Language GANs are based on gradient
estimation via RL-based techniques (Yu et al. 2016).

However, the reward in this case can be extremely sparse (as discussed in
Section 6.2.2), yielding to high-variance gradient estimation, which is known to
be challenging for optimization (Y. Zhang et al. 2017). Most previous works have
focused on this aspect, and proposed denser rewards (Li et al. 2017; Masson
d’Autume et al. 2019a). Unfortunately, these attempts to apply GANs to text
generation obtained limited success (Caccia et al. 2020) and have been found to
underperform MLE (Semeniuta et al. 2018; Tevet et al. 2018; Masson d’Autume
et al. 2019a).

Although known to be crucial (Sutton and Barto 2018), exploration is surprisingly
understudied when RL is applied to text generation. In this work, we propose a
new exploration method that aims at sampling more structured rewards and that
better suits the GANs’ training dynamics, allowing for the first time to successfully
train Language GANs. Our main contributions can be summarized as:

1. We study the discriminators’ behavior and show that their degree of spe-
cialization has important implications on the exploration to stabilize the training
process. In particular, we find that reducing the exploration space is essential to
successfully train discrete GANs.

2. Based on these observations, we propose ColdGANs, a GAN architecture
using alternative sampling strategies that force the sampling to remain closer to
the distribution modes.

3. Finally, we apply our proposed methods on three tasks. We report positive
results compared to previous works, including GANs and MLE-based models.
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6.2 Discriminators and Generators Interaction

6.2.1 Generating and discriminating as text to text tasks

Generator Text generation naturally lends itself to autoregressive modeling (Sutskever
et al. 2014). The probability to generate a sequence Y composed of N tokens
y1, ..., yN is given by:

pθ(Y |X) =
N∏
t=1

p(yt|y1, ..., yt−1, X, θ) (6.1)

where θ are the learnable parameters of the generator and X the input sequence.

Neural networks typically produce class probabilities by using a “softmax”
output layer that converts the logit zi, computed for each token of the vocabulary,
into a probability qi:

qi =
exp (zi/T )∑
j exp (zj/T )

(6.2)

where T is a “temperature” hyper-parameter, set to 1 unless otherwise specified.
The higher the temperature, the more uniform the probability distribution over
the vocabulary, resulting in more diversity but also more mistakes (Hinton et al.
2015). In the following, we note as πθ the distribution defined by the generator
with temperature T = 1.

Discriminator In the following, we consider a discriminator Dϕ learned from
sets of human and generated texts for each input X as a logistic regression prob-
lem:

1

|H|
∑

(X,Y )∈H

log(Dϕ(X, Y )) +
1

|G|
∑

(X,Y )∈G

log(1−Dϕ(X, Y ))

where H is a set of pairs of input X associated with a human written text Y from
the data distribution, and G is a set of pairs with generated outputs Y .

Text to text tasks Casting any NLP task as a text-to-text problem, T5 (Raffel
et al. 2019) demonstrated state-of-the-art results on the established GLUE bench-
mark (A. Wang et al. 2018) and on its more challenging successor (A. Wang et al.
2019). Accordingly, we employ the same architecture for both discrimination and
generation. This allows for fairer comparisons thereafter, as both generator and
discriminator have the same architecture, pre-training and capacity.
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Figure 6.1: Accuracy of a discriminator model trained under two different genera-
tion modes: Standard (subject to the exposure bias) and Teacher Forcing.
The x-axis corresponds to the partial length t of the sequence to dis-
criminate.
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6.2.2 Discriminator-Generator Equilibrium

Exposure Bias As mentioned above, a discriminator can easily predict the hu-
man or machine nature of a text. One reason for this lies in exposure bias. To
quantify this statement, we compare the results for a discriminator when trained
under the two following generation strategies: Standard Generation, suffering from
the exposure bias; and, Teacher Forcing Generation, where the ground-truth tokens
yi<t are fed to the generator, so not to expose the model to its own prediction, and
only yt is generated by a machine.

We show the results in Fig. 6.1. As expected, the two discriminators have the
same score for t = 0. We observe that both perform well, and that the Stan-
dard Generation discriminator obtains consistently larger improvements, w.r.t.
the Teacher Forcing Generation discriminator, as the length of the sequence in-
creases. This could indicate the presence of the exposure bias, for which the errors
accumulate over time. Still, the relatively high accuracy observed under Teacher
Forcing Generation suggests that additional factors, beyond exposure bias, might
be involved: in the following, we show that the extreme specialization of discrim-
inators is among those.
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Table 6.1: Probability that a text is human according to various discriminators.
Dperfect corresponds to a theoretical perfect discriminator with infinite
capacity and training data. DT=γ corresponds to a discriminator trained
on samples generated with a temperature T = γ. Past T = 0 and past
T = 1 correspond to results on samples obtained with the generator
weights resumed from a previous stage of the training, i.e. a checkpoint
one epoch before the final state (see Section 6.3, Memory Replay). Note
that sampling from the generator with T = 1 corresponds to the true
distribution of the generator, T =∞ a uniform distribution, and T = 0
the argmax in a greedy decoding.

Evaluated on
human T = 0 T = 1 T =∞ past T = 0 past T = 1

DT=0 .79 .17 .84 .92 .26 .85

DT=1 .79 .76 .23 .09 .75 .31

DT=∞ .92 .92 .91 .08 .92 .91

DT∈{0,1,∞} .69 .24 .24 .09 .32 .36

Dperfect 1 0 0 0 0 0

Discriminator’s No Free Lunch As defined above, the temperature T of the
generator is a hyper-parameter which allows to control the randomness of pre-
dictions while sampling, by scaling the logits before applying a softmax:

Pi =
e

yi
T∑n

k=1 e
yk
T

(6.3)

This offers the opportunity to control various sampling strategies from the same
generator. Low (close to 0) temperatures provide samples close to the sequence
sgreedyθ of a greedy procedure that takes the token with max generator probability
πθ at each step (the output of a beam search with beam size B = 1). With high
temperatures, the distribution of sequences tends to the uniform distribution. We
experiment with different temperature settings for the same generator (trained
with MLE), and use the obtained samples to train and test a discriminator. This
allows us to evaluate the impact of differences in sampling temperatures, between
training and inference, on the discriminator performance. In other words, how a
discriminator, trained with samples obtained at a specific temperature, performs
when faced with samples generated under different sampling setups.

We train and evaluate discriminators on samples generated under temperatures
T = 0, 1 or∞, for a conditional generation task (summarization, see Section 6.4.2),
which allows to consider various sequence samples even at low temperatures. We
report the results in Table 6.1. As expected, in all but one case, discriminators
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perform better if trained and evaluated with sequences generated under the same
temperature (no mismatch). However, when the training and evaluation samples
are generated with different temperatures, we observe that the discriminator fails
to distinguish human from generated ones. More precisely, it considers most
sentences to be human-generated (around 90%). Conversely, when trained on the
different temperatures together (T ∈ {0, 1,∞}), results are more balanced: robust
across the various temperatures, but yielding a drop in accuracy, consistently
with the well-known accuracy-robustness trade-off (Gilmer et al. 2018; Bubeck
et al. 2018). This highlights that individual discriminators are specialized on
specific generation pairs (machine/human). Knowing this, it is crucial to orient
this specialization on useful areas.

Interestingly, when trained from samples issued from πθ, the discriminator DT=1

is inaccurate at identifying samples close to sgreedyθ as generated ones: DT=1(s)

equals 0.76 on average over these samples. This is particularly bad for a discrimi-
nator used as a reward signal of a RL process, since such samples lie in the useful
area of the output distribution. They correspond to samples close to the modes
of the distribution πθ. Moreover, in many text generation applications, generation
strategies such as beam search target these sequences as prediction outputs. A
bad reward function at these locations is likely to lead to bad generation perfor-
mance. Besides, the discriminator trained on samples close to the mode of πθ (i.e.,
DT=0) is bad for samples from πθ (i.e., T = 1), indicating that one cannot simply
use such samples to train the discriminator while considering standard sampling
for generator training (as rewards would be very inaccurate).

Implications for Discrete GANs Holtzman et al. (2019) report that for T = 1,
sampling from the tail of the distribution is expected to happen within the first
three steps of decoding and with a probability superior to 99.96% within 20 steps.
Such unstructured exploration causes a large variance which grows with the
number of time steps, and perturbs actions too frequently (Rückstieß et al. 2008;
Kober and Peters 2009). A less random exploration would thus yield to better
structured sequences and lower variance, closer to the distribution learned by
the discriminator, and would likely enable better training dynamics between the
discriminator and the generator.

6.3 Taming Language GANs with Cautious Sam-
pling Strategies

Based on the findings above, we seek sampling strategies that allow both the dis-
criminator to train on useful samples, and the generator to be trained from reliable
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rewards from the discriminator, within a policy gradient RL scheme where we are
interested at maximizing J(θ) = Eτ∼πθ

[Dϕ(τ)], according to generator parameters
θ. The discriminator is updated at the end of each training epoch, via gradient
ascent on human-machine pairs, with new artificial sequences resulting from the
generator distribution. In order to introduce cautious sampling that focuses more
on modes of distributions, note that it would be useless to consider the policy
gradient ∇θEτ∼πT=γ

θ
[Dϕ(τ)] = Eτ∼πT=γ

θ
[Dϕ(τ)∇θ log π

T=γ
θ (τ)] of a generator distri-

bution with modified temperature T = γ, as it would, compared to T = 1, only
imply rescaling the network outputs without altering the learning process.

Instead, we propose to employ Importance Sampling for defining our cautious
sampling strategies for text GANs, based on the fact that, for any distribution
P,Q : X → [0, 1] such that Q(x) > 0 whenever P (x) > 0, and any function f :

X → R, we have Ex∼P (x)[f(x)] = Ex∼Q(x)[
P (x)
Q(x)

f(x)]. In our case, this yields the
following unbiased policy gradient:

∇θJ(θ) = Eτ∼π̂θ

πθ(τ)

π̂θ(τ)
Dϕ(τ)

|τ |−1∑
t=1

∇θ log πθ (τt|τ1:t−1)

 (6.4)

where τt ∈ V is the t-th token from sequence τ and τ1:t−1 the subsequence of
its t − 1 first tokens, πθ the generator probability and π̂θ a modified sampling
distribution, which enables the generation of any possible sequence of tokens
given the vocabulary V .

In this work, we focus on the exploration stage; therefore, conversely to previ-
ous works, we can choose the most sober form of reward: 1 if Dϕ(τ) predicted
human, and 0 otherwise. We show that a sparse reward is not a limitation if the
sampling strategy is close to the modes of the distribution – provided the initial
solution is a good enough bootstrap (which, according to our experiments, is
the case). Note that Dϕ is trained with samples from π̂θ to avoid any mismatch
with the generator training samples, which would be problematic otherwise (as
pointed out in Section 6.2.2).

ColdGANs exploration The temperature T plays a major role in moderating
exploration. Indeed, being a scaling factor applied to the generator outputs, it
directly defines the degree of diversity of the generated sequences. The default
exploration is obtained by recursively sampling a sequence of tokens from the
model distribution with T = 1. The higher T , the more random the sampled se-
quences, regardless of the model’s policy. Conversely, lower temperatures reduce
the exploration, with T → 0 ultimately equivalent to the argmax function. There-
fore, we consider a distribution π̂θ = πT

θ with lower (colder) temperatures T ∈]0, 1[.
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This allows to explore sequences composed of tokens less likely to be sampled
from π̂θ tail. Note that for T > 0, π̂θ > 0 whenever πθ > 0.

ColdGANsnucleus In addition, we consider a more sophisticated technique: nu-
cleus sampling (Holtzman et al. 2019). This decoding method has been shown to
produce higher quality texts than previous sampling strategies, including those
temperature-based. Sampling from the nucleus of tokens containing the vast ma-
jority of the probability mass, the approach dynamically truncates the unreliable
tail of the probability distribution and hence is an instance of a cautious genera-
tive process. However, with nucleus sampling, many sequences τ get π̂θ(τ) = 0

while πθ(τ) > 0, invalidating the IS. To avoid this, we propose to use a mixture
combining low temperatures and nucleus policies:

π̂θ(τ) = ϵπnucleus
θ (τ) + (1− ϵ)πT=γ

θ (τ) (6.5)

where ϵ is a hyper-parameter, πnucleus
θ is the probability under nucleus and πT=γ

θ

the probability rescaled for temperature γ, as described in the previous paragraph.

Importance Weight Clipping The importance weights can become large, caus-
ing instability. Adapting (Z. Wang et al. 2016) (see paragraph 3.2 of their paper
for more details), we truncate the importance weights and add a correction term
in the computation of ∇θJ(θ):

Eτ∼π̂θ
[min(c, w(τ))Dϕ(τ)∇ log πθ(τ)]+Eτ∼πθ

[
max

(
0,

w(τ)− c

w(τ)

)
Dϕ(τ)∇ log πθ(τ)

]
where w(τ) = πθ(τ)

π̂θ(τ)
. In the first term of Eq. 6.3, by clipping the importance weight,

the variance of the gradient estimate is bounded. The second term of the equation
ensures that our estimate is unbiased, by re-sampling another sequence from the
true policy πθ. In our experiments, we set c = 5. Note that, contrary to off-policy
RL, for which such a IS clipping was proposed (Z. Wang et al. 2016), in our case
clipping is very rare: it only occurs for sequences whose probability from the
generator is much higher than the one from the sampling distribution, which is
designed for sampling close to the mode of πθ. However, if this happens, this
clipping ensures that the corresponding gradient does not explode.

Memory Replay In Table 6.1, we observed that the performance of the dis-
criminators is lower when evaluated on samples generated from the previous
checkpoint of the same model (i.e., evaluated on past T ). We connect this to the
failure mode in GANs observed by Metz et al. (2016), where the generator and
the discriminator oscillate during training, rather than converging to a fixed point.
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In lifelong learning literature (Masson d’Autume et al. 2019b), it has been shown
that 1% of experience replay is sufficient to avoid catastrophic forgetting. Inspired
by this work, we construct a memory buffer which contains samples generated in
the last K training steps, and replace 1% of the discriminator training examples
with samples from the buffer. This allows the discriminator to remain accurate
on the samples from the previous state of the generator, hence preventing such
failure loop during training.

6.4 Experiments

Due to the computational cost of T5-large (11B parameters), we used T5-small
(60M parameters). For all our experiments, we used the validation sets for hy-
perparameter selection. In more detail, we evaluated our approach with several
learning rates,1 reporting results for a value of 2e-5. From the best performing
ColdGAN configuration, we perform ablations to assess the impact of Mem-
ory Replay and Importance Weight Clipping. Finally, we experimented with
BART (Lewis et al. 2019) instead of T5.2

6.4.1 Unconditional Language Generation

Most previous works for language GANs have been evaluated on unconditional
language generation benchmarks. In this task, no input is provided and the
goal is to generate both meaningful and diverse texts. Consistently with (Mas-
son d’Autume et al. 2019a), we measure these two aspects using, respectively,
BLEU (Papineni et al. 2002) and self-BLEU (Zhu et al. 2018) metrics.3 To obtain
a finer comparison between models, Caccia et al. (2020) proposed to draw the
curve of (negative) BLEU vs self-BLEU, by sampling with various temperatures
at inference. This allows to measure the trade-off between quality and diversity.
Following (Che et al. 2017; K. Lin et al. 2017; Semeniuta et al. 2018; Guo et al. 2018;
Caccia et al. 2020; Masson d’Autume et al. 2019a), we used the EMNLP2017 news
dataset.4 We report ColdGANs results in Figure 6.2 (left). Notice that previous
works did not use self-supervised pretrained models, while we did (with T5): this
explains the improvement of our MLE baseline over theirs (MLE ScratchGAN). As
one cannot directly compare our performances with those reported from previous

1
2e-6, 8e-6, 2e-5, 8e-5, 2e-4.

2BART has comparable performance to T5-large, but with 20x fewer parameters.
3Implemented in https://github.com/deepmind/deepmind-research/tree/master/

scratchgan
4http://www.statmt.org/wmt17/

https://github.com/deepmind/deepmind-research/tree/master/scratchgan
https://github.com/deepmind/deepmind-research/tree/master/scratchgan
http://www.statmt.org/wmt17/
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Figure 6.2: Results on the EMNLP 2017 News dataset (for all metrics, lower is
better). Scores for previous works are taken from (Masson d’Autume
et al. 2019a).
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Figure 6.3: Relative BLEU-4 gains obtained with ColdGANs over MLE, grouped
by ground truth sequence length, on QG.
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works, we study the performance variations from the corresponding MLE base-
line. Consistently with previous works (Semeniuta et al. 2018; Tevet et al. 2018;
Masson d’Autume et al. 2019a), we observe that the model, under the default
exploration (i.e. GANT=1), performs strictly worse than MLE. As a baseline, we
experimented ColdGANT∼]0,1[, where during the training the temperature is ran-
domly sampled between 0 and 1 for each sequence. While it performs better than
GANT=1, it still does not compare favorably w.r.t. MLE. We report the results for
a T5 model trained with the ScratchGAN protocol, and found it did not compare
favorably w.r.t. T5 (MLE). Conversely, both ColdGANT=0.3 and ColdGANnucleus

obtain better results than MLE for the entire curve. To our knowledge, this is the
first time that MLE falls short (Caccia et al. 2020; Masson d’Autume et al. 2019a)
w.r.t. GAN-based approaches for this task.

6.4.2 Conditional Language Generation

We evaluate ColdGANs on two popular tasks where text inputs are given for
conditioning the generation, namely Question Generation and Text Summariza-
tion. These are highly competitive benchmarks, with recent state-of-the-art results
achieved by MLE based on pre-trained transformers (Vaswani et al. 2017). Answer-
aware Question Generation (QG) (Q. Zhou et al. 2017) is the task wherein, given
a text and a target answer, the goal is to generate a relevant question. Following
previous works (Dong et al. 2019; Du et al. 2017), we used the SQuAD dataset (Ra-
jpurkar et al. 2016). Automatic Summarization aims to produce concise and fluent
summaries given a longer text. Consistently with previous Chapters (see 3.4.1),
we used the popular CNN/DM dataset (Nallapati et al. 2016), a corpus containing
news articles and the corresponding abstractive summaries. For conditional text
generation tasks, output sequences are commonly evaluated using BLEU (for e.g.
Machine Translation, Question Generation) or ROUGE (for e.g. Summarization)
metrics. In contrast to the unconditioned scenario, the diversity is linked to the
variety of the inputs, and it is common practice to decode through beam search
at inference.

Results For both tasks, we used data and evaluation metrics released by Dong
et al. (2019).5 The results shown in Table 6.2 are consistent across the two tasks:
again, we observe that exploring under the default temperature yields to poor
performances, while ColdGANs compare favorably to MLE. The best performance
is achieved with the experiment emphasizing the ColdGANnucleus exploration the
most, with ϵ = .9 and T = .2. Over 10 independent training runs, we also observed

5https://github.com/microsoft/unilm/tree/master/unilm-v1

https://github.com/microsoft/unilm/tree/master/unilm-v1
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Table 6.2: Results on Question Generation (QG) and Abstractive Summarization
(Summ.) tasks.

QG (SQuAD) Summ. (CNN/DM)

#params BLEU-1 BLEU-4 ROUGE-1 ROUGE-L BLEU-4

SemQG S. Zhang and Bansal 2019 18.37

BertSumAbs Y. Liu and Lapata 2019 340M 41.72 38.76

UniLM Dong et al. 2019 340M 22.78 43.33 40.41

PEGASUS J. Zhang et al. 2019 568M 44.17 41.11
T5-large (MLE) Raffel et al. 2019 11B 43.52 40.69

T5-small (MLE) Raffel et al. 2019 60M 47.72 19.65 42.34 40.37 15.94

" (GAN T=1) 60M 46.44 18.84 38.98 36.42 13.23

" (ColdGAN T=.2) 60M 47.94 20.23 42.58 40.74 16.04

" (ColdGANnucleus T=1;ϵ=.1) 60M 46.82 18.97 39.05 38.01 14.04

" (ColdGANnucleus T=1;ϵ=.9) 60M 47.83 20.85 42.31 40.44 16.21

" (ColdGANnucleus T=.2;ϵ=.9) 60M 48.50 20.55 42.54 40.61 16.86

w/o Memory Replay 60M 48.93 20.52 42.34 40.44 16.72

w/o IS Weight Clipping 60M 48.21 20.14 42.23 40.35 16.72

BART (MLE) Lewis et al. 2019 400M 53.13 22.68 44.16 40.90 17,87

" (ColdGANnucleus T=.2;ϵ=.9) 400M 53.73 23.05 44.46 41.12 18.17

Fluency Relevance Answerability

Human 3.66 4.31 4.22

BART (MLE) 3.80* 4.43 4.11

ColdGAN 4.36** 4.45 4.01

Table 6.3: Human evaluation on QG. ColdGAN corresponds to BART trained with
ColdGANnucleus T = .2; ϵ = .9. Two-tailed t-test results are reported for
each model compared to Human (*: p < .01, **: p < .001).

very stable results for this model, with a standard deviation of the average BLEU-
4 lower than .09 on the test set. Finally, we applied this last ColdGANs setup to
BART (Lewis et al. 2019), achieving a new state-of-the-art on both QG with 23.05

BLEU-4 and summarization with 41.12 ROUGE-L.

Mitigating the Exposure Bias In Figure 6.3 we report the relative gain obtained,
in terms of BLEU-4 for T5-small, for the best configuration (i.e. ColdGANnucleus,
ϵ = 0.9) w.r.t. the corresponding MLE baseline. The x-axis gives the length of
considered ground truth target sequences. We observe that the longer the tar-
get sequence, the more ColdGAN outperforms MLE. This might indicate that
ColdGANs can successfully mitigate exposure bias.

Human Evaluation As discussed in Section 6.1, automatic metrics are known
to suffer from key limitations. Therefore, we additionally conducted a human
evaluation on the QG task. Three professional English speakers were asked to
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Figure 6.4: Probability that the generated text is human according to Dϕ on
CNN/DM.

judge, on a 1-to-5 Likert scale, to what extent the generated questions were: well-
posed and natural (Fluency), relevant to their context (Relevance), and answerable,
by looking at their context and answer (Answerability). The results in Table 6.3
show, surprisingly, both MLE-BART and ColdGAN -BART outperform the ground
truth for Fluency. A similar result was reported by Yoon et al. (2020) (refer to Table
2 in their paper). A plausible explanation is that humans are more inclined to use
informal language and make grammar mistakes. For instance the human question

”About how many yellow cabs operate in New York?” sounds slightly less formal than
the one, generated by ColdGAN , ”How many yellow taxicabs are in Manhattan ?”.
Compared to MLE, ColdGAN enables to significantly improve in term of fluency,
while remaining competitive on other metrics, consistently with our experiments
on exposure bias.

Adversarial training curves Figure 6.4 shows the evolution (during training and
for different setups) of the probability of the generated text to be human, according
to the discriminator. Consistently with Table 6.2, ColdGANnucleus appears to be
the most adverse to the discriminator. Conversely, the regular GAN (T = 1) is less
and less adversarial, and comparatively more perturbed.

6.5 Conclusion

We proposed ColdGANs, a novel approach able to tame the exploration in Lan-
guage GANs, allowing to obtain performance improvements on both conditional
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and unconditional text generation, w.r.t to MLE-based training. Our proposed IS
method makes it compatible with advanced sampling methods, such as nucleus,
or other future decoding methods. In the future, we plan to combine ColdGANs

with orthogonal approaches proposed by previous works, such as denser rewards.
This opened several research directions to exploit complex sampling strategies,
such as MCTS process explored in the next Chapter.
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abstract

As discussed in the previous Chapter, due to the discrete nature of words, language
GANs require to be optimized from rewards provided by discriminator networks, via
reinforcement learning methods. This is a much harder setting than for continuous tasks,
which enjoy gradient flows from discriminators to generators, usually leading to dramatic
learning instabilities. However, we claim that this can be solved by making discriminator
and generator networks cooperate to produce output sequences during training. These
cooperative outputs, inherently built to obtain higher discrimination scores, not only
provide denser rewards for training, but also form a more compact artificial set for dis-
criminator training, hence improving its accuracy and stability. In this Chapter, we show
that our SelfGAN framework, built on this cooperative principle, outperforms Teacher
Forcing and obtains state-of-the-art results on two challenging tasks, Summarization and
Question Generation.

• Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo
Staiano. "To Beam Or Not To Beam: That is a Question of Cooperation for Language
GANs". Part of Advances in Neural Information Processing Systems 34 (NeurIPS
2021). 2021.

7.1 Introduction

In order to improve NLG, and to overcome Teacher Forcing limitations, a consen-
sus has emerged as discussed previously: a sequence level objective should be
introduced. A body of work has proposed to use Reinforcement Learning (RL)
with NLG metrics like BLEU (Y. Wu et al. 2016) or ROUGE (Paulus et al. 2017)
or our proposed SumQA and QuestEval (see Chapters 3 and 4). However, NLG
metrics are not reflecting perfectly human judgement, which explains why the
resulting models tend to be qualitatively worse than their MLE baselines (Caccia
et al. 2020). To move toward less biased metrics, a natural alternative is to evaluate
the output with a learned discriminator as explored in Chapters 5 and 6. Indeed,
an ideal discriminator would not be biased w.r.t. to its training set, and could
therefore be considered as a perfect metric that matches human consensus.

79
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In light of this observation, two concurrent approaches have been explored: i)
at training time, using Generative Adversarial Networks (e.g. ColdGAN in Chapter
6); and ii) at inference time, via cooperative decoding (e.g. DAS in Chapter 5),
where a discriminator guides the search algorithm, such that the generator and the
discriminator cooperate to select the generated tokens. These approaches pursue
the same objective: producing texts more similar to what a human writes.

Both methodologies suffer from specific limitations. Cooperative decoding al-
gorithms rely on a discriminator that re-ranks a limited set of candidates selected
by the generator. Hence, cooperative decoding algorithms are limited by the gen-
erator ability to rank relevant tokens in a good enough position. On the other
hand, language GANs are learned via reinforcement learning due to the discrete
nature of text. This makes them particularly unstable to train, and usually fall
short compared to Teacher Forcing (Caccia et al. 2020). In standard Language
GANs, the discriminator provides a reward for the entire sequence, which can be
difficult to exploit by the generator due to its sparsity (Masson d’Autume et al.
2019a).

In this Chapter, we propose SelfGAN, a framework to learn language GANs
in a Self -training process where the signal from the discriminator is passed to
the generator in a completely differently. We consider cooperative algorithms
as a way to infuse the discriminator signal. We start from a simple observation:
outputs obtained via cooperative decoding are more human-like, compared to
their generator-only counterparts. Inspired by recent knowledge distillation ap-
proaches, we propose to consider cooperative outputs as targets in a Teacher Forcing
training process: cooperative decoding stands as a teacher we attempt to imitate
through the generator network. Just like a standard GAN, both the generator
and the discriminator are trained at each step. While the generator improves, it
becomes adversarial to the discriminator, which benefits from the cooperative gen-
eration. The discriminator, now trained on improved sequences, also contributes
to improve the cooperative generation, and so forth. Note that in SelfGANs the dis-
criminator is only used to drive the cooperative generation and never to provide
a reward signal like in standard Language GANs.

SelfGAN can be implemented with any cooperative decoding algorithm. Cur-
rent cooperative approaches, e.g. DAS and (Deng et al. 2020) rely on "myopic"
algorithms like Beam Search or Sampling that generate the tokens left-to-right.
The model has to always predict the next word, and can never look back and
revise past choices. In some cases, despite all the candidates being judged to
likely not be human by the discriminator, the model is locked in a dead-end. This
behavior is quite unnatural for humans – who often proofread their texts. We
refer to this phenomenon as the left-to-right curse.
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To address this left-to-right curse, we introduce Coop-MCTS, a new decoding
algorithm based on Monte Carlo Tree Search (MCTS) (Coulom 2006; Kocsis and
Szepesvári 2006). We compare Coop-MCTS to state-of-the-art cooperative decoding
algorithms in two scenarios: i) at inference time, as the decoding algorithm; and
ii) during training, as the cooperative algorithm in SelfGAN. In both scenarios,
we show that the respective resulting outputs are more likely to look like human
texts and improve all the automatic metrics.

All in all, our contributions can be summarized as follows:

1. We propose a new training framework based on cooperative decoding
named SelfGAN , wherein the generated sequences are used as ground
truth;

2. We improve cooperative decoding with a new decoding algorithm with Coop-
MCTS, offering a solution to the left-to-right limitation of current search
methods;

3. We show that combining SelfGAN and Coop-MCTS compare favorably to
prior state-of-the-art results on two challenging tasks, Summarization and
Question Generation.

7.2 SelfGAN

Algorithm 7.1 SelfGAN

1: Input: a generator gen, a discriminator discr, and a cooperative decoding
method decodcoop

2: for n epochs do
3: for X , Sref in training set do ▷ Start Training
4: Scoop ← decodcoop(X, gen, discr)
5: gen.train(srcs=X , tgts=Scoop) ▷ Standard maximum likelihood but with

Scoop as the target, and not Sref

6: discr.train(srcs=X , human_exs= Sref , machine_exs=Scoop)
7: end for
8: end for

Inspired from Expert Iteration algorithm (Anthony et al. 2017), the idea in our
SelfGAN approach is to transfer the sparse signal of the discriminator, classically
used as rewards for a RL procedure, to the sampling mechanism of sequences
that have to be favored through MLE. In that way, SelfGAN starts from a pre-
trained generator, that we fine-tune using sequences Scoop provided by a coop-
erative decoding process decodcoop for each condition in the training set X . This
process, detailed in the next section, uses both the generator and a discriminator
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network to output human-like sequences Scoop, for which we improve the gener-
ator likelihood via classical maximization: maxθ

∑
(x,s)∈(X,Scoop)

logπθ(s|x), where

πθ(s|x) =
∏|s|

t=1 πθ(st|s0:t−1, x) stands for the generator probability of sequence s

given the conditioning input x, with πθ as previously implemented as a neural
architecture with a softmax output function.

At each iteration of the training procedure, the discriminator network is op-
timized as a binary classifier on i) the human references and ii) the machine
generated via the cooperative sequences:

1

|H|
∑

(x,sref )∈H

log(D(x, sref )) +
1

|G|
∑

(x,scoop)∈G

log(1−D(x, scoop))

where x is the source input, H is the set of pairs associating x with a human
written text sref from the data distribution, and G is a set of pairs with generated
outputs scoop. As in previous Chapter, D(x, s) stands for the probability, provided
by the discriminator network, that sequence s is a human reference for condition x.
In order to effectively guide the cooperative process at each step, the discriminator
needs to be sequential: consistently with DAS, we use a left-to-right mask during
training, allowing discriminator predictions for unfinished sequences.

Please note that, by construction of the cooperative decoding process, we have
with high probability at each iteration D(x, scoop) >= D(x, sgen) for any condition
x ∈ X , with scoop a cooperative decoded sequence for x and sgen a sequence di-
rectly sampled from the generator according to πθ(s|x). Based on this observation,
and provided that the discriminator is sufficiently trained at each step, the gen-
erator is trained such that the probability of predicting human-like sequences is
maximized. This process i) allows us to consider a sequence level metric, and ii)
offers more stability compared to Reinforcement Learning, as we observe in our
experiments (see section 7.5). Note also that, contrary to RL approaches which
have to find a good balance between discriminator and generator capacities, our
approach does not suffer from Vanishing Gradient (Arjovsky and Bottou 2017),
since discrimination is only used for decoding, in a cooperative process for gen-
erator training. We depict the SelfGAN in Algorithm 7.1.
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7.3 MCTS for Decoding

7.3.1 Coop-MCTS: Cooperative Decoding beyond the Left-
To-Right Curse

It can happen that all sequence candidates are judged by the discriminator to be
machine-like rather than human-like. In such case, the cooperative decoding is
stuck in a dead end; such limitation is unsatisfactory. Neither DASlocal or DASglobal

have the ability to revise their previous decisions.

To cope with those limitations of myopic decoding strategies, we propose to
consider an adaptation of MCTS for NLG. Just like in the context of games (Silver
et al. 2017), we consider a policy network π, the generator, that outputs a prob-
ability over all the possible actions (tokens) at each step of the sequence. The
discriminator D corresponds to the value network. In MCTS, the trajectories are
explored to build a tree following three steps:

1. Selection starting from the root, children nodes tokens ω are selected among
the vocabulary V recursively w.r.t. the PUCT algorithm (Rosin 2011; Silver et al.
2017):

ω = argmax
ω∈V

(
Q(s, ω) + cpuctπτ (ω | s)

√∑
bN(s, b)

1 +N(s, ω)

)
(7.1)

where Q is the value of taking action ω in state s: in NLG, this corresponds to
selecting a token among the vocabulary at step i given the source context and
the sub-sequence ω0, ..., ωi−1. cpuct is a constant, τ the temperature that scales
the Softmax, and N(s, ω) the number of times the token ω has been chosen in
state s. We stop the loop when a node so has not been expanded yet, i.e. the
discriminator D has not calculated its value.

2. Extension Given the selected node, we calculate the distribution probability
from the generator π(ω | so). We apply nucleus sampling (Holtzman et al.
2019) to filter out the less likely tokens and reduce the number of actions. The
remaining tokens constitute the children nodes, associated to their correspond-
ing probability. At the same time, we calculate the value of the current state
D(so) that allows to compute the backup step.

3. Backup we update Q for all the nodes that led to so such that Q← max (Q,D (so)).
Note that we choose to use the max instead of the average for the following
reason: the value network, i.e. a discriminator, becomes more accurate as the
candidate sequence grows (see Figure 5.3 , hence if a long sequence is judged
human by the discriminator, any of its sub-sequences should be considered
human-like as well. In contrast, a long sequence can be machine-like despite



84 cooperative gans

starting in a very human-like manner: the beginning sub-sequence should keep
its human-like score.

These three steps are computed for a restricted number of simulations. Then,
the next token corresponds to the root child with the most visit counts. The
process continues step by step to generate the next token, until reaching either
the special token End Of Sentence, or the maximum length.

7.4 Experiments

7.4.1 Datasets

To measure the effectiveness of SelfGAN, we experiment on two standard con-
ditional NLG tasks: Question Generation (QG) and Summarization, consistently
with the previous Chapters (see 3.4.1):

• Question Generation: we used the SQuAD dataset (Rajpurkar et al. 2016),
consisting of 100K triplets of Wikipedia paragraphs, factual questions, and
their answers.

• Summarization: we used the CNN/Daily Mail dataset (CNNDM) (Nallapati et
al. 2016), consisting of 300K news articles, paired with their corresponding sum-
maries. The summaries are formed of multiple sentences, making the amount
of tokens to generate much larger than for Question Generation.

7.4.2 Models Reported

MLE the first baseline we consider is a standard model trained via teacher
forcing. As for all our experiments, we initialised the seq2seq with T5 (Raffel et al.
2019).

ColdGAN we consider as a second baseline the current state-of-the art for
language GANs, ColdGAN, described in Chapter 6. The authors proposed to
lower the temperature when sampling the sequences during training, with the
objective of stabilizing the training process.

SelfGAN can be based on any cooperative decoding algorithm. To train SelfGAN,
we therefore experiment the three different cooperative algorithms described in
Section 7.3 (DASLocal, DASGlobal, and Coop-MCTS) and report the results for the
corresponding SelfGAN: SelfGANDAS-Local, SelfGANDAS-Global, and SelfGANCoop-MCTS.

Decoding Method at inference time For each model, any decoding method can
be applied at inference time, independently from the training scheme. Therefore,
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for all the models described above, we report the results given each decoding
method previously described (Section 7.3): Beam Search, DASLocal, DASGlobal, and
Coop-MCTS.

To the best of our knowledge, GANs and Cooperative decoding have never been
directly compared before this work. A fortiori, this is the first time that a GAN
model is tested with a Cooperative decoding method at inference. We investigate
possible distillation effects in Section 7.5.

7.4.3 Metrics

To compare the different models, we report two type of metrics: n-gram based and
discriminator.

N-gram based We report the standard BLEU (Papineni et al. 2002) and ROUGE
(C.-Y. Lin 2004). Both measure an overlap of n-grams between the reference and
the evaluated text. They differ in that BLEU is precision oriented while ROUGE
is rather recall oriented.

Discriminators Both BLEU and ROUGE suffer from the aforementioned lim-
itations. We therefore propose to consider discriminators for model evaluation.
Intuitively, they measure how model outputs are similar to what a human would
have written. We consider two different discriminators:

• Base is a discriminator trained on the MLE baseline outputs generated via
beam search. It allows to measure the corresponding improvement from the
MLE baseline. Note that it corresponds to the initial discriminator in all the
GANs experiments, and the discriminator used in the cooperative search for
the MLE baseline.

• Base+ Since the Base discriminator plays a role in all our experiments (except
MLE+Beam Search), it is possible that a model that makes use of this Base
obtains better Base results, despite bringing new biases and de-generation be-
haviors. For this reason, we also report Base+, a discriminator fine-tuned on
all the different model outputs together. Base+ is never used by any model
at training or inference time. It is thus more robust toward an undesirable
adversarial generation mode, while still being comparable for the different ex-
periments. We argue that a higher Base+ score indicates a real improvement
beyond potential bias.
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Generator Question Generation Summarization
Decoder B4 R1 RL Base Base+ B4 R1 RL Base Base+

MLE
BeamSearch 19,7 45,2 41,1 15% 15% 15,9 42,3 40,4 9% 8%
DASlocal 19,9 45,2 41,1 28% 19% 16,6 43,8 40,9 17% 11%
DASglobal 20,0 45,2 41,2 20% 17% 16,2 44,1 41,9 12% 9%
Coop-MCTS 19.8 45,3 41,5 33% 21% 16,3 42,5 40,6 20% 12%

ColdGAN
BeamSearch 19.9 45,2 41,4 26% 17.9% 16,3 42,8 40,7 15% 10%
DASlocal 19,8 45,3 41,1 31% 20% 15,9 42,5 42,0 19% 11%
DASglobal 20,2 45,6 41,5 26% 18% 16,6 44,6 41,2 16% 10%
Coop-MCTS 19,9 45,4 41,2 39% 22% 15,9 44,2 41,2 23% 12%

SelfGANDASloc
BeamSearch 20,2 45,4 41,6 27% 21% 16,9 44,2 42,5 16% 11%
DASlocal 20,5 45,5 41,7 30% 23% 16,9 44,4 41,9 18% 13%
DASglobal 20,1 45,4 41,7 33% 20% 16,6 44,0 42,3 19% 11%
Coop-MCTS 20,4 45,5 41,8 39% 23% 16,4 43,8 42,8 23% 13%

SelfGANDASglob

BeamSearch 20,4 45,5 41,7 24% 19% 16,9 43,0 41,5 14% 11%
DASlocal 19,9 45,4 41,3 32% 22% 15,9 42,7 40,6 18% 12%
DASglobal 20,7 45,6 41,9 29% 20% 17,0 43,7 42,6 17% 11%
Coop-MCTS 20,0 45,3 41,4 40% 24% 16,1 43,4 42,3 23% 13%

SelfGANCoop-MCTS
BeamSearch 20,5 46,6 42,6 34% 21% 17,0 42,8 41,5 20% 13%
DASlocal 20,6 46,7 41,7 42% 24% 16,6 43,7 42,8 25% 13%
DASglobal 20,5 46,6 41,7 39% 21% 16,5 42,8 40,9 23% 12%
Coop-MCTS 21,1 48,9 44,7 40% 26% 17,5 43,5 42,3 23% 15%

Table 7.1: Results of our experiments on QG (left) and Summarization (right).
For each generator, we report the results with the four different de-
coders. The reported metrics correspond to BLEU4 (B4), ROUGE-1 (R1),
ROUGE-L (RL) and the discriminators Base and Base+ as described in
Section 7.4.3. For Base and Base+ the scores correspond to the proba-
bility of being human, so higher is better for all the metrics. For Self-
GANMCTS, we experimented with 5 different seeds and the standard
deviation is always inferior to 0.1 for BLEU4 and ROUGE, and inferior
to 0.5% for Base and Base+.
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7.5 Results and discussion

7.5.1 Conditional Text Generation

In Table 7.1, we report the results for all the previously trained generators, with
the different decoding algorithms presented in Section 7.3. By ‘model’, in the
following, we refer to the couple composed by a trained generator and a decoding
algorithm.

We report BLEU4, ROUGE-1, ROUGE-L along with scores for the discriminators
Base and Base+, computed as the percentage of outputs considered as human by
a given discriminator model. Base was only trained on MLE+Beam Search outputs.
As expected, by further training on the outputs generated by all the different
models, Base+ has a higher accuracy, which consistently results in lower scores
compared to Base.

We start by focusing on the MLE results to compare the different decoding
mechanisms. We observe that all the cooperative searches outperform Beam
Search. Regarding Base and Base+ metrics, DASLocal compares favorably to DASGlobal.
We hypothesize that invoking the discriminator to rank at each step can have more
impact than using it only once on fully decoded sequences. Finally, our proposed
Coop-MCTS obtains the best results by a large margin.

Regarding the different GANs, we first compare them given the default de-
coding mechanism, i.e. Beam Search. The three versions of SelfGAN compare
favorably to MLE and ColdGAN on both n-gram based metrics and discrimina-
tors metrics. Among SelfGANs, SelfGANCoop-MCTS obtains the best results: given
a Beam Search decoding, it obtains the best BLEU, ROUGE-1 and ROUGE-L on
the two tasks (respectively 17.2; 44.3; 40.6 on QG and 12.3; 38.6; 36.7 on Sum-
marization). The performance in term of Base and Base+ for SelfGANCoop-MCTS is
even more important in comparison to the other models (34.1%; 21.9% on QG
and 20.2%; 12.7% on Summarization).

Both GAN at training time and Cooperative decoding at inference time pursue
the same objective: to obtain better outputs that look like human texts. Would a
generator trained via GAN, coupled with a Cooperative Decoding mechanism for
inference result into a cumulative improvement from the two methods? First, on
both ColdGAN and three SelfGANs, we can observe that adding a Cooperative
Decoding method allows to gain significant improvement on Base and Base+. In
particular, it is interesting to note that for SelfGAN an additional pattern seems to
emerge: using the same cooperative decoding algorithm both during training and
inference seems to provide additional gains. The best performance is achieved
with the generator SelfGANCoop-MCTS paired with the decoding Coop-MCTS. Com-
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Model T=0.5 T=1 T=2
MLE+Sample 0.42;0.29 0.31;0.11 0.18;0.07

ColdGAN+Sample 0.47;0.21 0.33;0.08 0.22;0.06

MLE+Coop-MCTS 0.45;0.22 0.34;0.10 0.21;0.06

SelfGANCoop-MCTS+Coop-MCTS 0.48;0.20 0.37;0.09 0.24;0.05

Table 7.2: Results on Unconditional Text Generation for samples realized at three
different temperatures, in terms of BLEU Vs Self-BLEU (higher bet-
ter;lower better).

pared to MLE via Beam Search, it obtains a final improvement superior to 1 point
in term of ROUGE and BLEU. The relative improvement for Base+ is significant:
from 15.2% to 26.2% on QG and from 8.6% to 15.3% on Summarization. This
corresponds to almost twice more outputs that sound human according to the
Discriminator metric.

7.5.2 Unconditional Text Generation

We follow the ColdGAN setup: we compared our proposed approaches on the
EMNLP2017 News dataset. The evaluation takes into account both the quality
and the diversity. Consistently with previous works (e.g. ColdGAN, ScratchGAN,
LeakGAN), we use the following metrics:i) BLEU-5 for measuring the quality
(higher better); ii) Self-BLEU-5 for measuring the diversity (lower better).

To obtain a finer comparison between models, Caccia et al. (2020) proposed to
draw the curve of BLEU vs self-BLEU, by sampling with various temperatures at
inference.

We denote as the standard method to generate text in this setup, as used in
all the previous works we are comparing to. It is a simple left to right decoding
where, at each step, a token is sampled among the Softmax probabilities scaled
by the temperature.

In our Coop-MCTS, the probability of a token is given by its visit counts during
the simulations. In Conditional generation, we select at each step the token with
the maximum number of counts. In Unconditional generation, we sample from
the tokens counts distribution.

Overall, the results are consistent with the experiments on Conditional Genera-
tion: the MLE generator decoded with our proposed MCTS (3rd row) obtains:

1. significantly better slightly lower results than ColdGAN decoded with Sam-
ple(2nd row)

2. results than when the same MLE decoded with Sample(1st row);
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Figure 7.1: Average difference for Summarization between human references and
model outputs for the Length (Left), the Novelty (Middle), and the
3-grams repetitions (Right) during training. The closer to 0 the less
differences w.r.t. gold-references.

3. SelfGAN decoded with MCTS (4th row) obtains the best results.

7.5.3 Discussion

Human-like features during training In NLG, various rules are often integrated
into the Beam Search to improve the quality of the outputs, for instance a length
penalty (See et al. 2017) or an interdiction for 3-grams repetitions (Paulus et
al. 2017; Dong et al. 2019). Such a need to hard code these rules indicates a
discrepancy between the human output characteristics and what the model has
learned. In particular, in Chapter 5, we reported the difference between DAS and
the human reference for: i) Length: the average number of tokens per output; ii)
Novelty: percentage of tokens in the output that were not present in the source
text; iii) N-gram repetition: percentage of N-grams that occur more than once in
the output.

To measure how SelfGAN learns these features by itself, we report in Figure 7.1
the evolution of these statistics during training: we observe that SelfGAN con-
stantly reach statistics more similar to human references than ColdGAN.

Human Evaluation We conduct a human evaluation to measure the models
performances beyond automatic metrics. We limit the evaluation to three genera-
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Generator Decoder Consistency Coherence Fluency Relevance

MLE BeamSearch 3.9 3.1 4.1 3.2
MLE Coop-MCTS 3.4** 3.5** 3.8 3.6**
ColdGan BeamSearch 3.8 3.3 4.2 3.5
ColdGan Coop-MCTS 3.4** 3.6** 4.0 3.7**
SelfGANCoop-MCTS BeamSearch 4.0 3.5** 4.3* 3.9**
SelfGANCoop-MCTS Coop-MCTS 3.9 3.9** 4.0 4.2**

Table 7.3: Human Evaluation on Summarization. Two tailed t-test results are re-
ported for each model compared to MLE+BeamSearch (*: p < .01, **: p
< .001).

tors (MLE, ColdGAN, and SelfGANCoop-MCTS) and two decoding methods (Beam
Search and Coop-MCTS), for a total of 6 different models. Three professional En-
glish speakers rated 300 sampled summaries and followed the same protocol from
Fabbri et al. (2020). Four dimensions are evaluated on a Likert scale from 1 to 5

(the higher the better):
1. Consistency: the proportion of facts in the summary correct w.r.t. the source

text;

2. Coherence: how well-structured and well-organized is the summary;

3. Fluency: how fluent the summary is to read;

4. Relevance: the ratio between important and excess information in the sum-
mary.

From Table 7.3 we observe significantly better results for SelfGANCoop-MCTS w.r.t.
both MLE and ColdGAN. While Coop-MCTS decoding appears overall benefi-
cial in terms of Coherence and Relevance, but scores lower on Consistency and
Fluency, its combination with SelfGANCoop-MCTS allows to obtain significant im-
provements on the former two dimensions while still maintaining comparable
scores on the latter.

Analysis To further understand the benefits of selfGAN, we propose to analyze
the evolution of the generator and discriminator networks through the learning
process. In figure 7.2 (left), we first plot the average magnitude (L2 norm) of the
discriminator gradients w.r.t. its parameters. We observe that ColdGAN induces
important instabilities for its discriminator over time, with a highly fluctuating
gradient magnitude. Conversely, thanks to its cooperative decoding process, Self-
GAN produces sequences that form a more compact set for discriminator training,
a variance of gradient magnitude twice lower than ColdGAN , for a comparable
magnitude in average. This discriminator stability is a first explanation for the
improvements of the proposed approach.

In a second plot, given on the right of Figure 7.2, we report the collinearity
of generator gradients for the generated samples from the model with those for
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Figure 7.2: Left: Moving Average of the magnitude of the discriminators gradients
during training. Right: collinearity of the generators gradients between
the sampled texts and their corresponding human reference for Self-
GANCoop-MCTS, ColdGAN and SelfGANBeamSearch. Both on Summariza-
tion.

the corresponding human references. Higher values indicate sampling strategies
that induce a useful gradient flow for the generator. For ablation purposes, we
first report values for a "SelfGANBeamSearch" approach, where we used a standard
Beam Search to generate the training examples: note that it has no discriminator,
hence it is not a GAN anymore. We can observe its divergence, as opposed to
SelfGANCoop-MCTS, which emphasizes the importance of the cooperative decoding
for producing the example used to train the model. For SelfGANCoop-MCTS and
ColdGAN, the gradients become more co-linear with human references through
time, indicating a convergence of the process towards the human distribution. We
observe that SelfGANCoop-MCTS produces more useful sequences for achieving this
convergence.

Coop-MCTS as an alternative to the dead-end search When analysing the
behavior for the Coop-MCTS decoding, we observed in different examples that
it provides an effective mean to revise generations that eventually ended up to
be unlikely. To illustrate this, we report in Table 7.4 the different MCTS steps for
an ambiguous example: the conditioned answer, Super Bowl, occurs at different
places of the the input. Therefore, the model has to decide which specific mention
of Super Bowl to focus on: at step 17, it considers its current generation as a dead
end and decides to start on new node (How). The final output is a question that
arguably sounds better than the initial one.

7.6 Conclusion

In this Chapter we propose SelfGAN, a new framework to train Generative Ad-
versarial Networks based on a cooperative decoding search. To overcome the left-
to-right curse that limits standard search algorithms, we propose Coop-MCTS. We
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Conditioned Answer: Super Bowl
Context:

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015
season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference
(NFC) champion Carolina Panthers 24â€“10 to earn their third Super Bowl title. The game was played on February 7, 2016,
at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl, the league
emphasized the "golden anniversary" with various gold-themed initiatives, as well as temporarily suspending the tradition of
naming each Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so
that the logo could prominently feature the Arabic numerals

Step 01: What

...

Step 16: What was the name of the game that would have been known as "Super Bowl
Step 17: How

...

Step 46: How is called the American football game that determines the NFL champion?

Table 7.4: Progressive results obtained by our Coop-MCTS decoding method on
Question Generation during a simulation. Until the 16th step, the gen-
eration is left-to-right. Then, the cooperation mechanism kicks in, allow-
ing the model to safely abort this beam, by restarting a new question
with How. We report the cross-attention weights on the input context
for step 16 (red) and 17 (blue).

conducted extensive experiments on two challenging tasks: Summarization and
Question Generation, obtaining state-of-the-art performance for SelfGAN both in
terms of automatic metrics and within a human evaluation. As the stability of the
discriminator looks to be crucial for language GANs, we plan for future works
to still focus on increasing it through the definition of dynamic regularization
mechanisms. Finally, we will explore how reference-less metrics, e.g. QuestEval
(presented in Chapter 4), can be combined to help the exploration during the
decoding.
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C O N C L U S I O N A N D P E R S P E C T I V E S

Fluent and reliable Natural Language Generation can have significant societal im-
pacts. On the one hand, we envision several applications beneficial for business,
research, or education: from automatic summarization of news articles, scientific
papers or books, to efficient information access; from automatic and personalized
student evaluation tests through question generation, to responsive conversational
interfaces. On the other hand, malicious actors can use the same technology to
build tools detrimental to society, e.g. for creation and propagation of mislead-
ing (fake) news as discussed in (Radford et al. 2019), impersonation, and deceit.
Nonetheless, keeping this research open and under public scrutiny is arguably
one of the best ways to defend against such actors (Zellers et al. 2019).

8.1 Beyond A Unique Reference

In this thesis, we have explored different axes to improve NLG, both on the
generative and evaluation sides. One common trait among all these efforts is the
need to work beyond a unique gold-reference.

In NLG, given an input, there are arguably many different possible outputs.
For both humans and machines, given the same input, it is highly likely that
several different – yet, all correct – sequences can be produced. In particular, the
probability to write the same exact sequence as the only gold-reference available
is very low. Should this behavior be penalized? Obviously not. And yet, this is
what happens under the standard NLG practices:

1) at training time with Teacher Forcing, any generated token that is different
from the target increases the loss. The model can therefore be exposed to contra-
dictory information, which might limit its effectiveness. Note that this issue does
not apply to a discriminator, as only two output categories (machine or human)
are possible.
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2) at inference time models are evaluated with automatic metrics fed with
only one gold-reference, since most large-scale datasets provide a single human
example in their test set.

To address this limitation, and in contrast to other metrics, our QG/QA based
metric QuestEval compares the evaluated text directly to the source, not the
reference.

Regarding training, in the last chapter we proposed SelfGAN, which offers a the-
oretical solution to this multi-reference limitation. Lets denote Shuman the universe
of possible correct outputs, where sref ∈ Shuman. Then, given a perfect discrimina-
tor (optimal to distinguish real data distribution from a different distribution), and
an infinite computational capacity, we have scoop ∈ Shuman. Indeed, given an infi-
nite computational capacity, all the possible sequences can be explored. A perfect
discriminator classifies a sequence s as human only if s ∈ Shuman. It results that
scoop ∈ Shuman: the sequence generated via a cooperative mechanism is guaranteed
to be indistinguishable from any human output, just like the reference.

In addition, since the generator probability is also taken into account in a
cooperative decoding, we have scoop = argmax(Pπ(Shuman)). We note that this is
guaranteed only if all possible sequences are explored via an infinite computation.
If we stop searching when one sequence is accepted by the decoder, it is pseudo-
guaranteed since a Beam Search is only an approximation of the argmax.

scoop is the sequence among all the human sequences that maximise the likeli-
hood according to the generator π. Therefore, if the generator outputs a human-
level sequence (i.e. s ∈ Shuman), is will actually correspond to scoop. It results that
considering scoop as the gold-reference in Teacher Forcing, the generator will not
be subject to an undesirable loss.

In conclusion, SelfGAN can be interpreted as a generalisation of Teacher Forcing
that takes into account the multiple possible references and trains the model on
the reference the highest to its likelihood.

8.2 Future Directions

8.2.1 Metrics

In this thesis we have paved the way for a new kind of metrics based on Question
Answering and Generation. We have shown how this method can be broadly
adapted to various NLG tasks, systematically comparing favorably over the others
metrics regarding human judgement.
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Nonetheless, Question-based metrics have interesting properties by design. In
particular, they provide a direct and fine-grained explanation w.r.t. the output
hallucinations. This could open new ways toward automatic proofreading mech-
anisms, or being exploited within human-machine interactions. We note that
such new directions are only made possible because our proposed metrics are
reference-less, hence usable even when no ground-truth reference is available.

At the root of the reference-less property, lies the intuition that any objects can
be compared by asking and answering questions. In this regard, QuestEval can be
seen as a general similarity function, offering a way to compare the generated text
with any object, in particular the source, and not necessarily a text. In contrast,
metrics like ROUGE, BLEU or BERTScore operate at a token level. Hence, they
require a certain alignment between the two compared texts. This prevents from
using the source input, and limits to compare the evaluated text to a ground truth
reference. Moreover, the NLG community is progressively moving toward more
complex and longer documents. As several realizations of a correct generation are
possible, the number of potentially correct gold-references exponentially rises w.r.t.
the length of the input sequence. In this context, QuestEval becomes particularly
interesting, as it loosens the dependence on a specific realization of the source
text.

8.2.2 RL

Toward an unbiased reward, we have explored learned discriminators. First at
inference time, as a way to select the words likely to sounds more human-like
during the decoding process. Then at training time in a GAN. For the later, we
have proposed different methods to stabilise the training process trough complex
sampling strategies, such as MCTS. Overall, our empirical experiments obtain
state-of-the-art results, under both automatic metrics and human evaluations.

Moving forward, investigating theoretical properties for our proposed approaches
would be an important step. In particular, it would be interesting to introduce
theoretical guarantees regarding discrete GANs, based on cooperative sampling
strategies.

In addition, future works could study how our cooperative mechanisms might
apply in the context of approaches based on density ratio estimators, such as the
ones recently proposed in (lu2019cot; song2020improving). Hybrid approaches,
based on ratio estimators between current densities and expected ones also con-
stitute a promising research perspective.
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