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Introduction 
 

One of the fundamental feature of the adaptive immune system is the extraordinary diversity 

of lymphocyte antigen receptors, immunoglobulins (Ig) and T cell receptors (TCR). This diversity 

endows the immune system with a potential to recognize, in an unanticipated manner, the 

diverse antigenic universe of “non-self” including pathogens and autologous tumours. The 

generation of the Ig and TCR repertoire depends on a somatic recombination machinery which 

randomly assembles a set of functional Ig or TCR genes from a pool of discontinuous gene 

segments, called variable (V), diversity (D) and joining (J) segments [1,2]. During the 

recombination process, which occur in central lymphoid organs (CLO, bone marrow and thymus 

for B and T cells respectively), nucleotides are added and removed randomly between V, D and J 

segments and lead to a junctional region, variable in length and sequence. This region, called the 

CDR3, is the signature of the rearrangement and contributes greatly to the high diversity of the 

TCR (Figure 1). 

 

Figure 1 : Somatic recombination of the TCR and TCR locus in thymocytes  
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TCR Repertoire diversity generation and selection 

After several processes of selection of the potential repertoire generated in the central lymphoid 

organs, the resulting collection of peripheral lymphocytes, each expressing a given BCR or TCR 

characterized by a particular combination of V, D and J segments and a singular CDR3 length, 

constitutes the available T cell repertoire (Figure 2). Such diversity will increase the chance to 

recognize foreign molecules and preclude from self-antigen pathogenic reactivity.  

 

Figure 2 : Repertoire level according to the differentiation stage of T and B cells 

For αβ TCR, the potential diversity thus generated has been calculated to be as large as 1019 or 

even up to 1061 as very recently predicted by statistical modelling [3,4].  Obviously, only a small 

fraction of the potential repertoire can actually be used, because of the limitation in the number 

of cells a human and a mouse can harbour (up to ~1012 and ~108 αβ T cells, respectively), in the 

body. Furthermore, the actual repertoire is shaped by various selection events that depend on 

TCR interactions with self- as well as non-self-peptides presented by the major histocompatibility 

complex (MHC) molecules in the thymus and periphery. However, the actual TCR repertoire 



17/67 
 
 

remains complex enough to have precluded attempts to comprehensively and quantitatively 

measure it for decades.  

TCR repertoire diversity and specificity 

The diversity of lymphocyte repertoire appears essential for host defence against “non-self” 

organisms. Decades of studies highlighted the presence and need for T cells harbouring specific 

TCR of various peptides derived from pathogens. This has been the ground for the concept of 

adaptive immune memory, the process by which an individual once exposed to an array of 

antigens expressed by a pathogen will be able to efficiently respond after a second exposure to 

the same pathogen [5]. This concept has been crucial in the improvement of health care by the 

introduction of vaccination as a prevention therapy to control infectious disease spreading and 

protect individual at the population level.  

However, the adaptive immune system play also a major role in the maintenance of immune 

homeostasis and immunological tolerance to the “self” organism. Autoimmune diseases (ADs) in 

general have been associated with an alteration of the T cell repertoire, as it has been shown in 

Type I Diabetes (T1D) mouse model [6–9]. This holds true also in human, with most advanced 

results in T1D [10–13], Systemic Lupus Erythematosus [14–18] and Rheumatoid Arthritis [16,19–

24]. Thus, I truly believe that the description of the T-cell population diversity would help to 

understand the complex mechanisms underlining the immune response, in particular in ADs.  

TCR repertoire and function 

Besides the antigen specificity, T cell population is extraordinarily functionally diverse as well. 

Since the identification of T4 and T8 in the early 80s [25], several subsets, more or less stable, 

have been characterized based on their location, activation markers, functional properties 

through cytokines/chemokines production, activation/inhibition surface markers, immune 

regulation [26,27]. Still the link between the function and the antigen-specificity is poorly 

understood, notably in regards with helper/effector T cells (Teffs) and regulatory T cells (Tregs) 
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(i) differentiation, (ii) selection and (iii) their balance, two major cell subsets with opposite 

function in the regulation of the immune response (Figure 3). 

Figure 3: Schematic view of the link between TCR specificity and differentiation, selection and balance 
of Tregs and Teffs  

TCR repertoire unresolved questions 

Considering all the characteristics of T cells, some fundamental questions have remained 

unresolved in immunology for more than half a century since the proposition of the clonal 

selection theory by Macfarlane Burnet [28]. From a generation and selection processes’ 

perspectives: how much is the diversity of the actual repertoire (i.e., how many different 

lymphocyte clones are there) and how large is the clonal size [=number of cells] of each clone 

(i.e., how abundant is each clone) in an individual at a given time point? How does the actual 

repertoire change in time during development, or under steady state, or upon external and 

internal perturbations? How the actual repertoire is shaped through various selection events? 

From a functional perspectives: How does a skewed immune repertoire lead to the development 

of pathological autoimmunity? Conversely, is there a minimal repertoire required to efficiently 

respond to pathogens? How come that at a population level humans are able to, most generally, 

establish an efficient immune response against pathogens expressing non-self-antigens for which 

T cells are not positively selected still maintaining the integrity of their organs? Since the 

beginning of my career, I have been working to address part of these unresolved questions 

regarding T cell repertoire diversity using systems biology approaches.  
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TCR repertoire and systems immunology 

Systems immunology is an apparent emerging field of research. Formally termed in 2006 by Ron 

Germain and Christoph Benoist [29], systems immunology can be naively defined as a systems 

biology approach applied to the immune system. Yet, the definition of systems biology is 

probably as diverse as the number of systems biologists as mentioned by Rainer Breitling [30], so 

it is for systems immunology. If I had to define my vision of systems immunology I would say that 

it is a global approach aiming at characterizing the immune system (whatever the level of the 

system considered) through the integration of the diversity of individual components forming 

that system. Retrospectively, systems immunology (as well as systems biology) is probably the 

original approach of research, since antiquity when complex systems where observed as a whole 

and not as the sum of their parts. This phrase, “the whole is greater than the sum of the parts”, 

sometimes attributed to Aristotle and sometimes just as an interpretation of what Aristotle and 

others tried to express, became viral and somehow the foundation of modern systems biology.  

After decades of reductionist approach, critical for the dissection of cellular and molecular 

mechanisms involved in the immune responses, technological progresses in molecular and 

cellular biology as well as in computational science now offers the possibility to integrate the 

parts of a complex system to rebuild the whole and eventually identify how the whole system 

behave under perturbations [31–35]. Such approach now provide opportunities to better 

characterize a system (un-exhaustively) at steady-state [36–40],  in vaccinology [41–48], in 

pregnancy [49–51] and in various pathological conditions, such as autoimmune diseases [52–61], 

infection [62–68], cancer [51,69–73], … Most of the studies initially focused on methods for which 

global approaches were introduced and validated more than 15 years ago, such as 

transcriptomics, genomics, proteomics and cell phenotype…. Adaptive Immune receptor 

repertoire (AIRR) methodological progresses in the last ten years offered a renewal of the field 

and is now part of the system immunology approached [3,31,33,34,74,75]. 

In this manuscript, I will introduce briefly my achievements during the past years and my current 

research to finish with my perspectives for the next 5 years. 
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T cell receptor diversity inception (2004-2012) 

During my early career, I had the chance to join two major laboratories in the field of T cell 

biology, including TCR repertoire diversity and regulatory T cells differentiation and 

characterization: 

- From my MSc degree internship, I joined Prof. Adrien Six team in Prof. Pierre-André 

Cazenave laboratory at Pasteur Institute (Paris, France) to study the TCR repertoire 

alteration during the course of Plasmodium berghei ANKA infection in mouse. 

-  Right after my PhD, I joined Dr. Hori’s laboratory at Riken Institute (Yokohama, Japan) to 

work on Treg specificity and repertoire in mouse physiological condition. 

Identification of a blood TCR signature predicting Cerebral Malaria  
Background 
During my MSc degree and my PhD internships, the later supported by a French Ministery of 

Education and Research Doctoral fellowship (MNERT), I worked on the characterization of the T 

lymphocytes diversity in different mouse models. My main research project, supervised by Prof. 

Adrien Six, aimed at characterizing brain T lymphocyte diversity in a mouse model of cerebral 

malaria (CM), one of the severe complications of Plasmodium falciparum infection, in part 

associated with an uncontrolled immune response. In particular, T lymphocytes play an 

important role as shown by the protection of T cell-deficient mice infected by the appropriate 

parasite, Plasmodium berghei ANKA (PbA) [76,77]. Moreover, CD8+ T cells reach the brain of 

CM-developing mice (CM+ mice) [78–80]. The complex composition of micro-organisms in 

general including antigenic, superantigenic and mitogenic activities, alter the diversity, leading to 

polyclonal proliferations and/or oligoclonal expansions [81,82]. Such modifications can lead to 

inappropriate responses that, in turn, scramble or divert the protective appropriate response. 

We hypothesized that during Plasmodium infection, the diversity of T repertoire is highly 

modified. At that time, we made used of Immunoscope technique [83] (also known as CDR3 

spectratyping [84]).  
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Method: From qualitative to quantitative TCR profiling by Immunoscope 
Immunoscope technique developed at the Pasteur Institute in early 90’s [83] generates CDR3 

length profiles, at that time mostly analysed qualitatively. Although such approach was promising 

and efficient for the study of pathological conditions associated with major expansions of clones, 

it reveals lack of quantitative reliability [85]. To overcome such issue, Adrien Six and his former 

PhD student developed a software able to quantitatively manage the information output from 

Immunoscope, namely ISEApeaks [86]. The principle was simple: rearrangements were labelled 

during amplification by PCR and separated at the molecular level using sequencing methods. The 

labelling allowed to identify and measure the intensity of each rearrangement. The separation 

based on the size, the output corresponded to the CDR3 length of each rearrangement. The data 

from the CDR3 length profiles obtained from the sequencer could therefore be retrieved and 

gathered in a peak database. CDR3 spectratypes could then be quantitatively analysed by 

applying different measures such as perturbation indexes, translating the modifications between 

samples but also reflecting the emergence of recurrent oligoclonal expansions. Associated to 

multivariate statistical methods implemented in ISEApeaks, this strategy allowed a rigorous 

analysis of the repertoire and can be seen as the grounds of TCR database integration. 

Results 
In a first study, we showed a perturbation of blood TCRß repertoire in CM+ mice, compared to 

healthy mice and also to infected mice without cerebral symptoms, partly due to recurrently 

expanded T cell clones [87]. Moreover, the cerebral damages associated to the infiltration of 

CD8+ T lymphocytes in the brain of CM+ mice suggested that these modifications were directly 

associated with the outcome of CM. In order to evidence the dynamics of this alteration, we 

performed a kinetic analysis of blood, spleen and brain TCRß repertoires, from day 3 post-

infection (p i) until the death following the development of neurological signs of PbA-infected 

mice. The repertoire of total blood, spleen and brain lymphocytes was analysed by comparison 

between infected and non-infected mice. We observed a global alteration of the repertoire of 

infected mice from day 5 in the spleen and day 6 in the blood. The perturbation increases for all 

Vß in the blood and the spleen. Interestingly, perturbation of most of the Vß is peculiar to each 

compartment analysed suggesting a compartmentalization of the diversity during the infection. 
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Strikingly, the comparison of brain repertoires between healthy and CM+ mice revealed a 

perturbation limited to 5 Vß out of 23, and recurrent oligloclonal expansions among 2 Vß families. 

These 5 Vß are perturbed in the spleen and the blood, following a similar kinetic. These results 

confirmed our previous observations of a huge perturbation of the repertoire associated to the 

development of cerebral malaria. Moreover, they indicate a possible targeted alteration of the 

brain TCRß diversity, suggesting an oriented recognition, of parasitic or self-antigens, in the brain. 

We therefore applied a strategy for TCR signature detection based on an approach developed by 

Adrien Six team for transcriptome analysis [88]. We could identify a TCR signature in the blood 

discriminating with > 90% accuracy the development of CM. In addition, this blood signature was 

also found in the spleen and more importantly in the brain, strongly suggesting a pathogenic role 

of T cells bearing those TCR in the development of CM in mice [89].  

Conclusion  
With this work we brought a dynamic dimension to the repertoire description, showing for the 

first time (1) the evolution of TCRß diversity during the course of the infection, (2) the description 

of the global brain TCRß repertoire in mouse and (3) the biomarker potential of TCR signatures. 

This work was awarded in 2006 by the “FOCIS poster of distinction”.  

TCR repertoire is modified at early stage of T1D onset in mouse 
In parallel, I was involved in a collaborative study of the T cell repertoire in young NOD mice. 

Initiation of the T cell response that cause autoimmune diabetes in NOD mice occurs in the 

pancreatic lymph nodes (PLN) around two weeks of age. To identify T cells that were activated 

early in response to beta cell antigens at this site, we investigated the TCR diversity in the 

pancreatic lymph nodes (PLN) in comparison with inguinal lymph nodes (ILN) as controls, of 10, 

14, 18 and 22¬ day-old NOD females. An analysis of all V chains by Immunoscope and ISEApeaks 

(see methods) revealed intensive perturbations of the repertoire through time in the PLN as well 

as in the ILN, suggesting that the overall TCR repertoire is subject to major changes between 10 

and 22 days of age. In contrast, when a selected set of V chains was analysed at the V-J level, 

several unique TCR perturbations and oligoclonal expansions were observed in the PLN 

compared to the ILN. Different oligoclonal expansions were found at different time points, 



23/67 
 
 

suggesting that the initiation of diabetes in NOD mice may involve several T cell specificities that 

are activated in a sequential manner [90]. 

Altogether, 5 research articles, one review and one book chapter were published out of my PhD 

work (PUBLICATION ACHIEVEMENTS A). 

PUBLICATION ACHIEVEMENTS A : PHD 
Main research projects: 
Mariotti-Ferrandiz E, et al PlosOne. PMID: 26844551 (T8) 
Petrovic-Berglund J.*, Mariotti-Ferrandiz M.E*,  et al. Molecular Immunology. PMID: 18471883 (T3) 
Collette A,  et al.. Journal of Immunology. PMID: 15383590 (T1) 
Collaborative research projects 
Montaudouin C et al. PlosOne. PMID: 20454452 (T5) 
Guillot-Delost et al. J. Gene Med. PMID: 19514009 (T2) 
Reviews & book chapter: 
Boudinot P et al. Molecular Immunology. PMID: 18279958 (R1) 
Mariotti-Ferrandiz M.E. and Adrien Six. Arnette edition, ISBN: 9782718411972 (B1) 
 

TCR repertoire and specificity of regulatory T cells 
Soon after my PhD defence, I joined Dr Hori’s laboratory at Riken Institute in Japan with the 

aim to link TCR repertoire diversity with T cell subset functions. This post-doctoral internship was 

supported by a Japan Society for Promotion of Science (JSPS) post-doctoral fellowship that I 

obtained soon after joining Dr Hori’s laboratory.  

Seminal work from Shimon Sakaguchi [91–93], further confirmed by others [94], established 

that the normal αβ T cell repertoire consists of not only “conventional/effector” T (Teff) cells that 

exhibit ridding or aggressive functions but also regulatory T (Treg) cells that display protective or 

suppressive functions over aggressive immune activities to ensure immunological tolerance to 

“self” and innocuous environmental antigens including commensal bacteria [95,96]. This notion 

has been firmly established by the findings by Hori’s lab and others that the development of 

functional Treg cells is controlled by the transcription factor Foxp3 and that their defective 

generation underlies the catastrophic autoimmune, inflammatory and allergic disease that 

develops in Foxp3-mutant mice and humans suffering from the IPEX (immune dysregulation, 

polyendocrinopathy, enteropathy, X-linked) syndrome [97–101]. Still, Treg deficiency or 

insufficiency was not clearly addressed at that time. Two main hypothesis were reasonably 
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stated: The first hypothesis would suggest that AIDs are due to a quantitative defect of Tregs 

explained by a decrease number of cells leading to an imbalance between the Treg and the Teff 

compartment. This has been supported by the description of an IL-2 insufficiency in T1D patients 

(as well as the NOD mouse model) for instance. The second hypothesis would rather explain AIDs 

development due to a limited/altered Treg cell repertoire diversity that could lead to the 

development of various autoimmune or allergic diseases by creating “holes” in the antigenic 

universe recognized by Treg cells. For my post-doctoral internship, I proposed to tackle the 

second hypothesis by first characterizing Treg TCR repertoire diversity in physiology. In addition, 

Treg specificity was (and is still) unknown. I therefore established a mouse model to try to resolve 

it. 

Treg TCR specificity  

Background 
Studies on TCR specificity often relied on transgenic mice expressing only one single TCRβ 

chain and characterized the diversity of their TCRα repertoire, in order to make the analysis and 

data interpretation straightforward by eliminating the diversity of TCRβ chains and the diversity 

caused by pairing of TCRα and β chains. It remained unclear, however, whether the picture 

obtained from such transgenic systems can be generalized to the fully diverse T cell repertoire in 

normal, non-transgenic individuals. In addition, since the TCRα repertoire and the consequent 

antigenic recognition by the resulting αβ TCR have been shown to be somehow skewed in such 

TCRβ “fixed” mice compared to normal non-transgenic mice, it is possible that different pictures 

may be obtained from different transgenic systems. 

My first project aimed at establishing a more physiological mouse model to address the TCR 

repertoire and antigen specificity of Treg cells. In collaboration with Dr. Teruhiko Wakayama 

(Riken Institute), the lab established Treg cell-derived nuclear-transferred ES (nt-ES) cell lines. 

Briefly, they sorted Treg cells based on CD25Hi expression by FACS sorting, retrieve the respective 

nucleus and transferred them onto ES denucleated cell line using an established protocol [102]. 

The efficiency of such nuclear transfer with Treg cell derived nuclei was very low, leading to only 

6 established nt-ES cell line. Each of those were characterized for their TCR by Sanger 
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sequencing.  By germ-line transmission, they obtained one functional TCRβ gene from one of the 

nt-ES lines, called 1D2. Although they failed to obtain the functional 1D2 TCR gene by germ-

line transmission, we decided to take advantage of the 1D2 allele and utilized this unique Treg-

derived TCR fixed mouse model for characterization of TCR repertoire and specificity of Treg 

cells.  

Results 
First, I determined whether the original 1D2 nt-ES cells are indeed derived from Treg cells by 

“retrospective” sequencing. We introduced the Foxp3hCD2 reporter allele that was generated in 

the by Herman Waldmann lab in UK [103], as a more reliable reporter-gene of Foxp3 expression 

[104], and one TCRC-null allele to prevent expression of two TCR chains on the surface [105] 

into the 1D2 homozygous mice, sorted Foxp3hCD2+ Treg and Foxp3hCD2- Tconv cells, and 

performed conventional sequencing of the original V44/J44 rearrangements. As a result, we 

found that the 1D2 clonotype was expressed preferentially in Treg cells, although it was also 

expressed in Tconv cells albeit at a lower frequency, indicating that this 1D2  TCR was indeed 

derived from Treg cells. Second, to reconstitute the original 1D2 TCR in vivo and to address its 

specificity, I cloned both 1D2 and  cDNA into a retroviral vector, infected RAG-/- BM cells with 

the retrovirus, and transferred the 1D2-transduced BM cells into irradiated host mice, using a 

published protocol for retrogenic mice generation [106,107]. We found that both Foxp3+ and 

Foxp3- T cells expressing the 1D2 TCR did develop in such retrogenic mice, further confirming 

that the 1D2  TCR can instruct developing T cells to differentiate into Treg cells. Importantly, 

such differentiation could be achieved only in BM chimeras reconstituted with 1D2-

transduced BM and wild type BM cells, establishing Hsieh’s observations that Treg differentiation 

is highly dependent on intraclonal competition [108].  

Conclusion 
Those results also supported previous observations by others [109–112] that Tregs and Teffs 

may differentiate independently of their TCR and therefore may share part of their diversity. 

Indeed, as Foxp3+ cells have been found to function in a wide range of immunological contexts, 

their specificity has been questioned, and especially the overlap with conventional T cells 
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(Foxp3−). While some groups showed distinct Foxp3+ and Foxp3− repertoires and revealed self-

reactivity among Foxp3+ TCRs [110,113,114] others conclude to a high overlap between both 

populations arguing that Foxp3+ have a non-self-reactive repertoire [95,112]. Therefore, from 

this project we moved to the characterization of TCR repertoire diversity of the 1D2 mouse. 

Treg TCR repertoire diversity 

Background 
At that time, and since the discovery of the TCR loci [1], several attempts have been made to 

estimate the repertoire diversity of various T cell subsets including Treg cells in humans and in 

mice [112–118] by using conventional sequencing approaches, i.e., RT-PCR amplification of 

rearranged TCRα or β transcripts followed by cloning and sequencing of individual clones by the 

Sanger method. However, the information obtained from such studies has been limited - 

although informative - and sometimes contradictory, primarily because of technical limitations 

of the conventional approach (labour- and cost-intensive, inherently “low-throughput”). As a 

result, one could only infer the diversity of the whole repertoire from such small samples based 

on some statistical assumptions on the underlying clonal size distributions [119]. To further 

develop our ongoing research activity, I decided to establish a novel strategy for comprehensive 

and quantitative measurement of the TCR repertoire diversity of Treg and Tconv cells by taking 

advantage of the next-generation sequencers that have been fully functional at the Riken 

Institute. To this end, I established a collaboration with Drs. Plessy (Bioinformatician) and 

Manabe (Head of the sequencing facility at Riken Institute) and obtained a Riken President Fund 

for feasibility studies in 2009.  

Method 
As for the next-generation sequencing platform, we have used the 454 FLX Titanium from 

Roche, which could generate up to 1.6x106 individual reads per run with a read length of up to 

400-bp, a length sufficient to determine the nucleotide sequence of the CDR3 and the V2 and 

J gene segment usage.  

We used the 1D2 mice harbouring the Foxp3hCD2 reporter allele and one TCRC-null allele 

[120] and sorted peripheral CD4+ T cells into Foxp3+ Treg and Foxp3- Tconv cells by flow cytometry 
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based on the hCD2 reporter expression from the thymus of 5 weeks old mice and peripheral 

secondary lymphoid organs from 5 and 8 weeks old mice.  

Because there are numerous V gene segments, we have restricted our analyses to cells 

expressing the TRAV14 (V2) family (which is one of the most major family). I designed a specific 

primer that covers all the 6 TRAV14 family members and a reverse primer specific for the 

constant region so that we can amplify TRAV14 transcripts.  

Results 
This collaboration allowed me to access to the state-of-the-art sequencers and to develop in 

tight collaboration with a bioinformatician a tool, clonotypeR, for TCR data obtained from next 

generation sequencing (NGS), unavailable at that time [121]. clonotypeR does include functions 

for automatic TCR sequences analysis as well as statistical modelling of repertoire diversity, by 

computing diversity indexes (richness, Morisita-Horn, Species Abundance Distribution). 

Our quantitative comparisons of V and J segments frequency, CDR3 length and clonotype 

distribution between samples, showed that Foxp3+ and Foxp3− T cells can be discriminated by 

these different parameters from the TCRα in a fixed TCRβ background, in line with the works of 

Hsieh et al [113] and Pacholczyk et al. [112]. In our study, as we sequenced millions of CDR3, we 

could show that the differences between Foxp3+ and Foxp3− repertoires are quanƟtaƟve rather 

than qualitative, and that a frequent CDR3 in one population will tend to be rare but not 

completely absent from the other population. This challenges the concept of private clonotype 

in such high-resolution studies. Strikingly, at the level of TRAV14 and TRAJ segments, we found 

differential usage between Foxp3+ and Foxp3− in 1D2β. Similar observations were also reported 

earlier with a different fixed β chain [113], although no statistical comparisons could be achieved. 

Given that the Vα and Jα nucleotides contributing to the CDR3 region are the same in each 

TRAV14 segments respectively, those results suggest a contribution of the conserved regions 

from the V segments to T cells function. Structure analysis of self-reactive human and murine 

TCRs showed that TCRs specific for self-antigens display an unconventional structure of V regions 

compared to non-self-reactive TCR [122]. In addition, this is a crucial point for fundamental 

analysis of TCR repertoire since most of studies focused the immune diversity analysis to the 
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CDR3 region, arguing that peptide/MHC recognition is limited to CDR3 region. However, if we 

consider the contribution of TRAV segments as well as TRAJ, this may revise upwards the extent 

of the TCR diversity. 

As in previous studies, we found a certain overlap between regulatory T cells and 

conventional T cells, in periphery and in the thymus. To try to distinguish thymic versus peripheral 

shaping of the repertoire, we analysed also recent thymic-emigrants by using Rag1-GFP model, 

as it is known that RAG-expression, required for the rearrangement, is abolished prior to thymus 

exit. The reporter gene GFP allowing to track those cells which recently expressed RAG, 

presumably recently emigrating from the thymus.  

 

Figure 4 : Recent thymic emigrants reveal TCR repertoire maturation dynamics 
(A) Hierarchical clustering of the 1D2b libraries calculated based on the Morisita-Horn similarity. (B) Morisita-Horn 
index calculated between thymus and RTE repertoires (left) or peripheral and RTE repertoires (right) using 6000 
sequences sub-sampled libraries from Foxp3+ (red) and Foxp3− (black) samples. In graphs, the bar represent the 
median and statistical significant tested with t-test. (C) Differential representation of clonotypes in thymus and RTE 
Foxp3+ or Foxp3− cells.  The dot plots represent each clonotype, with on the verƟcal axis the fold change between 
the compared populations (up, thymus; down, RTE), and on the horizontal axis the average expression level. 



29/67 
 
 

Statistically significant fold changes are indicated by a red dot. With each statistical comparison defining three groups 
(up, no difference, down), the stacked bar charts represent the contribution of these three groups to the thymic, 
RTE and peripheral Foxp3+ or Foxp3− populaƟons. (D) Same as C, except that the comparison is RTE vs. periphery. 

First of all, by measuring the Morisita-Horn similarity distance, we found that RTE repertoire 

are highly similar with that of thymic cells, for both Treg and Teff (Figure 4 A&B). Interestingly, 

Foxp3- clonotypes enriched in the thymus compared to RTE were found to be abundant in thymic 

and RTE Foxp3+ population, suggesting that these clonotypes were auto-reactive, either 

expressed by both thymic Foxp3+ and Foxp3- and then deleted from the Foxp3- subset, or 

expressed by Foxp3- and redirected toward the Foxp3+ stage upon thymic maturation (Figure 4 

C&D). This result was apparently in contradiction with previous results showing that TCR 

engagement is required to upregulate the IL2R chain (CD25) expression and the corresponding 

signalling pathways which in turn led to the transcription of Foxp3 [110,123] arguing for the 

existence of Tregs precursors among the CD4SP cells CD25+. However, since we separated the 

cells based on the expression or the absence of expression of Foxp3, our Foxp3− samples may 

contain precursors of Tregs. It is reasonable to think that, Foxp3− clonotypes found in the Foxp3+ 

compartment may correspond or at least be enriched in Foxp3+ precursors which did not up-

regulate CD25 yet. If so, they must be found preferentially in the peripheral Foxp3+ compartment. 

To cope with this point, we carefully analysed the peripheral distribution of thymic clonotypes. 

Interestingly, while 16% and 20% of exclusive-thymic Foxp3+ and exclusive-thymic Foxp3− 

clonotypes respectively are found in the periphery, 60% of clonotypes shared between thymic 

Foxp3+ and Foxp3− are selected to the periphery and 78% are found in peripheral Foxp3+ 

compartment (among which half are also shared with Foxp3− cells) supporting indirectly the two 

step model. However, the direct evidence requires the comparison of Foxp3− CD25− cells [124]. 

Conclusion 
During those 5 years of post-doc in Japan, I expanded my skills in cellular and molecular 

immunology and developed new skills in bioinformatics in particular for TCR repertoire tools and 

strategies development. With the pioneer works of TCR repertoire studies by NGS, I could show 

that (i) TCR repertoire diversity from thymus and periphery discriminate Tregs from Teffs, (ii) total 

Treg repertoire is highly diverse and (iii) that the clonal size distribution of Treg and Teffs reflects 
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central and peripheral selection events. This in turn suggests that, by tracking changes of the 

clonal size distributions during T cell development or during immune responses, we will be able 

to delineate how each selection event impinges on the shaping of the actual Treg and Tconv cell 

repertoires.  

Altogether, 2 research articles were published and one is (still) in preparation out of my first post-

doc work (PUBLICATION ACHIEVEMENTS B). 

PUBLICATION ACHIEVEMENTS B : POST-DOC 1 
Main research projects: 
Mariotti-Ferrandiz E et al. High-throughput sequencing provides quantitative evidence for spatio-temporal 
shaping of Treg TCR repertoires (P6) 
Plessy C, Mariotti-Ferrandiz E et al. bioRxiv, DOI: doi.org/10.1101/028696 (T7) 
Komatsu, N, Mariotti-Ferrandiz M.E. et al.  PNAS. PMID: 19174509 (T4) 

Towards a systems immunology approach for biomarker discovery (since 2012) 

In 2012, I joined Prof David Klatzmann laboratory as a post-doctoral fellow to work on two 

recently granted projects obtained by David Klatzmann: 

- A European Research Council Advanced Grant project aiming at “Deciphering the 

regulatory T cell repertoire: towards biomarkers and biotherapies for autoimmune diseases” 

(TRiPoD project). 

- A Laboratory of Excellence project funded by the local National Agency for Research 

(Agence Nationale pour la Recherche, ANR) aiming at revisiting the nosography of autoimmune 

and inflammatory diseases through a systems immunology approach (Transimmunom project). 

In those two project, there was a major focus on Treg biology as well as on their TCR repertoire 

composition and specificity, in human and/or mouse physiology and pathology. 

I therefore had two major missions to fulfil the expectations on those projects. 
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Implementation and coordination of the Treg TCR repertoire studies in mouse 
and human physiological and pathological conditions 

Development and implementation of TCR repertoire diversity analysis approaches by 
NGS 

Background 
Systematic sequencing of “all” Ig/TCR transcripts expressed in a lymphocyte population of 

interest can be achieved by NGS technologies which become available after the seminal work of 

Weinstein et al. in 2009 [125].  NGS allows to produce several tens of thousands of sequences in 

a short amount of time. A benefit of this approach is clearly that several angles of analysis can be 

looked at such as clonotypes frequency, Ig/TCR V-C or V-J usage, CDR3 diversity, CDR3 sequence 

analysis, V gene allele identification… However, while several studies at that time, including mine 

at Riken, have highlighted the feasibility of using deep sequencing for the analysis of Ig/TCR 

repertoire diversity [126], now called AIRRSeq (for Adaptive Immune Receptor Repertoire 

Sequencing) [127,128], the ability to process the complexity of the information provided by such 

amounts of data remained limited and specific software developments for automatic annotation 

of TCR sequences and statistical modelling of repertoire diversity were needed, as we 

summarized in a Frontiers in Immunology review [129]. 

In addition, besides the computational needs, the molecular approaches used and proposed by 

different laboratories and/or companies, such as Adaptive Biotechnologies and iRepertoire in the 

US, were at their early birth and there was no consensus nor grounded experience, as it was a 

newly born field. Such absence of consensus was raised by the AIRR community, launched in 2015 

by Felix Breden and Jamie Scott and is currently tackled by different working groups, including 

two I belong to.  

In tight collaboration with Prof. Adrien Six Integrative Immunology team (i2) in the laboratory, I 

have been involved in the development and implementation of (i) TCR repertoire modelling 

strategy and tools and (ii) setup and validation of a robust experimental design for TCR library 

preparation and sequencing.  
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Results 
Bringing my experience and developments from my first post-doctoral internship, I have been 

working on the establishment of a workflow to systematically compute various metrics and 

analysis strategies, allowing to model the TCR repertoire diversity, composition and variation in 

human and mouse samples [130–132].  

 

Figure 5 : TCR repertoire exploration modelling 

Starting with clonotypeR, I worked with Wahiba Chaara, a former PhD student of Adrien Six, and 

we setup a full R package, which is continuously improved with new data and questions arising 

from our studies, in collaboration with two PhD students I co-supervise, Pierre Barennes and 

Vanessa Mhanna (Figure 5). This package includes (i) several diversity measures borrowed from 

the ecology field, such as rarefaction curves, diversity indices (Renyi Profiling, Gini Index, …) or 

from information theory field (Shannon diversity) as well as V and J gene usage modelling based 

on their count and frequencies (Figure 5, top & [130,132–134]) and (ii) several visualization and 

quantification tools for TCR composition comparison, such as differential TCR clonotype 

expression [124], similarity matrix [134–137] as well as clone tracking (Figure 5, bottom). Finally, 

deep sequencing repertoire analysis calls for advanced statistical analysis and graphical 

representations, such as multivariate analysis (e.g. hierarchical clustering, principal component 
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analysis, multidimensional scaling…) and probabilistic or network modelling of sequence 

distributions [4,138–141]. Through a long lasting collaboration with Thierry Mora and Alexandra 

Walczak’s team (Ecole Normale Supérieure de Paris) as well as with Mikhail Shugay (Skoltech 

Faculty, Moscow), we improved, adapted and extended our workflow with innovative and state-

of-the art approaches developed in the field.  

Most of those measures have been incorporated in a web-application, named DiversiTR, available 

internally and developed under my supervision with Dr. Hang Phuong Pham, a statistician and 

collaborator as well as Gregoire Bolt, a computer science MSc student that I supervised during 

his MSc internship (Figure 6). 

 

Figure 6 : Screen shot of DiversiTR, a web-app for TCR repertoire analysis 

Finally, because we are generating millions of TCR data, we needed a framework to store but 

most importantly to query our tremendous database. We therefore worked on the specification 

of the TCR database with Adrien Six and Wahiba Chaara as well as with Hadrien Oubert (a former 

Bioinformatics MSc student supervised by Adrien Six). The idea was to have a clear knowledge 

on what we would need to store for efficient and scientifically meaningful queries. We come up 

with a schema and a finalized version of an in house database. However, lacking the human 

resources to maintain and scale-up the database in the laboratory, we joint the forces with the 

iReceptor team from a Simon Fraser University (Vancouver, Canada) who developed the 
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iReceptor gateway for AIRR-seq data integration and query [142] and was willing to expand its 

tool to other laboratories. I have been supervising, with the help of the IT manager of the 

laboratory and the iReceptor team, the setting up of an iReceptor repository in the laboratory, 

now functional and waiting for data loading.  

In addition to the tool development, in a co-supervised work with Adrien Six, we revealed that 

over sequencing small samples may lead to artificial diversity that can eventually be overcome 

by using Shannon entropy as a normalization method [132] as it is well known to identify what is 

called the true diversity [143]. These results led us to realize the necessity in establishing a robust 

method for TCR repertoire analysis by NGS. 

Conclusions 
In tight collaboration with statisticians, computer scientists and bioinformaticians, I implemented 

a framework for advanced still user friendly TCR repertoire modelling that can now be applied 

for (i) diversity exploration and (ii) TCR signature identification in mice and humans.  

Portraying TCR repertoire diversity of Treg subsets in mouse  

Background 
Treg have been shown as previously introduced as an heterogeneous population, based either 

on their differentiation origin (thymus vs. periphery [144] but also on their activation status. 

Indeed, the i3 laboratory showed that in the periphery, activated/memory Tregs (amTregs), 

characterized as CD4+Foxp3+CD44hiCD62L, are enriched in self-antigen specific Tregs, in 

comparison with their naïve counterpart (nTregs, CD4+Foxp3+CD44hiCD62L) [145–147] and that 

they are enriched in deep lymph nodes (dLN) draining deep organs [130]. In addition, a first TCR 

repertoire study, focusing on only one TCRV by NGS in physiological mouse background 

(C57BL/6), revealed that (i) amTregs and nTregs were characterized by more expansions, 

compared with Teffs, (ii) expansions of Treg subsets are observed in deep LN compared with their 

superficial LN counterparts and (iii) amTregs and Teffs display a higher overlap than nTregs and 

Teffs as well as nTregs and amTregs. Overall, the results suggested an instructive model for mice 

Treg selection in the thymus as well as a self-antigen specificity of amTregs enriched in deep LN, 

in line with other studies performed in TCRb transgenic mice [148,149]. This first study prompted 
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us to further characterize Tregs subset repertoires in different tissue LN as well as in the thymus 

in mice but also in humans, where indeed seminal studies suggested a global Treg repertoire as 

diverse as Teff cells [117].  

Experimental design 
To answer that question, I coordinated the experimental design for Treg subset sampling in 

mouse by FACS sorting as well as the TCR repertoire analysis.  

In human, a similar approach has been implemented by Valentin Quiniou (PhD Student) under 

the supervision of David Klatzmann to obtain LN, thymus, spleen and blood from organ donors 

enrolled in an approved protocol by the local ethical committee at APHP. I am not directly 

involved in the supervision of this study, so I will not further detail it [150]. 

In mice, we selected two mouse background: (i) the commonly used C57BL/6 mouse background, 

as a reference model for physiological Treg differentiation and function and (ii) the Non-Obese-

Diabetic (NOD) mouse background as an autoimmune disease model where Treg function is 

impaired notably due to a defect in IL2 [151–153] and specific tissue (the pancreas) is attacked 

by effector CD4 and CD8 cells [154]. In both backgrounds, a Green Fluorescent Protein (GFP) 

reporter gene for Foxp3 expression was added by mouse mating in order to unambiguously 

identify Foxp3+ Tregs. amTregs, nTregs, Teffs (CD4+Foxp3-) and CD8+ T cells were sorted from 6 

LN (3 deep LN and 3 superficial LN) as well as from the spleen. In addition, thymic subsets where 

sorted in order to reproduce the major steps of thymocytes differentiation, including Tregs: 

double positive (DP) CD3- thymocytes, as representative of cells that did not undergo TCR 

selection, DPCD3+ as representative of TCR selected cells, and CD4 Single Positive (CD4SP) 

Foxp3-, CD4SPFoxp3+ and CD8SP as thymocytes positively selected and committed to their 

respective peripheral subsets (CD4 Teffs, CD4 Tregs and CD8 Teffs). Importantly, those later 

subsets may include cells that did not undergo negative selection at the time of sampling.  This 

protocol has been applied to young (8-10 weeks old), old (20-26 weeks old) and very old (60 

weeks old) mice, female and male separately. Since some Treg subset where very rare in some 

LN (especially renal and para-aortic), we decided to pool the cells from 6 to 8 age, sex and genetic 

background matched animals. This protocol was validated by the local ethical committee. All the 
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sorted cells were systematically stored in lysis buffer at -80°C. Since the beginning of the study in 

2013, we collected more than 4000 samples across more than 100 experiments.  

Results 
During sample collection, we started the analysis of the TCR repertoire of the different T cell 

subset sorted from the spleen. I supervised two master students, among which one continued as 

a PhD student in the lab under my co-supervision together with Adrien Six, and granted with a 3 

years doctoral fellowship from the French Ministry of Education. A manuscript focusing on 

splenic CD4 subsets spleen is currently in preparation [155] where we show that amTregs in NOD 

mice are more diverse than in C57BL/6 probably as a results of interleukine-2 (IL2) production 

impairment in NOD mouse.  

 

Figure 7 : B6 but not NOD amTregs show lower diversity and more expansions than nTregs and Teffs.  
(A) Cumulative frequency of the 1% most predominant clonotypes in each metamouse within the three cell 
populations, with each purple line representing a unique clonotype (grey lines indicate rare clonotypes) in B6 (upper 
plot) and in NOD (lower plot) backgrounds. (C) Shannon entropy index was calculated for amTregs (in black), nTregs 
(in yellow) and Teffs (in green). Statistical analyses were performed using the two-way ANOVA test to compare the 
different cell subsets (*: p<0.05). (D) Renyi profiles display the diversity as a function of the parameter α for amTregs, 
nTregs and Teffs in B6 (upper plot) and NOD (lower plot). An analysis of similarities (ANOSIM) revealed a statistical 
difference between the groups in B6 (***: p<0.001) but not in NOD (ns: p≥0.05). 

We therefore applied the same strategy of cell sorting in NOD mice treated with AAV-IL2, a vector 

restoring IL2 production in mice [156]. This time, cells were sorted from individual mice to 
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appreciate inter-individual variation. Our results show that IL-2 treatment induces amTregs 

repertoire expansions (as well as nTregs to a less extend) but not Teffs. In addition, we inferred 

the specificity of the most expanded clonotypes in each subset and condition (C57BL/6, NOD, 

NOD+IL2) by comparing them with T1D associated TCR published elsewhere. We found that the 

expanded clonotypes in amTregs and Teffs (but not in nTregs) were enriched in T1D specific 

clonotypes in NOD treated by IL2, as well as in C57BL/6 but not in NOD non treated mice.  

Figure 8 : amTregs and nTregs are are expanded in NOD upon low-dose IL-2 treatment.  
(A) Experimental design. (B) The abundance (in %) of the expanded clonotypes are plotted for each sample (n=6) 
within the three populations and mouse models. Red circles represent sequences that lie 3*IQR or more above the 
third quartile calculated across all 18 samples within each population. 

Altogether, those results suggest (i) that pancreas self-antigen TCRs are naturally arising in mice 

and enriched in amTregs, (ii) that amTregs are exhausted in NOD background due to impaired IL2 

production leading to a poor control of autoreactive Teffs that escape negative selection in the 

thymus. Further characterization of the overlap between amTregs and Teffs will be required. In 

addition, since non treated mice repertoires were generated from cells pooled from several mice 

while NOD treated with IL2 repertoires were analysed from individual mice, we cannot exclude 
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that the differences, especially in terms of specificity are due to private response of individual 

mice that might be diluted in NOD pooled repertoires.     

In two collaborative studies within the laboratory and with the team of Luis Graca (Instituto 

Gulbenkian, Portugal), I have been involved in the precise characterization of regulatory follicular 

T cells (Tfr) and their TCR repertoire in NOD and C57BL/6 mice [133,134,157]. 

Conclusions 
This study has been setting up the ground for our TCR repertoire modelling strategy and already 

provide insights into fundamental questions regarding T cell differentiation and TCR repertoire 

diversity importance to better understand pathological conditions.  

Coordination of Systems Immunology Activity for the Study of AIDs 

Background 

Autoimmune and inflammatory diseases (AIDs) have been shown to form a continuum of 

diseases from pure autoimmune to pure inflammatory diseases [158] mainly based on genetic 

studies. It is also known that most of the patient diagnosed for one AID, may progressively 

develop other AIDs. The most representative situation is that of T1D patients, who may develop 

by time renal and cardiac autoimmune disorders. Since (i) the immune system play a major role 

in such diseases, (ii) most of the treatments associated with each of the AIDs are not fully 

beneficial for all the patients and (iii) treatment for one disease may be detrimental in case of a 

secondary AID occur. The Transimmunom project aims at revisiting the nosography of AIDs 

through a systems immunology approach consisting in the cross-analysis of multi-parametric 

data, including blood transcriptome, serum cytokines and auto-antibodies, sorted blood Treg and 

Teffs TCR repertoire as well as gut microbiome and clinical data.  

In the framework of this project, I participated to the overall experimental design of sample 

collection, benchmarking of data integration tools and molecular biology methods [159] and led 

the clinical data integration in a harmonized database [160] as well as the validation of molecular 

biology approaches for TCR repertoire sequencing by NGS [161]. 
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AID patient clinical data integration  

In tight collaboration with Roberta Lorenzon, the medical doctor of the Transimmunom trial, we 

established a workflow (Figure 9).   

 

Figure 9 : eCRF design and implementation workflow. 
The figure represents the 3-steps workflow adopted for the eCRF design and implementation: (1) Protocol design, (2) 
eCRF design and (3) eCRF validation. In each box are listed the actions, its aim and the person in charge of it. Colour 
code: Blue: clinical team, purple: biological team, green: computer scientist, and orange: the trial monitor team and 
brown the Core management team (see methods for description). 

Results 
To tackle the challenge, we assembled a clinical expert consortium (CEC) to select relevant clinic-

biological features to be collected for all patients and a cohort management team comprising 

biologists, clinicians and computer scientists to design an electronic case report form (eCRF). 

After more than a year and a half (100h of meetings), we (i) choose as an eCRF platform an open-

source CFR-part 11 compliant electronic data capture system, OpenClinica, (ii) selected with the 

CEC 865 clinical and biological parameters covering all the diseases and to be (for more than 80%) 

collected for all the patient and healthy volunteers recruited in the trial, (iii) coded the 

parameters using CDISC standards into 5835 coded values and (iv) designed 28 structured eCRFs 
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by categorizing the 865 parameters. Examples of coding are check boxes for clinical investigation, 

numerical values with units, disease scores as a result of an automated calculations, and coding 

of possible treatment formulas, doses and dosage regimens per disease. Technical adjustment 

have been implemented to allow data entry and extraction of this amount of data, rarely 

achieved in classical eCRFs designs.  

Conclusions 
This task was one of my first mission when I joined the i3 laboratory. Although it can appear far 

from my initial background, I have been proposed this task based on the experienced I acquired 

in interdisciplinary projects since the beginning of my PhD.  On top of this, I learned a lot regarding 

translational research and clinical trials, which offered me an additional knowledge to undertake 

new multidisciplinary studies, including translational and clinical trial research programs. This 

work will be valorised through upcoming collaboration within the new Medical & University 

Department of Immunology and Biotherapies at Pitié-Salpêtrière as well as the Hu-Precimed 

consortium, a project structuring the Precision Medicine sector in France to which I am 

participating, together with several members of the Transimmunom project, with regards with 

clinical data integration.  

Establishment of a robust experimental method for TCR library preparation and 
sequencing 

Background 
Since the advance of NGS, analysis of the TCR repertoire is increasingly being used to understand 

disease pathogenesis and lymphocyte dynamics in health as well as in various pathological 

contexts such as autoimmune diseases, infections or cancers [75,162–167]. Indeed, with the high 

resolution provided by NGS should contribute to (1) deciphering the specificity or the breadth of 

a given adaptive immune response under pathological conditions, (2) identifying TCRs as 

biomarkers of diseases or clinical response to a treatment and (3) stratifying patients according 

to their TCR, therefore fostering new personalized therapeutic development.  

However, because of the broad immunological situations where TCR-Seq can apply with the aim 

either at characterizing subtle modifications of the repertoire [10,11,166–174] or at identifying 
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and tracking major clonal lymphomas [175–177], the requirement in terms of specificity and 

sensitivity of the method is different. Technically speaking, there are a number of caveats for 

which there is a lack of consensus in the field. Indeed, each step from sample preparation to 

analysis is critical and may have a profound impact on the actual data generated and subsequent 

interpretation of the results [178]. Still, there is no precise answer on the impact of methodology 

on TCR diversity measures, such as gene usage, rearrangement insertion and deletion, clonotype 

distribution, and quantification of rare versus abundant sequences. Two major approaches are 

used: 5’RACE-PCR (exclusively on RNA) and multiplex-PCR (either on RNA or DNA). To solve those 

issue and identify a robust and reproducible method that we could use in our different ongoing 

projects, I launched a broad comparative study and succeeded to mobilize key leaders in the field. 

Results 
We compared 8 different methods, including three from commercial entities, using as starting 

material a standardized set of input samples (Figure 10). Our aims were for each method to 

evaluate (i) their robustness in identifying and quantifying clonotypes of different sizes and (ii) 

their sensitivity to the input material quantity. Using the same analysis strategy on all the data 

generated, we observed differences between methods for (i) intra- and inter-method 

reproducibility and (ii) the accuracy of TCR determination. Notably, our study revealed that 

starting from RNA, RACE-PCR based methods performed better than multiplex-PCR. While DNA 

based methods provided high quality data, the absence of commercialized methods for TCR 

repertoire limits the interest of such approaches. This study highlighted the advantages and 

limitations of different TCR-seq methods, which may be used to guide approaches to the study 

of human diseases in which the TR plays a fundamental role. This work has been handle by Pierre 

Barennes, PhD student under my co-supervision and the manuscript is now under revision [161].  
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Figure 10 : TCR library method comparison - Experimental design.  
DNA and RNA of FACS-sorted effector T cells (CD4+CD25-CD127+) from one donor and cultured Jurkat leukemic T-
cells were extracted. Jurkat RNA has been then added to effector T cells RNA at the following ratios: 1:1000, 1:100, 
1:10 to a final quantity of 100ng. Same dilutions have been performed on DNA samples with DNA from Jurkat cells. 
Triplicate of each ratio condition were processed by 7 TR library preparation methods for RNA and by one TR library 
preparation for DNA. All the libraries were sequenced on Illumina MiSeq as indicated in the figure panel.  

 
In addition to the molecular method validation, in collaboration with the LIGAN EquipEx to fine-

tune the sequencing method, with the team of Michelle Rosenzwajg to set an efficient and handy 

method for Treg vs. Teff cell separation from blood samples and recently with a French biotech-

company (Primadiag), commercializing automatization systems for NGS library preparation, 

together with Pierre Barennes we established a complete workflow for TCR library preparation 

and sequencing from patient blood samples.   

General Conclusions 
During my second post-doc and my starting position as an assistant professor in i3 lab, I (i) 

develop a framework for TCR repertoire modelling in mouse and humans including wet and dry 

lab developments, (ii) characterize several Treg cell subset TCR peculiarities and (iii) set-up a 

systems immunology approach for AIDs study. 
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Altogether, 8 research articles were published and 2 reviews were published out of my first post-

doc work (PUBLICATION ACHIEVEMENTS C). 

PUBLICATION ACHIEVEMENTS C : POST-DOC 2 AND ASSISTANT PROFESSOR 
Main research projects: 
As co-author: 
Lorenzon R*, Mariotti-Ferrandiz E* et al. BMJOpen. PMID: 30166293 (T15) 
Bergot A-S et al. Eur. J. Immunol. PMID: 25726757 (T6) 
Ritvo P.G et al. Science Immunology. PMID: 28887367 (T10) 
As (co-)Principal Investigator:  
Lorenzon R et al.  bioRxiv 360719; doi: https://doi.org/10.1101/360719 (T14) 
Chaara W et al. Frontiers in Immunology PMID: 29868003 (T12) 
Ritvo PG et al. PNAS. PMID: 30158170 (T13) 
Collaborative research projects 
Maceiras AR et al. Nature Communication. PMID: 28802258 (T9) 
Rubelt F* et al. Nature Immunology, PMID: 29144493 (T11) 
Reviews: 
Ellul P et al. Frontiers in Neurology. PMID: 29615964 (R3) 
Six A et al. Frontiers in Immunology. PMID: 24348479 (R2) 
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Perspectives (2019-2023) 

In the next four years, I will continue my research work on (i) the analysis of the TCR repertoire 

of T lymphocytes in physiological and pathological conditions with the integration of single-cell 

approaches and (ii) the integration of multi-OMICS data for the implementation of systems 

immunology approaches in translational research. 

 

The TCR, a potential biomarker of the physiopathological state in humans  
 

Main research areas 

(i) The "biomarker" potential of the TCR repertoire in the context of AIDs with the aim of 

characterizing the nature of the modulations of the Treg and Teff peripheral TCR repertoire in 

two situations: 

(a) according to the pathology and to identify the presence of pathology-dependent TCR 

signatures in the circulating repertoire.  

My work will be based on the TCR Treg / Teff repertoire data currently produced as part of the 

Transimmunom [159] project, including 400 patients and 100 healthy volunteers. From Treg and 

Teff sorted from peripheral blood, the TCR repertoire data will be obtained by high-throughput 

sequencing according to the protocol validated under my direction at the laboratory [161]. I will 

coordinate the implementation of the statistical modelling of the data using the tools available 

in the laboratory [130,132–134]. Our preliminary results comparing blood Treg and Teff 

repertoires from healthy donors and T1D patients and using probabilistic model revealed disease 

and cell-subset signatures (Figure 11). 

 

[Transimmunom Project, ANR-11-LABX-0069, funded until 2020; 1 doctoral student under my co-

supervision with Prof. David Klatzmann (currently 2nd year of PhD)]. 
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Figure 11 : Probability distribution reveals clinical condition and cell-subset CDR3aa signatures 
For each dataset, the probability of each unique CDR3 (Pdata) has been evaluated in regards with the probability of 
generation (Pgen) based on Mora et al. model. All the CDR3s with a Pdata significantly higher than the theoretical 
Pgen is highlighted in orange (p. adjusted <0,05) and considered as enriched CDR3s in the dataset (Top). All the 
enriched CDR3s identified in each sample have been then clustered using hierarchical clustering (below). 
 

(b) in response to immunomodulatory therapy and to identify its predictive value by comparing 

the repertoire before and after treatment of responder vs. non-responder patients.  

This project will be based on the interventional clinical trial LUPIL-2 (NCT02955615) for which I 

coordinate the activity "multi-omics integration" (see below) and the analysis of the TCR 

repertoire. Recent work have shown the clinical potential of ILT-101 immunotherapy (IL-2 low 

dose) in patients with different AIDs, including SLE [56,57,151,179]. This activation can lead to 

modifications of the Treg and Teff repertoire, as we found in mice, which can serve as a 

"predictive biomarker of response to treatment". The TCR repertoire data will be produced 

according to the same experimental design as in the Transimmunom project using longitudinal 

samples (n = 5) obtained from 50 placebo patients and 50 patients treated with ILT-101. 

In both contexts, I will coordinate the implementation of statistical data modelling using the tools 

available in the laboratory as described earlier. 
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[IMAP project (ANR-16-RHUS-0001), financed until 2021; 1 doctoral student under my co-

supervision with Prof. David Klatzmann (currently 2nd year of PhD)] 

 

ii) Characterization of TCR of Treg and Teff in myocardial infarction (MI) by a single-cell 

approach. In October 2018, I obtained an ERA-NET funding (for young researchers) with the aim 

of characterizing the TCR repertoire of Treg and Teff in an experimental MI model using a single-

cell approach. MI is accompanied by T-cell infiltration in the myocardium, which in turns is 

implicated in the remodelling necessary for a good post-infarction prognosis [180] with a role for 

Treg in myocardial repair [181]. By isolating T cells from tissue and mediastinal lymph nodes of 

mice triggering mechanically induced myocardial infarction, it will then be possible to identify the 

diversity of the cellular infiltrate. Combining repertoire analysis with single-cell transcriptome, 

my objectives will be to coordinate the statistical modelling of single-cell data in order to (a) 

characterize the diversity of the repertoire of cells infiltrating the post-infarction heart and (b) 

identify the TCRs associated with the healing function of Treg vs. the inflammatory function of 

Teff. The samples will be obtained in collaboration with the University of Wurzburg (Gustavo 

Campos-Ramos, project partner). In parallel, samples from peripheral blood and tissues 

biobanked under a cohort of patients established 10 years ago at the Wurzburg Hospital will be 

processed for TCR repertoire by us and the third partner (and project coordinator), Peter Rainer. 

I will coordinate the analysis of those data. Together with mouse data, we expect to identify 

markers of MI healing. 

[AIR-MI project (ERA-NET on Cardiovascular Diseases (JCT2018 / H2020), 1 PhD student 

(recruitment in progress) under my supervision, funded until 2022]. 

Collaborative research projects  

Mapping of the diversity of the TCR repertoire of lymphocyte subpopulations T in humans and 

mice [TriPoD project, 1 doctoral student under my co-supervision with Adrien Six funded until 

October 2020] "; TCR repertoire in NSC breast cancer patients (Isabelle Cremer, Centre de 

Recherche des Cordeliers, Paris, France). 
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Systems Immunology: a Holistic Approach to the Study of Autoimmune and 
Inflammatory Diseases (AIDs)  
The complexity of cellular interactions and regulation during immune responses requires 

comprehensive approaches aimed at not only studying the individual components involved, but 

also their complex interactions [29,31,182]. Systems biology approaches are increasingly applied 

to the study of immune diseases. The i3 laboratory therefore introduced a systems immunology 

approach in 2008 by studying the immune system [159] as tissue and combining cytomic, genetic, 

transcriptomic and proteomic studies [51,58,61,88,132,134,157,160,183,184]. These approaches 

are at the heart of the Transimmunom and iMAP projects.  

Main research area 

Towards integrating adaptive Immune receptor repertoire (AIRR) data together with clinical 

and multi-OMICS data.  After the coordination of the technological benchmarking for the 

production of high quality OMICS data, in particular the transcriptome and the TCR repertoire 

(Transimmunom and iMAP), as well as the design of the Transimmunom project's clinical 

database [160], I will now focus on the integration of multiomics data with the AIRR-sequencing 

databases as part of the Project iReceptor+ project (SC1-BHC-05-2018 (H2020) for which I 

obtained funding in 2018.  

The analysis of the TCR and BCR repertoire covers many clinical conditions, however the current 

available databases, such as iReceptor [142], VDJserver [185], VDJdb [186] and Mc-PAS [187] are 

non-harmonized and do not take into account all the parameters of the immune system and 

clinical data that are needed to better interpret the link between adaptive Immune receptor 

repertoires (AIRR) and the physiopathological condition studied. iReceptor+ project aims to 

strengthen the value of public data and their exploitation for basic and translational research 

towards clinics.  The first goal of the project is to build, based on iReceptor framework, a 

federated and harmonized AIRR database. The second is to link modelling tools with this 

database to foster data analysis. The third aim, which I am responsible for, is to build a framework 

for the integration of multi-OMICS and clinical data together with AIRR data from iReceptor. To 

this end, I will take advantage of the implementation within Transimmunom project of an 
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integration tool to combine clinical and multi-OMICS data on a patient-oriented database, using 

tranSMART platform [188–190], and coordinate the design the of framework to make tranSMART 

interoperable with iReceptor federated repository. This work will consist mainly in (i) establishing 

the AIRR variables to be integrated in tranSMART for multi-OMICS cross-analysis, (ii) establishing 

a prototype for minimal standard systems immunology data and (iii) designing a tranSMART-API 

for multi-OMICS including AIRR data. 

[Project iReceptor + (SC1-BHC-05-2018 (H2020), 1 research engineer recruited in June 2019, 1 

doctoral fellow (recruitments in progress); funded until 2022]. 

Collaborative research projects  

Integration and analysis of multi-OMICS data from patients with AIDs (Transimmunom Project 

[Transimmunom Project, ANR-11-LABX-0069] and SLE patients under ILT-101 treatment [iMAP 

Project (ANR -16-RHUS-0001)]; Role of regulatory T lymphocytes in a model of autism induced by 

"maternal Immune Activation" (Hôpital Debré, Paris, France); Participation in the structuring of 

a precision medicine sector, Hu-PreciMED; Immune related adverse events in cancer patients 

under Immune check-point inhibitors treatment: TCR as a biomarker of IrAEs outcome,  

Departement Medical Universitaire, Pitie-Salpêtrière Hospital (consortium establishment and 

fund raising on going).  
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Conclusions 
With time, I acquired an expertise on the TCR repertoire field, conceptually, scientifically and 

technically as well as in high-throughput data analysis. In the last years, I further expanded my 

interest towards systems immunology with the aim to integrate function, cell-cell interaction and 

T cell repertoire information together. My future research will aim at bridging the gap between 

TCR repertoire diversity and immune cell function towards translational systems immunology in 

tight collaboration with clinicians, bioinformaticians and community networks within the 

framework of the four main projects I am involved in (Figure 12). 

 

Figure 12 : Schematic representative of my research perspectives  

As an assistant professor recruited in Sorbonne Université (ex-UPMC), I have been involved since 

the beginning and now with the leadership of a master degree in Systems Immunology (starting 

next September 2019; https://bit.ly/2GDJfHf), in disseminating and training young generation of 

Immunologists to this “Renaissance” of the systems immunology field.  
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Résumé substantiel (French) 
 

Depuis le début de ma carrière dans la recherche académique, mes travaux ont porté sur 

l'une des caractéristiques fondamentales du système immunitaire adaptatif, à savoir 

l'extraordinaire diversité des récepteurs de l'antigène, en particulier des lymphocytes T, aussi 

appelé TCR (pour T-cell Receptor). En effet, cette diversité confère au système immunitaire le 

potentiel de reconnaître l’univers antigénique du «non-soi», y compris les agents pathogènes 

et les tumeurs autologues, alors même que ces antigènes ne sont a priori pas présents dans 

l’organisme. Les lymphocytes T se différencient dans le thymus, où ils acquièrent l’expression en 

surface du TCR, hétérodimère constitué de deux chaines, au travers de mécanismes de 

réarrangements somatiques aléatoires entre plusieurs dizaines de gènes présents au niveau 

génomique sous forme germinale. Des étapes de sélection viennent façonner la diversité de 

cellules différenciées, évitant notamment l’export dans les sites périphériques de cellules 

inefficaces pour reconnaitre un antigène mais aussi et surtout éliminant les cellules, qui au hasard 

des réarrangements auraient pu acquérir un TCR capable de reconnaitre avec une très forte 

affinité des antigènes du soi, et donc contribuer à la mise en place d’une autoimmunité 

pathologique.  

La diversité potentielle du répertoire a été à 1019 TCR différents (modélisée pour atteindre 

jusqu’à 1061 TCR différents très récemment !). De toute évidence, seule une petite fraction du 

répertoire potentiel peut réellement être utilisée, en raison du nombre limité de cellules qu'un 

individu peuvent contenir dans le corps (chez l’humain ~ 1012 et chez la souris ~ 108 cellules T αβ). 

Une fois en périphérie, l’ensemble des lymphocytes T sélectionnés dans le thymus va constituer 

le répertoire disponible pour le maintien de l’homéostasie de l’organisme, impliquant à la fois 

des cellules capables de répondre à des infections par des agents pathogènes, à l’intrusion 

d’allergènes, à des transformations tumorales mais aussi à des cellules capables d’éviter des 

manifestations autoimmunes pathologiques en maintenant une tolérance pour le soi en 

périphérie. Lors de ces réponses immunitaires, le répertoire lymphocytaire T disponible va être 

engagé dans le contrôle de l’agent à circonscrire, conduisant potentiellement à une modulation, 
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plus ou moins marquée de la diversité du répertoire TCR. Caractériser ces modulations pourrait 

permettre de (i) mieux comprendre les états pathologiques (par exemple pour le 

développement de vaccins anti-infectieux ou de ciblage de cellules tumorales) et (ii) d’identifier 

des marqueurs biologiques de l’état physiopathologique d’un individu (par exemple pour une 

meilleure prise en charge thérapeutique).  

Cette diversité de TCR ne peut être dissociée de la diversité des populations cellulaires T 

désormais identifiées sur la base de leurs fonctions respectives, inflammatoires vs.régulatrices, 

anti-pathogènes intracellulaires vs. anti-pathogènes extracellulaires, impliquées dans la 

régulation de la production d’anticorps…. Aussi, l’étude du répertoire TCR n’a de sens que si l’on 

prend en compte cette dimension supplémentaire, et considérer le système immunitaire 

comme un tout et pas simplement la somme de ses sous-parties. Cette approche, désormais 

appelée immunologie des systèmes ou immunologie intégrative, a constitué les fondations de 

l’ensemble des travaux de recherche que j’ai mené jusqu’à présent.  

Ainsi, depuis mon doctorat en science, mes travaux portent sur (i) la caractérisation des 

modulations du répertoire TCR en conditions pathologiques (infection ou pathologie 

autoimmunes), (ii) l’adaptation et l’amélioration des méthodes d’investigations de la diversité 

du répertoire TCR par des outils de biologie moléculaire, (iii) le développement de stratégies de 

modélisation statistique de cette diversité. Ces travaux ont pris appuis sur une approche 

d’immunologie des systèmes, étayée au fil du temps et des développements technologiques. 

Mes perspectives pour les prochaines années visent à extraire l’information pertinente du 

répertoire TCR dans le contexte des maladies autoimmunes en particulier, en ciblant des sous-

populations fonctionnellement caractérisées, afin d’en décrire la diversité mais aussi identifier 

des signatures de TCR associées aux situations pathologiques (en réponse ou non à un 

traitement). Mon intérêt se porte majoritairement sur l’équilibre entre les lymphocytes T 

régulateurs et les lymphocytes T effecteurs, critique pour le maintien de l’homéostasie du 

l’organisme. 

 

 


