
HAL Id: tel-03987634
https://hal.sorbonne-universite.fr/tel-03987634v1

Submitted on 15 Nov 2021 (v1), last revised 14 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Services for Assisting Users to Augment Data
in the Context of Analytic Data Sources

Rutian Liu

To cite this version:
Rutian Liu. Semantic Services for Assisting Users to Augment Data in the Context of Analytic Data
Sources. Databases [cs.DB]. Sorbonne Université, 2020. English. �NNT : �. �tel-03987634v1�

https://hal.sorbonne-universite.fr/tel-03987634v1
https://hal.archives-ouvertes.fr

École Doctoral Informatique, Télécommunications et Électronique – EDITE (ED130)

DOCTORAL THESIS

Discipline: Informatique

Semantic Services for Assisting Users to
Augment Data in the Context of Analytic Data

Sources

Rutian Liu

Angela Bonifati Professeur Université Lyon 1 Reviewer
Sofian Maabout Maître de Conférences (HDR) Université de Bordeaux Reviewer
Jérôme Darmont Professeur Université Lyon 2 Examiner
Marie-Jeanne Lesot Maître de Conférences (HDR) Sorbonne Université Examiner
Bernd Amann Professeur Sorbonne Université Examiner
Stéphane Gançarski Maître de Conférences (HDR) Sorbonne Université Examiner

June 24, 2020

Rutian Liu
Semantic Services for Assisting Users to Augment Data in the Context of Analytic Data
Sources, June 24, 2020
Reviewers: Angela Bonifati and Sofian Maabout
Supervisors: Bernd Amann (Sorbonne Université), Stéphane Gançarski (Sorbonne
Université) and Eric Simon (SAP France)

Sorbonne Université
CNRS – LIP6 UMR 7606
4, place Jussieu
75252 Paris

Remerciements

iii

Contents

1 Introduction 1

1.1 The Role and Evolution of Analytics 1

1.2 Main Challenges . 4

1.2.1 Relationship extraction . 6

1.2.2 Avoid row multiplication . 7

1.2.3 Avoid incorrect and ambiguous reduction 8

1.2.4 Avoid incomplete merge . 9

1.3 Research Contributions . 11

1.4 Organization of the Manuscript . 12

2 Data Model 15

2.1 Model Overview . 16

2.2 Analytic Tables . 17

2.2.1 Preliminaries . 18

2.2.2 Hierarchical dimension tables 18

2.2.3 Dimension identifiers and attribute graphs 21

2.2.4 Capturing hierarchy properties with attribute graphs 25

2.2.5 Multidimensional fact tables 29

2.2.6 Aggregable attributes in analytic tables 31

2.3 Table Relationships . 35

2.3.1 Join and attribute mapping relationships 35

2.3.2 Derived relationships . 38

2.3.3 Relationships in drill-across OLAP queries 40

2.4 Conclusions . 41

3 Schema Augmentations and Quality Guarantees 43

3.1 Schema Augmentations . 43

3.2 Natural Schema Complement . 46

3.3 Reduction Queries . 47

3.4 Quality Criteria of Schema Augmentations 52

3.4.1 Propagation of aggregable properties 52

iv

3.4.2 Non-ambiguous aggregable attributes 63
3.4.3 Complete merge results . 65
3.4.4 Summarizability revisited . 73

4 Architecture and Algorithms 77
4.1 SAP HANA Architecture . 77
4.2 Dimension and Fact Identifier Computation 84

4.2.1 Computation of attribute graphs 84
4.2.2 Dimension and fact identifiers 88
4.2.3 Maintaining dimension identifiers 90

4.3 Schema Complement Computation 91
4.3.1 Schema complement graph 91
4.3.2 Finding schema augmentations 92
4.3.3 Unit conversions . 96

4.4 Reduction Query Generation . 97
4.5 Merge Query Manager . 99
4.6 Extension to Heterogeneous Data Sources 105
4.7 Conclusions . 105

5 State of the art 107
5.1 Introduction . 108

5.1.1 Schema and data integration 108
5.1.2 Drill-across and summarizability 110
5.1.3 Schema augmentation . 110

5.2 Schema Integration . 111
5.2.1 Approach . 111
5.2.2 Examples . 111

5.3 Schema Matching Discovery . 114
5.3.1 Heuristic schema matching discovery 115
5.3.2 Reliable schema matching discovery 117

5.4 Mediation-based Data Integration . 118
5.4.1 Approach . 118
5.4.2 Examples . 119

5.5 Schema Augmentation and Entity Complement 125
5.5.1 Schema augmentation approaches for web tables 125
5.5.2 Entity complement approaches 129

5.6 Drill-across Queries in Multi-dimensional Databases 132
5.6.1 Drill-across queries using conformed dimensions 132
5.6.2 Drill-across queries using compatible dimensions 136

5.7 Summarizable Analytic Tables . 139

5.7.1 Summarizability in statistical data models 140
5.7.2 Summarizability in multidimensional data models 147
5.7.3 Conclusion on summarizability 160

5.8 Summary . 161

6 Applications and Experiments 165
6.1 Performance Tests . 165

6.1.1 Attribute graph computation 165
6.1.2 Dimension identifier computation 171

6.2 Validation with Real Datasets . 171
6.2.1 Business use case . 171
6.2.2 Feature engineering use case 180

7 Summary and Perspectives 185
7.1 Summary . 185
7.2 Future Work Directions . 186

7.2.1 Schema matching discovery 186
7.2.2 User-specified augmentation and reduction operation suggestion187

References 189

List of Figures 193

List of Tables 195

1
Introduction

Contents
1.1 The Role and Evolution of Analytics 1

1.2 Main Challenges . 4

1.2.1 Relationship extraction 6

1.2.2 Avoid row multiplication 7

1.2.3 Avoid incorrect and ambiguous reduction 8

1.2.4 Avoid incomplete merge 9

1.3 Research Contributions . 11

1.4 Organization of the Manuscript 12

In this chapter, we introduce the notion of analytic datasets, their role and evolution
within the digital evolution of companies and organizations (Section 1.1). Then,
in Section 1.2, we show four main challenges that arise when business users want
to customize analytic datasets to their needs. Finally, we list the major research
contributions of this thesis in Section 1.3.

1.1 The Role and Evolution of Analytics

Business Intelligence (BI) comprises the technologies to produce, process and anal-
yse business information in enterprises. BI analysts heavily rely on trusted and well
documented datasets, called analytic datasets (or sometimes analytics), which com-
prise multidimensional facts that hold measures and refer to one or more hierarchical
dimensions [1]. BI platform vendors provide sophisticated tools that use analytic
datasets for managed data reporting, interactive analysis, KPI monitoring, prediction
and visualization. More recently, self-service BI tools emerged to enable business
users and data scientists to create customized analytics and powerful visualizations
(see e.g., [2]–[5]).

1

Traditionally, analytic datasets are created by the IT department in the form of data
warehouses and data marts [6], or by enterprise application software vendors in the
form of predefined and customizable analytic models. Analytic datasets are built
from the operational data hold by the transactional databases of an enterprise or
organization. More than a decade ago, most of the analytic data was physically
stored apart from operational datasets into decision support systems. Complex
data extraction, transformation, and load (ETL) processes were used to periodically
read operational data and update the corresponding analytic data in the decision
support systems. In the recent years, there has been a trend to create analytic
data, next to the operational data on which they depend, in the form of views with
the goal of providing real-time analytic capabilities. For example, SAP provisions
thousands of predefined and customizable analytic datasets, also known as “virtual
data models” for various business application domains (e.g., SCM, CRM, ERP) [7],
[8]. These datasets are defined as views over the transactional data stored and
managed by the SAP S4/HANA business suite and carry information, including
sophisticated measures, which is easily understandable by business users, and ready
for consumption by BI tools.

Creating analytic datasets is a complex, tedious and time intensive activity which
involves design and implementation tasks at multiple levels of the architecture of an
information system. First, analytic data models must be designed according to the
needs of business users and analysts in different application domains. There, the
proper definition of dimensions (aka master data) and measures is essential. Then
analytic data must be created from operational data, which involves the definition
of possibly complex data integration processes. A key aspect is the governance of
the quality of the analytic data because they must form a trusted foundation on
which decision-making processes can rely. This involves the creation of data cleaning
processes (e.g., duplicate record elimination, enforcement of business rules). Finally,
the definition of analytic datasets may be layered, where one layer adds specific
business logic to the previous one, to obtain very customized analytics.

The slow process of creation of analytics has been confronted to a profound evolution
of enterprises towards a digital transformation, whereby the ability to perform fine-
grain analysis of business data and take a prompt action according to perceived
changes, is becoming a key to business success. This digital transformation impacts
how analytic data are created. Firstly, business users need to combine analytic data
obtained from operational systems with data coming from external sources, including
Internet of Things (IoT) data or market signal data. Business users also require
access to detailed data to refine their analysis. Secondly, business users need to
continuously adjust the definition of the analytics they use to monitor their business

so that they can rapidly adapt to changes. This need is aggravated by the increasing
number of users who need to customize the analytics they are working with. For
instance, operational BI gives every “operational worker” (e.g., clerc, maintenance
supervisor, etc) insights needed to make better operational decisions (including
access to detailed data on-demand). In addition, data scientists are empowered to
conduct data analysis projects which require the preparation of datasets that match
their analysis needs.

IT organizations cannot sustain the pace of the growing needs of business users,
analysts, and data scientists in this digital transformation of enterprises and organiza-
tions. Recently, agile data preparation and integration tools [9]–[11] have emerged
to empower business users and data scientists to easily create their own high-quality
analytic datasets from transactional data and existing analytic datasets. These
data preparation tools can extract structured information from unstructured data,
partially automate data cleaning and transformation operations and perform data
integration tasks like record linkage and duplicate elimination. However, another
typical requirement of business users or data scientists is to augment the schema
of an existing analytic dataset with new attributes from one or more semantically
related datasets. These attributes may represent additional details on dimensions or
new measures. This kind of schema augmentation is a critical need in many data inte-
gration scenarios like data mashup generation and feature engineering. Despite the
importance of this task, existing data preparation tools provide a limited support for
schema augmentation of analytic dataset. This lack of assistance compels business
users to re-define multiple times similar analytic datasets in a possibly inconsistent
manner or to depend on their IT department to create customized datasets. This
creates an important bottleneck in the IT organization and significantly slows down
the production of customized analytic datasets.

Addressing the problem of agile and trusted analytic schema augmentation for
specific BI tasks is a major business opportunity for several reasons. First, companies
generally manage large collections of analytic datasets, which keep growing with the
need for new business data analysis tasks. At the scale of a large company, the use of
agile data preparation tools considerably increases the number of available analytic
datasets with respect to those provided by enterprise software application vendors or
those created by the IT organization. Second, many semantic relationships between
analytic datasets, which are essential to support schema augmentation, can be accu-
rately and automatically extracted from dataset definitions. Indeed, as mentioned
before, analytic datasets are often defined over other datasets using queries, scripts,
or views. For example, in BI applications supported by SAP, it is common to find
analytic datasets with five or more levels of nested view definitions. By parsing

these view definitions it is for example possible to discover the dimensions shared
by different analytic datasets. Third, complex data analysis scenarios of analytic
datasets are generally supported by rich and carefully designed metadata, such as the
correspondence between the table attributes and the hierarchical dimension levels
or the units and currencies of measure attributes. These metadata that can also be
exploited during an assisted schema augmentation process. Finally, IT organizations
and business users invest time to create analytic datasets containing high quality for
business process optimization and decision making. Reusing these clean datasets
and their metadata for schema augmentation is therefore worthwhile. For all these
reasons, analytic datasets are a “gold mine” of high-quality and interrelated data
that is relevant to business users and data scientists, although under-exploited by
current data preparation tools.

1.2 Main Challenges

The manual augmentation of an analytic dataset is often a cumbersome and error-
prone process, raising multiple challenges. Imagine a simple use case with two
analytic datasets represented by two fact tables, SALES and DEM(ographics), and
three dimension tables SALESORG, TIME and REGION .

An example analytic dataset is shown in Table 1.1. Dimension table names are
in italic font to distinguish them from fact tables. Underlined attributes are tuple
identifiers (primary key attributes) and dimension tables represent hierarchical
dimensions. The fact table SALES contains three attributes STORE_ID, CITY and
COUNTRY from dimension SALESORG and attribute YEAR from dimension TIME.
The fact table DEM contains three attributes CITY, STATE, COUNTRY from dimension
REGION and attribute YEAR from dimension TIME. Notice that attribute STORE_ID

is unique in SALES, attributes CITY, STATE, COUNTRY and YEAR are unique in DEM.

Figure 1.1: View definition of tables SALES and DEM

In our example all tables are defined as views over transactional data as shown
on Figure 1.1. Dimension tables are represented by rounded rectangles and fact

Table 1.1: Tables SALES, DEM, SALESORG, REGION , TIME

(a) SALES

STORE_ID CITY COUNTRY YEAR AMOUNT(M)

s1 Oh_01 Dublin USA 2018 3.2
s2 Ca_01 Dublin USA 2018 5.3
s3 Ir_01 Dublin Ireland 2018 45.1

(b) DEM (Demographics)

CITY STATE COUNTRY YEAR POP(K) UNEMP(%)

d1 Dublin Ohio USA 2018 61 2.5
d2 Dublin California USA 2018 42 3.1
d3 Dublin - Ireland 2018 527 5.7
d4 San Jose California USA 2018 1,035 2.3

(c) SALESORG

STORE_ID CITY STATE COUNTRY

Oh_01 Dublin Ohio USA
Ca_01 Dublin California USA
Ir_01 Dublin - Ireland

(d) REGION

CITY STATE COUNTRY CONTINENT

Dublin Ohio USA North America
Dublin California USA North America
Dublin - Ireland Europe
Paris - France Europe
Berlin - Germany Europe

(e) T IME

DATE WEEK MONTH YEAR

1/1/2018 1 1 2018
2/1/2018 1 1 2018
3/1/2018 1 1 2018
.

tables by square rectangles. A data analyst now might want to complement the
information about stores in table SALES by adding their states. This can be achieved
by augmenting the schema of SALES with STATE of dimension SALESORG which
yields a new fact table view SALES_SALESORG.

This view can be materialized by a left-outer join with SALESORG using the follow-
ing query (the result is shown in Table 1.2):

Listing 1.1: Query QSALES_SALESORG

SELECT STORE_ID , CITY , STATE , COUNTRY, YEAR , AMOUNT
FROM SALES
LEFT OUTER JOIN SALESORG
ON SALES . STORE_ID = SALESORG . STORE_ID

AND SALES . CITY = SALESORG . CITY
AND SALES .COUNTRY = SALESORG .COUNTRY

Table 1.2: SALES_SALESORG

STORE_ID CITY STATE COUNTRY YEAR AMOUNT(M)

s1 Oh_01 Dublin Ohio USA 2018 3.2
s2 Ca_01 Dublin California USA 2018 5.3
s3 Ir_01 Dublin - Ireland 2018 45.1

The goal of this thesis is to propose solutions for assisting users in creating such
augmented views. In particular, we will show that by exploiting available schema
metadata (view definitions, constraints) extended by other user-defined metadata,
it is possible to automatically generate for a given table, a set of useful and cor-
rect schema augmentations. These assisted generation process must solve various
challenges we will describe below.

1.2.1 Relationship extraction

A first challenge for controlled schema augmentation is to discover the relationships
between analytic datasets that can be used for identifying relevant schema augmen-
tation paths. Many useful relationships can be extracted from the definitions of
analytic dataset and the FK-PK constraints in transactional data. It is for instance
possible to analyze the existing view definitions as illustrated in Figure 1.1 to extract
all shared dimension attributes which define different relationships between fact
tables and the dimension tables. In our example scenario, tables SALES and DEM
are for example naturally related through their common attribute YEAR which comes

from the same dimension TIME. Similarly, attributes CITY, STATE and COUNTRY in
dimension SALESORG and dimension REGION are semantically equivalent, i.e.
have the same meaning in both tables.

Assume a data analyst who wants to build a new analytic table SALES_DEM by
augmenting the schema of dataset SALES with the measure attributes POP(ulation)
and UNEMP(loyment rate) of dataset DEM.

SALES_DEM (STORE_ID, CITY, COUNTRY, YEAR, AMOUNT, POP, UNEMP)

The extracted relationships can be used to define the left-outer join predicates for
the materialization query of view SALES_DEM:

Listing 1.2: Query QSALES_DEM

SELECT STORE_ID , CITY , COUNTRY, YEAR , AMOUNT, POP , UNEMP
FROM SALES
LEFT OUTER JOIN DEM
ON SALES . YEAR = DEM. YEAR

AND SALES . CITY = DEM. CITY
AND SALES .COUNTRY = DEM.COUNTRY

1.2.2 Avoid row multiplication

The second challenge we address in our thesis is to detect and possible avoid row
multiplication when merging two tables. Row multiplication can be detected by
comparing the identifiers of analytic datasets.

In our example, assume that fact tables SALES and DEM contain the tuples shown
in Tables 1.1a and 1.1b. Then, the left outer join query QSALES_DEM returns the
augmented table SALES_DEM as shown in Table 1.3. The left outer-join operation
results in multiplying some rows in SALES (STORE_ID is not an identifier in the
merged table). For example, the two tuples s1 and s2 in SALES are multiplied into
four tuple t1, t2, t3, t4 in SALES_DEM. This is because the join attributes YEAR, CITY

and COUNTRY do not constitute a unique identifier in dataset DEM.

This row multiplication of SALES, however, is undesirable for many application
scenarios, like feature engineering, data enrichment or data analysis. For these
applications, the goal then is to monitor the schema augmentation process in order
to keep the number of rows in Sales constant. This controlled schema augmentation

Table 1.3: SALES_DEM

STORE_ID CITY COUNTRY YEAR AMOUNT(M) POP(K) UNEMP(%)

t1 Oh_01 Dublin USA 2018 3.2 61 2.5
t2 Oh_01 Dublin USA 2018 3.2 42 3.1
t3 Ca_01 Dublin USA 2018 5.3 61 2.5
t4 Ca_01 Dublin USA 2018 5.3 42 3.1
t5 Ir_01 Dublin Ireland 2018 45.1 527 5.7

avoiding row multiplication leads to the notion of schema complement introduced in
[12].

1.2.3 Avoid incorrect and ambiguous reduction

A possible solution to avoid row multiplication is to reduce the attributes in the
identifier of the target table by applying queries like aggregation, pivot and filter.
We call these queries producing tables with less identifier (key) attributes reduction
operations. For example, a possible reduction operation aggregates the measures
of table DEM grouped by attributes YEAR, CITY, COUNTRY before performing the left
outer join. Then, the result table identifier is defined by the attributes YEAR, CITY and
COUNTRY (without attribute STATE) and the following merge will generate exactly one
tuple for each tuple in table SALES.

However, when looking at the result produced by an aggregation reduction in more
detail, we can identify a third challenge concerning the correctness of aggregated
attribute vales. We consider mainly two sub-problems to assure that and aggrega-
tion query computes a correct result. First, it is not always possible to apply any
aggregation function to a given measures. For example, the population POP in table
DEM can be summed and averaged which is not possible for the unemployment rate
UNEMP which can only be aggregated by MAX and MIN. Furthermore, after applying
function AVG on the population POP, we also need to determine which aggregation
functions are applicable to the new averaged POP value in future operations.

Secondly, we want to detect ambiguous aggregated values automatically. Formally, a
value is ambiguous if it is not possible to identify the correct entity to which it refers
in some dimension. For example, suppose that the previous aggregation (reduction)
query on table DEM computes the sum of attribute POP and the minimum of attribute
UNEMP grouped by YEAR, CITY and COUNTRY. The result table AGG_DEM is shown in
Table 1.4. We can now show that the cities related to the values of attributes SUM_POP

and MIN_UNEMP in AGG_DEM cannot be identified anymore since attribute STATE has

been removed. For example, r1.SUM_POP in AGG_DEM aggregates the values d1.POP

and d2.POP from table DEM with the population of two different cities “Dublin” in
“Ohio” and “California” which might lead to an incorrect interpretation by the user.
We call r1.SUM_POP in AGG_DEM ambiguous with respect to table DEM. Observe
that the ambiguity of an aggregated value depends on contents of table DEM and
the aggregated values for Dublin in Ireland and San Jose are not ambiguous.

Table 1.4: AGG_DEM

CITY COUNTRY YEAR SUM_POP(K) MIN_UNEMP(%)

r1 Dublin USA 2018 103 2.5
r2 Dublin Ireland 2018 527 5.7
r3 San Jose USA 2018 1,035 2.3

Continuing the previous example, a left outer join between fact table SALES and the
reduced table AGG_DEM over attributes YEAR, CITY, COUNTRY produces a new fact
table SALES_AGG_DEM as shown in Table 1.5. The ambiguous values of SUM_POP

and MIN_UNEMP are brought to the new fact table and any further operations on
SALES_AGG_DEM might compute an incorrect result. Therefore, ambiguous
measure values should be detected and controlled, e.g., by assigning a null value to
SUM_POP and MIN_UNEMP for tuples r1 and r2 in table AGG_DEM and tuples a1 and
a2 in table SALES_AGG_DEM or by adding a new Boolean attribute IS_AMBIGUOUS

to indicate that these tuples contain ambiguous values.

Table 1.5: SALES_AGG_DEM

STORE_ID CITY COUNTRY YEAR AMOUNT(M) SUM_POP(K) MIN_UNEMP(%)

a1 Oh_01 Dublin USA 2018 3.2 103 2.5
a2 Ca_01 Dublin USA 2018 5.3 103 2.5
a3 Ir_01 Dublin Ireland 2018 45.1 527 5.7

1.2.4 Avoid incomplete merge

Another solution to avoid row multiplication is to augment the start table by a
sequence of joins until the common attributes between the start table and the
target table contain the identifier of the target table. For instance, we can add
attribute STATE to fact table SALES by applying a left outer join between fact ta-
ble SALES and dimension table SALESORG to get SALES_SALESORGS (Ta-
ble 1.6). Then, the common attributes YEAR, CITY, STATE and COUNTRY between table

SALESALES_SALESORGS and dimension DEM form the identifier of DEM and
the left outer join will return a new fact table SALES_SALESORG_DEM without
row multiplication.

Table 1.6: SALES_SALESORG_DEM

STORE_ID CITY STATE COUNTRY YEAR AMOUNT(M) POP(K) UNEMP(%)

b1 Oh_01 Dublin Ohio USA 2018 3.2 61 2.5
b2 Ca_01 Dublin California USA 2018 5.3 42 3.1
b3 Ir_01 Dublin - Ireland 2018 45.1 527 5.7

However, in this case we face our fourth challenge we call incomplete merge. For
example, suppose we want to compare the values of attribute AMOUNT with the pop-
ulation POP in each STATE or COUNTRY. For this we sum the population POP over STATE

and COUNTRY in table SALES_SALESORG_DEM. For example for the state of “Cali-
fornia”, the total population would be 42K in SALES_SALESORG_DEM. However
this value is incorrect, since the population of the city of “San Jose” in DEM does
not appear in fact table SALES and its augmented table SALES_SALESORG_DEM
(the correct total population of “California” with respect to table DEM is 1, 077K).
We will call table SALES_SALESORG_DEM incomplete with respect to dimension
DEM.

Observe that table SALES_SALESORG_DEM could be repaired by adding a tuple b4

with a null value for attribute STORE_ID as shown in Table 1.7. Because only one tuple
is added and null values are allowed in the key attributes, the identifier of Table 1.7
is still STORE_ID. In general case when several tuples are added, the identifier of the
repaired SALES_SALESORG_DEM would be the same as if we apply a schema
augmentation between SALES and DEM which contains all dimension attributes
STORE_ID, CITY, STATE, COUNTRY and YEAR.

Table 1.7: SALES_SALESORG_DEM′

STORE_ID CITY STATE COUNTRY YEAR AMOUNT(M) POP(K) UNEMP(%)

b1 Oh_01 Dublin Ohio USA 2018 3.2 61 2.5
b2 Ca_01 Dublin California USA 2018 5.3 42 3.1
b3 Ir_01 Dublin - Ireland 2018 45.1 527 5.7
b4 - San Jose California USA 2018 - 1,035 2.3

One goal of the thesis will be to automatically detect and possibly repair such
incomplete merge results.

1.3 Research Contributions

SAP – as the the market leader in enterprise application software, helping companies
to manage business operations and customer relations (over 437 000 clients in
190 countries 1), has addressed the challenges of allowing business users prepare
their own datasets for several years. It’s in this context that this thesis is carried as
an industrial Ph.D. project which collaborates with the computer science research
laboratory LIP6. The objective of this research is to facilitate the operation of
extending an initial dataset with columns from other datasets, and to measure and
share the new dataset.

This thesis presents a new solution for business users and data scientists who want
to augment the schema of analytic datasets with attributes coming from other
datasets related through relationships. This is achieved by automatically extracting
relationships, discovering related datasets and computing correct, non-ambiguous
and complete schema augmentations or schema complements.

More specifically, we make the following technical contributions for solving all
challenges presented before.

• We introduce attribute graphs as a novel concise and natural way to define
literal functional dependencies over the level types of hierarchical dimensions
from which we can easily infer unique identifiers in both dimension and fact
tables. (See Section 2.2.2 in Chapter 2).

• We give formal definitions for schema augmentation, schema complement
and merge query in the context of analytic tables. We then present several
reduction operations that are used to enforce schema complements when
schema augmentation yields a row multiplication in the augmented dataset.
These operations extend previous contributions on schema augmentation and
schema complement (e.g., [12]–[14]) to the case of analytic datasets. (See
Sections 3.1 to 3.3 in Chapter 3).

• We define formal quality criteria for schema augmentations, schema comple-
ments and merge queries. These criteria are used to define algorithms to
control the correctness, non-ambiguity and and completeness of generated
schema augmentations. (See Section 3.4 in Chapter 3).

• We describe the implementation of our solution as a REST service within SAP
HANA platform and provide a detailed description of our algorithms. We

1https://www.sap.com/france/about/customer-stories.html

https://www.sap.com/france/about/customer-stories.html

separate the generic part of the algorithms from the specific implementation
optimizations done by leveraging the capabilities of SAP HANA database. (See
Chapter 4).

• We evaluate the performance of our algorithms to compute unique identifiers
in dimension and fact tables, and analyze the effectiveness of our REST service
using two application scenarios. (See Chapter 6).

1.4 Organization of the Manuscript

The remaining of the thesis is structured in following chapters.

Chapter 1 introduces few background foundations that the thesis starts with. In
particular, the chapter investigates the four challenges that we are facing to auto-
mate the schema augmentations while ensuring the data quality, namely, extract
relationships between tables, avoid row multiplications when joins, avoid incorrect
and ambiguous reductions, and avoid incomplete merge. These challenges are then
formalized and discussed in Chapter 3.

Chapter 2 describes the formalisation of the data models we proposed for our
approaches. We use an extended multidimensional data models that contain common
terminologies like Dimensions, Facts, etc., and also new definitions that are adapted
to our needs like Attribute Graph, Aggregable Properties, etc.. In particular, the
extracted and derived relationships resolve the first challenge – extract relationships
explained in Chapter 1. The presented data models are essential for data quality
guarantees and schema augmentation discoveries.

In Chapter 5, we begin our discussion of previous researches done for integrating
schemas. There are various operations that perform schema integration, we intro-
duce four fundamental approaches for schema integration as: Schema Integration,
Data Integration, Schema Complement and Drill-across Queries. Our focus in this
chapter is to state whether our approach is still applicable in their contexts.

Chapter 3 presents our solutions that address the rest three challenges introduced
in Chapter 1. We propose a general schema integration approach as Schema Aug-
mentation that performs a left-outer join between two related tables, and introduce
Reduction Queries that transform Schema Augmentation into Schema Complement.
We give formal definitions for ambiguity values and incomplete merge, follow by
propositions to detect and solve these problems.

Chapter 4 introduces our implementation. We introduce the architecture of the
system that implements our approaches and algorithms for the solutions described
in Chapter 3. All the algorithms are implemented as REST services on SAP HANA.

Chapter 6 describes several experimental results. We first evaluate the performances
of constructing attribute graphs and computing dimension identifiers. We then
validate our implementations in the two case studies, it shows how our approach
can position and help to improve the user’s experience in a real-world scenario.

Finally, we conclude with a brief conclusion and some perspectives in Chapter 7.

?? lists several SQL queries used to construct attribute graphs and construct reduction
and merge quires. ?? shows the proofs of a part of the propositions proposed in the
thesis, the rest of the proofs are detailed in the context.

2
Data Model

Contents
2.1 Model Overview . 16

2.2 Analytic Tables . 17

2.2.1 Preliminaries . 18

2.2.2 Hierarchical dimension tables 18

2.2.3 Dimension identifiers and attribute graphs 21

2.2.4 Capturing hierarchy properties with attribute graphs . . 25

2.2.5 Multidimensional fact tables 29

2.2.6 Aggregable attributes in analytic tables 31

2.3 Table Relationships . 35

2.3.1 Join and attribute mapping relationships 35

2.3.2 Derived relationships . 38

2.3.3 Relationships in drill-across OLAP queries 40

2.4 Conclusions . 41

In this chapter, we first explain the foundations of our data model which extends
the relational data model with analytic tables that comprise dimension and fact
tables. We define arbitrary value hierarchies that are instances of hierarchy types
and describe how they are modeled using dimension tables. We introduce the
novel concept of attribute graphs representing dependencies among the attributes
of a dimension table, which are used to compute the identifiers of dimension
tables. We then formally define fact tables and some constraints over the schema
of both fact and dimension tables, called aggregable properties. We then introduce
two forms of semantic relationships between tables, which are join and attribute
mapping relationships, and define how to derive new relationships using fusion and
composition operations.

15

2.1 Model Overview

In this thesis, we consider analytical databases in which tables are separated into
non-analytic tables and analytic tables. Non-analytic tables correspond to standard
relational tables storing data created using statements like in Example 2.1. An
analytic table or analytic view is defined by a query over non-analytic and analytic
tables. Attributes in an analytic table are categorized into two types: dimension at-
tributes and measures. Dimension attributes describe subjects, like, CUSTOMER_NAME,
ADDRESS, PHONE_NUM, BRAND. Dimension attributes can form a hierarchy. For exam-
ple, dimension attributes CITY, STATE, COUNTRY can form a hierarchy CITY→ STATE→
COUNTRY. Measure attributes store numeric values about the subject behaviors or
characteristics, like, ORDER_AMOUNT, POPULATION, QUANTITY.

Example 2.1. The SQL statement below shows the definition of a table PRODUCT
with five attributes: PRODUCT_SKU, PRODUCT_NAME, BRAND_NAME, WEIGHT and SUBCATEGORY_ID.
The attribute PRODUCT_SKU is the primary key of the table and the attribute SUBCATEGORY_ID

is a foreign key referring to the primary key of another table SUBCATEGORY.

Listing 2.1: Crate table statement QP RODUCT

CREATE TABLE PRODUCT
(

PRODUCT_SKU INT NOT NULL ,
PRODUCT_NAME VARCHAR(255) ,
BRAND_NAME VARCHAR(255) ,
WEIGHT DOUBLE(24 ,3) ,
SUBCATEGORY_ID INT NOT NULL ,
PRIMARY KEY (PRODUCT_SKU) ,
FOREIGN KEY (SUBCATEGORY_ID) REFERENCES SUBCATEGORY(SUBCATEGORY_ID)

)

Following this distinction of attributes, analytic tables are categorized into two
types: dimension tables and fact tables. An analytic table is a dimension table if
it only contains dimension attributes describing the same kind of subjects. For
example, table CUSTOMER with attributes CUSTOMER_NAME, PHONE_NUM, ADDRESS,
CUSTOMER_ID is a dimension table describing customers. An analytic table is a fact
table if it contains at least one measure. For example, table CUSTOMER_AGE with
a measure AVG_AGE and dimension attributes GENDER, COUNTRY, PROFESSION is a fact
table.

Example 2.2. Figure 2.1 details the definitions of two analytic views: SALES and
PROD. Dimension tables are represented by bold rounded rectangles, fact tables by
bold square rectangles and non-analytic tables by square rectangles. SALES is a fact
table defined by a star join between a non-analytic table ct_SALES and dimensions
TIME, PROD and STORE. PROD is a dimension defined as a projection of the
join result between the three non-analytic tables.

(a) Fact table SALES (b) Dimension PROD

Figure 2.1: Examples of definitions of analytic tables

Figure 2.2 illustrate the relationships between analytic tables and non-analytic tables.
A dimension table can be defined as a view built from other dimensions and non-
analytic tables, and a fact table can be defined as a view built from other fact,
dimension and non-analytic tables. Dimension attributes in fact tables always refer
to the dimension they come from according to the view definition. In this thesis, we
assume that all analytic tables are defined as non materialized views.

Dimensions Fact tables

Non-analytic
tables

Analytic tables

build

refers to

build build

bu
ild

build

Figure 2.2: Relations between analytic tables and non-analytic tables

2.2 Analytic Tables

In this section, we define more formally the notions of hierarchy, dimension table
and fact table.

2.2.1 Preliminaries

We start from the standard relational database definitions where a relation or table T

is defined as a finite multiset of tuples over a set of value domains S = {A1, . . . , An},
called attributes, where each value domain may contain a specific null marker. We
call the attribute set S the schema of T [15]. Given an attribute A in the schema of T

and a tuple t ∈ T , we use t.A to denote the value of A in t. By extension, we use t.X
for a set of attributes X. Then, for two tuples t1 and t2, t1.A = t2.A is true if both t1.A

and t2.A are equal non-null values; false if t1.A and t2.A are different non-null values;
and unknown otherwise (i.e., if either one of t1.A or t2.A, possibly both, are null
markers). By extension, for a set of attributes X, t1.X = t2.X is true if t1.A = t2.A

is true for every A ∈ X; false if t1.A = t2.A is false for some A ∈ X, and unknown
otherwise. Two tuples are considered duplicates if all non-null attributes are equal
and any null marker in one tuple is matched by a null marker in the other tuple;
otherwise the tuples are distinct. The two constraints that are frequently used to
restrict the data stored in a table are primary key constraints where a set of non-null
attributes can uniquely identify the tuple within a table, and foreign key constraints
where a set of attributes in one table refer to the primary keys of another table.

2.2.2 Hierarchical dimension tables

We consider a multidimensional data model in which each dimension consists of
hierarchies of values defined by hierarchy types. We first introduce the notions of
hierarchy type and hierarchy and then show how hierarchies are represented in
dimension tables.

Definition 2.1 (Hierarchy Type). A hierarchy type H = (L,≼) is a set of level types
L = {L1, . . . , Ln} that is organized by a partial order ≼. Li is called a child level type
of Lj if there exists an edge Li ≼ Lj and Li ≼∗ Lj denotes that Li is a descendant
level type of Lj . We call all types Li where there exists no type Lj such that Lj ≼ Li

or Li ≼ Lj , respectively the lower and the upper bounds of H.

Example 2.3. Consider the hierarchy types in Figure 2.3. An arc from A to B means
that A ≼ B. Hierarchy type (a) GEOGRAPHY has one bottom level type CITY

and one top level type CONTINENT . Hierarchy type (b) TIME has two top level
types WEEK and Y EAR.

Figure 2.3: Hierarchy types

Hierarchies are common in multidimensional data model. For example, [6] intro-
duced different types of hierarchies and characterized a hierarchy as a cascaded
series of many-to-one relationships which form a directed graph with only one upper
bound. We release this restriction and accept that a hierarchy type can have several
lower and upper bounds.

A hierarchy type can have multiple hierarchy instances.

Definition 2.2 (Hierarchy instance). A hierarchy instance (hierarchy) H = (N,≤)
of hierarchy type H = (L,≼) is a set of values N and a partial order ≤ where N

contains for each level type Li ∈ L a non empty subset of values Ni ⊆ N such that
each order relation vi ≤ vj preserves the ancestor/descendant relation ≼∗ between
the corresponding hierarchy types Li and Lj , i.e., vi ∈ Ni, vj ∈ Nj ⇒ Li ≼∗ Lj .

Each level type Li represents a domain Ni of values related to the values of the
domains Nj of other level types Lj , the domains of different level types are not
necessarily disjoint. We also assume that (N,≤) is transitively reduced, i.e., there
is no pair of nodes that is connected by an edge and a sequence of two or more
edges.

(a) Hierarchy instance of GEOGRAPHY (b) Hierarchy instance of TIME

Figure 2.4: Hierarchy instance examples

Example 2.4. A partial view of hierarchy instances of type GEOGRAPHY and
TIME are respectively shown in Figures 2.4a and 2.4b.

Hierarchies can naturally be represented by tables where each level type corresponds
to a unique attribute of the table. These tables are called dimension tables or, more
simply, dimensions.

Definition 2.3 (Dimension table). Any hierarchy H = (N,≤) of type H = (L,≼)
defines a dimension table D(S) with a one-to-one mapping ϕ : L → X from level
types Li ∈ L to a subset of attributes X ⊆ S in the schema of T such that for each
maximal path v1.v2. · · · .vk in N1 × N2 × · · · × Nk in H there exists a tuple t ∈ T

where t.ϕ(L1) = v1, t.ϕ(L2) = v2, · · · , t.ϕ(Lk) = vk and t.Aj = null for all other
attributes in X.

The dimension table attributes that have a one-to-one mapping to a hierarchy
are called the dimension attributes and the remaining attributes are called detail
attributes. Each detail attribute provides descriptive information of one or more-
dimension attributes, like product description, customer age, etc.

Example 2.5. Dimension table REGION in Table 2.1 represents an instance of
hierarchy type GEOGRAPHY. Each attribute of GEOGRAPHY is mapped to
the level type with the same name. Each tuple represents a maximal path in the
hierarchy instance and may have null markers (denoted with “-”) for some attributes.
Here, city ‘Dublin’ is a child value of states ‘Ohio’, ‘California’, ‘Ontario’, and of
countries ‘Ireland’ and ‘Belarus’. Table REGION also contains one detail attribute
TIME_ZONE which describes the time zone of each city identified by (CITY, STATE,
COUNTRY).

Table 2.1: Dimension table REGION

CITY STATE COUNTRY CONTINENT TIME_ZONE

Miami Florida United States North America UTC − 5
Vancouver British Columbia Canada North America UTC − 8
Dublin Ohio United States North America UTC − 5
Dublin California United States North America UTC − 8
Dublin - Ireland Europe UTC0
Dublin Ontario Canada North America UTC − 5
Dublin - Belarus Europe UTC + 2
Palo Alto California United States North America UTC − 8
Paris - France Europe UTC + 1
- - - Antarctica -

We adopt a Closed World Assumption [16] for dimensions, which means that we
assume that a dimension table provides a complete information. So, if a value
does not occur in the dimension table, it does not exist. For example, if dimension
REGION lists cities in the three continents of "North America", "Europe", and
"Antarctica" then we assume that dimension table REGION contains all the cities
that exist in these continents.

2.2.3 Dimension identifiers and attribute graphs

Null markers in dimension attributes represent non applicable values. This semantics
is different from other interpretations where null values represent missing or un-
known values and are considered as placeholders for non-null values. We consider
null markers as regular values and apply the same literal equality semantics as in
SQL unique constraints (see e.g.,[15]): two attribute values t1.A and t2.A are literally
equal, denoted by t1.A ≡ t2.A, iff t1.A = t2.A or both values are null markers. Observe
that t1.A = t2.A implies t1.A ≡ t2.A but the opposite is not true. Literal equality
naturally extends to sets of attributes and leads to the notion of Literal Functional
Dependencies (LFD) [17]. Let X and Y be two sets of attributes in a schema S, an
LFD X 7→ Y holds for some table T over S iff for any two tuples t1, t2 of T , when
t1.X ≡ t2.X then t1.Y ≡ t2.Y. Note that if X does not contain any nullable attribute
(which is for instance enforced in SQL for primary key or unique attributes), the LFD
X 7→ Y is equivalent to the Functional Dependency with Nulls (NFD) X→ Y [18]. A
set of LFDs on a schema S expresses semantic properties constraining the possible
“valid” tables over S.

Example 2.6. Given a table T (A, B) in Table 2.2 with two tuples t1, t2 such that a
NFD A → B and a LFD A 7→ B both hold for T . Assuming that tuples t3, t4, t5, t6, t7

are inserted to T sequentially, the two types of dependency will respond differently.
t3.A is a null value which is not allowed for the determinant in NFD, so A→ B is not
applicable for of t3, but the insertion of t3 is accepted by A 7→ B. t4 is rejected by
both A→ B and A 7→ B because there exists already a tuple t1 such that t1.A = t4.A

but t1.B ̸= t4.B; the same argument is applied to reject t5. For t6, A → B is still
not applicable and t6 is rejected by A 7→ B, because there exists already t3 where
t3.A ≡ t6.A and t3.B ̸≡ t6.B. Similar to t6, A→ B is also not applicable for t7, and the
insertion of t7 is rejected by A 7→ B.

As the previous example shows, the notion of primary key, which follows NFD
semantics, cannot be used to state that attribute A identifies each tuple in the table.
We therefore introduce the notion of dimension identifier, which is based on LFDs,
and makes it possible declare A as the dimension identifier of the table.

Definition 2.4 (Dimension identifier). Let X ⊆ S be the set of dimension attributes
in a schema S and L be a set of LFDs defined on X. Then, K ⊆ X is a dimension
identifier of S if K is a minimal set such that K 7→ S holds for any instance T over S
satisfying all LFDs in L.

Table 2.2: Differences between LFD and NFD

A B A→ B A 7→ B
NFD LFD

t1 a1 b1 Y Y
t2 a3 - Y Y

t3 - b1 NA Y
t4 a1 b2 N N
t5 a1 - N N
t6 - b2 NA N
t7 - - NA N

Y: Accept; N: Reject; NA: Not applicable

Example 2.7. If the only LFD defined on the schema of REGION, is: (CITY, STATE,
COUNTRY) 7→ CONTINENT, then the left-hand side of the LFD is the dimension
identifier of REGION.

Most analytic data models assume that dimensions contain a single lowest attribute
which is a primary key and therefore also plays the role of a dimension identifier.
For example, the Dimensional Normal Form introduced by [19] imposes the con-
straint that the bottom-level attribute in the hierarchy is always the identifier of the
dimension. [20] enforces a linear structured hierarchy (i.e., each attribute in the
hierarchy has at most one attribute as the parent level) such that the identifier of a
dimension is the bottom-level attribute in the hierarchy. With the goal of keeping
the number of attributes in a dimension identifier minimal, [6] suggests the usage
of a surrogate key, which is a dimension attribute that contains a system-generated
identifier for the dimension, like CUSTOMER_ID, TIME_ID.

These constraints simplify the problem of determining the identifier of a dimension
but they provide insufficient knowledge to determine the dimension identifier when
some dimension attributes are projected out. For example, the bottom-level attribute
STORE_ID in dimension STORE is a dimension identifier. Now, assume that STORE_ID

is projected out of the dimension table, we cannot determine what is the new
identifier in the resulting table. Such a projection occurs when we want to record
facts that refer to a higher level of the dimension than STORE_ID, such as the cities
in which there are stores. We therefore need to capture the literal functional
dependencies (LFD) that exist within a dimension table if we want to re-calculate
dimension identifiers when attributes are projected out of the dimension table.

Although LFDs provide a formal system to define a set of logical and structural
constraints over dimension tables, their practical use for characterizing a set of valid

dimension tables is limited. The number of LFDs might rapidly increase for non-
linear hierarchy types and the rule-based syntax does not exploit the hierarchical
type structure to help user in defining validity constraints. We thus introduce the
notion of attribute graph which is a graph representation for LFDs in dimension
tables, and characterizes all its possible “valid” hierarchy instances in a simple and
natural way. We show in Section 4.2.1 how attribute graphs can automatically be
extracted from dimension tables and, in Section 4.2, how to efficiently compute
dimension identifiers from attribute graphs.

Definition 2.5 (Attribute graph). An attribute graph over some attribute hierarchy
A = (S,≼) is a directed labeled graph D = (S, R , λR ,⊥,⊤), where S is the set
of attributes in A, ⊥ and ⊤ are two special attributes with empty domains (by
definition, t.⊥ ≡ t.⊤ ≡ null for all tuples), R ⊆ (S ∪ {⊥,⊤})2 is a set of edges and
λR : R → {+, 1, f} is an edge labeling function such that there exists an edge:

1. (Ai, Aj) ∈ R for each edge Ai ≼ Aj in A;

2. (⊥, Ai) ∈ R for each lower bound in A and

3. (Ai,⊤) ∈ R for each upper bound in A.

There might exist also other edges (Ai, Aj) ∈ R between any two nodes connected
by a path in D.

In the following we denote by R (Ai, Aj) = l an edge (Ai, Aj) ∈ R labeled by l =
λR (Ai, Aj).

The edge labeling function λR : R → {+, 1, f} assigns to each edge a unique label
encoding the presence of functional and literal functional dependency constraints
between the connected attributes of a dimension table. These constraints are
formalized in the following definition of valid dimension tables.

Definition 2.6 (Valid dimension table). A dimension table T with schema S is valid
with respect to some attribute graph D = (X, R , λR ,⊥,⊤) where X ⊆ S, if both of
the following conditions hold in T :

1. If there exists a tuple t ∈ T such that t.Ai is not null, then there exists either
an edge R (⊥, Ai) in D or an edge R (Ak, Ai) in D such that t.Ak is not null.

2. For all tuples t1, t2 in T and all edges R (Ai, Aj) in D the following holds:

a) If R (Ai, Aj) = f , then t1.Ai ≡ t2.Ai implies t1.Aj ≡ t2.Aj;

b) If R (Ai, Aj) = 1, then t1.Ai = t2.Ai implies t1.Aj ≡ t2.Aj .

Observe that by Definition 2.6, R (Ai, Aj) = f is equivalent to Ai 7→ Aj and Ai → Aj

implies R (Ai, Aj) = 1 whereas R (Ai, Aj) = 1 does not imply Ai → Aj . Consequently,
if some dimension table T is valid w.r.t. an attribute graph D, it is also valid w.r.t. to
all attribute graphs obtained by replacing f edge labels by 1 edge labels and 1 edge
labels by + edge labels. We can also see that all edges R (⊥, Ai) are labeled by + or
f . Indeed, ti.⊥ ≡ tj .⊥ holds for all couples (ti, tj), and either ti.Ai ≡ tj .Ai also holds
for all couples (ti, tj), i.e. R (⊥, Ai) = f or not, i.e. R (⊥, Ai) = + (ti.Ai ≡ tj .Ai does
not hold for at least one couple). Symmetrically, all edges R (Ai,⊤) are labeled by f
since ti.⊤ ≡ tj .⊤ for all tuples ti and tj .

Example 2.8. Figure 2.5 shows an attribute graph for hierarchy type
GEOGRAPHY that is validated by dimension table REGION . The lower and
upper bound attributes are respectively CITY (connected to node ⊥) and CONTINENT

(connected to node ⊤). The arc labels of attribute graph have the following seman-
tics. First, since the arc R (STATE, COUNTRY) is labeled by 1, for each non-null value
of attribute STATE, we can determine a unique value of attribute COUNTRY. Second,
R (COUNTRY, CONTINENT) = f states that the attribute COUNTRY literally determines the
attribute CONTINENT. Third, the tuples with the same value of CITY can have different
values for STATE (R (CITY, STATE) = +) and for COUNTRY (R (CITY, COUNTRY) = +) and
no value for STATE (arc R (CITY, COUNTRY) "skipping" attribute STATE). Finally, there
exists a single continent without countries, states and cities, which is represented by
the arc R (⊥, CONTINENT) with label f .

Figure 2.5: Attribute graph of dimension REGION

Example 2.9. Figure 2.6 (a) shows an attribute graph that is validated by dimension
table WAREHOUSE. The lower and upper bound attributes are respectively WH_ID

(connected to node ⊥) and COUNTRY (connected to node ⊤). Attribute WH_ID literally
determines CITY and STATE since both arcs R (WH_ID, CITY) and R (WH_ID, STATE) are
labeled by f . Arcs R (CITY, COUNTRY) and R (CITY, STATE) are labeled by +, which
signifies that tuples with the same value for CITY can have different values for STATE

and COUNTRY. Figure 2.6 (b), Figure 2.6 (c), Figure 2.6 (d) and Figure 2.6 (e) show
the attribute graphs for dimensions STORE, PROD, TIME and TAX respectively.

Figure 2.6: Attribute graphs of dimensions WAREHOUSE, STORE, PROD, TIME and TAX

Attribute graphs capture a set of LFDs and can be used to infer dimension identifiers
for the valid dimension tables.

Proposition 2.1. Let D = (S, R , λR ,⊥,⊤) be an attribute graph, the subset of all
attributes in S with at least one + labeled in-edge and no f labeled in-edge is a
dimension identifier for all valid dimension tables with attributes S.

Proof see ?? on ??.

Example 2.10. In the attribute graph of Figure 2.5, all attributes except attribute
CONTINENT have one + in-edge and no f in-edge. By Proposition 2.1, the dimen-
sion identifier for dimension REGION is therefore {CITY, STATE, COUNTRY}. In the
attribute graph of Figure 2.6 (a), attributes CITY and STATE have a label f in-edge
and the identifier of WAREHOUSE is {WH_ID, COUNTRY}. Similarly, from the at-
tribute graphs in Figure 2.6, dimension STORE, PROD, TIME and TAX have
dimension identifiers STORE_ID, PROD_SKU, DATE and TAX_NO respectively.

2.2.4 Capturing hierarchy properties with attribute graphs

We now show how attribute graphs can capture three well-known semantic hierarchy
properties introduced in [21]. We present the definitions of strict, onto and covering
hierarchies and show how these definitions can be reformulated and verified using
attribute graphs.

Definition 2.7 (Onto hierarchy). Let H = (N,≤) be a hierarchy of hierarchy
type H = (L,≼), Ni, Nj ⊂ N be two domains of values of level types Li, Lj ∈ L
respectively such that Li ≼ Lj , and Li ̸= ⊥. The value mapping from Ni to Nj is
said to be onto in H if ∀vb ∈ Nj ,∃va ∈ Ni such that va ≤ vb. If all possible value
mappings in H are onto, H is said to be an onto hierarchy.

Example 2.11. The hierarchy of Figure 2.4b (Page 19) is onto since all possible value
mappings are onto. The hierarchy in Figure 2.4a, (Page 19) is not onto: the mapping
from COUNTRY to CONTINENT is not onto since there exists a value “Antarctica” of type
CONTINENT that has no child in type COUNTRY. Observe that the existence of this
non-onto mapping from COUNTRY to CONTINENT is possible since there exists an edge
R (⊥, CONTINENT) in the attribute graph of Figure 2.5.

The following proposition provides a new definition of onto hierarchies using at-
tribute graphs.

Proposition 2.2. Let D = (S, R , λR ,⊥,⊤) be an attribute graph over an attribute
hierarchy A = (S,≼). Let T of schema S be the dimension that is valid with
respect to D. The hierarchy A is an onto hierarchy if ∀Ai ∈ S, R (⊥, Ai) ∈ R , then
∄Aj ∈ S, R (Aj , Ai) ∈ R .

Proof. We prove by contradiction that the hierarchy A is not onto when ∀Ai ∈ S,
R (⊥, Ai) ∈ R , ∄Aj ∈ S, R (Aj , Ai) ∈ R .

By the definition of onto hierarchy, A is not onto, there exists at least one value
vt ∈ Nt such that there is no value in Ns is the child value of vt, where Ns, Nt are
the domain values of attributes As, At ∈ S respectively and R (As, At) ∈ R , As ̸= ⊥.
Consequently, vt of attribute At has no descendent value in A, i.e., vt is a leaf
node. In the dimension table T , vt of attribute At is encoded as tuples t ∈ T where
t.At = vt, since vt has no descendent value, ∀Ak ∈ S, Ak ≼∗ At, t.Ak is null. By item
1 in Definition 2.6, there exists an edge R (⊥, At) in R . Therefore, the existence of
R (⊥, At) and R (As, At) contradicts the assumption that when R (⊥, At) ∈ R , R (As, At)
does not exist.

Therefore, the hierarchy A is onto if ∀Ai ∈ S, R (⊥, Ai) ∈ R , ∄Aj ∈ S, R (Aj , Ai) ∈
R .

Hierarchies without paths of domain values which can “bypass” a level type are
called covering hierarchies.

Definition 2.8 (Covering hierarchy). Let H = (N,≤) be a hierarchy of hierarchy
type H = (L,≼), Ni, Ni+1, . . . , Nk be a sequence of at least three domain values in
N such that their corresponding level types are Li ≼ Li+1 ≼ . . . ≼ Lk. If there exists
a pair of values vi ∈ Ni, vk ∈ Nk such that vi ≤ vk, then the sequence Ni+1, . . . , Nk

is said to be non-covering with respect to Ni. A hierarchy H with no non-covering
sequence, is called a covering hierarchy.

Example 2.12. The hierarchy instance of Figure 2.4a is non-covering since the
sequence (STATE, COUNTRY) is non-covering with respect to CITY: the value ‘Dublin’
of domain (attribute) CITY is directly connected to a value ‘Ireland’ of domain
COUNTRY (‘Dublin’ ≤ ‘Ireland’) and domain STATE is “bypassed” and optional. Observe
that in the attribute graph of Figure 2.5, there exists a path connecting attributes
CITY ≼ STATE ≼ COUNTRY and an edge R (CITY, COUNTRY) skipping attribute STATE. The
hierarchy instance in Figure 2.4b is covering.

Proposition 2.3. Let D = (S, R , λR ,⊥,⊤) be an attribute graph over an attribute
hierarchy A = (S,≼). Let T (S) be a dimension that is valid with respect to D.
The hierarchy A is a covering hierarchy if ∀Ai, Aj ∈ S, when R (Ai, Aj) ∈ R , then
∄Ak ∈ S, R (Ai, Ak) ∈ R .

Proof. By the definition of covering hierarchy, a hierarchy is covering if it does not
contain non-covering sequence, or “bypassed” level, this is equivalent with every
attribute in the hierarchy only has one parent attribute. Therefore, if R (Ai, Aj) ∈ R ,
Ai will not have other parent attribute, and R (Ai, Ak) can not exist in R .

Onto and covering hierarchies mainly characterize dimension tables without null

markers and are called complete hierarchies in [22]. In addition, the last notion
of strict hierarchies characterizes hierarchies without many-to-many child-parent
relationships between domain values.

Definition 2.9 (Strict hierarchy). Let H = (N,≤) be a hierarchy of hierarchy
type H = (L,≼), Ni, Nj ⊂ N be two domains of values of level types Li, Lj ∈ L
respectively such that Li ≼ Lj . The value mapping from Ni to Nj is said to be
strict in H, if ∀va ∈ Ni, there exists only one value vb ∈ Nj such that va ≤ vb. If all
possible value mappings from any two domains of values in N of H are strict, H is
said to be a strict hierarchy.

Example 2.13. As shown in Figure 2.4a, the mapping from CITY to STATE is not
strict since there is a value ‘Dublin’ that has more than one parent in STATE, e.g.,
‘California’ and ‘Ohio’. And the edge R (CITY, STATE) is labeled + in the attribute graph
of Figure 2.5. Therefore, the non-covering and non-onto hierarchy in Figure 2.4a is
also not strict and the hierarchy instance shown in Figure 2.4b is strict, covering and
onto.

Proposition 2.4. Let D = (S, R , λR ,⊥,⊤) be an attribute graph over an attribute
hierarchy A = (S,≼). Let T of schema S be the dimension that is valid with respect
to D. The hierarchy A is a strict hierarchy if ∀Ai, Aj ∈ S, when R (Ai, Aj) ∈ R , then
R (Ai, Aj) = f .

Proof. By the definition of strict hierarchy, a hierarchy is strict if every child-parent
value mapping is strict. We have ∀vi ∈ Ni, there exists one and only one value
vj ∈ Nj such that vi ≤ vj where Ni, Nj are domain values of attributes Ai, Aj ∈ S
respectively and Ai ≼ Aj . Then, in the dimension table T , we get ∀ta, tb ∈ T, ta ̸= tb,
if ta.Ai ≡ ta.Ai, then ta.Aj ≡ tb.Aj . By item 2.a in Definition 2.6, R (Ai, Aj) = f .

Hierarchy type
H = (L,≼)

Hierarchy instance
H = (N,≤)

Attribute graph
D = (S, R, λR,⊥,⊤)

Dimension table
D (A1, . . . , An)

Ni contains value of Li

≤ preserves ≼
R built from ≤

R inherit from ≼

L
i maps to Ai

N
i =

d
om

(A
i)m

in
im

iz
ed
≤

Compute dimension identifier

Figure 2.7: Relations between hierarchy, dimension table and attribute graph

By Propositions 2.2 to 2.4 attribute graphs capture all three hierarchy properties
strict, onto and covering. More exactly, these propositions provide sufficient conditions
to decide if a valid dimension table is strict, onto and/or covering.

We summarize the relationships between hierarchy types, hierarchies, dimension tables
and attribute graphs in Figure 2.7. A hierarchy type can have multiple hierarchy
instances where all value mappings preserve the child-parent relationships in the
hierarchy type. Each hierarchy instance yields a unique dimension table whose
schema contains one dimension attribute for each level type. Attribute graphs reflect
the child-parent relationships of hierarchy types and define subsets of valid hierarchy
instances. They can be used to compute the dimension identifiers of dimension
tables (hierarchy instances).

2.2.5 Multidimensional fact tables

We now introduce fact tables that associate measures with dimensions to represent
facts.

Definition 2.10 (Fact table). A fact table over a set of dimensions D1, · · · , Dn is a
table T (S) where schema S contains a non-empty subset Xi of dimension attributes
from dimension Di, and a non-empty set of attributes Z representing one or more
measures. The active domain of each dimension attribute T.A ∈ Xi is a subset of the
active domain of Di.A. Each measure is represented by one attribute having the role
of Value and a possibly empty group of attributes having the role of Detail. The Value
attribute of a measure carries the actual value while the Detail attribute provide
optional auxiliary information on the measure.

Example 2.14. We give below an example of three fact tables SALES, SALES_SUM,
and INVENTORY that are built from two non-analytic tables ct_SALES and
ct_INVENTORY. Measure attributes are in italics. SALES is defined as a view over
the non-analytic table ct_SALES and dimensions PROD, TIME and STORE. It
describes the daily sales of products in different stores. SALES contains dimension
attributes PROD_SKU and BRAND from dimension PROD, attribute and YEAR from
dimension TIME and attributes CITY, STATE and COUNTRY from dimension STORE.
Measure AMOUNT in table SALES is associated with a detail attribute CURRENCY that
describes the currency of the AMOUNT value, e.g, USD, EUR.

ct_SALES (PROD_SKU, BRAND, DAY, MONTH, YEAR, STORE_ID, CITY, STATE, COUNTRY,
AMOUNT, CURRENCY)

ct_INVENTORY(PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY, STATE,
COUNTRY, TAX_NO, RATE, TAX_DESC, QTY_ON_HAND, TAX_AMT)

SALES (PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT, CURRENCY)
SALES_SUM (YEAR, COUNTRY, SUM_AMOUNT, CURRENCY)
INVENTORY (PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY,

COUNTRY, TAX_NO, RATE, TAX_DESC, QTY_ON_HAND, UNIT)

Table SALES_SUM describes total sales for each country and is defined over fact
table SALES from where it inherits dimension attribute YEAR from dimension TIME

and attribute COUNTRY from dimension STORE. Its measure attribute SUM_AMOUNT

also has a detail attribute CURRENCY that provides the currency of the SUM_AMOUNT

value.

Table INVENTORY is defined over non-analytic table ct_INVENTORY and di-
mensions WAREHOUSE, TIME, TAX and PROD. Its measure attribute
QTY_ON_HAND has a detail attribute UNIT that describes the unit of the QTY_ON_HAND

value, e.g., K or 1, 000, M or 1, 000, 000.

As shown by the previous example, we make the additional assumption on fact
tables that each measure attribute can be associated with a specific Unit or Currency
detail attribute to control the application of aggregation functions.

Similar to dimension tables, we define fact identifiers which capture LFDs in a fact
table.

Definition 2.11 (Fact identifier). Let K ⊆ S be a set of dimension attributes in the
schema of a fact table T (S) and L be a set of LFDs defined on S. Then, K is a fact
identifier of S if K 7→ S holds for any instance T over S satisfying all LFDs in L.

We suppose that each measure in a fact table is determined by a subset of the dimen-
sion attributes of the table. Importantly, and unlike many other multidimensional
models [19], [23]–[25], a measure can depend on a subset of the dimensions of
a fact table. Then, fact identifiers are determined by LFDs between dimension
attributes and attribute graphs can be used to compute fact identifiers of their valid
tables as stated in the following proposition.

Proposition 2.5. Let T (S) be a fact table defined over a set of dimensions D1, · · · , Dn

and K1, . . . Kn be the dimension identifiers of D1 ∩ S, . . . , Dn ∩ S respectively.
Then K = K1 ∪ . . . ∪ Kn is a fact identifier of T , and K is a minimal identifier
if all dimensions in T are mutually independent, i.e., for any pair of dimensions
Di, Dj , 0 ⩽ i, j ⩽ n, i ̸= j in T , Di ̸7→ Dj and Dj ̸7→ Di.

Proof. Let SD ⊂ S the set of dimension attributes in T and S − SD be measure
attributes. We have SD 7→ (S − SD).

K1, . . . , Kn are the dimension identifiers of D1 ∩ S, . . . , Dn ∩ S respectively, and we
have K1 7→ D1 ∩ S, . . . , Kn 7→ Dn ∩ S. By Armstrong union axiom for LFDs, we get
(K1 ∪ . . . ∪Kn) 7→ (D1 ∩ S) ∪ . . . ∪ (Dn ∩ S) = SD. By transitivity of LFD’s, we get
(K1∪ . . .∪Kn) 7→ (S−SD), and then by union of LFDs, we have (K1∪ . . .∪Kn) 7→ S.
Thus, K is a fact identifier.

Two dimension identifiers Ki, Kj , i ̸= j are independent, if there exists no attribute
A ∈ Kj such that Ki 7→ A. Then, it is easy to show that if all Ki are minimal and
mutually independent, K1 ∪ . . . ∪Kn is a minimal fact identifier of T .

Example 2.15. Consider fact tables SALES, SALES_SUM and INVENTORY intro-
duced in Example 2.14. In SALES, for the dimension attributes from dimension
PROD we have PROD_SKU 7→ {PROD_SKU, BRAND}, for the dimension attributes from
dimension TIME we have {YEAR} 7→ {YEAR}, and for the dimension attributes
from dimension STORE we have {CITY, STATE, COUNTRY} 7→ {CITY, STATE, COUNTRY}.
Therefore, by taking the union of all identifiers, the fact identifier of SALES is
{PROD_SKU, YEAR, CITY, STATE, COUNTRY}. Similarly, fact identifiers of SALES_SUM
and INVENTORY are defined by the underlined attributes. If all dimensions are
mutually independent, these fact identifiers are minimal, i.e., no proper subset is
also a fact identifier.

SALES (PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT)
SALES_SUM (YEAR, COUNTRY, SUM_AMOUNT)
INVENTORY (PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY, COUNTRY, TAX_NO,

RATE, TAX_DESC, QTY_ON_HAND)

2.2.6 Aggregable attributes in analytic tables

Any attribute of an analytic table is a priori aggregable (using an aggregate query)
along some dimension attributes, however it does not necessarily aggregate with all
aggregation functions along all dimension attributes.

Example 2.16. In the schema of fact table SALES, measure AMOUNT is aggregable
using function SUM along all dimension attributes. Dimension attribute PROD_SKU

is aggregable using function COUNT or COUNT_DISTINCT along all dimension
attributes but no other meaningful function is applicable to that attribute. In
fact table INVENTORY, measure QTY_ON_HAND is not aggregable along the TIME

dimension, i.e. summing the quantity of products QTY_ON_HAND over all months or
all years is meaningless. In other words, an aggregation that sums up QTY_ON_HAND

must have attributes MONTH and YEAR in the group by clause.

The issue of reasoning on the "semantic aggregability" of attributes has been iden-
tified and extensively studied for statistical and OLAP databases [26]. Focused on
the aggregate function SUM, the notion of additivity was proposed in [6] as: “if
a measure in a fact table can be summed along any dimension associated to the
fact table then it is additive”. Measures in fact tables are then classified into three
categories: fully-additive measures can be summed along any dimension associated,
semi-additive measures can be summed along some, but not all, dimensions, and

non-additive measures cannot be summed along any dimension. Additional special
cases of additivity, such as temporal additivity, have also been considered in [27].

We generalize the additivity approach of [6], [27] and [20] by considering any
type of aggregate function. Our model enables the designer of an analytic table to
declare for each attribute and each applicable aggregation function the maximal
set of dimension attributes along which this aggregation can be computed. Clearly,
if some attribute A is aggregable along a set of dimension attributes X, then it is
also aggregable along any subsets of X. In the following we denote by aggA(F, X)
the aggregable property of A and state that property aggA(F, X) holds in T if X is
the maximal set of attributes along which A is aggregable using F in T . We give the
following formal definition for aggregable properties aggA(F, X).

Definition 2.12 (Aggregable Property). Let SD be the set of dimension attributes in
an analytic table T over schema S, A be an aggregable attribute in S and F be an
aggregation function on A. Aggregable property aggA(F, X), X ⊆ SD, holds in T if

1. all aggregations along any subsets of X are considered as meaningful by the
user;

2. If A is a measure attribute, X contains: (1) the minimal subset of dimension
attributes U ⊆ SD such that U 7→ A and (2) all attributes B ∈ SD such that
U 7→ B

3. F is applicable to A.

Example 2.17. Considering Example 2.16, attribute QTY_ON_HAND depends on all
dimensions, so the (supposed) minimal set of attributes U is {PROD_SKU, MONTH,
YEAR, TAX_NO}, if dimensions are mutually independent. However, aggregating
QTY_ON_HAND along the attributes of dimension TIME is considered meaningless
to the user, and by item 1 in Definition 2.12 attributes MONTH and YEAR must be
removed from U . All other dimension attributes are determined by U . We then state
that aggQTY_ON_HAND(SUM, Z) holds in INVENTORY where Z contains all dimension
attributes of INVENTORY except attributes MONTH and YEAR.

Example 2.18. Consider now a fact table PRODUCT_LIST (PROD_SKU, COUNTRY,
BRAND, YEAR, QTY) over dimension MKT_PROD and TIME, which describes
the quantity of products issued every year as shown in Table 2.3. In dimension
MKT_PROD, assume that we have the attribute graph displayed in Figure 2.8.
Suppose that the measure attribute QTY only depends on the minimal set of attributes
U = {PROD_SKU, YEAR}. Then, since no other dimension attribute is determined by

U , aggQTY(SUM, U) holds in PRODUCT_LIST. Here, the same fact about “cz-tshirt-
s” is recorded twice, once for each brand. If we wanted to consider facts to be
independent from each other, then we would assume that QTY depends on the
minimal set of attributes U = {PROD_SKU, BRAND, YEAR}. That is, each quantity would
be recorded separately for each brand and they could be added along dimension
MKT_PROD.

Table 2.3: PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

coca-zara-tshirt-s COCA COLA United States 2017 5 000
coca-zara-tshirt-s ZARA Spain 2017 5 000
coca-33cl-can COCA COLA United States 2017 10 000

Figure 2.8: Attribute graph of dimension MKT_PROD

To determine applicable aggregation functions for aggregable attributes, different
categorizations have been proposed in previous works. One factor that is used
to classify attributes is their semantic meaning. For instance, [28] introduced
a statistic classification that divides measurement attributes into four types: 1)
Nominal attributes, which are un-ordered categorical attributes like CLASS_TYPE

and can only be aggregated using function COUNT. 2) Ordinal attributes, which
are ordered categorical attributes, like IQ_SCORE, and aggregable with function
MIN, MAX, COUNT, other functions like SUM and AVG are not suggested because
the numeric difference between values might not correctly reflect the "semantic"
difference, e.g., the difference of IQ scores from 115 to 100 does not have the
same meaning as the difference from 100 to 85. 3) Interval attributes, which
are measure attributes with equal value intervals but don’t have an absolute zero,
like TEMPERATURE, zero degrees Fahrenheit and zero degrees Celsius are different
temperatures, and neither indicates the absence of temperature. An interval attribute
can be aggregated by function MAX, MIN, COUNT, AVG. 4) Ratio attributes, which
are numerical values with an absolute zero, like WEIGHT and SALES, can be aggregated
by any aggregation function. Another criteria that is used to classify attributes is
their aggregation behaviour. For instance, [21], [29] classified measures into three
types: measures that can be (a) summed, (b) averaged, or (c) counted.

The previous categorizations of measures rely on some external knowledge and
explicit user effort for classifying every aggregable attribute of an analytic table. To
reduce the user effort, we provide a default categorization that can automatically

be extracted from the schema metadata. The two categories NUM and DESC
are inferred from the (SQL) data type of attributes. A third category STAT are
numerical values that result from the use of some aggregation functions. Table 2.4
describes the six common SQL aggregation functions applicable to each category.

Table 2.4: Categories of aggregable attributes

Category Properties

NUM • Numerical values
• Applicable functions: SUM, AVG, COUNT, COUNT_DISTINCT, MIN,
MAX

DESC • Descriptive or categorical values
• Applicable functions: COUNT, COUNT_DISTINCT

STAT • Numerical statistical values
• Applicable functions: COUNT, COUNT_DISTINCT, MIN, MAX

Table 2.5: Category of the domain and the co-domain for common aggregation functions

Functions Applicable category Category of the co-domain

SUM, MIN, MAX NUM NUM
COUNT, COUNT_DISTINCT NUM, DESC, STAT NUM
AVG NUM STAT

Example 2.19. Attribute STORE_ID of data type string in dimension table STORE,
or in fact table SALES, is an aggregable attribute of category DESC which can only
be counted. Attributes AMOUNT and QTY_ON_HAND in tables SALES and INVENTORY
are both of category NUM. Thus, by default, both attributes can be summed up un-
less a user-defined aggregable property is specified, as in Example 2.17 for attribute
QTY_ON_HAND.

If A is an attribute of T for which no aggregable property is defined by a user, we
use the default category of A to define which aggregation function F is applicable
to A and state that a default aggregable property aggA(F, Z) holds in T where Z
is the set of all dimension attributes of T (by default, A literally depends on all
dimension attributes). We assume that any knowledge of the categorization of
measures is translated into aggregable properties (as done e.g., in [20]). For this
purpose, aggregable properties of fact tables can be manually edited by the user.

2.3 Table Relationships

2.3.1 Join and attribute mapping relationships

In this section, we describe two kinds of semantic relationships, join relationships
and attribute-mapping relationships, that can exist between analytic tables. Both
kinds of relationships identify pairs of equivalent attributes in two tables. They can
be defined manually by the business user or extracted from the view definitions
of analytic tables and from the foreign key constraints contained in the analytic
schema.

Definition 2.13 (Join relationship). A join relationship R (T1, T2) between two tables
T1 and T2 is defined by a non-empty set of equality atoms {P1, · · · , Pk} where each
Pi is of the form T1.A = T2.B. It relates all pairs of tuples in T1 and T2 satisfying the
predicate P1 ∧ · · · ∧ Pk, i.e., the set of all tuples joined by the query T1 ▷◁P1∧···∧Pk

T2.

Example 2.20. Fact table SALES of Example 2.14 is a view over dimensions PROD,
TIME and STORE and a non-analytical table ct_SALES. As shown in Figure 2.1a,
the view defines a star join connecting ct_SALES and the dimension tables. The
analysis of the view definition yields three join relationships between ct_SALES and
each dimension table.

Join relationships might also exist between non-analytic tables (i.e., tables that
are neither dimension nor fact tables) through foreign key constraints in the table
schema definitions.

Definition 2.14 (Attribute mapping relationship). Let T1 and T2 be two tables
such that T1 is derived from T2 using a query Q and auxiliary tables: T1 =
Q (T2, Ti, · · · , Tn) with n ≥ 0. Query Q defines an attribute mapping from T2.B

to T1.A, denoted by T2.B ↠ T1.A, if for all possible values x ∈ dom(A) and all possible
instances of T2, Ti, · · · , Tn:

σA=x(Q (T2, Ti, · · · , Tn)) = σA=x(Q (σB=x(T2), Ti, · · · , Tn))

An attribute mapping relationship R (T1, T2) between T1 and T2 is a non-empty set of
attribute mappings from T1 to T2.

Example 2.21. As shown in Figure 2.1b, Page 17, dimension PROD is a view over
three non-analytic tables defined as PROD = πX(PRODUCT ▷◁P1 SUBCATEGORY ▷◁P2

CATEGORY), where X is the set of attributes in PROD, and P1, P2 are join
predicates. This view defines for each attribute in Ai ∈ X, an attribute map-
ping PROD.Ai ↠ T.Ai between PROD and the corresponding non-analytic table
T ∈ {PRODUCT, SUBCATEGORY, CATEGORY}.

In Example 2.20, the view query for fact table SALES defines an attribute mapping
relationship between table SALES and the three dimension tables PROD, TIME

and STORE, as well as the non-analytic table ct_SALES.

Each relationship R (T1, T2) between two tables T1(S1) and T2(S2) defines a partial
mapping µR from attributes A of T1 to attributes B of T2 where µR (T1.A) = T2.B if
(i) R is a join relationship containing an atom T1.A = T2.B or (ii) R contains an
attribute mapping T1.A ↠ T2.B or T2.B ↠ T1.A. Relationship R is well-formed if µR

is a one-to-one mapping.

Example 2.22. Consider a fact table ORDER recording detail descriptions for or-
ders from different stores and customers. ORDER has two attributes ORDER_DAY,
SHIP_DAY, each one referring to attribute DAY of dimension TIME. A single at-
tribute mapping relationship R (ORDER, T IME) mapping the two ORDER at-
tributes to the same attribute TIME.DAY, µR (ORDER.ORDER_DAY) = TIME.DAY,
µR (ORDER.SHIP_DAY) = TIME.DAY, is not a one-to-one mapping and there-
fore not well-formed. Thus, two distinct relationships R 1(ORDER, T IME) and
R 2(ORDER, T IME) are needed, one for ORDER_DAY and the other for SHIP_DAY.

Given a relationship R (T1, T2) between two tables T1(S1) and T2(S2), when T1

or T2 is an analytic table, we refer to common dimension attributes as the set of
dimension attributes that are both in the schema of T1 and T2, noted Y = S1 ∩D S2.
When T1 and T2 are two non-analytic tables, we refer to common non-analytic
attributes as the set of attributes that are both in the schema of T1 and T2, noted
Y = S1∩D S2 = S1∩S2. For the sake of simplicity, and unless specified differently, we
shall use in the following the name common attributes and expression Y = S1 ∩D S2

for common dimension attributes or common non-analytic attributes between two
tables, and we assume that any relationship R (T1, T2) defines a natural mapping
µR (T1.A) = T2.A for all attributes A in Y = S1 ∩D S2.

Example 2.23. In Example 2.20, the common non-analytic at-
tributes for the join relationships R (CATEGORY, SUBCATEGORY)
and R (PRODUCT, SUBCATEGORY) are respectively {CATEGORY_ID}

and {SUBCATEGORY_ID}. Similarly, the attribute mapping relationship
R (PROD, SUBCATEGORY) of Example 2.21 between dimension table PROD

and non-analytical table SUBCATEGORY has common dimension attributes
{PROD_SKU, BRAND}.

Relationship R (SALES, ct_SALES) described in Exam-
ple 2.21 is an attribute mapping between attributes
{PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT, CURRENCY}. Within
those attributes, AMOUNT and CURRENCY are not dimension attributes, so
the common dimension attributes between SALES and ct_SALES are
{PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY}.

Figure 2.9 shows a graph of relationships issued from previous examples. Dimension
tables are represented by rounded rectangles, fact tables by bold square rectangles,
and non-analytic tables by square rectangles. Each node contains its identifier (ID),
and edges indicate relationships labelled with their common attributes. Edges with
solid lines are relationships extracted from the analytic scheme while edges with
bold dashed lines are user-defined relationships. For instance, a designer has defined
a join relationship between dimensions STORE and WAREHOUSE with common
attributes CITY, STATE and COUNTRY which did not exist in the analytic schema.

Figure 2.9: Examples of relationships

2.3.2 Derived relationships

It is possible to derive new relationships by the composition and the fusion of existing
relationships. For example, in Figure 2.9, there is no direct relationship (solid-
line edge) between fact tables INVENTORY and SALES. However, both tables
share dimension tables PROD and TIME which can be composed to derive a new
relationship represented by the dashed-line edge.

Proposition 2.6. Composition of relationships. Let R 1(T1, T2) and R 2(T2, T3) be two
well-formed relationships between tables T1, T2 and T3 with respective common
attributes Y1 and Y2. If Y3 = Y1 ∩D Y2 ̸= ∅, then there exists a well-formed rela-
tionship R 3(T1, T3) that is a composition of R 1(T1, T2) and R 2(T2, T3) with common
attributes Y3.

Proof see ?? on ??.

Example 2.24. In Figure 2.9, relationships R (SALES_SUM, STORE)
and R (STORE, WAREHOUSE) are composed to yield R (SALES_SUM,
WAREHOUSE) with common attribute COUNTRY. Similarly, R (SALES_SUM,
WAREHOUSE) and R (WAREHOUSE, INVENTORY) are composed to gener-
ate R (SALES_SUM, INVENTORY) with common attribute COUNTRY.

The fusion of two different relationships between the same pair of tables can produce
a new relationship between the same tables.

Proposition 2.7. Fusion of relationships. Let R 1(T1, T2) and R 2(T1, T2) be two
well-formed relationships between two tables T1 and T2 with respective common
attributes Y1 and Y2. If ∀A ∈ Y1 ∩D Y2, µR 1(A) = µR 2(A) then there exists a
well-formed relationship R 3(T1, T2) that is a fusion of R 1(T1, T2) and R 2(T1, T2)
with common attributes Y3 = Y1 ∪Y2.

Proof see ?? on ??.

Given a set of well-formed relationships R 0(T1, T2), · · · , R n(T1, T2), n ≥ 0 between
two tables T1, T2 with respective common attributes Y0, · · · , Yn. We refer the union
of Y0, · · · , Yn as the common attributes of T1 and T2.

Example 2.25. In Figure 2.9, relationships R (SALES, PROD) and R (PROD,
INVENTORY) are composed to yield R 1(SALES, INVENTORY) with com-
mon attributes {PROD_SKU, BRAND}. Similarly, R (SALES, TIME) and R (TIME,
INVENTORY) are composed to generate R 2(SALES, INVENTORY) with com-
mon attribute {YEAR}. Finally, R (SALES, STORE), R (STORE, WAREHOUSE)
and R (WAREHOUSE, INVENTORY) are composed to produce R 3(SALES,
INVENTORY) with common attributes {CITY, COUNTRY}. Then the fusion
of R 1(SALES, INVENTORY), R 2(SALES, INVENTORY) and R 3(SALES,
INVENTORY) yields R ′(SALES, INVENTORY) with common attributes
{YEAR, PROD_SKU, BRAND, CITY, COUNTRY}. However, the fusion of the two relation-
ships R 1(ORDER, TIME) and R 2(ORDER, TIME) in Example 2.23 is not possi-
ble because µR 1(DAY) ̸= µR 2(DAY) (both relationships map two different attributes
ORDER.ORDER_DAY and ORDER.SHIP_DAY to the same attribute TIME.DAY.

Besides the composition and fusion of relationships, we consider a special case of
derived relationships that are defined over lookup tables.

Definition 2.15 (Lookup Table Relationships). Let T1(S1), T2(S2), T (S) be three
tables such that there exist two well-formed relationships R 1(T1, T) and R 2(T2, T)
with respectively common attributes Y1 and Y2. A relationship R (T1, T2) over the
table T (S) is a non-empty set of attribute mappings from T1 to T2 using the mapping
function f(x) : T1.Y1 = πY1(σY2=x(T)), x ∈ dom(T2.Y2). Table T is referred to as a
lookup table.

Proposition 2.8. Let T1(S1), T2(S2), T (S) be three tables such that there exist two
well-formed relationships R 1(T1, T) and R 2(T2, T) with respectively common at-
tributes Y1 and Y2. Let R (T1, T2) be the relationship over the lookup-table T (S),
if Y1 7→ Y2 and Y2 7→ Y1 hold in T , then R (T1, T2) is a one-to-one mapping
relationship.

Proof. We prove by contradiction that assume R (T1, T2) is not a one-to-one map-
ping relationship. Let f(x) = T1.Y1, x ∈ dom(T2.Y2) be the mapping function of
R (T1, T2). Let t be a tuple of T1, then there exist two tuples ta, tb in T2 such that
t.Y1 = f(ta.Y2) = f(tb.Y2) and ta ̸≡ tb. By R 1(T1, T) and R 2(T2, T), we now that
there exist two tuples t′

a, t′
b in T such that t′

a.Y1 ≡ t′
b.Y1 ≡ t.Y1, t′

a.Y2 ≡ ta.Y2

and t′
b.Y2 ≡ tb.Y2. Because Y1 7→ Y2 holds in T , we obtain t′

a.Y2 ≡ t′
b.Y2 which

contradicts the assumption that ta ̸≡ tb. Therefore, when Y1 7→ Y2 and Y2 7→ Y1

hold in T , the relationship R (T1, T2) is a one-to-one mapping relationship.

Example 2.26. Consider the two dimension tables STORE and WAREHOUSE

in Figure 2.9. Let COUNTRY_CODE (COUNTRY_NAME, 2_CHAR, 3_CHAR,
UN_CODE) be a table storing country names of different formats includ-
ing the full name, 2-char code, 3-char code and a three-digit numeric
code (ISO 3166-1 1). Every attribute in COUNTRY_CODE forms a
key (identifier). Suppose we have R (COUNTRY_CODE, STORE) and
R (COUNTRY_CODE, WAREHOUSE) be two well-formed relationships respec-
tively of the form COUNTRY_CODE.COUNTRY_NAME ↠ WAREHOUSE.COUNTRY,
COUNTRY_CODE.2_CHAR ↠ STORE.COUNTRY. Then there exists a relationship
R (STORE, WAREHOUSE) over the table COUNTRY_CODE where attribute
mappings is STORE.COUNTRY = f(WAREHOUSE.COUNTRY) and the mapping
function f is defined as f(x) = π2_CHAR(σCOUNTRY_NAME=x(COUNTRY_CODE)),
x ∈ dom(WAREHOUSE.COUNTRY). Because COUNTRY_NAME 7→ 2_CHAR

and 2_CHAR 7→ COUNTRY_NAME hold in COUNTRY_CODE, the relationship
R (STORE, WAREHOUSE) is a one-to-one mapping relationship.

2.3.3 Relationships in drill-across OLAP queries

In the context of “drill-across” queries, [6], [30] focus on relationships between
fact tables through conforming dimensions and [31] studies Fact-to-Dimension (FD)
relationships, Fact-to-Fact (FF) relationships and Dimension-to-Dimension (DD) rela-
tionships. We now explain how these three kinds of relationships are represented
using our definitions.

Fact-to-Fact (FF) relationships. When a fact table T is defined over another fact
table T0, or T and T0 are defined over a common dimension D, there exists, an FF
attribute-mapping relationship between table T and T0. The dimension D is called
conformed dimension [6] between T and T0. For example, fact table SALES_SUM is
defined as a view that computes the SUM of AMOUNT group by COUNTRY, MONTH from
SALES. An attribute-mapping (FF) relationship between SALES and SALES_SUM
is extracted from the view definition with common attributes COUNTRY, MONTH.
Since SALES and INVENTORY have dimensions PROD and TIME in com-
mon, there also exists an attribute-mapping (FF) relationship between SALES
and INVENTORY through conformed dimensions PROD and TIME.

1https://en.wikipedia.org/wiki/Country_code

https://en.wikipedia.org/wiki/Country_code

Dimension-to-Dimension (DD) relationships. Dimensions can also be defined over
other dimension tables, and thus DD attribute-mapping relationships can be ex-
tracted from the view definition of dimensions. For example, dimension table
ALL_STORES is a view defined as a union of two dimensions that have the same
dimension attributes:

ALL_STORES = CHAIN_STORES ∪ INDEP_STORES

Here, an attribute mapping (DD) relationship between ALL_STORES and each
operand dimension of the union is extracted from the view definition. DD Join
relationship can also be explicitly defined by the user. As shown in Figure 2.9,
the user has defined three natural join predicates on attributes CITY, STATE and
COUNTRY, which are shared between dimensions STORE and WAREHOUSE.
These dimensions are not “conformed”, but their relationship defines a so-called
"integrated" dimension in [30].

Since we also take non-analytic tables into consideration, there are other types
of relationships involving non-analytic tables that were not discussed in [30] and
[1].

Analytic-to-Non-analytic (AN) relationships. The view definitions of dimension and
fact tables also refer to non-analytic tables and define AN attribute-mapping rela-
tionships between dimension or fact tables and non-analytic tables. For example,
dimension PROD, introduced in Example 2.21, defined an attribute mapping rela-
tionship between PROD and three non-analytic tables.

Non-analytic to Non-analytic (NN) relationships. NN Join relationship can be in-
ferred from foreign key (PK-FK) constraints between non-analytic tables. For ex-
ample, in the definition of non-analytic dataset ct_SALES, PROD_SKU is the primary
key of the non-analytic dataset PRODUCT and a NN join relationship between
ct_SALES and PRODUCT is extracted with common attribute PROD_SKU.

2.4 Conclusions

To conclude this chapter, we summarize the data and related metadata introduced
in this chapter. Dimensions and measures are two standard notions which frequently
appear in analytic data models. In our data model, we take the general definitions

of dimension tables, fact tables and hierarchy as introduced in [6]. We do not
consider data evolution or time-dependent dimensions that track historical data with
the help of historical tables or timestamp attributes, as it was done for instance
in [21]. We also assume that all data is valid and accessible until it is deleted.
We release certain constraints on the hierarchy structure and table identifiers and
enable non-linear hierarchies with multiple bottom and top level attributes. We also
release the restriction that the bottom level attribute in a hierarchy is the dimension
identifier. We extend the previous models and make them more flexible through three
new notions: (1) attribute graphs which represent LFDs over dimension attributes;
(2) dimension / fact identifiers for analytic tables with null-values; (3) aggregable
properties which describe and check the validity of aggregation operations on fact
tables.

Table 2.6 lists the main metadata we need and indicate how they are obtained.
We distinguish between data and metadata that can be user-defined, automatically
computed from other data or metadata and derived by default rules. Most human
effort is required on the definition of dimension and fact tables (analytic schemas)
with a careful description of their attribute graphs. We shall see in Section 4.2.1
that attribute graphs can also be automatically computed from complete or sampled
dimension tables. This substantially reduces the human-effort for enabling schema
augmentations and complements to defining analytic schemas and aggregable prop-
erties.

Table 2.6: Summary of data model concepts

Metadata Source

Dimension and fact tables User-defined
Attribute graphs User-defined or computed
Dimension identifiers Computed
Fact identifiers Computed
Aggregable properties User-defined or default rule
Relationships User-defined or computed

3
Schema Augmentations and Quality
Guarantees

Contents
3.1 Schema Augmentations . 43

3.2 Natural Schema Complement . 46

3.3 Reduction Queries . 47

3.4 Quality Criteria of Schema Augmentations 52

3.4.1 Propagation of aggregable properties 52

3.4.2 Non-ambiguous aggregable attributes 63

3.4.3 Complete merge results 65

3.4.4 Summarizability revisited 73

In this chapter, we present our methods that deal with the challenges introduced
in Section 1.2. We first introduce the notion of schema augmentation and merge
query in Section 3.1, then in Section 3.2 we present natural schema complements
which are a subclass of schema augmentations without row multiplication. Row
multiplication can be avoided by applying reduction queries (Section 3.3) which are
a new feature with respect to existing work in schema complements (see Related
Work Chapter 5). In Section 3.4, we introduce our solutions for tackling the quality
problems of incorrect and ambiguous reduction and incomplete merge. We introduce a
formal framework for ensuring the quality of the merge results and show how these
quality guarantees relate to the notion of summarizability.

3.1 Schema Augmentations

We first introduce a general case which is to augment a table with new attributes
from other tables, this augmentation is called schema augmentation.

43

Definition 3.1 (Schema augmentation). Let T0(S0) and T (S) be two tables related
by a relationship R with a set of common attributes Y = S0 ∩D S. Then table T is a
schema augmentation to source table T0 with respect to R .

Schema augmentations are easy to find using the well-formed relationships. By
definition, two tables are mutual schema augmentation to each other when they are
related through a well-formed relationship and their common attributes Y is not
empty.

Example 3.1. Consider the tables and the relationships shown in Figure 2.9.
Table INVENTORY is related to table SALES through a relationship with com-
mon attributes {PROD_SKU, BRAND, YEAR, CITY, COUNTRY}. Therefore, SALES and
INVENTORY are mutual schema augmentation to each other.

Schema augmentations are used to extend one of the two related tables with new
attribute values from the other table. This extension is computed through merge
queries defined as follows:

Definition 3.2 (Merge query). Let T (S) be a schema augmentation to an analytic
table T0(S0) with respect a relationship R and a set of common attributes Y. Then
the merge of T0 and T is a left-outer join query Q = ΠX(T0 ▷◁P1∧···∧Pk

T), where
k = |Y | is the number of common attributes of R , Π is a duplicate elimination
projection and the following conditions hold:

1. For each Ai ∈ Y, ∃Pi such that Pi = (T0.Ai = T.Ai)∨(T0.Ai = null∧T.Ai = null)
(marked null is literal value).

2. If all common attributes are dimension attributes, and there exists a pair of
common attributes A1, A2 ∈ Y in T0 such that T0.A1 ≼ T0.A2 ∧ T.A1 ⪯̸ T.A2,
then X = S0 ⊎ S else X = S0 ∪ S (⊎ denotes disjoint union).

In the following, we will abbreviate Q = ΠX(T0 ▷◁P1∧···∧Pk
T) to Q = T0 ▷◁Y T .

Item 1 manages the join predicates in the merge query when there is presence
of nulls, because equality in standard SQL semantics is undefined for null values.
Item 2 checks if the structure of the hierarchy in T0 is preserved after merging
common attributes. When the dimensions of common attributes are not compatible
(do not mutually preserve the hierarchical relationships), the merge query keeps the
common attributes separately for each table and applies disjoint union.

In the following, we will refer to the result of a merge query through a schema
augmentation as an augmented merge table.

Example 3.2. Considering tables in Figure 2.9 on Page 37, table INVENTORY is a
schema augmentation to SALES with respect to common attributes: Y= {PROD_SKU,
BRAND, YEAR, CITY, COUNTRY}. After comparing the schema of these two tables, the
merge query can add some or all new attributes from table INVENTORY (MONTH,
WH_ID, TAX_NO, RATE, TAX_DESC and QTY_ON_HAND) to table SALES and vice-versa
(AMOUNT).

SALES(PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT)
INVENTORY(PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY,

COUNTRY, TAX_NO, RATE, TAX_DESC, QTY_ON_HAND)

Formally, a merge query between SALES and INVENTORY through schema aug-
mentation is expressed as SALES ▷◁Y INVENTORY where Y is the set of common
attributes, and the augmented merge table does not duplicate the common attributes.
The augmented merge table preserves all rows in SALES (with possible row dupli-
cation) and contains all attributes in INVENTORY and SALES (the merge query
does not apply a projection). The symmetric merge query INVENTORY ▷◁Y SALES
preserves all tuples in table INVENTORY and has the same schema.

After merging a table with a schema augmentation, the identifier of the augmented
merge table might change. The following proposition describes how to compute the
identifiers of augmented merge tables.

Proposition 3.1. Let T ′
0(S′

0) be a merge of table T0(S0) with a target schema
augmentation T (S). Let K be the identifier of T0 and Snew ⊆ S′

0 − S0 be the set
of dimension attributes added to T0 in the merge. Then, for all minimal subsets
Knew ⊆ Snew where Knew 7→ Snew, K ∪Knew is an identifier of T ′

0.

Proof. Let K′ = K ∪Knew. We prove K′ 7→ S′
0 by contradiction. Assume that K ′ is

not the identifier of T ′
0, then there exist two tuples t1, t2 ∈ T ′

0 and an attribute B ∈ S0

such that t1.K′ ≡ t2.K′ but t1.B ̸≡ t2.B. We distinguish between two cases:

– Case one: B ∈ S0: We know that K ⊂ K′ and K 7→ S0. Then by t1.K′ ≡ t2.K′ we
have t1.K ≡ t2.K and t1.B ≡ t2.B which contradicts our assumption.

– Case two: B ∈ Snew: We know that Knew ⊂ K′ and Knew 7→ Snew. Then by
t1.K′ ≡ t2.K′ we have t1.Knew ≡ t2.Knew and t1.B ≡ t2.B which contradicts our
assumption.

Therefore, we conclude K′ 7→ S′
0.

Example 3.3. Consider the merged result SALES′ in Example 3.2. Then, the iden-
tifier of SALES is K = {PROD_SKU, MONTH, YEAR, CITY, STATE, COUNTRY} and Snew =
{MONTH, WH_ID, TAX_NO, RATE, TAX_DESC}. We have Knew = {MONTH, WH_ID, TAX_NO}
such that Knew 7→ Snew. Thus, the identifier of SALES′ is K ∪ Knew ={PROD_SKU,
MONTH, YEAR, CITY, STATE, COUNTRY, WH_ID, TAX_NO}.

3.2 Natural Schema Complement

Merge queries might join one tuple in the source table with several tuples in the
schema augmentation table. This tuple duplication might lead to unexpected results.
For example, in the merge results of Example 3.2, tuples in SALES will be duplicated
because of the newly added dimension attributes MONTH, WH_ID. As we explained in
Section 1.2, row multiplication may produce unexpected or erroneous results. For
example, an aggregation query that computes the sum of quantity-on-hand over all
warehouses will produce a wrong result when it is applied on table SALES′ after
the augmentation of SALES with table INVENTORY. To better control the schema
augmentation process, we introduce new restrictions that can be applied for filtering
and transforming schema augmentations before merging them with a source table.

The notion of schema complement that merges two tables and brings new attributes
without row multiplications, which solves our second challenge “row multiplication”
in Section 1.2, was initially proposed in [12]. In this section, we explain our
extensions of the original definition of schema complement by considering LFDs and
well-formed relationships between tables.

Definition 3.3 (Natural schema complement). Let T (S) be a schema augmentation
of T0(S0) with a set of common attributes Y = S0 ∩D S. Table T is a natural schema
complement to a table T0 with respect to R if Y 7→ S.

The merge of T0 and T through natural schema complement follows Definition 3.2
for merging schema augmentations. We refer to the result of a merge query through
a natural schema complement by natural merge table.

Proposition 3.2. Let table T (S) be a natural schema complement of a table T0(S0)
with respect to a set of common attributes Y = S ∩D S0, let T ′

0(S′
0) be the natural

merge table of T and T0, then for each tuple t in T0 there exists exactly one tuple t′

in T ′
0 such that t.S0 ≡ t′.S0.

Proof. The proof for this proposition is straightforward.

We first show that if K is an identifier in T0, then it is also an identifier in T ′
0. Let

Snew = S′
0 − S0 be the set of attributes added to T0 in the merge, then by Propo-

sition 3.1, the identifier of T ′
0 is K ∪ Knew where Knew 7→ Snew. By Definition 3.3,

Y 7→ S and K 7→ Y, by transitivity we get K 7→ S. Because Snew ⊆ S, we get
K 7→ Snew. Finally, K 7→ S0 ∪ Snew = S′

0, K is the identifier of T ′
0.

Second, we show that no tuples in T0 are lost in T ′
0. This is guaranteed by the

definition of merge query which uses left-outer join for augmenting table T0.

By Propositions 3.1 and 3.2, we now know that when T is a natural schema com-
plement of a table T0, the identifier of T0 is also the identifier of the natural merge
table of T0 and T .

Example 3.4. Consider the tables and relationships shown in Figure 2.9 (Page 37),
the non-analytical table PRODUCT is a schema augmentation to dimension table
PROD with respect to two common attributes {PROD_SKU, BRAND}. It is also a
natural schema complement since the common attribute PROD_SKU is a primary key
in PRODUCT. By comparing their schemas, PRODUCT can bring new details to
PROD like WEIGHT and PRODUCT_NAME.

PRODUCT{PROD_SKU, PRODUCT_NAME, BRAND, WEIGHT, SUBCATEGORY_ID}
PROD{PROD_SKU, BRAND, SUBCATEGORY, CATEGORY}

The natural merge PROD ▷◁PROD_SKU PRODUCT produces exactly one tuple for
each tuple in dimension PROD

Considering tables INVENTORY and SALES of Example 3.1, their common at-
tributes do not contain an identifier of SALES. Therefore SALES is not a natural
schema complement to INVENTORY.

3.3 Reduction Queries

When T is a schema augmentation but not a natural schema complement of T0 (the
common attributes do not literally determine all attributes of T), it is still possible
to transform T into a natural schema complement by applying some query. In
this section, we introduce reduction operations which “reduce” the attributes in the
identifier of T .

Definition 3.4 (Reduction query). Let T (S) be a table with identifier K. A query
Q (T) producing the table T ′(S′) is called a reduction of T on a subset of attributes
K′ ⊆ S′ if K′ ⊂ K is a proper subset of K and K′ 7→ S′ holds in T ′ (K′ is an identifier
of T ′). The attributes in K−K′ are called the reduced attributes.

Since K′ ⊂ K, every partitioning (group-by) of T by K′ contains one or more tuples.
The effect of a reduction query Q (T) on K′ is to reduce each partition into a single
tuple.

Example 3.5. Consider the fact table SALES with identifier K = {PROD_SKU, YEAR,
CITY, STATE, COUNTRY}. A query SALES′ = Q (SALES) that filters COUNTRY = “USA”
is a reduction of SALES on attributes K′ = K − {COUNTRY}. K′ is the identifier of
SALES′ and COUNTRY is the reduced attribute.

There exists a great variety of reduction queries. In our work, we focus on three
common types of reduction queries: aggregate, filter and pivot.

Definition 3.5 (Aggregate reduction). Let T (S) be an analytic table with dimension
attributes SD ⊆ S and identifier K ⊆ SD, A be an aggregable attribute in S, and F be
an aggregation function such that aggregable property aggA(F, Z) holds in T (A can
be aggregated along any subset of Z). We denote by Q (T) = AggT (F(A) | X) where
SD−Z ⊆ X ⊆ SD, an aggregate query on table T that aggregates A using aggregation
function F with group-by attributes X. We call a query Q (T) = AggT (F(A) | K′) an
aggregate reduction of T on attributes K′ when K′ ⊂ K, and call K−K′ the reduced
attributes.

Note that the SQL group-by operator implements literal equality semantics for null

values (null values are not distinct).

Example 3.6. Consider a table T (S) in Table 3.1a with dimensional attributes
A1, A2 from D1 and A3 from dimension D2, and {A1, A3} forming an identifier K of T .
Suppose that the aggregable property aggM(SUM, {A1, A2, A3}) holds in T . The result
of Q 1 = AggT (SUM(M) | {A3}) is shown in Table 3.1b. Q 1 reduces the identifier of T

by dropping A1 from the group-by attributes. Thus, Q 1 is an aggregate reduction of T

on {A3}, the identifier is K ′ = {A3} in the result table, and attribute A1 is the reduced
attribute. The result of another aggregate query Q 2 = AggT (SUM(M) | {A1, A3}) is
shown in Table 3.1c. However, since Q 2 does not reduce the identifier of T , Q 2 is
not an aggregate reduction.

Table 3.1: Examples of aggregate queries

(a) Input table T

T A1 A2 A3 M

a1 b1 c1 x1
a1 b1 c2 x2
a2 b1 c1 x3
a2 b2 c2 x4

(b) Aggregate Q 1

Q 1 A3 SUM(M)

c1 x1 + x3
c2 x2 + x4

(c) Aggregate Q 2

Q 2 A1 A3 SUM(M)

a1 c1 x1
a1 c2 x2
a2 c1 x3
a2 c2 x4

Definition 3.6 (Filter reduction). Let T (S) be a table with identifier K ⊆ S. We
denote by Q (T) = Filter T (P | X), P = {P1∧· · ·∧Pi}, a filter query that filters T by a
set of predicates P on attributes X of T . We call query Q (T) = Filter T (P | K−K′) a
filter reduction of T on attributes K′, when K′ ⊂ K and for each attribute A ∈ K−K′,
there exists a predicate Pi ∈ P of the form A = vi, vi ∈ dom(A), and K − K′ are
called the reduced attributes.

Example 3.7. Reconsider the table T (S) in Table 3.1a with key K = {A1, A3}. The
result of the filter query Q 3 = Filter T ({A1 =‘a1’} | {A1}) is shown in Table 3.2a. Q 3

reduces the identifier of T by applying a filter on A1. Q 3 is a filter reduction of T

on {A3}. The identifier of the result table is {A3} and attribute A1 is the reduced
attribute. The result of another filter query Q 4 = Filter T ({A2 =‘b1’} | {A1}) is shown
in Table 3.2b. A2 is not in the identifier of T and the identifier remains the same
after applying Q 4. Q 4 is not a filter reduction.

Table 3.2: Examples of filter queries

(a) Filter Q 3

Q 3 A1 A2 A3 M

a1 b1 c1 x1
a1 b1 c2 x2

(b) Filter Q 4

Q 4 A1 A2 A3 M

a1 b1 c1 x1
a1 b1 c2 x2
a2 b1 c1 x3

Definition 3.7 (Pivot reduction). Let T (S) be a table with identifier K ⊆ S and A

be an attribute in S. We denote by Q (T) = PivotT (A | X), where X ⊂ S − {A}, a
pivot query which pivots attribute A over X. The result is a table T ′, with identifier
K−X, whose schema contains every attribute of S − {X, A} and an attribute A_vx

for each value vx in the domain of T.X. The value t.A of each tuple t ∈ T such
that t.X = vx is a value in the attribute A_vx of the unique tuple t′ in T ′ such that
t.(S−{X, A}) = t′.(S−{X, A}). We call query PivotT (A | K−K′) a pivot reduction of
T on attributes K′ when K′ ⊂ K, and K−K′ are called the reduced attributes.

Example 3.8. Reconsider the table T (S) in Table 3.1a. The result of pivot query
Q 5 = PivotT (M | A1) that pivots attribute M over A1 is shown in Table 3.3a. The
schema of the resulting table T ′, with identifier K − A1, has every attribute of
S − A1 and one attribute Mv for each value v of T.A1, that is, two new attributes
M_a1, M_a2. The value t.M of each tuple t ∈ T such that t.A1 = v is a value in the
attribute M_v of the unique tuple t′ in T ′ such that t.({A2, A3}) = t′.({A2, A3}). Since
A1 = K− {A3}, Q 5 is a pivot reduction of T on attribute {A3}, the identifier of the
result is {A3} and attribute A1 is the reduced attribute. The result of another pivot
query Q 6 = PivotT (M | A2) is shown in Table 3.2b. Since A2 ̸∈ K, Q 6 is not a pivot
reduction.

Table 3.3: Examples of pivot queries

(a) Pivot Q 5

Q 5 A2 A3 M_a1 M_a2

b1 c1 x1 x3
b1 c2 x2 x4

(b) Pivot Q 6

Q 6 A1 A3 M_b1 M_b2

a1 c1 x1 -
a1 c2 x2 -
a2 c1 x3 -
a2 c2 - x4

The above definitions of aggregate and pivot reductions can be generalized by
replacing attribute A with a set of attributes.

We now establish the condition under which a query over T , consisting of a sequence
of nested reduction operations, forms a reduction query that computes a schema
complement to a given table.

Proposition 3.3. Let T0(S0) and T (S) be two tables such that T is a schema
augmentation to T0 with common attributes Y and K is an identifier of T . Let
Q (T) = Q n(Q n−1(. . . (Q 1(T)) . . .)), n > 0 be a sequence of nested queries applied
on T such that query Q i is a reduction query on attributes Yi. When Yn ⊆ Y, then
Q (T) is a reduction query of T on Yn and Q (T) is a natural schema complement to
T0.

Proof. We prove by induction.

n = 1: Let T1(S1) be the table produced by Q (T) = Q 1(T), we prove that T1 is a
natural schema complement to T0. Because Q 1(T) is a reduction query on Y1, by
Definition 3.4, we have Y1 is the identifier of T1 and Y1 ⊂ K. When Y1 ⊆ Y, since
Y1 7→ S1 we also have Y 7→ S1, so T1(S1) is a natural schema complement of T0(S0).

Induction step: Let Tn(Sn) be the table produced by Q (T) = Q n(Q n−1(. . . (Q 1(T)) . . .)),
assume that Tn is a natural schema complement to T0, that is, Y 7→ Sn.

Let Tn+1(Sn+1) be the table produced by Q n+1(Tn), we prove that Tn+1 is a natural
schema complement to T0 following the same reasoning as before. Because Q n+1 is
a reduction query on Yn+1, we have: Yn+1 is the identifier of Tn+1 and Yn+1 ⊂ Yn

since Yn is the identifier of Tn. When Yn+1 ⊆ Y, since Yn+1 7→ Sn+1 we also have
Y 7→ Sn+1, so Tn+1(Sn+1) is a natural schema complement of T0(S0).

Q.E.D. Q (T) is a natural schema complement to T0.

Example 3.9. Fact tables SALES and INVENTORY in the relationship graph of
Figure 2.9 have common attributes Y = {PROD_SKU, BRAND, YEAR, CITY, COUNTRY}.
INVENTORY is a schema augmentation (formally, all schema complements
are also schema augmentations by definition) but not a natural schema com-
plement to SALES, since Y is not a fact identifier of INVENTORY. We
can then define several reduction queries that transform INVENTORY into a
natural schema complement of SALES. The key of INVENTORY is K =
{PROD_SKU, MONTH, YEAR, WH_ID, COUNTRY, TAX_NO} and each of the following reduc-
tion queries on attributes K′ = Y∩K = {PROD_SKU, YEAR, COUNTRY} reduces attributes
K−K′ = {MONTH, WH_ID, TAX_NO}:

• Aggregate reduction on measure attribute QTY_ON_HAND:

Agg INVENTORY(AVG(QTY_ON_HAND) | {PROD_SKU, YEAR, COUNTRY})

• Filter reduction on MONTH, WH_ID and TAX_NO:

Filter INVENTORY(MONTH = “Jan” ∧WH_ID = “1234” ∧ TAX_NO = “abcd”)

• Pivot reduction on measure attribute QTY_ON_HAND:

Pivot INVENTORY(QTY_ON_HAND | {MONTH, WH_ID, TAX_NO})

Finally, it is also possible to reduce table SALES into a natural schema complement
of table INVENTORY using nested reduction queries. The identifier of SALES is
K = {PROD_SKU, YEAR, CITY, STATE, COUNTRY} and we must reduce attributes K−Y =
{STATE}. This can be done by a reduction query Q 1(SALES) = Filter SALES({STATE =
“Ohio”} that applies a filter reduction on SALES, which reduces attribute STATE. Or

a pivot reduction query Q 2 = Pivot Q 1(SALES)({AMOUNT} | {STATE}) pivoting measure
AMOUNT over attribute STATE, which reduces STATE.

3.4 Quality Criteria of Schema Augmentations

We explained in Section 1.2 that inaccuracies can occur when applying reduction
queries and merging schema augmentations. In the following section, we introduce
formal quality criteria for schema augmentations and show how these criteria are
guaranteed by our system. We present different issues related to summarizabil-
ity and propagation of aggregable properties, ambiguous reduction and incomplete
merge and illustrate how these issues can be solved. Section 3.4.1 introduces the
notion of summarizability for the correct propagation of aggregated attribute values.
Sections 3.4.2 and 3.4.3 deal with the generation of ambiguous and incomplete
attribute values during the construction of schema augmentations (and schema
complements).

3.4.1 Propagation of aggregable properties

A first quality issue concerns determination of the aggregable properties of new
attributes A added to the schema of a table T0 after a merge with a table T . In
particular, it is critical to infer the aggregable property of A that holds in the aug-
mented table to avoid incorrect aggregations on that augmented table. This raises
two problems:

• The first problem is to define the aggregable properties of new attributes
which are computed by some reduction queries. These properties include the
identification of the applicable aggregate functions and the set of dimension
attributes along which each new attribute can be aggregated in the query
result before merging.

• The second problem is to define the aggregable properties of the new attributes
in the augmented table obtained after merging the source table with the
reduction query result.

Propagation of aggregable properties through reduction queries

To address the first problem we first must determine which aggregate functions are
applicable to A′ in the result T ′ = Q (T) of a reduction query Q over T . This falls
into one of the following cases:

1. If A′ = A is an attribute of T and F is applicable to A in T , F is also applicable
to A′ in T ′.

2. If A′ holds pivoted values of an attribute A of T and F is applicable to A in T ,
then F is also applicable to A′ in T ′.

3. If A′ = F(A) is the result of applying some aggregation function F over an
attribute A in T , then the aggregate functions G that are applicable to A′ are
determined by the category of the co-domain of function F using Table 2.5.

Filter and pivot reduction operations do not change the type of the aggregable
attribute, so an aggregable property that holds in T still holds in T ′ when T ′ is the
result of a filter or pivot reduction of T . However, an aggregate reduction may
change the category of the aggregable attribute. For example, while an attribute of
category NUM in T is still of category NUM in T ′ when F = SUM, it becomes of
category STAT when F = AVG. This change is detected using the classification in
Table 2.5 (on Page 34).

The following example illustrates the previous case analysis.

Example 3.10. Suppose that an attribute A′ = AVG(A) contains values that are
aggregated from attribute A using the average function AVG (case 2). According
to Table 2.5, statistical functions like AVG and STDEV have the domain category
NUM, the co-domain category STAT and the aggregation functions that can
be applied on A′ are COUNT, MIN and MAX. Assume now that attribute A′ =
COUNT(A) contains values that are aggregated from attribute A using the function
COUNT. Function COUNT has the domain category NUM, DESC or STAT and
co-domain category NUM. By default, functions that can be applied on A′ are SUM,
AVG, COUNT, MIN and MAX.

The identification of all applicable aggregation functions F is not sufficient for
defining the aggregable properties of some attribute A′ in the result T ′ of a reduction
query. To define the aggregable property aggA′(F, X′) that holds for A′ and function
F, we must also determine the maximal set of attributes X′ along which aggregation
is correct. If A′ is an attribute in the result of a filter of pivot reduction query, we
define the following propagation rules for determining X′

Definition 3.8 (Propagation of aggregable properties with filter and pivot). Let
T ′(S′) = Q (T) be the result of a filter or pivot reduction query Q (T) over an analytic
table T (S) and SD be the set of dimension attributes in T . Then the aggregable
properties of the attributes in T ′ are obtained as follows:

1. If Q is a filter reduction then S′ = S, and for every aggregable attribute A if
aggA(F, X), X ⊆ SD, holds in T then aggA(F, X) also holds in T ′.

2. If Q is a pivot reduction of the form PivotT (A | Z), Z ⊂ S − {A}, such that
aggA(F, X), X ⊆ SD, holds in T then if A′ is a new attribute that holds pivoted
values of A, then aggA′(F, X′) holds in T ′ where X′ = X − Z. Otherwise if
A′ is an attribute of S′ ∩ S such that aggA′(F, X), X ⊆ SD, holds in T then
aggA′(F, X) also holds in T ′.

Example 3.11. Consider fact table PRODUCT_LIST in Table 3.4. Attribute QTY

has NUM values and can be summed along all dimension attributes except YEAR, i.e.
aggQTY(SUM | X) where X = {PROD_SKU, BRAND, COUNTRY} holds for attribute QTY.

Table 3.4: Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s COCA COLA United States 2017 5 000
cz-tshirt-s COCA COLA United States 2018 7 000
cz-tshirt-s ZARA Spain 2017 5 000
cz-tshirt-s ZARA Spain 2018 7 000
coca-can-33cl COCA COLA United States 2017 10 000

Let T ′ = Filter PRODUCT_LIST({YEAR = ‘2017’}). Table T ′ has the same schema as
table PRODUCT_LIST and, by rule 1 above, aggQTY(SUM | X) still holds in T ′.

Let T ′ = PivotPRODUCT_LIST(QTY | BRAND) be a query producing two attributes
QTY_COCACOLA and QTY_ZARA with values from attribute QTY. Then, by rule 2 above,
aggQTY_COCACOLA(SUM | X′) and aggQTY_ZARA(SUM | X′) hold in T2 where X′ =
X− {BRAND} = {PROD_SKU, COUNTRY}.

For attributes that are produced by an aggregate reduction query, we define the
following propagation rule.

Definition 3.9 (Propagation of aggregable properties with aggregation). Let T (S)
be an analytic table with dimension attributes SD ⊆ S, and aggA(F, X) be an
aggregable property that holds in T . Let T ′ = AggT (F(A) | Z) where SD − X ⊆ Z,

and let G be a default applicable aggregate function defined for the co-domain of
function F (Table 2.4). Then the aggregable properties of the attributes in T ′ are
obtained as follows:

1. aggF(A)(G, X′) holds for attribute F(A) in T ′ with X′ = X ∩ Z.

2. for every attribute A′ ∈ Z, if aggA′(F, X) holds in T then aggA′(F, X′) holds
in T ′ with X′ = X ∩ Z.

Example 3.12. Consider table PRODUCT_LIST in Example 3.11. Attribute PROD_SKU

is of category DESC and can be aggregated with functions COUNT and COUNT_DISTINCT
along all other dimension attributes. This is formalized by the aggregable proper-
ties aggPROD_SKU(COUNT | X) and aggPROD_SKU(COUNT_DISTINCT | X) where
X = {PROD_SKU, BRAND, COUNTRY, YEAR}. Now, let PRODUCT_LIST_COUNT =
AggP RODUCT _LIST (COUNT(PROD_SKU) | Z) where Z = {BRAND, COUNTRY, YEAR}.
The result is shown in Table 3.5 (the aggregated attribute has been renamed into
NB_PRODUCTS).

Table 3.5: Table PRODUCT_LIST_COUNT

NB_PRODUCTS BRAND COUNTRY YEAR

1 COCA COLA United States 2017
1 COCA COLA United States 2018
1 ZARA Spain 2017
1 ZARA Spain 2018
1 COCA COLA United States 2017

Suppose now that one wants to compute the total number of products per brand by
summing NB_PRODUCTS by brand. Since COUNT does not eliminate duplicates, we
obtain the same result as if we counted all products for each brand directly from table
PRODUCT_LIST. Now suppose that we applied function COUNT_DISTINCT
instead of COUNT to compute table PRODUCT_LIST_COUNT. Then it is easy to
see that this time the sum over NB_PRODUCTS is different from counting the number
of distinct products per brand directly from table PRODUCT_LIST. We study this
issue in the following section.

Enforcing summarizable attributes in aggregable properties

Summarizability is a property that characterizes the equivalence between the ag-
gregation results computed from an intermediate aggregated result and the results

directly obtained from the original table. We introduce the notion of summarizable
attributes and show how new propagation rules for aggregable properties can be
used to enforce the summarizability of aggregable attributes.

Definition 3.10 (Summarizable attribute). Let T (S) be an analytic table and A be
an aggregable attribute such that aggA(F, X) holds in T for an aggregate function F,
where X is a set of dimension attributes in T . Let T1 = AggT (F(A) | Z1), S −X ⊆ Z1.
If for any subset Z2 ⊂ Z1, there exists an applicable aggregate function G such that
the equation

AggT1
(G(F(A)) | Z2) = AggT (F(A) | Z2)

holds, then A is said to be summarizable with respect to Z1 and function F using
function G.

Attribute summarizability is strongly related to the notion of distributivity of aggre-
gation functions.

Definition 3.11 (Distributive aggregation function). Let F be an aggregation func-
tion applicable to a set of domain values V. If for any partitioning V1, . . . , Vn,
n ≥ 1 of V, there exists an aggregate function G such that F(V1 ∪ . . . ∪ Vn) =
G(F(V1) ∪ . . . ∪ F(Vn)) then F is said to be distributive using function G over (any
partitioning of) V .

If F is distributive using function G over any subset of its domain, we say that F is
distributive using function G. If F = G, we simply say that F is distributive. It is easy
to show that functions SUM, MIN and MAX are distributive and function COUNT
is distributive using function SUM whereas function COUNT_DISTINCT is not
distributive using function SUM. Function AVG is distributive over sets containing
only two elements or where all elements are identical.

Finally, we say that F is distributive using function G on attribute T.A with parti-
tioning attributes Z if F is distributive using function G over any partitioning of T.A

defined by Z or any subset of Z. The following proposition relates the definition of
distributive functions to the notion of summarizable attributes.

Proposition 3.4 (Function distributivity and attribute summarizability). Let T (S)
be an analytic table with dimension attributes SD ⊆ S and an aggregable attribute A

such that aggA(F, X) holds in T . If F is distributive using function G on attribute
T.A with partitioning attributes Z ⊇ SD −X then A is summarizable with respect to
Z and function F using function G.

Proof. Suppose that aggA(F, X) holds in T and T1 = AggT (F(A) | Z1). To prove that
A is summarizable with respect to Z1 and F using function G, we prove that for any
subset Z2 ⊂ Z1, the following equation holds:

AggT (F(A) | Z2) = AggT1
(G(F(A)) | Z2) (3.1)

First, it is obvious that both tables T and T1 contain the same Z2 values and therefore,
the result tables in Eq. (3.1) contain the same tuples with distinct Z2 values. We now
show that for each pair of tuples t ∈ AggT (F(A) | Z2) and t′ ∈ AggT1

(G(F(A)) | Z2)
where t.Z2 = t′.Z2, we also have t.G(F(A)) = t′.F(A). Let x = t.Z2 and V(x) =
σZ2=x(T) be the partition of T on attributes Z2 corresponding to the partition
identifier x. Then, for tuple t ∈ AggT (F(A) | Z2) we obtain t.F(A) = F(V.A). There
also exists a set of tuples t′

i ∈ T1, i ≥ 1 where t′
i.Z2 = x. For each tuple t′

i, there
exists a partition Vi = σZ1=x(T) of T on Z1 attributes, such that V = V1 ∪ . . . ∪Vn

and t′
1.F(A) = F(Vi.A) All these tuples t′

i have the same Z2 value (by assumption)
and will be aggregated to form a single tuple t′ in AggT1

(F(F(A)) | Z2) whose value
for attribute G(F(A)) = G(F(V1.A) ∪ . . . ∪ F(Vn.A)). Since F is distributive using
function G, this expression is equal to F(V1.A ∪ . . . ∪Vn.A) = F(V.A). Thus, tuples t

and t′ are equal.

Example 3.13. Recall the fact table PRODUCT_LIST in Table 3.4 of Example 3.13.
Function COUNT is distributive using function SUM on attribute PROD_SKU with par-
titioning attributes Z = {BRAND, COUNTRY, YEAR}, therefore PROD_SKU is summarizable
with respect to Z and COUNT using function SUM. Indeed, if Z2 = {COUNTRY, YEAR}
and T1 = AggP RODUCT _LIST (COUNT(PROD_SKU) | Z), the equation
AggP RODUCT _LIST (COUNT(PROD_SKU) | Z2) = AggT1

(SUM(COUNT(PROD_SKU)) |
Z2) holds. However, as shown in Example 3.11, COUNT_DISTINCT is not a dis-
tributive function using function SUM and we cannot apply the same propagation
rule as for function COUNT.

The following proposition presents a sufficient condition for COUNT_DISTINCT
to be distributive using function SUM.

Proposition 3.5 (Summarizability with COUNT_DISTINCT and SUM). Let T (S)
be an analytic table with a set of dimension attributes SD and an aggregable attribute
A. Let T1 = AggT (COUNT_DISTINCT(A) | Z1) where Z1 ⊆ SD. If Z2 ⊂ Z1 and the

literal functional dependency Z2 ∪ {A} 7→ Z1 holds in T , the following equation is
true:

AggT1
(SUM(COUNT_DISTINCT(A)) | Z2) = AggT (COUNT_DISTINCT(A) | Z2)

(3.2)

We say that attribute A (in T) is summarizable with respect to Z1 and
COUNT_DISTINCT using function SUM with partitioning attributes Z2. If Eq. (3.2)
holds for any subset Z2 ⊂ Z1, we say that attribute A is summarizable with respect
to Z1 and COUNT_DISTINCT using function SUM.

Proof. The previous proposition mainly states that A is summarizable with respect
to Z1 and COUNT_DISTINCT using function SUM with partitioning attributes Z2

if all tuples in some partition V ⊆ T generated by attributes Z2 ⊆ Z1 which have the
same value for attribute A are assigned to the same sub-partition Vi ⊆ V generated
by attributes Z1. This avoids double counting of distinct A values when taking the
SUM of COUNT_DISTINCT over the partitions generated by attributes Z1. We
first show by contradiction that when Z2 ∪ {A} 7→ Z1 − Z2 holds in T , all tuples
in some partition W generated by attributes Z2 with the same value for attribute
A are assigned to the same sub-partition Vi ⊆ V generated by attributes Z1. Let
V(x) be a partition of T which contains all tuples t such that t.Z2 = x. Then there
exists a partitioning V0 . . . , Vn, n ≥ 0 of W(x) defined by attributes Z1. Suppose
that there exist two tuples t ∈ Vi and t′ ∈ Vj where i ̸= j and t.A = t′.A. Then, since
i ̸= j, we have t.Z2 = t′.Z2 = x, t.A = t′.A and t.Z1 ̸= t′.Z1 which is in contradiction
with Z2 ∪ {A} 7→ Z1 − Z2. Then, if di is the number of distinct A values in some
partition Vi ⊆ T , we can easily show that

∑n
i=0 di is the number of distinct A values

in partition W (x).

Example 3.14. Consider the fact table PRODUCT_LIST in Table 3.4 and a
query T1 = AggPRODUCT_LIST(COUNT_DISTINCT(PROD_SKU) | Z1) where Z1 =
{BRAND, COUNTRY}. . For attribute PROD_SKU, we have {PROD_SKU, BRAND} 7→ COUNTRY.
Therefore, PROD_SKU is summarizable with respect to Z1 and COUNT_DISTINCT
using function SUM with partitioning attribute Z2 = {BRAND}. Also, since we
have {PROD_SKU, QTY} 7→ YEAR, we can say that QTY is summarizable with respect to
Z1 = {PROD_SKU, YEAR} and COUNT_DISTINCT using function SUM with partition-
ing attributes Z2 = {PROD_SKU}. The same is true for QTY and Z1 = {BRAND, COUNTRY}
with Z2 = {BRAND} or Z2 = {COUNTRY}.

Given a table T ′ = AggT (F(A) | Z) which is the result of an aggregate reduction
query, and a function G that is applicable to F(A), we now introduce a new definition

to determine the subset of dimension attributes X such that aggF(A)(G, X) holds in
T ′. This definition refines the propagation rule 1 in previous Definition 3.9 (case of
attribute F(A)) by exploiting the distributivity property of F.

Definition 3.12 (Propagation of aggregable properties with aggregation preserving
summarizability). Let T (S) be an analytic table with dimension attributes SD ⊆
S and aggregable property aggA(F, X). Let T ′ = AggT (F(A) | Z) be the result
of an aggregate reduction query where SD − X ⊆ Z. The aggregable property
aggF(A)(G, X′) holds for attribute F(A) in T ′ and all default applicable aggregate
functions G defined for the co-domain of function F (Table 2.4) where X′ is defined
as follows:

1. if F = COUNT_DISTINCT and G = SUM, then X′ is a maximal subset of
X ∩ Z1 such that (SD −X′) ∪ {A} 7→ Z.

2. if F is distributive using G then X′ = X ∩ Z.

3. otherwise X′ = ∅.

Example 3.15. Consider table PRODUCT_LIST in Example 3.11 with aggregable
property aggPROD_SKU(COUNT | X) where X = {PROD_SKU, BRAND, COUNTRY, YEAR}.
Let PRODUCT_LIST_COUNT = AggPRODUCT_LIST(COUNT(PROD_SKU) | Z)
where Z = {BRAND, COUNTRY, YEAR} (Table 3.5 in Example 3.11). By Item 2 in
Definition 3.12, the aggregable property aggCOUNT(PROD_SKU)(SUM | X′) holds for
X′ = X ∩ Z = {BRAND, COUNTRY, YEAR}.

Example 3.16. Assume table T ′ = AggPRODUCT_LIST(COUNT_DISTINCT(PROD_SKU) |
Z) where Z = {BRAND, COUNTRY, YEAR} (T ′ is equal to PRODUCT_LIST_COUNT
in Example 3.11). To infer the aggregable properties of attribute
COUNT_DISTINCT(PROD_SKU) using rule 1, we must compute all maximal sub-
sets X′ ⊆ X ∩ Z where (SD − X′) ∪ {A} 7→ Z. First, it is easy to show that
YEAR cannot be determined by SD − YEAR ∪ {PROD_SKU}, i.e. YEAR ̸∈ X′. For
X′ = {BRAND, COUNTRY}, BRAND and COUNTRY cannot be determined by {YEAR,
PROD_SKU}. Finally, for X′

1 = {BRAND} and X′
2 = {COUNTRY}, we can show that the

following two LFD are true in table PRODUCT_LIST:

{PROD_SKU, COUNTRY, YEAR} 7→ {BRAND, COUNTRY, YEAR}

{PROD_SKU, BRAND, YEAR} 7→ {BRAND, COUNTRY, YEAR}

Thus, X′
1 and X′

2 are the two possible maximal subsets of X ∩ Z.
And by Item 1 in Definition 3.12, we obtain two aggregable

properties: aggCOUNT_DISTINCT(PROD_SKU)(SUM | {BRAND}) and
aggCOUNT_DISTINCT(PROD_SKU)(SUM | {COUNTRY}).

Example 3.17. Assume table T ′ = AggPRODUCT_LIST(COUNT_DISTINCT(PROD_SKU) |
Z) where Z = {COUNTRY, YEAR}. We can show that there exists no subset of
X′ ⊆ Z where (SD − X′) ∪ {A} 7→ Z. First, as before, it is easy to show
that YEAR cannot be determined by SD − YEAR ∪ {PROD_SKU}, i.e. YEAR ̸∈ X′.
For X′ = {COUNTRY}, LFD {PROD_SKU, YEAR} 7→ {COUNTRY, YEAR} does not hold in
PRODUCT_LIST. Then, by Rule 1 above aggCOUNT_DISTINCT(PROD_SKU)(SUM | ∅),
i.e. attribute COUNT_DISTINCT(PROD_SKU) is not aggregable. The same is true for
Z = {BRAND, YEAR}.

The following proposition declares that the propagation rules in Definition 3.12 are
correct with respect to attribute summarizability.

Proposition 3.6 (aggregable properties and summarizability). Let T (S) be an an-
alytic table with dimension attributes SD ⊆ S and T1 = AggT (F(A) | Z1) be the
result of an aggregate query. Let G be a default applicable aggregate function de-
fined for the co-domain of function F such that aggregable property aggF(A)(G, X′)
holds in T1 with X ′ ̸= ∅. Then the following equation holds for all Z2 such that
SD −X′ ⊆ Z2 ⊂ Z1:

AggT (F(A) | Z2) = AggT1
(G(F(A) | Z2) (3.3)

Proof. We examine all the cases provided by Definition 3.12 to define aggF(A)(G, X′).
When F = COUNT_DISTINCT and G = SUM, we first show that Z2 ∪ {A} 7→ Z1

for all Z2 where SD − X′ ⊆ Z2 ⊂ X ∩ Z1. By Item 1 of Definition 3.12, X′ is the
maximal subset of X ∩ Z1 such that (SD −X′) ∪ {A} 7→ Z1. Then, when Z2 is such
that SD −X′ ⊆ Z2 we have Z2 ∪ {A} 7→ Z1. Then, by Proposition 3.5, Equation (3.3)
holds for all Z2 where SD −X′ ⊆ Z2 ⊂ X ∩ Z1.

When F is distributive using function G, it is distributive over any partitioning of T.A

defined by Z1 or any subset Z2 of Z1. By Proposition 3.4, T.A is then summarizable
with respect to Z1 and F using function G, and by Definition 3.10, Equation (3.3)
holds for any subset Z2 ⊂ Z1.

When none of the previous cases holds, X ′ = ∅ and we obtain SD ⊆ Z2 ⊂ Z1 which
is impossible, i.e. Z2 does not exist and F (A) is not aggregable.

Example 3.18. Consider table PRODUCT_LIST in Example 3.11 with aggregable
property aggCOUNT(PROD_SKU)(SUM | X′) with X′ = {BRAND, COUNTRY, YEAR}. Then,
by Proposition 3.6, the following equation holds for any valid aggregation T1 =
AggPRODUCT_LIST(COUNT(PROD_SKU) | Z1) and any subset of attributes Z2 ⊂ Z1:

AggT (COUNT(A) | Z2) = AggT1
(SUM(COUNT(A) | Z2) (3.4)

Now, assume that table T1 is defined as in Example 3.16 with two
aggregable properties aggCOUNT_DISTINCT(PROD_SKU)(SUM | {BRAND})
and aggCOUNT_DISTINCT(PROD_SKU)(SUM | {COUNTRY}) for attribute
COUNT_DISTINCT(PROD_SKU). We can conclude that the following equa-
tion holds for Z2 = {BRAND, YEAR} and Z2 = {COUNTRY, YEAR}:

AggT1
(COUNT_DISTINCT(A) | Z2) = AggT1

(SUM(COUNT_DISTINCT(A) | Z2)
(3.5)

Propagation in merge query results

The above Definition 3.12 and Definition 3.8 introduced the propagation rules of
the aggregable properties after applying a reduction query. We now consider the
problem of determining the aggregable properties of the attributes after a merge.
The following proposition states which aggregable properties hold for attribute A

in the augmented table T ′
0, knowing the aggregable properties of A that hold in the

used schema augmentation T .

Proposition 3.7. Let T ′
0(S′

0) be a merge of table T0(S0) with a target schema
augmentation T (S). Then the following aggregable properties hold for all aggregable
attributes A ∈ S′

0:

1. If aggA(F, V) holds in T0 and A ∈ S′
0 ∩ S0 is an attribute in table T0, then

aggA(F, V) holds in T ′
0 when T is a natural schema complement to T0. Other-

wise, A is not aggregable anymore in T ′
0 (aggA(F, ∅) holds T ′

0).

2. If aggA(F, V) holds in T and A ∈ S′
0 − S0 is an attribute in table T , then

aggA(F, V ∩ S′
0) holds in T ′

0 when T is a natural schema complement to T0.
Otherwise, A is not aggregable anymore in T ′

0 (i.e., aggA(F, ∅) holds in T ′
0).

Proof. Let aggA(F, X) be the aggregable property of A in T ′
0, i.e. X ⊆ S′

0 is the
maximal set of dimension attributes such that A can be aggregated along X with
function F in T ′

0.

Case one: A ∈ S′
0 ∩ S0. A is an attribute in T0. Let U0 ⊆ S0 be a minimal subset of

attributes where U0 7→ A in T0, by Definition 2.12, we obtain V ⊆ U0.

1. When T is a natural schema complement to T0, the identifier of S0 is still the
identifier of S′

0. Therefore, we still have U0 7→ A in T ′
0 and V ⊆ S′

0. Because A is
not an attribute in T , aggregation along attributes in S′

0−S0 is not meaningful,
we obtain that V is the maximal set of dimension attributes such that A can be
aggregated along with function F in T ′

0, X = V. The aggregable property of A

in T0 is still aggA(F, V).

2. When T is not a natural schema complement to T0. By Proposition 3.1,
the identifier of S0 is no more the identifier of S′

0, that tuples in T0 will be
duplicated because of the joins with T , then it’s not longer meaningful to
aggregate A in a duplicated T0. Therefore, aggA(F, ∅) holds in T ′

0.

Case two: A ∈ S′
0 − S0. A is an attribute in T . Let U ⊆ S0 ∩D S be a minimal subset

of attributes where U 7→ A in T and V ⊆ U.

1. When T is a natural schema complement to T0. Because V ∩ S′
0 ⊆ V ⊆ U, we

conclude that V ∩ S′
0 ⊆ X. Because A is not an attribute in T0, aggregation

along attributes in S0 − V is not meaningful and we obtain V ∩ S′
0 is the

maximal set of dimension attributes such that A can be aggregated along
with function F in T ′

0, X = V ∩ S′
0. The aggregable property of A in T0 is

aggA(F, V ∩ S′
0).

2. When When T is not a natural schema complement to T0. Follow the same
reasoning of Case one, it’s not meaningful to aggregate A in T ′

0. Therefore,
aggA(F, ∅) holds in T ′

0.

Example 3.19. Suppose that SALES′ is the natural merge of SALES with ta-
ble INVENTORY in Figure 2.9 (on Page 37) reduced by the aggregate query
Agg INVENTORY(AVG(A) | X) where A = QTY_ON_HAND and X = {PROD_SKU,

YEAR, COUNTRY}. Function AVG is applied on A that transforms A from category
NUM to attribute AVG(A) of category STAT. Then, only COUNT, MIN and MAX
are applicable on AVG(A) by default. Because aggA(AVG, V) holds in INVENTORY
for V = {PROD_SKU, YEAR, WH_ID, CITY, COUNTRY, TAX_NO}, then by item 2 in Proposi-
tion 3.7, aggAVG(A)(COUNT, V′) holds in SALES′ where V′ = {YEAR, COUNTRY}
(V ′ only contains dimension attributes which are necessary to determine attribute
AVG(A)).

Figure 3.1: Partial hierarchy in dimension STORE

3.4.2 Non-ambiguous aggregable attributes

As illustrated in Section 1.2, an attribute value can be ambiguous with respect to a
non-strict dimension hierarchy. Remind that ambiguity occurs when it is not possible
to identify a unique path (entity) in the dimension for the attribute value.

The next definition states that a schema augmentation T (S) may contain ambiguous
attribute values with respect to a dimension D if S misses some attributes of D

which are necessary to distinguish two tuples of T that are literally equal on their D

attributes.

Definition 3.13 (Ambiguous analytic table). Let T (S) be an analytic table over a
dimension D(SDT). Let X = S ∩ SDT be the set of attributes in S from dimension D

and X∗ = {Aj ∈ SDT | ∃Ai ∈ X, Ai ≼∗ Aj} be the ancestors of all attributes in X in
the hierarchy type of D. Table T is said to be non-ambiguous with respect to D if the
literal functional dependency X 7→ X∗ holds in T ▷◁X D and ambiguous otherwise.

In the following, X∗ is called the closure of X in D. When X 7→ X∗, for each tuple t in
T , the value set t.X can identify a unique path in the hierarchy instance graph, and
therefore, its value is not ambiguous. We also say that a table T is ambiguous if it is
ambiguous with respect to at least one dimension and non-ambiguous otherwise.

Example 3.20. Fact table SALES contains attributes X = {CITY, STATE, COUNTRY}
from dimension STORE (Figure 2.9), the partial hierarchy instance is shown in Fig-
ure 3.1. Because X∗ = X, then X 7→ X∗ holds in table SALES ▷◁X STORE. There-
fore, SALES is not ambiguous with respect to STORE. Now suppose that SALES_2
only contains two attributes X1 = {CITY, COUNTRY} from dimension STORE. Then
X∗

1 = {CITY, STATE, COUNTRY} and X1 7→ X∗
1 does not hold in SALES_2 ▷◁X STORE,

e.g., given a value pair (“Dublin”, “United States”) of attributes (CITY, COUNTRY), we
can not identify a unique path from CITY to COUNTRY in the partial hierarchy shown in
Figure 3.1. In this case, SALES_2 is ambiguous with respect to dimension STORE.

We can show that merge queries over two non-ambiguous tables generate non-
ambiguous results. Consider two tables T1 and T2 that are non-ambiguous with
respect to a common dimension D with common attributes X1, X2 respectively, i.e.
both literal functional dependencies X1 7→ X∗

1 and X2 7→ X∗
2 hold in D. Then,

by composition of literal functional dependencies, X1 ∪ X2 7→ X∗
1 ∪ X∗

2 holds in
T1 ▷◁P T2.

When reduction queries are applied, it may happen that a reduction query generates
an ambiguous schema complement from a non-ambiguous input table (because
the reduction query reduces some dimension attributes). The next proposition
defines a sufficient condition for reduction queries to produce non-ambiguous schema
augmentations.

Proposition 3.8. Let T (S) be a non-ambiguous analytic table with respect to a
dimension D of schema SDT . Let T ′(S′) = Q (T) be a reduction of T . Let X =
S ∩ SDT and X′ = S′ ∩ SDT . If X′ 7→ X holds in D, then T ′ is non-ambiguous with
respect to D.

Proof. Let X′ = S′ ∩ SDT and X′∗ = {Aj ∈ SDT | ∃Ai ∈ X′, Ai ≼∗ Aj}. To prove
that T ′ is not ambiguous w.r.t. D, we must show that X′ 7→ X′∗ holds in T ′ ▷◁X′ D

(Definition 3.13).

We first show that X′ 7→ X′∗ holds in T ▷◁X D. Let X∗ = {Aj ∈ SDT | ∃Ai ∈ X, Ai ≼∗

Aj}. Since T is non-ambiguous, we know that (a) X 7→ X∗ holds in T ▷◁X D. Since
X′ 7→ X holds in D, X′ ⊆ X and πX(T ▷◁X D) ⊆ πX(D), we also obtain (b) X′ 7→ X
holds in T ▷◁X D. By transitivity of 7→ and (a) and (b), we obtain (c) X′ 7→ X∗ holds
in T ▷◁X D, and since X′∗ ⊆ X∗, (d) X′ 7→ X′∗ holds in T ▷◁X D.

We now show that πSD
(T ′ ▷◁X′ D) ⊆ πSD

(T ▷◁X D). Since X′ 7→ X holds in D

and X′ ⊆ X ⊆ SD, we know that πSD
(πX′(T) ▷◁X′ D) = πSD

(T ▷◁X D) and since
πX′(T ′) ⊆ πX′(T), we obtain (e) πSD

(T ′ ▷◁X′ D) ⊆ πSD
(T ▷◁X D).

Then, from (d) and (e), we can conclude that X′ 7→ X′∗ holds in T ′ ▷◁X′ D

From Proposition 3.8 we can directly conclude that any filter reduction over a
non-ambiguous tables generates a non-ambiguous table, because filter reductions
do not modify the schema of the table, we have X′ = X, S′ = S and thus X′ 7→ X
holds in all dimensions D. However, for pivot and aggregate reduction queries
we still must check if X′ 7→ X′∗ holds in T ′ ▷◁X′ D (Definition 3.13) to guarantee
non-ambiguity (X′ 7→ X holds in D is a sufficient but not a necessary condition for
non-ambiguity).

Example 3.21. Fact table INVENTORY contains attributes X =
{WH_ID, CITY, COUNTRY} from dimension WAREHOUSE. X∗ =
{WH_ID, CITY, STATE, COUNTRY} is the schema of WAREHOUSE and X 7→ X∗

holds in INVENTORY ▷◁X WAREHOUSE. Therefore, table INVENTORY is
not ambiguous with respect to WAREHOUSE. Now, let T be the result of an
aggregate reduction as Agg INVENTORY(AVG(QTY_ON_HAND) | X′) where X′ = {CITY,

COUNTRY}. Using Proposition 3.8, X′ 7→ X does not hold in D. Thus, T might be
ambiguous with respect to WAREHOUSE. We then check whether the condition
X′ 7→ X′∗ holds in T ▷◁X′ WAREHOUSE, where X′∗ = {CITY, STATE, COUNTRY}.
Based on the attribute graph in Figure 2.6 (on Page 25), X′ 7→ X′∗ does not hold,
and T is ambiguous with respect to WAREHOUSE

3.4.3 Complete merge results

The third quality problem we presented in Section 1.2.4, Page 9, concerns merge
queries which might produce results which are incomplete with respect to the
original schema augmentation table. A merge is incomplete, if the result of an
aggregation of some attribute in the merged table is different from the result of the
same aggregation on the original target schema augmentation. We start with an
example and then provide a formal definition.

Example 3.22. Consider the two analytic tables T0 and T below in Table 3.6 related
by a well-formed relationship R with common attributes A1, A2 from dimension
D1, and B1, B2 from dimension D2. The two attribute graphs validated by D1 and
D2 are shown in Figure 3.2. Identifiers of T0 and T are K0 = {A1, A2, B1, B2} and
K = {A1, A2, B1, B2} respectively. Clearly, T is a natural schema complement to T0

with respect to R . However, merging T0 with T with a left outer join yields a table
T ′

0 containing tuples t5 and t6 augmented by two new null valued attributes A3

and M (there’s no matching tuple in T). The results are shown in Table 3.6. By
Proposition 3.7, if aggregable property aggM(F, {A1, A2, A3, B1, B2}) holds in T , it also
holds in T ′

0. Then, a valid aggregation query Agg(F(M) | {A2, B2}) will generate a
null value for partition (b1, e1) in the merge T ′

0 while the same query has value
F({y1, y4}) for the same partition in T . This possibly undesirable situation occurs
because T ′

0 is not a complete merge with respect to T .

Definition 3.14 (Candidate completion tuples). Let T ′
0 be the merge of T0 and T

that are related by a relationship R with a set of common attributes Y. Let Ytop ⊆ Y
be the set of the “highest” attributes of Y in the corresponding attribute hierarchies.
We can define the following two tables T ct ⊆ T and T cand ⊆ T :

Table 3.6: Example of incomplete merge

T0 A1 A2 B1 B2

t5 a1 b1 d1 e1
t6 a2 b3 d3 e3

T A1 A2 A3 B1 B2 M

t1 a1 b1 c1 d2 e1 y1
t2 a1 b2 c2 d2 e1 y2
t3 a2 b1 c1 d2 e3 y3
t4 a1 b1 c1 d3 e1 y4

T ′
0 A1 A2 A3 B1 B2 M

t′
5 a1 b1 - d1 e1 -

t′
6 a2 b3 - d3 e3 -

Figure 3.2: Attribute graphs of dimensions D1, D2

• the natural semi-join T ct = T ⋉Y T ′
0, where Y = ∧i(T.Ai = T ′

0.Ai) for each
Ai ∈ Y, is called the completion table of T with respect to T ′

0.

• the natural semi-join T cand = T ⋉Ytop T ′
0, where Ytop = ∧i(T.Ai = T ′

0.Ai) for
each Ai ∈ Ytop, is called the candidate completion table of T with respect to T ′

0.

Example 3.23. In Example 3.22, we have Y = {A1, A2, B1, B2} and Ytop = {A2, B2}.
Then completion table and candidate completion of T with respect to T ′

0 are T ct =
T ⋉Y T ′

0 = ∅ and T cand = T ⋉Ytop T ′
0 = {t1, t4}.

It is easy to see that T ct ⊆ T cand for any result of an augmented merge of T with T0.
The completeness of merge queries can now be defined by comparing the candidate
completion table with the completion table.

Definition 3.15 (Complete merge). Let T be a schema augmentation to T0 with
respect to a relationship R having a set of common attributes Y. The merge result
T ′

0 of T0 and T is said to be a complete merge with respect to T if T ct = T cand.

Proposition 3.9. Let T ′
0(S′

0) be the natural merge of T0(S0) and T (S) with respect
to a set of common attributes Y. Let A be an aggregable attribute in S such that
aggA(F, Y) holds in T . Let Ytop ⊆ Y be the set of highest attributes of Y. Let
Q (T) = AggT (F(A) | X) and Q (T ′

0) = AggT ′
0
(F(A) | X), Ytop ⊆ X, be two valid

aggregation queries. If T ′
0 is a complete merge with respect to T , then for any two

tuples t1 ∈ Q (T), t2 ∈ Q (T ′
0), if t1.X ≡ t2.X, we have t1.F(A) ≡ t2.F(A).

Proof. By item 2 in Proposition 3.7, the aggregable property aggA(F, Y) of A still
holds in T ′

0. Let V0, V′
0, V be the set of all dimension attributes in T0, T ′

0 and T

respectively. Because Q (T ′
0) and Q (T) are valid aggregation, by Definition 2.12, we

have X ⊇ V′
0 −Y, X ⊇ V−Y and V′

0 = V0 ∪V. Therefore, we have V0 ⊆ V which
means T contains all dimension attributes of T0.

We proceed by contradiction. There exist two tuples t1 ∈ Q (T), t2 ∈ Q (T ′
0) such

that t1.X ≡ t2.X, but t1.F(A) ̸≡ t2.F(A). This suggests that we cannot get the same
value set of A in the partition of tuples t1.X in T and the partition of tuples t2.X in
T ′

0.

We distinguish two possible cases: (case 1) the partition of tuples t2.X in T ′
0 contains

more tuples than the partition of tuples t1.X in T , and (case 2) partition of tuples
t1.X in T contains more tuples than the partition of tuples t2.X in T ′

0.

Case 1. Let ta ∈ T ′
0 be a tuple in the partition of t2.X in T ′

0 and ta.A is not null, that
there does not exist a tuple tb ∈ T such that ta.Y ≡ tb.Y and ta.A ≡ tb.A.

Because A is an attribute in T and V0 ⊆ V, we have V0 ∩V = Y = V0. When ta.A is
not null then by definition of a merge there must exist one and only one tuple in T

that matches ta on Y. Therefore, we have a contradiction.

Case 2. Let ta ∈ T be a tuple in the partition of t1.X in T , that there does not exist a
tuple tb ∈ T ′

0 such that ta.Y ≡ tb.Y and ta.A ≡ tb.A. This means that for any tuple
tc ∈ T , if tc.X ≡ ta.X, we have tc.Y ̸≡ ta.Y.

Because Ytop ⊆ X, we obtain tc.Ytop ≡ ta.Ytop. By Definition 3.14 that candidate
completion table joins T with T ′

0 on Ytop attributes, we get tc ∈ T cand. By Defini-
tion 3.14 that completion table joins T with T ′

0 on Y attributes and tc.Y ̸≡ ta.Y, we
have tc ̸∈ T ct. Thus, T ct ̸= T cand which contradicts the assumption that the merge
of T ′

0 is complete.

By above proposition and proof, we show that when a natural merge is complete, we
get the same result for an aggregate query over an aggregable attribute of T grouped
by some set of attributes containing the highest common dimension attributes,
when it is applied on T ′

0 or on T . The augmented merge is not considered in this
proposition, since the augmented merge will duplicate tuples in T0, it’s obviously we
can not guarantee that aggregation queries on T ′

0 and T return the same results.

However, an implicit assumption of the conditions of Proposition 3.9 is that T0 has
no more dimension attributes than T . Otherwise, the same valid aggregate query
cannot be expressed on T ′

0 and T .

Example 3.24. Continuing with Example 3.23, since T cand ̸= T ct, we can conclude
that T ′

0 is not a complete merge with respect to T . Figure 3.3a shows the partial
hierarchy instances of dimensions D1 and D2 that appear in T and T0: bold arcs are
the value pairs that exist in T0 and dashed arcs are the value pairs that do not exist
in T0 but exist in T . The two value node that surrounded by a red rectangle: b1 in
A2, e1 in B2 are the domain values from Ytop that T and T0 have in common.

For better illustration, we create an artificial hierarchy instance, shown in Figure 3.3b,
which combines attributes A2, B2 and A1, B1 together. Bold arcs are the value pairs
that exist in T ′

0 and dashed arcs are the value pairs that do not exist in T ′
0 but exist

in T . We can see that T ′
0 is not complete with respect to T because the child values

of A1B1 below value node “b1e1” in A2B2 are not completely included in T ′
0. This

explains why an aggregation query Agg(F(M) | {A2, B2}) will not produce the same
result on each table.

(a) Hierarchy instance of D1, D2 (b) Combined hierarchy instance

Figure 3.3: Partial hierarchy instances

When a merge is not complete, it is sometimes possible to complete it with a set
of missing tuples, i.e. those tuples that are in T cand but not in T ct. The following
proposition states how it is possible to complete the result of an incomplete merge
query.

Proposition 3.10. Let T be a schema augmentation to T0 with respect to a relation-
ship R having a set of common attributes Y. Let T ′

0(S′
0) be the merge of T0 and T

and T miss = T cand − T ct be the set of all tuples in T that lost in the merge with T0.
For all dimensions Di(SDi) in Y, 0 ≤ i ≤ n, such that SDi ∩ (S0 − S) ̸= ∅, when the
LFD (SDi ∩ S) 7→ (SDi ∩ S0) holds, we define a completion table T com(S′

0) as:

T com = ΠS′
0
(T miss ▷◁SD0 ∩S D0 ▷◁ · · · ▷◁SDn ∩S Dn) (3.6)

Then

Q m(T0, T) = T ′
0 ∪ T com (3.7)

is a complete merge of T0 and T with respect to T .

Proof. We first prove that ΠS(T com) = ΠS(T miss). We propagate the projections in
Equation (3.6) and get:

T com = T miss ▷◁SD0 ∩S (ΠS′
0
(D0)) ▷◁ · · · ▷◁SDn ∩S (ΠS′

0
(Dn)) (3.8)

Let D′
i(S′

Di
) = ΠS′

0
(Di) be the projection on Di, then we have S′

Di
= S′

0 ∩ SDi =
(SDi ∩ S0) ∪ (SDi ∩ S), therefore we have S′

Di
∩ S = SDi ∩ S. By the condition that

(SDi∩S) 7→ (SDi∩S0), we obtain (SDi∩S) 7→ (SDi∩S0)∪(SDi∩S) which means D′
i

is a natural schema complement to T miss. Equation (3.6) is a natural merge of T miss

and dimension tables D′
0, . . . , D′

n. By the definition of natural schema complement,
the natural merge of T miss and D′

i does not duplicate tuples in T miss, the number of
tuples in T miss is the same with T com. Therefore, we have ΠS(T com) = ΠS(T miss).

We now prove that TQ m is a complete merge. Let T ct and T cand are the completion
table and candidate completion table of T and T ′

0 as defined in Definition 3.14. We
use Definition 3.15 to prove that TQ m = Q m(T0, T) is a complete merge w.r.t. to T :

T ct
Q m

= T ▷◁Y Q m(T0, T) = T ▷◁Ytop Q m(T0, T) = T cand
Q m

We can replace Q m(T0, T) with the right-hand side of Equation (3.7) and then
replace T com with the right-hand side of Equation (3.7) to obtain:

T ct
Q m

= T ⋉Y (T ′
0 ∪ T com)

= T ct ∪ (T ⋉Y T com)
(3.9)

Because ΠS(T com) = ΠS(T miss), we can safely replace T com by T miss in Equa-
tion (3.9):

T ct
Q m

= T ct ∪ (T ⋉Y T miss) (3.10)

When we replace T miss with T miss = T cand − T ct, we obtain:

T ct
Q m

= T ct ∪ (T ⋉Y (T cand − T ct))

= T ct ∪ ((T ⋉Y T cand)− (T ⋉Y T ct))
(3.11)

By Definition 3.14, it is easy to show that T ct ⊆ T cand ⊆ T . We then obtain
T ⋉Y T ct = T ct and T ⋉Y T cand = T cand and continue with Equation (3.11):

T ct
Q m

= T ct ∪ (T cand − T ct)

= T cand
(3.12)

We apply the same simplification on T cand
Q m

as

T cand
Q m

= T ⋉Ytop (T ′
0 ∪ T com)

= T cand ∪ (T ⋉Ytop T com)

= T cand ∪ (T ⋉Ytop T miss)

= T cand ∪ (T ⋉Ytop (T cand − T ct))

= T cand ∪ ((T ⋉Ytop T cand)− (T ⋉Ytop T ct))

(3.13)

Similarly, we obtain T ⋉Ytop T ct = T ct and T ⋉Ytop T cand = T cand and continue with
Equation (3.13):

T cand
Q m

= T cand ∪ (T cand − T ct)

= T cand

= T ct
Q m

(3.14)

By T ct
Q m

= T cand
Q m

, we can conclude that Q m is a complete merge with respect to
T .

In the above proposition, table T miss identifies the tuples of T cand that are missing
in T ′

0 to get a complete merge. For each dimension that exists both in T0 and T ,
Equation (3.6) complements the tuples of T miss with values of dimension attributes
that exist in T0 but not in T . The computation of T com avoids generating null values
for these attributes and can be skipped if Y already contains all the dimension
attributes in T0. Before computing T com, the condition (SDi ∩ S) 7→ (SDi ∩ S0)
makes sure that tuples in T miss do not get duplicated in the computation.

Example 3.25. Consider again table SALES and INVENTORY from Fig-
ure 2.9 (Page 37). INVENTORY is a schema augmentation to SALES,
assuming an aggregate reduction is applied on INVENTORY that re-
duces attribute WH_ID as Agg INVENTORY(SUM(QTY_ON_HAND) | X), X =
{PROD_SKU, BRAND, MONTH, YEAR, CITY, COUNTRY}. The result is shown in Table 3.7b.
An natural merge of SALES with reduced INVENTORY using tuples shown in

Table 3.7a will yield SALES′ that contains tuple t1 augmented by new null valued
attributes WH_ID and QTY_ON_HAND (there’s not matching tuple in INVENTORY).
If we compute T cand and T ct as defined in Definition 3.14, we have T ct = ∅ and
T cand = {t2}, by Definition 3.15, the merge result SALES′ is not complete. For di-
mension STORE in Table 3.7c, we have SST ORE∩SSALES = {CITY, STATE, COUNTRY},
SST ORE ∩ SINV ENT ORY = {WH_ID, CITY, COUNTRY}, the condition proposed in Propo-
sition 3.10 that (SST ORE ∩ SINV ENT ORY) 7→ (SST ORE ∩ SSALES) does not hold.
Similarly, the condition does not hold for dimension TIME. Therefore, we can
not compute the completion table, otherwise, we introduce new STATE values that
neither exist in SALES nor in INVENTORY.

Table 3.7: Examples of table SALES, INVENTORY and STORE

(a) Table SALES

SALES(T0) PROD_SKU BRAND YEAR CITY STATE COUNTRY AMOUNT

t1 i7-32g-black Apple 2017 San Jose California United States 660,000

(b) Table INVENTORY′

INVENTORY′ (T) PROD_SKU BRAND MONTH YEAR CITY COUNTRY QTY_ON_HAND

t2 i7-32g-black Apple Jan 2017 Dublin United States 12,000

(c) Table STORE

STORE STORE_ID CITY STATE COUNTRY

st_01 Dublin Ohio United States
st_02 Dublin California United States

Example 3.26. Resuming Example 3.22, we obtain T miss = T cand − T ct = {t1, t4}.
Besides, for dimensions D1, D2 we have SD1 ∩ (S0 − S) = SD2 ∩ (S0 − S) = ∅, the
condition in Proposition 3.10 to compute the completion table checks. Thus, we
have T com = {t1, t4} and Q m returns tuple t5, t6 augmented with M = null and
A3 = null completed by tuples t1 and t4 from T . Q m is a complete merge of T0 and
T with respect to T .

Table 3.8: Complete merge of T0 and T

Q m A1 A2 A3 B1 B2 M

t′
5 a1 b1 - d1 e1 -

t′
6 a2 b3 - d3 e3 -

t1 a1 b1 c1 d2 e1 y1
t4 a1 b1 c1 d3 e1 y4

Based on the previous definitions, we can extend item 2 in Proposition 3.7 by
considering the complete merge result as follows.

Proposition 3.11. Let T ′
0(S′

0) be a natural merge of table T0(S0) with a target
schema augmentation T (S). Let Y0, Y1 be the set of all dimension attributes in T0

and T respectively. Let A be an aggregable attribute in T such that aggA(F, V) holds
in T . Then the aggregable property hold for A in S′

0:

1. When T ′
0 is a complete merge and Y0 ⊆ Y1, then aggA(F, V ∩ S′

0) holds in T ′
0.

2. Otherwise, aggA(F, ∅) holds.

Proof. By item 2 in Proposition 3.7, when T ′
0 is a natural merge of T0 and T , we

have aggA(F, V ∩ S′
0) holds in T ′

0. Therefore, the first item in the proposition is
obviously true. We now discuss the second item. We separate two cases:

Case 1. When T ′
0 is a complete merge and Y0 ̸⊆ Y1. By the proof of Proposition 3.9,

we know that when T contains all dimension attributes of T0 (Y0 ⊆ Y1), we can get
the same aggregation of A values on T and T ′

0 if we aggregate group by the same set
of dimension attributes. Therefore, when Y0 ̸⊆ Y1, aggregations of A on T ′

0 can not
be guaranteed to obtain the same result as aggregation on T , thus, aggregations on
T ′

0 should be avoided in case of producing inconsistent values with respect to T and
we have aggA(F, ∅) holds in T ′

0

Case 2. When T ′
0 is not a complete merge. It is not ensured that aggregations on

attribute A applied on T ′
0 are correct. Therefore, aggA(F, ∅) holds in T ′

0.

More precisely, Proposition 3.11 only can be applied for computing the aggregable
properties of attributes when a completion table is computed to complete the merge
of T0 and T .

Example 3.27. Continuing with Example 3.25, the aggregable property of
attribute QTY_ON_HAND in INVENTORY′ is aggQTY_ON_HAND(SUM, X), X =
{PROD_SKU, BRAND, CITY, COUNTRY}. Because the merge of SALES and INVENTORY′

is not complete, aggregation in SALES′ would miss QTY_ON_HAND values. For exam-
ple, a summation of inventory by brand and year of ‘United States’ in SALES′

will miss the inventory of warehouse ‘oh_01’, and thus computes a wrong re-
sult. Therefore, aggregations on QTY_ON_HAND in SALES′ are not meaningful
and we conclude that the aggregable property of QTY_ON_HAND in SALES′ is
aggQTY_ON_HAND(SUM, ∅).

3.4.4 Summarizability revisited

Summarizability [20], [23], [25], [32] is the ability of “correctly computing aggre-
gate values with a coarser level of detail from values with a finer level of detail”. In
this section, we first explain our definition of summarizability and then show how we
can ensure summarizability for reduction queries and merge queries. In Chapter 5,
we compare our definition and conditions with previous work on summarizability.

Example 3.28. Consider table T from Table 3.6 (copied below for clarity) and
assume that aggM(SUM | {A1, A2, A3, B1, B2}) holds in T . We apply two nested aggre-
gation queries Tagg1 = AggT (SUM(M) | {A2, A3, B2}) and Tagg2 = AggTagg1

(SUM(M) |
{A3}). The final result is shown in Table 3.10. We can show that query Tagg2 is equiv-
alent to query Tagg3 = AggTagg1

(SUM(M) | {A3}). The property that any repeated
application of an aggregate query Ti+1 = AggTi

(F (A) | Xi), Xi ⊂ Xi+1, 0 ≤ i ≤ n is
equivalent to a single application of AggT0

(F (A) | Xn) is called summarizability (by
Definition 3.10 attribute A is summarizable with respect to Xn and function SUM
using function SUM).

T A1 A2 A3 B1 B2 M

a1 b1 c1 d2 e1 y1
a1 b2 c2 d2 e1 y2
a2 b1 c1 d2 e3 y3
a1 b1 c1 d3 e1 y4

Table 3.10: Result of aggregation queries on T

(a) Table Tagg1

A2 A3 B2 SUM(M)

b1 c1 e1 y1 + y4
b2 c2 e1 y2
b1 c1 e3 y3

(b) Table Tagg2

A3 SUM(M)

c1 y1 + y3 + y4
c2 y2

Example 3.29. Continuing Example 3.28 where Z1 = {A2, A3, B2} and F= SUM. We
can see that for any subset Z2 of Z1, Z2 ⊂ Y1, Ztop

2 ⊆ Ztop
1 , AggTagg1

(F(M) | Z2) =
AggT (F(M) | Z2) and M is summarizable with respect to Z1 and function SUM. But M

is not summarizable with respect to Z1 and function COUNT.

We now extend the notion of summarizability as the ability of “correctly computing
aggregate values from a merged result with respect to the table before the merge”.
Definition 3.10 and Proposition 3.4 define the summarizability and the propagation

of aggregable properties for new attributes computed by aggregate queries before
merging the result with some other table. The following definition considers the
summarizability of these attributes after a complete merge.

Definition 3.16 (Summarizable attribute in a merge table). Let T ′
0(S′

0) be the merge
of T0(S0) and T (S) with respect to a relationship R with a set of common attributes
Y. Let A be an aggregable attribute in T such that aggA(F, X), X ⊆ Y holds in T . Let
Q 1 = AggT (F(A) | Y1), S−X ⊆ Y1 be an aggregate query over T and T ′

Q 1 = T0 ▷◁Q 1

be a complete merge of T0 and Q 1. If for any Y1 such that Ytop
1 = Ytop, where Ytop

and Ytop
1 are the set of the highest level attributes of Y, Y1 respectively, we have

πS(AggT ′
0
(F(A) | Y1)) = πS(T0 ▷◁ AggT (F(A) | Y1))

then A is said to be summarizable in the merge of T0 and T with respect to X and
function F.

In the complete merge result T ′
0, all tuples of T0 that cannot be joined over Y with

tuples in T T will have null values for any aggregable attribute A that comes from T .
Therefore, we only consider table T for computing aggregations along Y for attribute
A. The condition Ytop

1 = Ytop guarantees that the aggregations are computed from a
lower level to a higher level and they only aggregate values within the same partial
hierarchy instance below T.Ytop.

The following proposition states that summarizability can be guaranteed for complete
merge table and distributive aggregation functions.

Proposition 3.12. Let T ′
0(S′

0) be the merge of T0(S0) and T (S) with respect to a
relationship R with a set of common attributes Y. Let A be an aggregable attribute
in T such that aggA(F, X), X ⊆ Y holds in T . If T ′

0 is a complete merge, then A is
summarizable in the merge of T0 and T with respect to X and function F.

Proof. By Definition 3.16, we prove that for an arbitrary Y1 ⊇ S − X, Q 1 =
AggT (F(A) | Y1), T ′

Q 1 = T0 ▷◁ Q 1 is a complete merge of T0(S0) and Q 1 with
respect to common attributes Y1. We have

πS(AggT ′
0
(F(A) | Y1)) = πS(T0 ▷◁ Q 1) (3.15)

Because attribute A is aggregable in T (S) and all tuples in T ′
0 − (T ′

0 ⋉Y T) will have
null values for A, the left expression in Equation (3.15) can be replaced by:

πS(AggT ′
0
(F(A) | Y1)) = πS(AggT ′

0⋉YT (F(A) | Y1))

= AggπS(T ′
0⋉YT)(F(A) | Y1)

(3.16)

Let T ct, T cand be respectively the completion table and candidate completion table
of T and T ′

0 as defined in Definition 3.14. We have πS(T ′
0 ⋉Y T) = T ⋉Y T ′

0 = T ct.
Because T ′

0 is a complete merge, we have T ct = T cand = T ⋉Ytop T ′
0. This allows us

to continue with the previous equation:

πS(AggT ′
0
(F(A) | Y1)) = AggT cand(F(A) | Y1)

= AggT⋉Ytop T ′
0
(F(A) | Y1)

= AggT (F(A) | Y1) ⋉Ytop T ′
0

= Q 1 ⋉Ytop T ′
0

(3.17)

Let T ct
Q 1 and T cand

Q 1 be respectively the completion table and candidate completion
table of Q 1 and T ′

Q 1 = T0 ▷◁ Q 1 as defined in Definition 3.14. Because T ′
Q 1 is a

complete merge of T0 and Q 1, we have T ct
Q 1 = T cand

Q 1 , and

πS(T ′
Q 1) = T ct

Q 1 = T cand
Q 1

= Q 1 ⋉Ytop
1

T ′
Q 1

(3.18)

Because Ytop
1 = Ytop, to prove Equation (3.15) is now the same as proving:

Q 1 ⋉Ytop
1

T ′
0 = Q 1 ⋉Ytop

1
T ′

Q 1 (3.19)

which is essentially proving that πYtop
1

(T ′
0) = πYtop

1
(T ′

Q 1).

By the nature of left-outer join no tuples in T0 will be removed and the complete
merge does not add new domain values for Ytop(Ytop

1) (the complete merge only
brings new domain values for Ytop −Y). Therefore, we have T ′

0.Ytop
1 = T0.Ytop

1 and
T ′

Q 1 .Ytop
1 = T0.Ytop

1 . Thus, we can conclude πYtop
1

(T ′
0) = πYtop

1
(T ′

Q 1) == πYtop
1

(T0 ▷◁

Q 1), i.e. A is summarizable in the merge of T0 and T with respect to X and function
F, when T ′

0 is a complete merge.

4
Architecture and Algorithms

Contents
4.1 SAP HANA Architecture . 77

4.2 Dimension and Fact Identifier Computation 84

4.2.1 Computation of attribute graphs 84

4.2.2 Dimension and fact identifiers 88

4.2.3 Maintaining dimension identifiers 90

4.3 Schema Complement Computation 91

4.3.1 Schema complement graph 91

4.3.2 Finding schema augmentations 92

4.3.3 Unit conversions . 96

4.4 Reduction Query Generation . 97

4.5 Merge Query Manager . 99

4.6 Extension to Heterogeneous Data Sources 105

4.7 Conclusions . 105

The contributions presented in this paper have been implemented within the SAP
HANA platform [33], a main-memory relational database system, as a REST appli-
cation service. In this chapter, we give a brief introduction to the architecture and
explain several main components in Section 4.1. Then in Sections 4.2 to 4.5, we
explain in details the REST API of our services, their inputs and outputs and the
processes.

4.1 SAP HANA Architecture

Analytic tables in SAP HANA are defined as non-recursive information views [34]
over non-analytic tables and/or previously defined information views, using a DAG
of operators (e.g., union, join, projection, aggregate). As shown in Figure 2.1 on

77

Page 17, dimension and fact tables can be either defined as arbitrary views over
non-analytic tables or as project-union views over other analytic views, and hierarchy
types are part of the definition of these views. The definition of these information
views also includes to verify the role played by dimension attributes or measure
attributes as defined in Sections 2.2.2 and 2.2.5. We extended the information
view framework by first enabling the definition of new metadata which are the
declaration of aggregable properties of measures in fact tables, and attribute graphs
for dimensions.

The extended HANA architecture is depicted in Figure 4.1. White squared boxes are
new components that implement the algorithms described in Sections 4.2 to 4.5,
white rounded boxes are components that store all the metadata described in
Chapter 2, whereas grey boxes are existing HANA components that have been
extended.

Figure 4.1: Architecture overview

SAP HANA platform also provides schedulable metadata crawlers that asyn-
chronously extract metadata from HANA tables and views, or remote datasets
using the wrapper framework to connect to remote data sources. Extracted meta-
data are translated into a standard representation based on a rich Entity-Relationship

metadata model. Crawlers extract semantic concepts beyond the basic metadata
returned by wrappers, such as dimensions and measures in the case of analytical data
(e.g., remote data warehouses or HANA calculation views), as well as relationships
such as fact-dimension relationships extracted from cube definitions, or attribute
mapping and join relationships extracted from the analysis of analytic queries or
views. When aggregable properties of attributes are not provided, default values are
used (see Section 2.2.6), when attribute graphs are not given, we compute attribute
graphs based on the Definition 2.5 (see Section 4.2.1).

Extracted metadata are periodically checked and asynchronously stored by the
Metadata Loader into the Metadata Catalog and asynchronous data profiling processes
– not portrayed in the architecture diagram – are used to post-analyze the table
instances discovered by the crawlers, and enrich the Metadata Catalog accordingly
(e.g., add join relationships for common types).

External data are access by the extractors using the definition of external datasets
to extract their semantic properties such as multidimensional concepts in the case
of data source systems storing analytic data (e.g., data warehouses) as well as
semantic relationships between datasets. Thus, both external data and HANA data
are mapped to a common data model.

We now focus our descriptions on the main components and APIs that discover
schema complements between datasets and compute merge queries.

All the metadata we crawled or computed from the dataset are stored in Metadata
Catalog, those metadata are grouped as following.

• Table Schemas stores the table representations of local and remote tables or
views. Tables information and attributes information are stored separately in
two tables.

– Each table or view is represented by a tuple (t_id, loc, t_type), where t_id

is the unique identifier of the table, loc is the physical location of the
table, and t_type is the table type (i.e., fact, dimension, or non-analytic),
a dimension table or a non-analytic table. For example, fact table SALES
is described by the tuple: (T1, “SYSTEM”.“SALES”, fact).

– Each attribute is described by a tuple
(a_id, a_name, a_role, dataType, t_id, a_ref), where a_id is the
unique identifier of the attribute, a_name is the attribute name, a_role

is the role it plays as a dimension attribute or a measure (i.e., id or
detail for dimension attribute, value or detail for measure attribute),

dataType is its data type, and the table t_id the attribute belongs to.
When the attribute is of role detail, a_ref stores the attribute identifier of
which this attribute is associated with. For example, measure attribute
AMOUNT in table SALES is of role value and is described by the tuple:
(“T1”.“AMOUNT”, AMOUNT, value, decimal, T1, -). Measure attribute
CURRENCY in SALES is of role detail for attribute AMOUNT, CURRENCY is
describe by the tuple: (“T1”.“CURRENCY”, CURRENCY, detail, varchar,
T1, “T1”.“AMOUNT”).

• Aggregable attributes are also described in Agg Measures with detail informa-
tion of their aggregable properties.

– Each aggregable attribute is represented by a tuple
(a_id, func, a_source, t_id), where a_id is its unique identifier, func is
the last aggregate function applied on the attribute, a_source is the
attribute identifier of which it’s computed from, and t_id is the table
id of a_source (the source attribute should in a non-analytic table).
For example, attribute AMOUNT in table SALES is described by the
tuple: (“T1”.“AMOUNT”, SUM, “T12”.“AMOUNT”, T12), (T12 is table
ct_SALES).

– An aggregable attribute might have several different aggregable prop-
erties for different aggregable functions. The set of aggregable
properties of one attribute a_id are encoded as a set of tuples of
the form (a_id, func, a_ids), where func is the aggregate function,
a_ids is the set of dimension attributes such that a_id can aggre-
gate along with using func. For example, the aggregable property
of AMOUNT for function SUM in SALES is aggAMOUNT(SUM, Z), Z =
{PROD_SKU, BRAND, MONTH, YEAR, CITY, STATE, COUNTRY}. This aggregable
property is encoded as: (“T1”.“AMOUNT”, SUM, {“T1”.“PROD_SKU”,
“T1”.“BRAND”, “T1”.“YEAR”, “T1”.“CITY”, “T1”.“STATE”, “T1”.“COUN-
TRY”}).

• Attribute Graph stores dimension hierarchies that are defined in analytic tables
and the corresponding satisfied attribute graphs.

– The metadata of each hierarchy in dimensions is encoded by a tuple
(h_id, t_id, loc), where h_id is the hierarchy identifier, t_id is the re-
lated dimension table id, loc is the physical localtion of the hierarchy
table (see Section 4.2.1). For example, the hierarchy in dimension

WAREHOUSE is described by the tuple: (1, T6, “SYSTEM”.“WARE-
HOUSE.hier.warehouse”).

– The attribute graph that the dimension table satisfies is stored in two
tables, one for the nodes in attribute graph and another for the edges.
For a detailed example of the two tables see Section 4.2.1.

• Identifiers stores the primary keys and fact / dimension identifiers of the tables
in Table schemas.

– As illustrated in Section 2.2.5, a table can have more than one identifier.
Each identifier is encoded by a tuple (k_id, t_id, type, min) where k_id

is the unique id of the identifier, t_id is the table id, type is the type of
the identifier (i.e., computed identifier, extracted primary key, or inferred
primary key), and min states whether it is the minimum identifier in the
table. For example, the primary key of table PRODUCT is describe by
the tuple: (K9, T9, extracted, true). We show in Section 4.2 that besides
extracting primary keys and computing dimension / fact identifiers, we
can also obtain an identifier by inferring primary keys.

– The composition of each identifier is stored in another table sepa-
rately. Each identifier is represented by a set of tuples of the form
(a_id, k_id, length, min_id) where a_id stores the attribute id in the iden-
tifier with id k_id, length stores the size of the identifier, min_id refers to
the minimal identifier in the table (null if itself is the minimal identifier).
For example, the primary key of PRODUCT consists of one attribute
PROD_SKU, then there is a tuple as: (“T9”.“PROD_SKU”, K9, 1, -).

• Relationships stores all relationships between tables in Table schemas. These
relationships are either extracted from the definition of the information views
or non-analytic tables, or derived relationships computed using composition
and fusion of relationships as Propositions 2.6 and 2.7, or user-defined rela-
tionships.

– As stated in Section 2.3, there could exist multiple relationships
between two tables. Each relationship is described by a tuple
(r_id, t_origin, t_des, type), where r_id is the unique id of the relation-
ship, t_origin and t_des are respectively the table id of the source table
and the target table of the relationship, type is the relationship type (i.e.,
join relationship, attribute mapping relationship, computed relationship,
or user defined). For example, the relationship between SALES and
WAREHOUSE is represented by the tuple: (R 16, T1, T6, extracted).

– A relationship contains one or multiple matchings between attributes of
the source and the target table. Each relationship is encoded by a set
of tuples of the form (r_id, a_origin, a_des, length), where r_id is the
relationship id, a_origin, a_des are respectively the attribute id in the n
source and the target table, and length is the number of the matchings
exist in the relationship. For example, the relationship between SALES
and WAREHOUSE contains three attribute matchings, one matching
SALES.COUNTRY = WAREHOUSE.COUNTRY is encoded by the tuple:
(R 16, “T1”.“COUNTRY”, “T6”.“COUNTRY”, 3).

• Schema complement graph (SC Graph) is a directed graph that connects tables
in Table schemas by their complement types (natural schema complement or
schema augmentation). The graph is computed based on relationships we
have (Detail see Definition 4.1). We store the tables and edges of SC Graph
separately in two tables.

– Nodes in SC Graph represent tables (analytic tables or non-analytic tables),
each node in represented by a tuple (n_id, type, t_id, k_id,−) where n_id

is the unique id of the node, t_id is the table id that the node represents,
k_id is the minimal identifier of the table, and type stores the type of the
tuple describes (i.e., table or edge). Because edges in SC Graph contain a
label indicates the complement type and associated relationship. Edges
in SC Graph are represented by a tuple (e_id, type,−,−, r_id) where e_id

is the unique id of the edge, and r_id is the relationship id the edge
associates with. For example, table SALES is a node in the SC Graph and
is represented by the tuple: (1, table, T1, K1, -). Table T1 (SALES) is a
schema augmentation to T 2 (INVENTORY) with respect to relationship
R 12, there exist an edge E(T1, T2) in SC Graph which is encoded in the
tuple: (2, edge, -, -, R 12).

– The connections between nodes and edges in SC are also encoded into
a table. Each tuple is of the form (origin_id, des_id, side, type), where
origin_id, des_id are respectively the source and the target id, side de-
scribes the side (i.e., “O” for original side and “D” for Destination side),
and type stores the complement type. Each edge in SC Graph is encoded
by two tuples which connects the start table to the edge and the edge to
the destination table. For example, the edge E(T1, T2) describe above is
encoded by the two tuples: (1, 2, O, AUG), (2, 3, D, -), 3 is the node id
for table INVENTORY.

Metadata Catalog stores every information we need for computing identifiers, finding
schema complements and computing merge queries.

Metadata Loader manages the insertions and updates of the metadata of tables.
When a new dimension table or a new fact table is crawled, Metadata Loader is
notified with new Extracted Metadata, and Table schemas, Attribute Graph, Identifiers,
Agg Measures and Relationships in Metadata Catalog are updated with new metadata.
Identifier Builder is then called to compute a new identifier, if the attribute graph
is not given, it computes the attribute graph and finally stores the attribute graph
and computed identifiers into Attribute Graph and Identifiers respectively. If the
attribute graph of a dimension table is updated and a new dimension identifier
is computed, then the fact identifier of every fact table that contains dimension
attributes of this dimension will be recomputed. When the newly crawled table is
defined as a view over other tables which are not extracted into Metadata Catalog
or partially extracted, those missing tables will be crawled by Crawlers first, and
Metadata Loader will load and process metadata of the new extracted table until
all the missing tables are stored in Metadata Catalog. When a new non-analytic
table is crawled, the PK declaration is extracted directly from its definitions and
used to update Identifiers, Identifier Builder is also called to verify whether this PK
could be inferred to analytic tables. When relationships are added or updated in
Relationships, SC Graph Builder applies Propositions 2.6 and 2.7 that runs recursively
to compute if there are relationships which could be derived or merged and passed
the results to Relationships. Modified relationships are then used to update SC Graph.
Besides, Metadata Loader processes Declare Metadata API calls from client, which
enables designers to declare relationships between tables which are passed to the
SC Graph Builder. It also supports the declaration of all metadata (Attribute Graph,
Agg Measures and Relationships) generated during the merge of an analytic table
with a schema complement, which are then passed to the Identifier Builder and the
SC Graph Builder accordingly.

Metadata Loader maintains the correctness and consistency of the data stored in
Metadata Catalog, we now introduce other components that collaborate with APIs
and response to user’s requests.

The Schema Complement Finder component processes a Get Schema Augmentation
API call. It takes a start table name T0 as input and returns a list of schema
complements and augmentations T with their relationships from T0 to T and a
set of attributes in T that could be augmented to T0. Those schema complements
and augmentations are found by traversing the SC Graph and comparing the Table
schemas (see Section 4.3).

SC manager takes the Reduction Query Generator API call which contains a target
schema augmentation table, and a set of user actions to reduce the identifier of the
target table as inputs. Using the Reduction Query sub-manager, it returns a reduction
query and a description of aggregated attributes in the query. The algorithm to
generate such reduction query is described in Section 4.4. The SC Manager uses a
Natural Query sub-manager to compute a query of a path from the starting table to
the target schema complement table.

Finally, the Merge query manager takes the Merge Schema Augmentation API call
which has a start table, a target schema augmentation table, and several preferences
of the merge query as inputs, it returns as output a final merge query with a list
of computed metadata properties (see Section 4.5). The Merge Query Generator
sub-manager cooperates with Natural Query to detect ambiguous values in the target
schema augmentation and create a complement query if needed. Using Metadata
Propagator sub-manager, the metadata of the merged result is propagated correctly,
such that the result could be added to Metadata Catalog using Declare Metadata
API.

4.2 Dimension and Fact Identifier Computation

In this section we describe the implementation details of constructing an attribute
graph from dimension tables and computing dimension and fact identifier from an
attribute graph. Attribute graphs and identifiers are the keys for finding schema
complement and detecting ambiguous values, they play a central role in our work.

4.2.1 Computation of attribute graphs

As explained before, attribute graphs are metadata that are provided as a form of
constraints over dimension tables and are fundamental information to compute
identifiers and ensure non-ambiguity.

We encode attribute graphs into two tables ATtribute Graph Node (ATGN) and
ATtribute Graph Edge (ATGE). Their schema are respectively:

ATGN (DT_ID, ATT_NAME, LEVEL_NUM, OPTIONAL)
ATGE (DT_ID, ATT_NAME, PARENT_ATT_NAME, LABEL)

Each hierarchy in a dimension table is identified by a distinct DT_ID value. Table
ATGN stores attribute nodes, with their level in the hierarchy and whether they can
take null values (OPTIONAL = 1). Table ATGE stores all edges in attribute graphs
where LABEL can take values: ‘+’, ‘1’, ‘f ’. In both tables, attribute names with value
‘__bot’ or ‘__top’ represent the two special attributes ⊥ or ⊤ respectively.

Example 4.1. Table 4.1 shows tuples that encode the attribute graph of dimension
WAREHOUSE in Figure 2.6 (a) (Page 25).

Table 4.1: Attribute graph for dimension WAREHOUSE

(a) ATGN

DT_ID ATT_NAME LEVEL_NUM OPTIONAL

1 __bot 0 0
1 WH_ID 1 0
1 CITY 2 0
1 STATE 3 1
1 COUNTRY 4 0
1 __top 5 0

(b) ATGE

DT_ID ATT_NAME PARENT_ATT_NAME LABEL

1 __bot WH_ID +
1 WH_ID CITY f
1 CITY STATE +
1 WH_ID STATE f
1 STATE COUNTRY 1
1 CITY COUNTRY +
1 COUNTRY __top f

When an attribute graph has not been defined by a user over the hierarchy of a
dimension table, Algorithm 1 provides the option to efficiently compute it from a
given dimension table using the indexing scheme of SAP HANA, called Hierarchy
Table (HT) [35], which encodes the nodes of a hierarchy instance represented in a
dimension or a fact table.

Hierarchy table

In SAP HANA, the nodes of a hierarchy instance represented in a dimension, or a
fact table, are encoded using an indexing scheme into a corresponding Hierarchy
Table (HT, for short)[4]. HT encodes the structure of hierarchy from the definition
of hierarchy type and distinguishes nodes in the hierarchy instance by the unique

node values which is the complete path to the top-level node value, and contains
information about its parent node, its level (or attribute) name, whether it is a
leaf node, its level number in the hierarchy, etc. Given a dimension with unknown
hierarchy, a hierarchy table can be used to build the attribute graph that satisfies the
dimension using SQL queries.

Example 4.2. Node ‘Dublin’ of ‘Ohio’ in the hierarchy of GEOGRAPHY in Figure 2.4a
(Page 19) is encoded as one tuple in HT (attribute names are on the left) shown
in Table 4.2. It contains information about its path from the top-level node, its
parent node, its attribute name, whether it is a leaf node, and its level number in
the hierarchy.

Table 4.2: A tuple from hierarchy table

Attribute name Value

NODE [North America].[United States].[Ohio].[Dublin]
PRED_NODE [North America].[United States].[Ohio]
NODE_VALUE Dublin
ATT_NAME CITY
IS_LEAF 0
LEVEL_NUM 4

Use this hierarchy table, we can build attribute graph satisfies the related dimension
table using Algorithm 1 (detail SQL queries see Appendix ??).

The algorithm follows the Definitions 2.5 and 2.6 (Page 23) computing an attribute
graph using queries that are linear with respect to the size of the dimension table. A
user can then inspect the result and relax some constraints (e.g., switch a label 1 or
f edge to label +, or remove an edge with label f) to reflect cases not captured by
the dimension table.

Example 4.3. We illustrate the algorithm using Table 2.1 (Page 20) which is a
hierarchy instance of type GEOGRAPHY. With an API call ATG(HT, 2), the
attribute graph satisfies dimension REGION (DT_ID = 2) is constructed in following
steps.

1. In step 1, ATGN is initialized with 6 nodes: ⊥, CITY, STATE, COUNTRY, CONTINENT

and ⊤ with LEVEL_NUM = 0, 1, 2, 3, 4, 5 respectively and OPTIONAL = 0 by default.
ATGE is initialized with 6 edges: (⊥, CITY), (CITY, STATE), (STATE, COUNTRY),
(CITY, COUNTRY), (COUNTRY, CONTINENT) and (CONTINENT, ⊤), edges (⊥, CITY)
and (CONTINENT, ⊤) are labeled by f and + respectively.

Algorithm 1 Attribute Graph Generation (ATG)
input: HT : hierarchy table of the hierarchy

id: unique id of the hierarchy

1. Initialization. All attributes in ATGN are initialized with OPTIONAL = 0; edges
having PARENT_ATT_NAME = ⊤ are initialized with LABEL = f ; edges having
ATT_NAME = ⊥ are initialized with LABEL = +.

2. Find all attributes (except bottom level attributes ⊥) in HT that have ‘IS_LEAF =
0’ and add an additional edge from ⊥.

3. Update ATGN by marking all attributes that are nullable with OPTIONAL = 1.

4. For each (ATT_NAME, PARENT_ATT_NAME) pair in ATGE, if for a NODE_VALUE value
for the same attribute ATT_NAME, there are more than one PRED_NODE values
for PARENT_ATT_NAME, then mark the edge with label +. If there is only one
single value in PARENT_ATT_NAME then mark the edge with label f .

5. For each + labeled edge (ATT_NAME, PARENT_ATT_NAME) in ATGE where
ATT_NAME is optional in ATGN, if for all non-null NODE_VALUE values for the same
attribute ATT_NAME, there is only one PRED_NODE value for PARENT_ATT_NAME

then update the edge with label 1.

2. In step 2, value ‘Antarctica’ of attribute CONTINENT has IS_LEAF = 1 in HT , and
CONTINENT is not a bottom level node. Thus, an edge (⊥, CONTINENT) is added
to ATGE, because in CONTINENT, there is only one node value is leaf node, the
edge is labeled by f .

3. In step 3, attributes CITY, STATE and COUNTRY have null values in their
NODE_VALUE, they are updated to OPTIONAL = 1 in ATGN.

4. In step 4, child-parent value mappings of all the edges are checked, edge (CITY,
COUNTRY) is updated to label + in ATGE, the other edges are updated to label
f in ATGE.

5. Step 5 checks the mappings of edges (CITY, STATE) and (STATE, COUNTRY) which
are labeled + edges with ATT_NAME being optional, and (STATE, COUNTRY) is
updated to label 1 in ATGE.

We show the final results of ATGN and ATGE on Table 4.3.

Table 4.3: Attribute graph for dimension REGION

(a) ATGN

DT_ID ATT_NAME LEVEL_NUM OPTIONAL

2 __bot 0 0
2 CITY 1 1
2 STATE 2 1
2 COUNTRY 3 1
2 CONTINENT 4 0
2 __top 5 0

(b) ATGE

DT_ID ATT_NAME PARENT_ATT_NAME LABEL

2 __bot CITY +
2 CITY STATE +
2 STATE COUNTRY 1
2 CITY COUNTRY +
2 COUNTRY CONTINENT f
2 CONTINENT __top f
2 __bot CONTINENT f

4.2.2 Dimension and fact identifiers

Given an attribute graph over some attribute hierarchies, a dimension identifier for
all valid tables with respect to that attribute graph could be computed using the CDI
algorithm as Algorithm 2.

The worst-case time complexity of the CDI algorithm is linear in the size (number of
nodes and edges) of attribute graph D.

Example 4.4. We apply function CDI(D, X) on dimension REGION of Table 2.1
where D is the attribute graph computed in Example 4.3, X is all attributes of
REGION . dimId is firstly initialized with all attributes of REGION , and only
CONTINENT is removed, because it has a label f in-edge. In Line 10, we get the result
dimension identifier dimId is {CITY, STATE, COUNTRY}.

By Proposition 2.5 (Page 30), the fact identifier of a fact table T (S) defined over a
set of dimensions D1(SD1), . . . , Dn(SDn) is computed by the union of the identifiers
of each group of dimension attributes occurring in the fact table. The identifiers of
each group of dimension attribute are also computed using CDI algorithm with the
attribute graph of the dimension Di, i ∈ [1, n] and the set of dimension attributes in
the fact table S ∩ SDi as inputs.

Algorithm 2 Compute Dimension Identifier (CDI)
input:

D: Attribute graph of dimension table with schema S
X: A subset of S

output:
dimId: identifier of X

1: begin
2: Initialize: dimId← X
3: for Attribute A in dimId do
4: if (A has one label f in-edge from X in D) or
5: (A only has label 1 in-edges from X in D)
6: then
7: dimId← dimId− {A}
8: end if
9: end for

10: return dimId
11: end

Example 4.5. We compute the fact identifier for fact table INVENTORY which
is defined over dimensions WAREHOUSE, TIME, TAX and PROD with at-
tribute graphs shown in Figure 2.6 (Page 25). We first compute the identifier
of dimension attributes from WAREHOUSE by CDI(D, X) where D is the at-
tribute graph of WAREHOUSE, X = {WH_ID, CITY, COUNTRY} are the set of di-
mension attributes from WAREHOUSE occur in INVENTORY. dimId is first
initialized with attributes of X, CITY is removed because it has a label f in-edge
starting from WH_ID, and the result dimId is K1 = {WH_ID, COUNTRY}. Simi-
larly, we compute the identifiers of dimension attributes from TIME, TAX and
PROD. They are K2 ={YEAR}, K3 ={TAX_NO} and K4 ={PROD_SKU} respectively.
Therefore, the fact identifier of INVENTORY is the union of K1, K2, K3 and K4,
K = {PROD_SKU, YEAR, WH_ID, COUNTRY, TAX_NO}.

However, the fact identifier computed by Proposition 2.5 (Page 30) might not be
minimal. When the fact table is defined as a view from a non-analytic table for which
we know the primary key, if all attributes of this key have an attribute mapping
relationship into a (strict) subset of the fact identifier attribute, this subset is also a
fact identifier for the fact table, we refer this subset as inferred key.

Example 4.6. As explained in Example 2.14 (Page 29) that fact table INVENTORY
is defined as a view over non-analytic table ct_INVENTORY, assuming that the
primary key of ct_INVENTORY is Kct = {PROD_SKU, YEAR, WH_ID, COUNTRY}.

ct_INVENTORY(PROD_SKU, BRAND, YEAR, WH_ID, CITY, STATE, COUNTRY,

TAX_NO, RATE, TAX_DESC, QTY_ON_HAND, TAX_AMT)

Each attribute of the primary key has a corresponding attribute mapping with one
attribute of the initial fact identifier K ={PROD_SKU, YEAR, WH_ID, COUNTRY, TAX_NO }
computed by algorithm CDI as given in Example 4.5. Kct is strictly included in K, so
Kct can be inferred as an inferred key, and INVENTORY now have two identifiers K,
Kct where Kct is the minimal key. It implicitly follows that dimension TAX depends
on the other dimensions of that fact table.

4.2.3 Maintaining dimension identifiers

An update of a dimension table may violate the attribute graph constraints defined
for that table, and the dimension identifier generated from that attribute graph may
also be affected. Thus, when a non-analytic table is updated, and a dimension table
T is defined over it, we check the consistency of the attribute graph and the validity
of the dimension identifier. If the test fails, the update must be rejected and the
attribute graph of T can be inspected for further investigation. Since dimension
tables are not frequently updated, the test entails a small overhead in the transaction
processing workload. In addition, the test is efficiently done using Hierarchy Tables.
(Detail query see Appendix ??)

A strong assumption is that dimension table is viewed as an append-only table, we
only detect and apply changes to the attribute graph that are caused by insertions,
i.e., new optional nodes, new edges and edges whose labels are changed into either
1 or +.

Table 4.4 shows the impacts on dimension identifiers caused by different changes on
the in-edges of an attribute A of the attribute graph. Notice that the only operations
allowed on the table is insertion, so the new in-edge added to A is either an edge
start from ⊥ or an edge start from its descendent. For a new label f in-edge of
A, its impact on dimension identifier can not be identified immediately that when
it’s an edge starting from ⊥, then A cannot be removed from identifier because it’s
not an in-edge from attributes in the hierarchy. When it’s an edge starting from
its descendent, then A can be removed from identifier. When a label f in-edge of A

is changed to label 1 or +, the effects on dimension identifier need to recompute,
whether A should be added to dimension identifier depends on if A still has label f
in-edge.

Table 4.4: Effects on dimension identifiers by attribute graph

A has f in-edge A only has 1 in-edges Other cases

f in-edge changes to 1 Recompute No effect -
f in-edge changes to + Recompute - -
1 in-edge changes to + No effect Add A No effect
new f in-edge No effect No effect Recompute
new 1 in-edge No effect No effect No effect
new + in-edge No effect Add A No effect

-: Not exist

4.3 Schema Complement Computation

4.3.1 Schema complement graph

As explained in Section 4.1, the Metadata Catalog contains the native relationships
that are extracted from the definition of tables or explicitly declared by a user,
and the derived relationships obtained using composition and fusion. From these
relationships, schema augmentations could be discovered by exploring a Schema
Complement graph defined as follows.

Definition 4.1 (Schema Complement graph). Let T = {T0, T, · · · , Tn} be a set of
tables and R = {R jk, · · · , R nm} be a set of relationships between tables in T , where
R jk ∈ R is a relationship between Tj and Tk. A Schema Complement (SC) graph for
T and R is a directed property graph SC = (T , E) connecting the tables in T by a
set of labeled edges E where:

1. for each R jk ∈ R there exist two edges E(Tj , Tk) and E(Tk, Tj).

2. each edge E(Tj , Tk) is labeled by a complement type E .CT : if the common
attributes of R jk contain the identifier of Tk then, E .CT = ‘NAT’ (natural
edge) else E .CT = ‘AUG’ (augmentation edge).

Example 4.7. Figure 4.2 shows a partial SC graph for the relationships of Figure 2.9
(Page 37). Every relationship results in two edges of the SC graph, each edge is
labelled with a reference to a relationship and its CT label. Nodes represent tables
with their identifiers (ID).

Figure 4.2: SC graph example for Figure 2.9

We use the term connected for tables which are connected by any path in a SC graph.
A table T is said to be reachable from T0, if they are connected through a sequence of
natural ‘NAT’ edges followed by at most one augmentation ‘AUG’ edge. For example,
T1 and T6 are connected, but T6 is not reachable from T1 because the path from T1

to T6 contains two ‘AUG’ edges. T1 and T2 are connected and T2 is reachable from
T1.

4.3.2 Finding schema augmentations

We now introduce the Get Schema Augmentation API which accepts a source table
T0 that user wants to augment as input, explores SC graph and returns an array of
schema augmentation tables for T0 as {(Ti, T ype, Attrs, Paths), . . .}. Each schema
augmentation table Ti in the result is reachable from T0, and the returned value con-
tains the schema name Ti, Type: the complement type of Ti (schema augmentation
or natural schema complement), Attrs: new attributes with respect to T0 and Paths:
all the possible paths start from T0 to Ti that contain at most one ‘AUG’ edge. We
use an example for illustration.

Example 4.8. In Figure 4.2, INVENTORY (T2) is a schema augmentation to SALES
(T1). In a Get Schema Augmentation call with input table T1, T2 will be returned
as one of the schema augmentation tables for T1. Table 4.5 shows the information
of T2 returned by the API. There are two paths provided in the result that connect
SALES to INVENTORY, note that there exists another path SALES→ STORE →
WAREHOUSE → INVENTORY in Figure 4.2. It is not returned in the result
because this path contains two ‘AUG’ edges.

Table 4.5: T2 in the result

PARAMETER NAME VALUE

Name INVENTORY
Type schema augmentation

Attrs {MONTH, WH_ID, TAX_NO, RATE, TAX_DESC, QTY_ON_HAND}
Paths SALES→ INVENTORY (default)

SALES→ STORE →WAREHOUSE → INVENTORY (path1)

Get Schema Augmentation API is implemented by function Compute Schema Aug-
mentation (CSA). CSA is a recursive function that takes two inputs: (T0, SC), and
returns two outputs as described below:

Algorithm 3 Compute Schema Augmentation (CSA)

input:
T0: start table
SC : schema complement graph contains all nodes that connect to T0

output:
result: [(Ti, CT, Attrs, rid), . . .]

– Ti: schema augmentation table to T0

– CT : complement type
– Attrs: new attributes
– rid: a relationship with Ti being the destination table

altEdges: [(Ti, CT, rid), . . .]: list of optional relationships

Traversal step: Traversal all edges in SC that start from T0. For each edge E(T0, Ti)
in SC that starts from T0, verify if Ti is visited before.

• If Ti is visited, add (Ti, E(T0, Ti).CT, R (T0, Ti)) to altEdges.

– E(T0, Ti).CT is the complement type of E(T0, Ti);

– R (T0, Ti) is the relationship related to E(T0, Ti).

• If Ti is not visited, then mark it as visited, add
(Ti, E(T0, Ti).CT, Attrs, R (T0, Ti))to result and continue with Recursive
step.

– E(T0, Ti).CT is the complement type of E(T0, Ti);

– Attrs is the set of new attributes in Ti with respect to T0. If T0 has never
been augmented by T before, any attribute in T that is not in common
with T0 is considered to be new. Otherwise, attributes in T0 that come
from previous schema augmentations with T will not considered as new
attributes.

– R (T0, Ti) is the relationship related to E(T0, Ti).

Recursive step: Recall CSA(Ti, SC). When the complement type of E(T0, Ti) is ‘NAT’,
call CSA(Ti, SC) and append the results to result, altEdges.

The Traversal step records all possible paths to a schema augmentation table Ti while
avoids infinite loops during traversal by the annotation of visited. When multiple
paths exist from T0 to Ti, the relationship added to result will be then set to the
default path. The Recursive step continues the exploration only for ‘NAT’ edges and
extend result and altEdges.

Our implementation of the CSA algorithm leverages the SAP HANA graph en-
gine [36] which supports various graph algorithms over graph data stored in a
columnar table storage (using a table of nodes and a table of edges). We use
the GET_NEIGHBORHOOD algorithm of the graph engine instead of calling the
Recursive step to compute the set of all tables that are reachable from T0. The
GET_NEIGHBORHOOD performs a breadth-first search, the returned reachable ta-
bles are ordered according to their depth with respect to T0, we store those tables
and their complement types in Reachable. Then, we select all edges whose start
node is T0 or a table in Reachable with complement type ‘NAT’ and destination
node is in: T0 ∪ Reachable. Edges are ordered by their start tables according to
the sequence of Reachable, when edges are sharing the same start table, they are
ordered by their destination tables. Ordered edges are stored in Edges. Finally,
we perform Traversal step for edges in Edges. Given the edges ordering according
to their depth with respect to T0, algorithm CSA always returns the shortest path
to a given table in result. The use of a clever exploration strategy is left open for
future work. However, in the final result, schema augmentations are returned sorted
according to the depth-first search exploration of the SC graph.

Example 4.9. We illustrate our iterative implementation of algorithm CSA with
input table T1 on Figure 4.2 and the SC of Figure 4.2.

1. First, GET_NEIGHBORHOOD computes all tables which are reachable from T1

in SC by a sequence of NAT edges and followed by at most one AUG edge. We
obtain Reachable = {(T3, NAT), (T4, NAT), (T2, AUG), (T6, AUG)}.

2. The next step retrieves the list of edges connecting nodes in
T1 ∪ Reachable, ordered by the sequence of Reachable: Edges =
[E(T1, T3), E(T1, T4), E(T1, T2), E(T3, T2), E(T4, T6)]. Notice that edge
E(T4, T1) is not selected because it starts from T4 whose complement type is
‘AUG’.

3. The algorithm then processes each edge in Edges sequentially as follows.

• For edges E(T1, T3), E(T1, T4), E(T1, T2), their destination tables T3, T4, T2

have not been visited yet, the set of new attributes Attrs3, Attrs4, Attrs2

are respectively computed for T3, T4, T2 with respect to T1, along with
their complement type and related relationships are added to Result.

• For edge E(T3, T2), the destination table T2 is already visited, its comple-
ment type and related relationship R 23 is added to altEdges.

• For the last edge E(T4, T6), the destination table T6 is not visited, the
set of new attributes Attrs6 is computed for T6 with respect to T4 using
related relationship R 46, then added to Result.

Finally, we get Result = {(T3, NAT, Attrs3, R 13), (T4, NAT, Attrs4, R 14),
(T2, AUG, Attrs2, R 12), (T6, AUG, Attrs6, R 46)} and altEdges = (T2, AUG, R 23).

Using the output of CSA, for each schema augmentation table, we construct a
default path to the source table T0 using the relationships in Result, and alternative
paths are constructed using the relationships in altEdges.

Example 4.10. Continuing Example 4.9, default paths are constructed using
relationships in Result as: T1 → T3 for (T3, NAT, Attrs3, R 13), T1 → T4 for
(T4, NAT, Attrs4, R 14), T1 → T2 for (T2, AUG, Attrs2, R 12), and T1 → T4 → T6

for (T6, AUG, Attrs6, R 46). The path from T1 to T6 is constructed by appending R 46

after the path from T1 to T4 computed before. There is an additional relationship
for table T2 in altEdges which means there is another path from T1 to T2. This
additional relationship is between T2 and T3, by appending it to the default path
from T1 to T3, we obtain the alternative path for T2 as: T1 → T3 → T2. By default,
to augment T1 with attributes from T2, the default path which uses only R 12 is
selected when generating the merge query as T1 ▷◁ T2, but user can still manually

select the alternative path which consists of R 13, R 23 and obtain the merge query as
T1 ▷◁ T3 ▷◁ T2.

4.3.3 Unit conversions

Incompatibility between a start table T0 and a target schema augmentation table T

occurs when the two tables contain different measure units, statics scales, measure-
ment details, etc., a major part of these are produced during data production which
are out of our control. We mainly discuss here the incompatible measure units.

Before any further operations, i.e., applying reduction query, merging two tables,
units and currency of T0 and T should be unified. We use built-in SQLScript functions
in HANA for units and currency conversion (function CONVERT_CURRENCY and
CONVERT_UNIT) [37]. Conversions are computed in simple queries with attribute
to be converted, source unit, target unit as mandatory parameters. When it’s a
currency conversion, the reference date is also mandatory.

Example 4.11. Consider the fact table SALES with aggregation attribute AMOUNT,
as explained in Section 2.2.5, an attribute CURRENCY with role detail is associated
with AMOUNT to describe the currency of the amount value. A CONVERT_CURRENCY
call can convert AMOUNT values into EUR using the convert rate of ‘2013-09-23’ as
follows:

Listing 4.1: Query to convert currency

SELECT CONVERT_CURRENCY(
AMOUNT => AMOUNT,
"SOURCE_UNIT" => CURRENCY,
"SCHEMA" => ’ SYSTEM ’ ,
" TARGET_UNIT " => ’ EUR ’ ,
"REFERENCE_DATE" => ’ 2013−09−23 ’)

AS CONVERTED_AMOUNT
FROM SALES ;

Example 4.12. Consider the non-analytic table PRODUCT as introduced in Exam-
ple 5.2 in Chapter 5, Page 119. It contains an attribute WEIGHT which records the
products’ weight using unit gram(g), a CONVERT_UNIT call can convert values of
WEIGHT into pounds(lbs) as follows:

Listing 4.2: Query to convert unit

SELECT CONVERT_UNIT(
"QUANTITY" => WEIGHT,
"SOURCE_UNIT" => ’ G ’ ,
"SCHEMA" => ’ SYSTEM ’ ,
" TARGET_UNIT " => ’ LB ’)

AS CONVERTED_WEIGHT
FROM PRODUCT;

Besides the build-in functions, the conversion could also be done by referring
conversion factors in [38], [39]. When the unit is not provided in the table, we
assume that measures in two tables have the same unit.

4.4 Reduction Query Generation

The Compute Schema Augmentation (CSA) API returns a set of schema augmen-
tations for a source table T0. Assume that a user selects a schema augmenta-
tion table T with complement type ‘AUG’ and relationship path R 1(T0, T1), · · · ,

R n(Tn−1, T), n >= 1 as a schema augmentation for T0. Let Yn be the set of common
attributes of Tn−1 and T , and K be the identifier of T . Then, by Proposition 3.3
a natural schema complement to T0 can be obtained by reducing all attributes in
K−Yn through one or a sequence of nested reduction queries. Table 4.6 shows the
reduction actions that a user can express on each attribute A of K − Yn and their
impact in terms of reduction queries. Without loss of generality, we consider here
that each user action reduces a single attribute of K−Yn.

Table 4.6: User actions to create a reduction query

User action Impact on reduction query

Filter defines a set FilP of filter predicates Ai = vi, vi ∈ dom(Ai); yields a filter
reduction;

Pivot defines a set of attributes PivA that are pivoted as columns; yields a pivot
reduction;

Remove defines a set of attributes RemA which are removed from the result of the
reduction query; yields an aggregate reduction;

Aggregate defines a set AggA of aggregated attributes Fi(Ai); yields an aggregate
reduction

We now introduce the Reduction Query Generation (RQG) API which takes five
inputs: (T , FilP , PivA, RemA, AggA), and returns two outputs as described
below:

Algorithm 4 Reduction Query Generation (RQG)

input:
T : destination schema augmentation table

FilP : a set of equality predicates of the form A = v for filtered attributes
A ∈ K

PivA: a set of pivoted attributes
RemA: a set of attributes removed from K

AggA: a set of aggregated attributes of the form F (A) where A ∈ S
output:

Q : reduction query
AggA′: aggregated attributes of the form F (A) in Q

Preparation: Verify inputs and order reduction operations. The reduction process
is separated into three optional reduction steps whose execution depends on the
user input. Filter and Pivot are executed, respectively, when FilP and PivA are
not empty. Aggregate is executed when RemA or AggA is not empty. The default
ordering of reduction operations is: 1) Filter, 2) Pivot, 3) Aggregate.

Step 1: Apply filter reductions. A filter reduction query Q F il = Filter T (FilP) is
created on the target schema augmentation table T and executed.

Step 2: Apply pivot reductions. A pivot reduction query Q P iv is generated over
the result of query Q F il. It is of the form Pivot Q F il

(Xval | PivA), where Xval is the
set of aggregable attributes in T .

Step 3: Apply aggregate reductions and detect if the result is ambiguous. First,
each aggregate Fi(Ai) in AggA is checked for correctness with respect to the ag-
gregable properties of the attribute Ai and attributes RemA. Then, an aggregate
query Q Agg is generated over the result of query Q generated in the previous Filter
and Pivot reduction steps. It is of the form: AggQ(Fi(Ai), . . . | X), where each Fi(Ai)
belongs to AggA or to the new attributes whose values were pivoted in Q , and
X = K−RemA− PivA.

Step 4: Generate final reduction query. The output reduction query Q is generated
by the previous Filter, Pivot and Aggregate reduction steps. AggA′ is the set of
aggregable attributes containing attributes from input AggA and attributes whose
values were pivoted in the pivot reduction query step (i.e., the Xval attributes).
This set is needed for the propagation of aggregable properties (see Section 2.2.6
Page 31). The identifier K′ of the result of Q (T) is K ′ = K −FilA−RemA−PivA

where K is the identifier of T , RemA and AggA are defined in Table 4.6 and FilA

corresponds to the attributes in the filter predicates FilP .

Example 4.13. Continue with Example 4.9, T2 = INVENTORY is re-
turned as a schema augmentation to T1 = SALES. When augmenting the
schema of T1 with T2, a reduction query can be expressed as an RQG call:
RQG(T2, ∅, ∅, RemA, {SUM(QTY_ON_HAND)}), where RemA = {MONTH, WH_ID}. Be-
cause PivA and FilP are empty, a single aggregate reduction is executed: Q Agg =
AggT2

(SUM(QTY_ON_HAND) | X), X = {PROD_SKU, YEAR, CITY, COUNTRY}. Indeed, X is a
subset of the identifier of T2 and attributes MONTH and WH_ID have been reduced.
Thus, the RQG call finally returns a reduction query Q Agg and {SUM(QTY_ON_HAND)}
as a single aggregated attribute.

Example 4.14. An alternative way to reduce INVENTORY
when augmenting the schema of SALES is to use an RQG call:
RQG(T2, {WH_ID =“Oh_01”}}, {MONTH}, ∅, ∅) on the SC graph of Figure 4.2.
Because AggA and RemA are empty, only filter and pivot reductions are applied.
A filter reduction is first created in step 1 as Q F il = Filter T1({WH_ID =“Oh_01”}).
In step 2, the pivot reduction is applied on the result of Q F il as
Q P iv = Pivot Q F il

({QTY_ON_HAND} | {MONTH}). Thus, the RQG call returns a
query Q P iv, and an empty set of aggregated attributes.

4.5 Merge Query Manager

Suppose that a user selects a table Tdest returned by the Compute Schema Augmenta-
tion API call as a schema augmentation to a table T0 with respect to a path of relation-
ships R 1(T0, T1), · · · , R n(Tn−1, T), n >= 1. We now introduce the Merge Schema
Augmentation (MSA) API, which takes five inputs (T0, T , path, noamb, comp) and re-
turns one merge query Q as described below. The input table T is defined as follows.
When the chosen schema augmentation Tdest has not been reduced, the input T is

equal to Tdest with a set of new attributes Xnew and Rn(Tn−1, T) = Rn(Tn−1, Tdest)
maps to an edge in the schema complement graph SC . Otherwise, T = Q red(Tdest)
represents the reduction query Q red over Tdest obtained as an output of the Reduc-
tion Query Generation (RQG) API call, and Rn(Tn−1, T) corresponds to a natural
schema complement edge (CT = ‘NAT’). The Boolean parameter noamb is true when
no ambiguous value must appear in a merged result and the Boolean parameter
comp is true when the merge must be complete.

Algorithm 5 Merge Schema Augmentation (MSA)

Inputs:
T0: starting table
T : destination table Tdest or a reduction query Q red

Xnew: attributes in T that will be merged to T0

path: {R 1(T0, T1), · · · , R n(Tn−1, T)}
noamb: true when result must be non-ambiguous

comp: true when merge must be complete
Output:

Q : final merge query

An MSA call is processed in three steps detailed thereafter.

Step 1: Create query Q a to update ambiguous tuples in T .

• When flag noamb = false, this step does not check for ambiguous results and
returns Q a = T .

• When flag noamb = true, we first check if T is non-ambiguous. By Defini-
tion 3.13, detecting if T contains ambiguous values requires computing for
each dimension D(SD) used in T , the identifier of the ancestors X∗(D) of
the dimension attributes XD = S ∩ SD. This identifier is computed over the
attribute graph of dimension D restricted to the attributes in X∗(D) and using
Proposition 2.1.

– When T is not ambiguous for each dimension D in T w.r.t. Proposition 3.8,
then we return Q a = T .

– Otherwise, when T is detected as possibly ambiguous with respect to a
dimension D, we build a query Q a which replaces the measure values
of all ambiguous tuples in T by null values. A tuple t in T is detected
as ambiguous if there exists a dimension D and two tuples t1, t2 ∈ D

such that t1.X∗
D ̸≡ t2.X∗

D and t1.XD ≡ t2.XD ≡ t.XD. For this, query
Q a joins the result of T with each dimension table D on their common
attributes XD to obtain all X∗

D attribute values, and nullifies (invalidates)
all measure attributes of all tuples t where the size of the partition
corresponding to tXD

is greater than 1.

Step 2 (optional): Create a query Q c to compute a completion table for the merge of
T0 with T .

• When flag comp = false, this step does not compute completion tuples and
returns Q c = ∅.

• When flag comp = true. By Proposition 3.10, we first check condition for
T0(S0) and T (S) that whether the LFD (SDi ∩ S) 7→ (SDi ∩ S0) holds for all
dimension Di with schema SDi in S0 ∩D S.

– When the condition does not hold, we return Q c = ∅.

– When the condition holds, we compute the completion table Q c = T com

as defined in Proposition 3.10 for T0 and Q a of Step 1.

Step 3: Create the final query Q merging T0 with the results of Steps 1 and 2.

• Create a query Q path to merge T0 with the sequence of natural schema com-
plements T1, · · · , Tn−1 represented by R 1(T0, T1), · · · , R n−1(Tn−2, Tn−1) in
parameter path. Let Yi be the common attributes in relationship R i. Then,
Q path = T0 ▷◁Y1 T1 · · · ▷◁Yn−1 Tn−1.

• Merge Q path with Q a as Q ′ = πS′
0
(Q path ▷◁Yn Q a), where S′

0 is the schema of
T0 augmented with the new attributes Xnew coming from Q a.

• Finally, add Q c (obtained from Step 2) to the previous result Q ′ and the final
result is Q = Q ′ ∪ Q c.

Example 4.15. Consider a merge schema augmentation call
MSA(T1, Q (T2), {SUM(QTY_ON_HAND)}, {R 12}, true, true) on the SC graph of
Figure 4.2 (T2 = INVENTORY is a schema augmentation to T1 = SALES), and
Q (T2) is the output of the RQG call in Example 4.13. Since Q (T2) is a reduction
query, we add a natural complement edge R (T1, Q (T2)) with CT = ‘NAT’ to the SC
graph.

Generate non-ambiguous result Q a. The input noamb = true, we build query Q a

to update ambiguous tuples in Q (T2). By Proposition 3.8, we verify the ambiguities
for each dimension in Q (T2).

• For dimension PROD, XD = {PROD_SKU}, X∗
D =

{PROD_SKU, SUBCATEGORY, CATEGORY}, we have XD 7→ X∗
D, Q (T2) is not

ambiguous with respect to dimension PROD.

• For dimension TIME, XD = {YEAR}, X∗
D = {YEAR}, we have XD 7→ X∗

D,
Q (T2) is not ambiguous with respect to dimension TIME.

• For dimension WAREHOUSE, XD = {CITY, COUNTRY}, X∗
D =

{CITY, STATE, COUNTRY}, we have XD ̸7→ X∗
D, Q (T2) is ambiguous with respect

to dimension WAREHOUSE.

We generate Q a that joins Q (T2) with dimension table WAREHOUSE and sets
aggregated measure attribute t.SUM(QTY_ON_HAND) to null for all ambiguous tuples
t ∈ Q (T2). A tuple t is ambiguous when its value pair of CITY, COUNTRY con-
tains more than one STATE value in WAREHOUSE. For example, suppose that
WAREHOUSE contains two tuples t1 and t2 with the same values for attributes
CITY, COUNTRY and different STATE values, (Dublin, Ohio, United States) and (Dublin,
California, United States). Query Q (T2) contains one tuple t with CITY, COUNTRY

value being (Dublin, United States), then t is ambiguous, Q a will set the aggregated
SUM(QTY_ON_HAND) value in t to null.

Generate the completion table Q c. The input comp = true, we build query Q c to
compute the completion table for T1 and Q a. We first check the LFD condition. For
dimension PROD, TIME, the common attributes between each dimension and
Q a can determine the common attributes between each dimension and T1. But this
condition does not hold for dimension STORE, as explained in Example 3.25 on
Page 70. Therefore, we do not compute the completion table T com, and return an
empty table Q c.

Generate final merge query Q . The path used to merge T1 and Q a contains only
one relationship R(T1, Q a) with complement type ‘NAT’, so we get Q path = T1. The
query for natural merge T1 and Q a is Q ′ = πS′(T1 ▷◁Y Q a))), where S′ contains
the schema of T1 augmented with attribute SUM(QTY_ON_HAND). Finally, we obtain
Q = Q ′ ∪ Q c.

Query Q is returned by this MSA call, and it is a non-ambiguous, complete merge
of T1 and Q (T2).

The complete workflow of augmenting the source table T1 with attributes from T2

is shown in Figure 4.3. Given a source table T1, Get Schema Augmentation API
first returns a list of schema augmentation tables where each schema augmentation
table contains its complement type, new attributes it can bring, and paths connect
to the source table. For a target table T2 that is schema augmentation to T1, user
can use Reduction Query Generation API to generate a reduction query Q (T2) that
transforms T2 into a natural schema complement to T1. Finally, using Merge Schema
Augmentation API, a final merge result T ′

1 is generated which naturally merges T1

with Q (T2), T ′
1 is non-ambiguous and complete.

Figure 4.3: The complete workflow of merging T1 and T2

The following lemmas and proposition state that the RQG and MSA API compute a
correctly merge result.

Lemma 4.1 (Composition of natural schema complements). Let T (S) be a natural
schema complement to T0(S0) with respect to relationship R 0(T0, T) on attributes
Y0, and T1(S1) be a natural schema complement to T with respect to relationship
R 1(T, T1) on attributes Y1. Then T1 is also a natural schema complement to the
natural merge of T0 and T , i.e., T0 ▷◁Y0 T .

Proof. Let T ′
0(S′

0) be the natural merge of T0 and T , T ′
0 = T0 ▷◁Y0 T .

There exists an attribute mapping relationship R ′(T ′
0, T) on common attributes

Y′ = S′
0 ∩D S, and Y1 ⊆ Y′. And there exists a well-formed relationship R ′

1(T ′
0, T1)

on attributes Y1 ∩D S′
0 by the composition of relationships R ′(T ′

0, T) and R 1(T, T1).
Because T1 is a natural schema complement to T , we have Y1 7→ S1 and Y′ 7→ S1.
Therefore, T1 is a natural schema complement to T ′

0.

Lemma 4.2 (Composition of schema complement and schema augmentation).
Let T (S) be a natural schema complement to T0(S0) with respect to relationship
R 0(T0, T) on attributes Y0, and T1(S1) be a schema augmentation to T with respect
to relationship R 1(T, T1) on attributes Y1. Then T1 is a schema augmentation to the
natural merge of T0 and T , i.e., T0 ▷◁Y0 T .

Proof. Let T ′
0(S′

0) be the natural merge of T0 and T , T ′
0 = T0 ▷◁Y0 T .

There exists an attribute mapping relationship R ′(T ′
0, T) on common attributes

Y′ = S′
0 ∩D S, and Y1 ⊆ Y′. By the composition of relationships R ′(T ′

0, T) and
R 1(T, T1), there exists a well-formed relationship R ′

1(T ′
0, T1) on attributes Y1 ∩D S′

0.
Therefore, T1 is a schema augmentation to T ′

0.

Proposition 4.1. Let query Q be the result of a MSA(T0, T , path, true, true) call
with a start table T0(S0), a target schema augmentation table T (S) and a path
of relationships: path = R 1(T0, T1), · · · , R n(Tn−1, Q a), n >= 1. If R n(Tn−1, Q a)
maps to an augmentation schema complement edge (CT = ‘AUG’), then Q com-
putes a augmented merge of T0 with Q a (without ambiguous values). Otherwise,
R n(Tn−1, Q a) maps to a natural schema complement edge (CT = ‘NAT’) and Q
computes a natural merge T0 with Q a.

Proof. We ignore steps 1 and 2 in a MSA call. Step 3 returns merge query Q =
πS′

0
(Q path ▷◁Yn Q a), where S′

0 is augmented S with attributes from Q a, Q path =
T0 ▷◁Y1 T1 · · · ▷◁Yn−1 Tn−1 and Yi is the common attributes in relationship R i. By
Algorithm 3, every relationship in R 1(T0, T1), · · · , R n−1(Tn−2, Tn−1) maps a SC edge
with CT = ‘NAT’ in SC . By Lemma 4.1, Q path is a natural merge of T0 with its natural
schema complements T1, · · · , Tn−1. Also by Lemma 4.1, if R n(Tn−1, T) maps a SC
edge with CT = ‘NAT’ in SC , then Q a is a natural schema complement to the result
of Q path and Q computes the natural merge of Q path and T . Finally, by the same
lemma, since Q path is a natural merge of T0, Q is a natural merge of T0 and Q a. By
Lemma 4.2, if R a(Ta−1, T) maps to an augmentation SC edge with CT = ‘AUG’, then
Q a is a schema augmentation to the result of Q path and Q computes the augmented
merge of Q path and Q a (and an augmented merge of T0 and Q a).

4.6 Extension to Heterogeneous Data Sources

There exist different types of data sources except the analytic views in SAP HANA,
we now explain how our implementations could be generalized to heterogeneous
data sources outside of SAP HANA. SAP HANA implemented a solution called SAP
HANA Smart Data Integration and SAP HANA Smart Data Quality (SAP HANA SDI)
to access heterogeneous data sources, to provision, replicate, and transform these
data into table-based dataset in SAP HANA [40].

There are various data sources supported by SAP HANA SDI, includes SAP systems
like SAP ABAP, SAP ASE database, SAP ECC and SAP HANA; databases like Apache
Impala, Hadoop, IBM DB2, Microsoft SQL Server, Oracle and PostgreSQL; data
preparation tools like Teradata; flat files like SharePoint, Microsoft Excel and PST
files; even social media web site like Twitter and Facebook. To connect to source
systems that no adapter is provided, SAP HANA also allows users to write their own
adapters in JAVA using the Adapter SDK (Documentations of the Adapter SDK see
1).

Each data source works with its specific adapter inside SDI, these adapters function
like a bridge that provides a connection between the source system and SAP HANA
as shown in Figure 4.4. User can preserve the connection to a source system as
a remote source, objects inside the source system are then converted into HANA
datatypes as virtual tables in the remote source. User are allowed to access objects in
the remote source using two ways:

• A real-time data access. SAP HANA stores the schemas of virtual tables, any
SQL queries that operate on virtual tables will then be translated and executed
into an equivalent statement in the source system side.

• A snapshot data access. SAP HANA replicates the schemas of virtual tables
and stores locally a snapshot of the data, SQL queries can be directly operate
inside SAP HANA.

4.7 Conclusions

To conclude this chapter, we summarize the algorithms introduced in this chapter.
As described in Chapters 2 and 3, dimension / fact identifier and attribute graph play
an important role when defining natural schema complement, detecting ambiguous

1https://help.sap.com/viewer/e974128d984d4bfeaa0c0b582ce24d79/2.0_SPS04/en-US

https://help.sap.com/viewer/e974128d984d4bfeaa0c0b582ce24d79/2.0_SPS04/en-US

Figure 4.4: An overview of different adapters for SAP HANA

and guaranteeing complete merge. We first present in Section 4.2.1, algorithm
Attribute Graph Generation (ATG) that computes an attribute graph for a given
dimension, followed by algorithm Compute Dimension Identifier (CDI) in Section 4.2
that computes the dimension identifier from an attribute graph. With the knowledge
of identifiers and the relationships (see Section 2.3), we introduce the notion of
Schema Complement Graph which captures the types of connections between tables
(i.e., schema augmentation or natural schema complement), and algorithm Compute
Schema Augmentation(CSA) in Section 4.3 that explores schema complement graph
and finds schema augmentations for a given source table. To merge the source
table with a selected schema augmentation, we present algorithm Reduction Query
Generation (RQG) in Section 4.4 which generates reduction queries to convert a
schema augmentation into a natural schema complement and algorithm Merge
Schema Augmentation (MSA) in Section 4.5 that merges source table and target table
in a non-ambiguous, complete manner. All these algorithms are implemented in SAP
HANA as REST APIs, and we show in Section 4.6 that using SAP HANA SDI, our
implementations can be easily generalized to different input data sources.

5
State of the art

Contents
5.1 Introduction . 108

5.1.1 Schema and data integration 108

5.1.2 Drill-across and summarizability 110

5.1.3 Schema augmentation 110

5.2 Schema Integration . 111

5.2.1 Approach . 111

5.2.2 Examples . 111

5.3 Schema Matching Discovery . 114

5.3.1 Heuristic schema matching discovery 115

5.3.2 Reliable schema matching discovery 117

5.4 Mediation-based Data Integration 118

5.4.1 Approach . 118

5.4.2 Examples . 119

5.5 Schema Augmentation and Entity Complement 125

5.5.1 Schema augmentation approaches for web tables 125

5.5.2 Entity complement approaches 129

5.6 Drill-across Queries in Multi-dimensional Databases 132

5.6.1 Drill-across queries using conformed dimensions 132

5.6.2 Drill-across queries using compatible dimensions 136

5.7 Summarizable Analytic Tables 139

5.7.1 Summarizability in statistical data models 140

5.7.2 Summarizability in multidimensional data models 147

5.7.3 Conclusion on summarizability 160

5.8 Summary . 161

107

5.1 Introduction

The following chapter positions the contributions of this thesis with respect to the
related work on different approaches of schema integration. The first part from
Section 5.2 to Section 5.5 summarizes the historical evolution from early schema
integration approaches, which required an important expertise and user effort to
solve data heterogeneity issues, to recent “as-you-go” schema augmentation solutions
for rapidly identifying and assembling semantically related datasets into customized
user views. The second part, starting from Section 5.6, presents the relevant related
work on data quality issues encountered by the assembly of multi-dimensional
datasets.

5.1.1 Schema and data integration

The problem of discovering and merging related datasets has been studied for a long
time in a variety of contexts. The first studies occurred in the area of database schema
integration [41], which consists of integrating a given set of database schemas into a
unified representation, usually called an integrated or global schema. The integration
of different user views in a proposed database is also called view integration [41].
Two distinct tasks are involved in schema integration. The first task consists in
selecting and analyzing the local database schemas according to specific information
requirements. The second task is to compare the selected schemas.

The relationship of schema integration with the problem studied in this thesis is
the following. Given a set of analytic schemas, a global schema then integrates
all information contained in the analytic schemas and the schema designer defines
all schema mapping queries to populate the global schema. Finally, a user can
query the global schema and obtain answers that contain related data coming
from one or more tables. We can see that with this approach the design and
implementation effort rapidly become inefficient and complex for relating data
coming from a large number tables. The number of mapping queries might rapidly
increase and need a good knowledge of all available source schemas. This makes
the schema integration approach inappropriate for the use cases considered in this
thesis. Nevertheless, our approach shares some tasks with the the main schema steps
integration including schema comparison, conforming, merging and restructuring that
we describe in Section 5.2.

The data integration approach [42], [43] tries to solve some limitations of the
schema integration approach, and in particular the issue of generating semantic

mapping queries. Compared to schema integration, data integration is not driven by
a given set of data sources but defined according to the requirements of a database
application. The data integration workflow starts by the creation of a mediated
schema independently of some existing source schemas. Similar to schema integration,
data integration methods also rely on a preliminary schema matching [44], [45] (see
Section 5.3) phase to detect the relationships between the source schema elements
(tables, attributes) and the mediated schema elements and the inter-source data
dependencies. These schema matchings are used to iteratively suggest schema map-
pings for instantiating the mediated schema from the source data. Data integration
systems are capable to interpret these schema mappings to either transform queries
over the mediated schema into queries over the source data (view-based data in-
tegration) or to materialize the schemas into a physical database on which can be
directly queried (data warehouse integration approach [46].

The problems studied in this thesis are closer to the data integration problem than
to the schema integration problem (see Section 5.4 for examples). Assume a set
of analytic tables, called source tables, for which some inter-table dependencies
are known. Then a user can specify a mediated schema, called target schema, and
express the schema matchings that exist between source schema elements and
the target schema elements. The main specificity of our approach is that the user
explores and specifies table relationships (schema matchings) which are partially
defined in analytic schemas and metadata like foreign key constraints, queries and
view definitions. The chosen relationships are used to generate a mediated target
schema by augmenting a start source table with other source tables and also serve to
generate merge queries which correspond to schema mappings in the general data
integration model. The final result is a target view over the source tables that can be
queried by the user.

More recently, new approaches have been proposed to support data integration
capabilities "as you go", using the notion of dynamic schema complement [12] (Sec-
tion 5.5). These approaches are user-driven and assist users in the construction of
new datasets by assembling existing datasets. Starting from a given source dataset,
the system suggests to the user other datasets whose schemas augment the schema
of the source dataset with new attributes and whose data items are related to the
data items of the source dataset. Not surprisingly, like in data integration, these
methods require some knowledge about the inter schema dependencies that exist
between the source dataset and the candidate datasets for schema augmentation.
The approach developed in this thesis fall into this category and we shall position it
with respect to the data integration approaches.

5.1.2 Drill-across and summarizability

Finally, in the context of OLAP systems, a lot of work have been done to determine
under which conditions the data contained in different OLAP cubes could be com-
bined using so-called drill-across queries[6]. Given a set of fact tables, Drill-across
operation contains possibly sub-queries that aggregate fact tables to get a unified car-
dinalities and dimensionality. We shall first see in Section 5.6 how these conditions
compare to the data quality guarantees that our proposed method provides when
schema augmentation is applied to analytic datasets. We shall then position our work
with respect to the problem of summarizability for aggregate tables, which provides
conditions to guarantee that a correct computation of coarse-level aggregates can be
obtained from fine-grain aggregates.

5.1.3 Schema augmentation

In this thesis, we focus on the approach called schema augmentation which improves
the schema complement approach in a multidimensional context. This approach
explores the relationships between dataset which are extracted automatically from
the metadata of the analytic schemas like foreign key constraints, queries and
view definitions. Starting from a given source dataset, the system relies on the
relationships and discovers target datasets that are schema complements to the
source dataset or could be transformed into schema complements to the source
datasets. The query that is used to tranform a schema complement is called reduction
query. A user chooses one target dataset to generate the merge query which is a
left-outer join between the source dataset and the target dataset (or reduced target
dataset). The schema mappings between the source dataset and the target dataset
are automatically inferred from the relationships. We see in Section 5.5 the steps of
the approach with respect to data integration, in Chapter 3 the formal definition of
the schema augmentation approach and reduction query. The final result is a new
dataset that consists of the source dataset and the new attributes from the target
dataset.

5.2 Schema Integration

5.2.1 Approach

Schema integration [47] is the process of generating one or more integrated schemas
from existing schemas. These schemas represent the semantics of the databases
begin integrated and are used as input to the integration process. [41] provides a
comparative review of schema integration issues using the Entity-Relationship (ER).
In this seminal work, schema integration includes the notions of view integration
and database integration. View integration is a design process generating a global
conceptual description of a proposed database from multiple user-views whereas
database integration produces a global schema of a collection of heterogeneous
databases (with different data models and structures).

Our approach is more related to the notion of view integration which consists of
four separate steps.

Step 1: Pre-integration : select and analyze the local schemas to be integrated
according to specific information requirements.

Step 2: Schema comparison : compare the selected schemas and detect possible
semantic and syntactic conflicts (schema matching)

Step 3: Conforming schemas : resolve the detected conflicts to enable schema
merging. The schema integration process involves the user to discover and
deal with the different naming and strucutural conflicts [41].

Step 4: Merging and restructuring : create and, if necessary, restructure the final
integrated schema. Two strategies might be applied for the integration of
multiple schemas. Binary strategies merge two schemas in each step whereas
N-ary strategies can merge three or more schemas at a time.

5.2.2 Examples

Example 5.1. We now illustrate the use of a binary view integration strategy by an
example.

Step 1: Pre-integration : Consider the schemas of the two non-analytic tables
ct_STORE and ct_WAREHOUSE which are used to define the dimension tables
STORE and WAREHOUSE as shown in in Figure 2.9, Page 37. Both tables
defined an attribute ID as their primary key:

ct_STORE (ID, STORE_ID, CITY, STATE, COUNTRY, STORE_NAME, WEB_SITE, PHONE)
ct_WAREHOUSE(ID, WH_ID, CITY, STATE, COUNTRY, WH_NAME, SQ_FT, PHONE)

The two schemas ct_STORE and ct_WAREHOUSE can be integrated as follows
into a new schema ct_STORE_WH.

Step 2: Schema comparison : The schema integration process involves the user
to discover and deal with the different naming and structural conflicts [41]. For
example, the user has to compare the attribute names and their domain values
to verify whether two attributes are comparable in both schemas. Functional
dependencies can also be used to identify possible structure conflicts generated by
different key attributes. Name conflicts mainly appear for equivalent attributes with
different names (synonym attributes) or non-equivalent attributes with the same
name (homonym attributes). The attributes ID, PHONE, CITY, STATE and COUNTRY in
both schemas are homonyms. The values of attribute ID in the two schemas are not
comparable, since ID identifies a stores in table ct_STORE and warehouses in table
ct_WHAREHOUSE. The user decides that attribute PHONE is also not comparable
and all other homonym attributes describe the same concept. This results in the
following schema matchings identified by the user:

ct_STORE.CITY ∼= ct_WAREHOUSE.CITY

ct_STORE.STATE ∼= ct_WAREHOUSE.STATE

ct_STORE.COUNTRY ∼= ct_WAREHOUSE.COUNTRY

Structure conflicts might, for example, appear through the existence of conflicting
functional dependencies between equivalent attributes in both schemas. The func-
tional dependencies in our two schemas are unknown and it is impossible to solve
structure conflict.

Step 3: Conforming schemas : This step consists in resolving the conflicts iden-
tified in the previous step. The name conflict for attribute ID in ct_STORE and
ct_WAREHOUSE can be resolved by adding a prefix to the attribute name in both
schemas: CT_WAREHOUSE_ID for warehouse id and CT_STORE_ID for store id. The same
prefix is added by the user to attribute PHONE to distinguish between warehouse

phone numbers and store phone numbers. The user continues to conform the two
schemas

by (1) moving the matching attributes CITY, STATE and COUNTRY in ct_STORE and
ct_WAREHOUSE from their original schemas into a new shared entity named
LOCATION and (2) by creating a relationship through an artificial location identifier
LOCATION_ID. The intermediate schema is shown in Figure 5.1. We use our graphical
notations in the examples instead of the ER graphical notations originally used in
[41]. Observe that all entities now have distinct attributes except LOCATION_ID which
defines the relationships between the three tables.

Figure 5.1: Transformed schemas and their relationships

Step 4: Merging and restructuring : The result of the design phase are the two trans-
formed source schemas which are semantically related through a named relationship
LOCATION. This can be understood in two different ways. One interpretation is to
consider each table instance of the global schema as a view over the source schemas.
The other interpretation is the existence of a join relationship between the two
source schemas on attributes CITY, STATE and COUNTRY. The user adopts the second
interpretation and merges ct_STORE and ct_WAREHOUSE through their common
entity LOCATION to produces the following final global schema ct_STORES_WH:

ct_STORES_WH(CT_STORES_ID, STORE_ID, CITY, STATE, COUNTRY, STORE_NAME, WEB_SITE,
CT_STORES_PHONE, CT_WAREHOUSE_ID, WH_ID, WH_NAME, SQ_FT,
CT_WAREHOUSE_PHONE)

Observe that all previous steps require human decisions and SQL programming
efforts to generate the final table.

[41] proposes the three quality metrics to evaluate the resulting integrated schema.
The first quality criteria is completeness and correctness which validates if the inte-
grated schema is able to represent correctly all information described by the initial
schemas. In our example, the completeness and correctness criteria are ensured since
every attribute in ct_STORE and ct_WAREHOUSE is kept in ct_STORES_WH and

there exist no functional dependencies that restrict the information that can be stored
in the merged schema. The second criteria is minimality, which means that there are
no redundant attributes in the integrated schema. This is ensured through the cre-
ation of the intermediate table LOCATION which factorizes the location attributes
of both source tables. The last criteria is understandability, which reflects the facility
of applying the different transformations to produce the integrated schema. Eval-
uating the understandability of the resulting global schema also requires human’s
judgement because there exists no quantitative and objective understandability
score for global schemas. In our example, since the only schema conforming oper-
ation was to create table LOCATION, we can assume that if schemas ct_STORE
and ct_WAREHOUSE were understandable, then ct_STORES_WH should also be
understandable.

5.3 Schema Matching Discovery

As shown in the previous section, schema integration is a complex and time con-
suming task, mostly because it requires important user interaction for detecting and
resolving semantic and syntactic conflicts between the source schemas. The goal
of schema matching is to assist the users in the detection of semantic relationships
the elements of different schemas. An abundant literature [44]–[46], [48] has
proposed techniques that automatically discover schema matchings which reduce
the user efforts required for schema and data integration. For instance, schema
matching techniques can automatically discover join relationships using a combina-
tion of attribute name matching, data type matching and data instance matching.
In this section, we mention a few techniques that could also be leveraged in our
approach.

Schema matchings are classified as one-to-one matchings between two attributes
(e.g., TIME.YEAR ∼= ALL_SALES.YEAR), and many-to-many matchings between multi-
ple attributes (e.g., PERSON.NAME ∼= STUDENT.FIRST_NAME + STUDENT.LAST_NAME).
In this thesis, we focus on one-to-one schema matchings.

We can mainly distinguish between two schema matching approaches [46] discover-
ing either heuristic schema matchings through similarity computations or reliable
schema matchings by extracting information from schema metadata.

5.3.1 Heuristic schema matching discovery

A common approach to estimate if two attribute from different schemas match (are
compatible) is to apply some similarity measure. Similarities can be computed by
comparing the attribute names, schema names, domain values, etc. We follow the
categorization of [46] to discuss several similarity-based schema matching tech-
niques in more detail. Providing an exhaustive description of the many techniques
that have been published is out of scope of this chapter.

Name-based matching: The most intuitive way to match two table attributes by
comparing their names. To measure the similarities between attribute names,
string-matching algorithms like edit distance, Soundex or Jaccard measure [49]
can be used. For example, consider attribute PHONE in table ct_STORE of schema
Example 5.1 and Jaccard measure J(x, y) = |Bx∩By|/|Bx∪By| between the bigram
sets Bx and By of x and y respectively. Suppose we have attributes PHONE, ID and
WH_ID. Then we can extract the following sets of bigrams for each attribute:

BP HONE = {P, PH, HO, ON, NE, E}

BID = {I, ID, D}

BW H_ID = {$W, WH, H_, _I, ID, D$}

The Jaccard-measure between ct_STORE.PHONE and each attribute in
ct_WAREHOUSE then are J(PHONE, ID) == 0, J(PHONE, WH_ID) = 0 and
J(PHONE, PHONE) = 1. Besides string-matching algorithms, there are various other
ways to compute similarities between attribute names [46]. A more detailed discus-
sion is out of the scope of this thesis.

Instance-based matching: Attributes also can be matched by comparing their value
domains. A simple way is again to apply Jaccard measure [49] which estimates the
overlap between two sets. For example, consider attribute CITY in table SALESORG

shown in Table 1.1 on Page 5 and Jacccard measure J(A, B) = |N(A)∩N(B)|/|N(A)∪
N(B)| between the domain value sets of attributes A and B. Suppose we have table

REGION shown in Table 1.1. We extract the domain value sets for each attribute
in REGION :

N(CITY) = {Dublin, Paris, Berlin}

N(STATE) = {Ohio, California}

N(COUNTY) = {USA, Ireland, France, Germany}

N(CONTINENT) = {NorthAmerica, Europe}

The Jarccard-measure between SALESORG.CITY and each at-
tribute in REGION are: J(SALESORG.CITY, REGION.CITY) =
1/3, J(SALESORG.CITY, REGION.STATE) = 0,
J(SALESORG.CITY, REGION.COUNTY) = 0, J(SALESORG.CITY, REGION.CONTINENT) =
0. A threshold t should be defined such that when the similarity of two attributes
value domains is higher than t, we might conclude that these two attributes match
based on their instance. For example, when t = 0.2, we could infer a schema
matching as: ct_STORE.CITY ∼= ct_WAREHOUSE.CITY.

Combined matching: Most of schema matching approaches adopt combined match-
ing to compute similarities. Two attributes might have the same name but disjoint
value domains. For example the domain of attribute PHONE in table WAREHOUSE

might be disjoint from the domain of attribute PHONE in table STORE, or, inversely,
two attributes might contain the same domain values but have different names. The
general architecture of combined matching systems [46] includes several name-
based and instance based matchers producing different similarity matrices between
schema elements. These matrices are processed by a combiner which produces a
single matrix using some aggregation function (avg, min, max or weighted-sum).
The produced matrix is transformed by a constraint enforcer which exploits external
domain knowledge to improve the reliability. For example, product names more
likely match with item names than city names. Finally, the enforced matrix is filtered
by a match selector which selects a subset of matches. A simple selection strategy
might select all matches above a certain threshold. Other strategies formulate the
selection as an optimization problem like searching the subset of matchings which
maximize the total similarity score and matching each attribute at most once.

5.3.2 Reliable schema matching discovery

Heuristic matching strategies can apply a rich set of similarity-based matchers for
different data types. However, they represent at least two drawbacks. A first issue is
their efficiency. Instance-based matching algorithm need to compare the domain
values for several pairs of attributes in two schemas, which rapidly becomes very
costly. The second issue concerns the quality of the obtained matchings. Similarity
computations only provide approximate schema matchings with limited reliability
guarantees for the produced matchings.

Other approaches exploit user-defined table constraints like foreign key constraints
to infer schema matchings. The produced schema matchings are created based
on user-defined logical schema constraints and more reliable than approximate
similarity-based schema matchings. In this thesis, we only consider reliable schema
matchings. Schema matchings are inferred by existing implementation of metadata
extractor which analysis user-defined schema metadata and queries. (See Section 4.1
in Chapter 4).

Table constraints. PK-FK constraints defined in relational data models can be
inferred as schema matchings. For example, consider the source schema in
Example 5.2. The PK-FK constraints defined between tables PRODUCT and
SUBCATEGORY on attribute SUBCATEGORY_ID and between table SUBCATEGORY
and CATEGORY on attribute CATEGORY_ID directly define the following reliable
constraints:

PRODUCT.SUBCATEGORY_ID ∼= SUBCATEGORY.SUBCATEGORY_ID

CATEGORY.CATEGORY_ID ∼= SUBCATEGORY.CATEGORY_ID

View definitions. Relational and analytic schemas also might contain views which
are defined by queries over other tables and views. As shown in Section 2.1, queries
define attribute mappings between the view table and the query tables. For example,
consider the source schema in Example 5.3, fact table (view) SALES is defined by
a query over dimension tables TIME and SALESORG. From this query, we can
derive one-to-one attribute mappings between SALES and each dimension table:

SALES.STORE_ID ∼= SALESORG.STORE_ID

SALES.CITY ∼= SALESORG.CITY

SALES.COUNTRY ∼= SALESORG.COUNTRY

SALES.YEAR ∼= TIME.YEAR

Conformed dimensions [6] and compatible dimensions [30] between fact tables also
introduce schema matchings. In Example 5.8, conformed dimension PROD between
fact tables SALES and INVENTORY generates the following schema matchings:

SALES.PROD_SKU ∼= INVENTORY.PROD_SKU

SALES.BRAND ∼= INVENTORY.BRAND

SALES.PROD_SKU ∼= PROD.PROD_SKU

SALES.BRAND ∼= PROD.BRAND

INVENTORY.PROD_SKU ∼= PROD.PROD_SKU

INVENTORY.BRAND ∼= PROD.BRAND

5.4 Mediation-based Data Integration

5.4.1 Approach

As explained in Section 5.1.1, data integration methods are not driven by a given set
of data sources but defined according to the information requirements of a database
application. A data integration workflow proceeds in three steps:

Step 1: Define a mediated schema: specify the schema of the mediated table for
some specific application needs.

Step 2: Specify schema matchings: discover schema matchings between the el-
ements (attributes, tables) of the mediated schema and the source schemas.

Step 3: Infer schema mappings: infer schema mappings from the specified
schema matchings.

These steps can be interleaved until a complete schema mapping is obtained for the
mediated schema. The notion of completeness here means that an instance of the
mediated schema that fulfills all its integrity constraints can be computed using the
schema mapping. For more details, we refer the reader to [43], [46].

The schema augmentation problem can be considered from a data integration
perspective. Based on the data model introduced in Chapter 2 we can define the
data integration steps as follows:

Step 1: Define mediated schema: In our model, the mediated schema corre-
sponds to a source schema extended by some new attributes. The data inte-
gration process starts by choosing one start table, e.g. PRODUCT and a set of

additional information items/attributes, e.g. STOCK, which should be added to
the start table.

Step 2: Specify schema matchings: In our schema augmentation approach, we
use reliable schema matchings (Section 5.3) which are formally captured by
join relationship and attribute mapping relationship as described in Section 2.3.
Thus, schema matching specification corresponds to extracting and inferring
join and attribute mapping relationships which connect the start table with
other source schemas that can provide the required additional attributes. These
other tables are called target table candidates.

Step 3: Infer schema mappings: This step consists in selecting a subset of candi-
date target tables where each table can provide one or more new attributes.
Thus, schema mappings correspond to merge queries which join the start table
with the selected target tables to instantiate the mediated schema. Formally,
this step corresponds to find and merge schema augmentations using the
exploration of a schema complement graph as described in Chapter 3.

We provide a few examples to facilitate the comparison of data integration solutions
with the approach proposed in this thesis.

5.4.2 Examples

Example 5.2. Suppose a user wants to generate a simple dataset of one table with
information about products like their brand, category, and the amount sold per year.

Step 1: Define mediated schema: The user defines a mediated schema consisting
of a single table SALES_PRODUCTS:

SALES_PRODUCTS(PROD_SKU, BRAND, YEAR, CATEGORY_NAME, SUBCATEGORY_NAME, AMOUNT)

Step 2: Specify schema matchings: The source schema contains the following
tables SALES, PRODUCT, CATEGORY and SUBCATEGORY from Figure 2.9 on
Page 37:

SALES (PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT)
PRODUCT (PRODUCT_SKU, PRODUCT_NAME, BRAND_NAME, WEIGHT, SUBCATEGORY_ID)
CATEGORY (CATEGORY_ID, CATEGORY_NAME)
SUBCATEGORY (CATEGORY_ID, SUBCATEGORY_ID, SUBCATEGORY_NAME)

The underlined attributes represent the primary key in each table.

Using the schema complement approach, the user will first choose a "start" table
that contains all key attributes of the mediated schema (table). In our case, the only
possible start table is SALES, which contains both key attributes PRODUCT_SKU and
YEAR of table SALES_PRODUCTS. Figure 5.2 shows the start table and the existing
join relationships (solid lines) which are extracted from foreign key constraints and
view definitions of the source schema. Schema matchings between the mediated
schema and the source schemas that would be used to infer schema mappings are
indicated by dashed arrows.

Figure 5.2: Join relationships and schema matchings

Table 5.1 shows the schema matchings specified between the source schemas
and target (mediated) schema using the notation of [44]. Attributes of table
SALES_PRODUCT are matched with attributes of SALES, SUBCATEGORY and
CATEGORY, we call this set of schemas a cover of the mediated schema [46].

Table 5.1: Schema matchings from Figure 5.2

SALES.PROD_SKU ∼= SALES_PRODUCT.PROD_SKU

SALES.BRAND ∼= SALES_PRODUCT.BRAND

SALES.YEAR ∼= SALES_PRODUCT.YEAR

SALES.AMOUNT ∼= SALES_PRODUCT.AMOUNT

SUBCATEGORY.SUBCATEGORY_NAME ∼= SALES_PRODUCT.SUBCATEGORY_NAME

CATEGORY.CATEGORY_NAME ∼= SALES_PRODUCT.CATEGORY_NAME

We can observe, for each attribute of SALES_PRODUCT, there exists one and
only one matching between SALES, SUBCATEGORY and CATEGORY, we
call them a minimal cover of the mediated schema. Therefore, the schema
matchings PRODUCT.PRODUCT_SKU ∼= SALES_PRODUCT.PROD_SKU, PRODUCT.BRAND

∼= SALES_PRODUCT.BRAND are not shown in Figure 5.2, since attributes
SALES_PRODUCT.PROD_SKU and SALES_PRODUCT.BRAND already match with at-
tributes PRODUCT_SKU and BRAND of table SALES.

There is a difference between our schema augmentation approach and the more
general data integration. In schema augmentation, the user selects a minimal cover
of the mediated schema, whereas data integration uses several covers of the mediated
schema [46]. This restriction reduces the complexity of the schema mapping queries
(see below) generated by schema augmentation and avoids complex data data fusion
operations [50].

Step 3: Infer schema mappings: Given a set of selected schema matchings, schema
mapping inference consists in generating a merge query for populating the me-
diated schema. In our example, all attributes can be provided by tables SALES,
CATEGORY and SUBCATEGORY. However, as we can see in Figure 5.2, table
SALES is not directly related to the category dimension tables and we also need
table PRODUCT to find all categories and sub-categories of a product. A suggested
schema mapping then consists of performing a left outer-join between tables SALES,
PRODUCT, CATEGORY and SUBCATEGORY, followed by a projection on the
attributes of SALES_PRODUCTS. A left outer-join is used to keep all products
in table SALES (the primary key attribute PROD_SKU of the target table is matched
with attribute PROD_SKU in table SALES). The outer join might generate null values
for non-key attributes (due to missing tuples in the other tables). If there exists a
constraint indicating that all attributes of the mediated schema must be non-null, an
inner join can be applied instead, but this would result in missing certain products
in the mediated schema.

Example 5.3. As a second data integration scenario, we use the example in Sec-
tion 1.2 on Page 4.

Step 1: Define mediated schema: The user defines a mediated schema consisting
of a single table SALES_DEM which extends an existing table SALES:

SALES_DEM (STORE_ID, CITY, COUNTRY, YEAR, AMOUNT, POP, MIN_UNEMP, MAX_UNEMP)

Step 2: Specify schema matchings: The source schema consists of the following
five tables SALES, DEM, SALESORG, TIME and REGION .

SALES (STORE_ID, CITY, COUNTRY, YEAR, AMOUNT)
DEM (CITY, STATE, COUNTRY, YEAR, POP, UNEMP)
SALESORG (STORE_ID, CITY, STATE, COUNTRY)
TIME (DATE, WEEK, MONTH, YEAR)
REGION (CITY, STATE, COUNTRY, CONTINENT)

The join relationships between these source tables are as depicted in Figure 5.3
by solid lines. Schema matchings between the elements (tables, attributes) of
the mediated schema and the elements of source schema that would be used are
indicated by dashed arrows.

Figure 5.3: Join relationships and schema matchings

Table SALES_DEM does not contain a matching to the attribute STATE of table DEM
which is the identifier of DEM. Since measure attributes POP and UNEMP depend on
this attribute, the schema matching “reduces” table DEM by aggregating the two
measures POP and UNEMP along attribute STATE. For this, we extend our notations of
schema matchings with aggregate functions (see Table 5.2).

The schema matchings between SALES_DEM and SALES, DEM shown in Table 5.2
is a minimal cover of the mediated schema, there exist no other schema matchings
between attributes STORE_ID, CITY, COUNTRY of table SALESORG and SALES_DEM,
or attributes CITY, COUNTRY of table REGION and SALES_DEM. When specifying
the schema matchings with aggregate functions, a first challenge for the user is
to choose the correct aggregation functions that can be applied to the attributes

Table 5.2: Schema matching extracted from Figure 5.3

SALES.STORE_ID ∼= SALES_DEM.STORE_ID

SALES.CITY ∼= SALES_DEM.CITY

SALES.COUNTRY ∼= SALES_DEM.COUNTRY

SALES.YEAR ∼= SALES_DEM.YEAR

SALES.AMOUNT ∼= SALES_DEM.AMOUNT

SUM(DEM.POP) ∼= SALES_DEM.POP

MIN(DEM.UNEMP) ∼= SALES_DEM.MIN_UNEMP

MAX(DEM.UNEMP) ∼= SALES_DEM.MAX_UNEMP

of the source tables. Specifically, the user must know that POP can be summed
and averaged, but UNEMP can only compute a maximal or minimal value because it
describes an unemployment ratio. The capability of aggregation is called aggregable
properties introduced in Section 2.2.6 on Page 31 which can assist user during the
“reducing” process.

Step 3: Infer schema mappings: Assuming that the above matchings are correctly
specified, then {SALES, DEM} is a cover of the mediated schema selected by the
user (table TIME is not necessary since join attribute YEAR appears in both tables).
The corresponding schema mapping is a nested query which first joins SALES with
DEM on their common attributes YEAR, CITY, COUNTRY followed by an aggregation
of attributes POP and UNEMP grouped by all other attributes of SALES_DEM, i.e.
STORE_ID, CITY, COUNTRY, YEAR, AMOUNT.

Listing 5.1: Data integration approach of joining SALES with DEM

SELECT SALES . STORE_ID , SALES . CITY , SALES .COUNTRY, SALES . YEAR , SALES .AMOUNT,
AVG(DEM. POP) AS POP ,
MIN(DEM.UNEMP) AS MIN_UNEMP,
MAX(DEM.UNEMP) AS MAX_UNEMP

FROM SALES LEFT OUTER JOIN DEM
ON SALES . CITY = DEM. CITY
AND SALES .COUNTRY = DEM.COUNTRY
AND SALES . YEAR = DEM. YEAR

GROUP BY STORE_ID , CITY , COUNTRY, YEAR , AMOUNT

Because attribute STORE_ID of SALES does not exist in table DEM and STORE_ID is
the key attribute of SALES, the left-outer join between SALES and DEM duplicates
the values of POP and UNEMP in the left-outer joins. Therefore, the schema map-
pings generates incorrect values for attributes POP in SALES_DEM (MIN_UNEMP and
MAX_UNEMP are computed by function MINand MAX, they are not effected by the
duplication). Existing data integration methods are neither detecting nor resolving

this problem. This is yet another difference between our schema augmentation
approach and the general data integration approaches, we generate the correspond-
ing schema mapping by first reducing DEM using an aggregation of attributes POP

and UNEMP, then joins SALES with the reduced DEM. The corresponding schema
mapping generated in our schema augmentation approach is as follows:

Listing 5.2: Schema augmentation approach of joining SALES with DEM

SELECT SALES . STORE_ID , SALES . CITY , SALES .COUNTRY, SALES . YEAR ,
SALES .AMOUNT, AGG_DEM. POP , AGG_DEM.MIN_UNEMP, AGG_DEM.MAX_UNEMP

FROM SALES LEFT OUTER JOIN
(SELECT CITY , COUNTRY, YEAR ,

AVG(DEM. POP) AS POP ,
MIN(DEM.UNEMP) AS MIN_UNEMP,
MAX(DEM.UNEMP) AS MAX_UNEMP
FROM DEM
GROUP BY CITY , COUNTRY, YEAR

) AGG_DEM
ON SALES . CITY = AGG_DEM. CITY
AND SALES .COUNTRY = AGG_DEM.COUNTRY
AND SALES . YEAR = AGG_DEM. YEAR

An alternative way to generate the mediated schema of Listing 5.2 using data integra-
tion approach is to define an intermediate table: AGG_DEM, the intermediate table
stores the result of an aggregation on DEM that computes AVG(POP), MIN(UNEMP)
and MAX(UNEMP) groups by CITY, COUNTRY, YEAR. Then schema matchings between
the mediated schema SALES_DEM and AGG_DEM can be specified between at-
tributes POP, MIN_UNEMP and MAX_UNEMP. Finally, the schema mappings is inferred as
a left-outer join between SALES and AGG_DEM.

The previous examples show that data integration techniques facilitate the gener-
ation of schema mappings mainly by requiring a user to select schema matchings
or providing a minimal cover of the mediated schema. Data integration approach
also deal with the cases when several minimal covers are provided, a schema map-
ping would be generated for each minimal cover then combined into one large
query using union. A similar approach called Entity Complement which also takes a
combination of schema mappings will be introduced in Section 5.5.2.

Obviously, the methods presented before for the discovery of schema matching and
the generation of schema mappings can reduce the human effort. More sophisticated
methods have been proposed to refine the suggested schema mappings such as
the exploitation of examples, as described in [43]. However, with respect to our

requirements explained in Chapter 1, the work required for the user is still beyond
what is expected.

5.5 Schema Augmentation and Entity Complement

5.5.1 Schema augmentation approaches for web tables

Schema augmentation is a special approach for data integration which does not
require the creation of a mediated schema. Thus all tables are part of a source
database schema. A schema augmentation workflow proceeds in three steps:

Step 1: Select start table: the user selects a start table whose schema will be
augmented using the schema of other source tables.

Step 2: Find candidate tables: the user explores the suggested schema matchings
and finds a set of matching candidate tables, called target tables, that can
provide new attributes to the schema of the start table.

Step 3: Generate augmented table: the schema mapping queries between the
start table and a selected candidate target table are generated. These mapping
queries connect both tables through a "path" of matching tables. The merge
mainly consists of performing a left outer-join between the start table, the
matching tables and the target table.

More generally, schema augmentation can be applied to any kind of database table,
materialized or virtual (defined by a view). We now introduce several specific
schema augmentation approaches.

Schema complements for web tables

Originally, the idea of schema complement was developed in the context of web tables
[12] with the idea of “adding as many properties as possible to the entities of a
given table while preserving the consistency of its schema”. Schema complement is
a special case of schema augmentation where the augmented source table has the
same number of tuples as the start table. The method proposed in [12] is limited
to what we call natural schema complement in Section 3.2 on Page 46. The key
to determine if a target table is a schema complement to some start table is that
the attributes in the target table which match with the start table, called common
attributes, are a key in the target table. Then, by applying left outer joins, the merge

of the start table with a schema complement table preserves all tuples in the start
table without any duplication.

Example 5.4. Assuming that we have a schema contains the two tables ct_STORE
and ct_WAREHOUSE presented before in Example 5.1 on Page 111, and assume
that their primary keys are respectively, (STORE_ID) and (WH_ID, COUNTRY).

Step 1: Select start table: User selects ct_STORE as the start table.

Step 2: Find candidate tables: The techniques presented in [12] are able to dis-
cover that the domains of the attributes CITY, STATE, COUNTRY in ct_STORE and
ct_WAREHOUSE are largely overlapping and therefore are comparable (match).
Schema matchings are defined for these attributes as follows:

ct_WAREHOUSE.CITY ∼= ct_STORE.CITY

ct_WAREHOUSE.STATE ∼= ct_STORE.STATE

ct_WAREHOUSE.COUNTRY ∼= ct_STORE.COUNTRY

The common attributes between ct_STORE and ct_WAREHOUSE are CITY, STATE,
COUNTRY, but these attributes do not functionally determine all attributes in
ct_WAREHOUSE. Therefore, ct_WAREHOUSE is not a schema complement to
ct_STORE and since there is no other candidate table, we can not complement
table ct_STORE.

Example 5.5. In our second scenario, suppose that we have the same source tables as
in Example 5.2, the identifier of each table being indicated by underlined attributes.

Step 1: Select start table: User selects SALES as the start table.

Step 2: Find candidate tables: The schema matchings are already known as speci-
fied in Example 5.2 as shown in Figure 5.2. Table PRODUCT is a candidate schema
complement to SALES, and since their common attributes PROD_SKU and BRAND con-
tains the primary key PROD_SKU of PRODUCT (functionally determine all attributes
of PRODUCT), table PRODUCT is a schema complement to start table SALES.

Step 3: Generate augmented table: The corresponding schema mapping is a merge
query that takes a left outer-join of table SALES with PRODUCT on their common
attributes PROD_SKU and BRAND. The result of the merge is an augmented table
SALES_CAT with the new attributes SUBCATEGORY_ID and SUBCATEGORY_NAME.

Notice that the other candidate table SUBCATEGORY is not a schema comple-
ment to SALES. However it becomes a schema complement to the augmented
table SALES_CAT since there exists a schema matching between SALES_CAT
and SUBCATEGORY on attribute SUBCATEGORY_ID which is the primary key of
SUBCATEGORY. Similarly, after merging SALES with SUBCATEGORY and
adding the new attributes SUBCATEGORY_NAME and CATEGORY_ID, table CATEGORY
also becomes a schema complement and can be merged to add attribute
CATEGORY_NAME.

After three iterations, the final augmented SALES_PRODUCTS corresponds to the
mediated schema of Example 5.2 with the guarantee that there exists exactly one
tuple in the augmented table for each tuple in SALES (no tuple duplication).

Compared to schema integration (Section 5.2) which integrates an arbitrary number
of source schemas with a pre-defined mediated schema, schema complement builds
the new integrated schema incrementally. Instead of defining a mediated schema
containing all attributes (Step 1), it starts from a start table and uses schema
matchings (Step 2) to identify the target tables that can provide new attributes. By
incrementally extending the start table with new attributes from the target tables,
the final result is a complete mediated schema which can be expressed by a single
schema mapping query that contains a set of selected source tables. This schema
complement process always makes sure that the common attributes between the
start table and the target table are a key of the target table. This avoids that the
left-outer join generates duplicates for the tuples in the start table. However, this
restriction also reduces the number of candidate target tables which can be merged
with the start table. For example, it cannot address the use case of Example 5.3 on
Page 121, because it does not support merge queries with aggregation.

The second goal of building schema complements is to bring a maximum number
of new attributes and values. In particular, the approach proposed in [12] is
able to populate new attributes describing the same concept from different tables.
For example, if ct_STORE is the start table, it is possible to map new attributes
CITY_NAME and CITY_NAME_ENG with the same domain values to a single attribute CITY

through schema complements and to populate this attribute with the values from
both domains. On the other hand, two attributes with the same name but describe

different concepts (name conflict) are mapped to two different attributes by a adding
a prefix to the attribute names.

In conclusion, the schema complement approach proposed in [12] can be considered
as an efficient solution to build new tables integrating data from different other
source tables with minimal user interaction. Moreover, if the key attributes of
schemas and relationships between schemas are known, data integration using
schema complement becomes a completely automatic task. However, because of
the restriction that common attributes should contain the identifiers of target tables,
schema complement is not able to deal with target tables that are need to be reduced,
like applying an aggregation.

Keyword-based schema complement discovery

The OCTOPUS system [51] implements a series of integration-related operations like
search, extraction, data cleaning and integration within web tables. The integration
operation EXTEND enables users to “find related tables that can be joined to add new
attributes to a table”. Compared to schema complement[12], which automatically
detects and adds a maximum number of attributes to the start table, EXTEND requires
two user-defined parameters to control the augmentation process. Given a start
table T , an attribute name A and a keyword k, a web search engine returns a set of
candidate tables extracted from the web pages containing keyword k. The candidate
tables are ordered by the probability of co-occurring with keyword k and by the
Jaccard distance between their attributes and attribute name A. Finally, the highest
scored schema matchings between the candidate attributes and attribute name A are
selected to build schema mappings.

Example 5.6. Consider the source schema in Example 5.2, Page 119. Given the
start table PRODUCT, the attribute SUBCATEGORY_ID and a keyword “name”, an aug-
mented schema generated by EXTEND is PRODUCT′ with a new attribute whose
name is similar to “name” and is related to SUBCATEGORY_ID. Firstly, search operation
returns two candidate tables SUBCATEGORY and CATEGORY that respectively
contain attributes with the keyword “name”: SUBCATEGORY_NAME and CATEGORY_NAME.
By computing the compatibility between the values in SUBCATEGORY_ID of table
PRODUCT and each attribute in tables SUBCATEGORY and CATEGORY, at-
tribute SUBCATEGORY_ID in table SUBCATEGORY is more related because the
FK-PK constraints, all the values of PRODUCT.SUBCATEGORY_ID are contained in
SUBCATEGORY_ID.SUBCATEGORY. Therefore, PRODUCT′ can be generated by
joining PRODUCT with SUBCATEGORY on SUBCATEGORY_ID.

The InfoGather system introduced in [13] proposed an operation ABA (Augmentation
By Attribute name) which corresponds to algorithm JoinTest used by the previous
EXTEND operator [51]. Given a start table T , an ABA operation performs a merge
query that augments the start table with the specified new attribute A. This query is
noted as Q (K, A) where K is the key attribute of start table T , A is the new attribute
name. Schema matchings between the start table and the target table are detected
when the target table contains K as the key attribute and the domain values of the
two key attributes overlap. Besides, tables containing attribute A are also considered
as target tables. Target tables are then ordered by their matching scores with the
start table (i.e., percentage of matched values of K). The final schema mapping
query applies left outer join of the start table and the target table with the highest
score on the key attribute K. Although ABA operation restricts the key of the start
table (and the target table) to consist only of one attribute, this could be generalized
to a set of attributes.

Other systems like Data Civilizer [14] propose a similar operation called extend
attribute which describes queries that extend the start table T with new attributes that
do not exist in T . Data Civilizer constructs a schema matching graph called linkage
graph and stores schema matchings that are computed using similarity computations
(schema level and entity level), PK-FD constraints, inclusion dependencies, etc.

5.5.2 Entity complement approaches

Entity complements for web tables

Schema augmentation generates schema mapping queries using left outer joins
for adding new attributes to the tuples of some existing source table. This kind
of "vertical" schema augmentation can be combined with "horizontal" entity/data
completion approaches which consist in adding new tuples by union.

Entity complement was first introduced in the context of Web tables in [12] with the
idea of “providing complementary sets of entities to the source schema by union”.
For taking the union of two tables, their schemas must be union compatible, i.e.
contain the same number of attributes with compatible types. The entity complement
workflow is similar to the schema complement workflow:

Step 1: Select start table: the user selects a source table to be complemented.

Step 2: Find candidate tables: the user explores the schema matchings and se-
lects the candidate tables that are related to the start table and contain new

tuples which are related to the tuples in the start table. If necessary, the
candidate tables are made union compatible with the start table (essentially
by removing irrelevant attributes through projection).

Step 3: Generate complemented table: schema mappings are merge queries that
take the union of the start table and the target tables.

Example 5.7. Consider the source schema with the following tables:

SALES_SUM (COUNTRY, YEAR, AMOUNT)
INTERNET_SALES (COUNTRY, YEAR, AMOUNT)
SALESORG (STORE_ID, CITY, STATE, COUNTRY)
TIME (DATE, WEEK, MONTH, YEAR)
REGION (CITY, STATE, COUNTRY, CONTINENT)

Step 1: Select start table: The user selects SALES_SUM as the start table to be
complemented.

Step 2: Find candidate table: Figure 5.4 depicts the join relationships between
the source tables in solid lines. As we can see, table INTERNET_SALES contains
all the attributes of table SALES_SUM. Therefore, table INTERNET_SALES can
complete SALES_SUM with internet sales.

Figure 5.4: Schema matchings between source schemas

We then can extract the following to schema matchings for SALES_SUM and
INTERNET_SALES (dashed arrow in Figure 5.4):

Table 5.3: Schema matching specified in Figure 5.4

SALES_SUM.COUNTRY ∼= INTERNET_SALES.COUNTRY

SALES_SUM.YEAR ∼= INTERNET_SALES.YEAR

SALES_SUM.AMOUNT ∼= INTERNET_SALES.AMOUNT

Step 3: Generate complemented table: The final schema mapping is a simple query
that performs a union of SALES_SUM with table INTERNET_SALES.

Listing 5.3: Union of SALES_SUM and INTERNET_SALES

SELECT COUNTRY, YEAR , AMOUNT
FROM SALES_SUM
UNION
SELECT COUNTRY, YEAR , AMOUNT
FROM INTERNET_SALES

The entity complement process enriches the entities in the start schema without
modifying the schema. The previous example shows that when schema matchings
and mappings are known, an entity complement can be easily applied by some
user without some specific expertise. We can compute the above result using data
integration approach by specify the schema of SALES_SUM as the mediated schema.
However, INTERNET_SALES might have overlapping values for attribute COUNTRY

and YEAR with SALES_SUM. Therefore, the simple union generates conflicting
amount values for the same country and year. This is a well known problem which
can be solved using data fusion [50] instead of simple set union. In this thesis,
we to solve the data fusion problem using schema augmentations. The schema
mapping generated is a left-outer join query that joins table SALES_SUM with
INTERNET_SALES on common attributes COUNTRY and YEAR. The result table
contains a new attribute INTERNET_AMOUNT which stores internet sales amount from
INTERNET_SALES.

This alternative method can be generalized for all the entity complement applied
between fact tables. It replaces entity complement by a schema augmentation that
joins on the common dimension attributes and adds the measures as new attributes
to the source table.

We do not discuss entity complement in the context of dimension tables, also called
master tables in data warehouses, because merging their tuples usually entails a
governance process that includes processing steps like duplicate elimination and
data fusion. This process also requires human expert interaction.

5.6 Drill-across Queries in Multi-dimensional Databases

5.6.1 Drill-across queries using conformed dimensions

Another similar notion which has been studied in multidimensional databases is
the drill-across operation (or multipass query). Drill-across operations are widely
supported by many BI products and platforms for OLAP cubes (fact tables). Initially
described in [6], drilling across corresponds to the operation which “combines
performance measurements from different business processes in a single report”.
Drill-accross operations join two or more sub-queries sharing the same identifiers
(keys). These identifiers correspond to conformed-dimensions [6] identifying the
entities on which two fact tables can be joined. Kimball et al. [6] detailed different
types of conformed dimensions. Dimensions with the same dimension keys, attribute
column names, attribute definitions and attribute values are called identical con-
formed dimensions (it is implicitly assumed that parent-child mappings are preserved
also). Usually, identical conformed dimensions are built from the same non-analytic
table or obtained by duplication. When one dimension only contains a subset of
the attributes or rows of some base dimension, the dimension with less attributes
or rows, is called shrunken conformed dimension. Identical conformed dimensions
can be joined directly, while shrunken conformed dimensions are obtained by some
aggregation (rollup) or filtering with respect to their base dimensions.

Drill-across queries are generated by the following steps.

Step 1: Select start and target tables: the user selects a source table and some
target fact tables.

Step 2: Infer conformed dimensions: the user identifies the schema matchings
between the dimensions in the start table and the target tables. The matching
dimensions are called conformed dimensions.

Step 3: Generate schema mapping: infer the schema mapping which is a merge
query that joins the start table and the target tables using the conformed
dimensions. The join query might be applied to the result of sub-queries
that aggregate or filter some tables according to their shrunken conformed
dimensions.

The formulation of drill across queries requires the identification of conformed
dimensions.

Example 5.8. To illustrate the concept of conformed dimensions, consider the two
fact tables SALES and INVENTORY in Figure 2.9 on Page 37.

Step 1: Select source and target tables. The user selects table SALES as the
start table and INVENTORY as the target table.

Step 2: Infer conformed dimensions. Table INVENTORY has four dimensions
TAX, PROD, WAREHOUSE and TIME and table SALES has three di-
mensions STORE, PROD and TIME. As shown in Figure 5.5, both tables
share dimension attributes PROD_SKU and BRAND from the same dimension table
PROD and therefore have the same domain. Therefore, PROD is identical
conformed dimension which can be directly used to formulate drill-across
queries. Both tables also share dimension attribute YEAR from dimension
table TIME. However, table INVENTORY also contains attribute MONTH

from dimension table TIME. Therefore attribute YEAR is a shrunken con-
formed dimension in table INVENTORY which must be aggregated along
attribute MONTH before joining with table SALES. Consider now dimen-

Figure 5.5: Fact tables SALES and SALES_SUM

sion WAREHOUSE in table INVENTORY and dimension STORE in table
SALES. Both dimensions share attributes CITY, STATE and COUNTRY describing
the same concepts in both dimensions. However, deciding if these two di-
mensions are conformed dimensions also depends on their domain values. If
WAREHOUSE only contains warehouses situated in North America while
STORE contains stores in all English speaking countries, the domain values of
CITY, STATE and COUNTRY in the two dimensions have a non-empty intersection

but are not identical. Thus, WAREHOUSE and STORE are not considered
to be conformed and they cannot be used in the drill-across query.

Step 3: Generate schema mapping. The previous step identifies the two dimen-
sions TIME and PROD as conformed dimensions, but not WAREHOUSE

and STORE. Therefore, is it not possible to directly apply a merge between
the two tables and we first need to reduce the dimensions in tables SALES
and INVENTORY.

We can relate the two notions of drill-across queries and schema augmentation.
Suppose that we want to augment the schema of SALES with the measure attributes
of INVENTORY to compare a product’s sales amount with its inventory level.
By definition, schema augmentation mainly consists in generating the following
outer-join (merge) query between the source table and its augmentation table:

Listing 5.4: Schema augmentation approach to join SALES with INVENTORY

SELECT SALES . PROD_SKU, SALES .BRAND, SALES . YEAR ,
SALES . CITY , SALES . STATE , SALES .COUNTRY, SALES .AMOUNT,
INVENT .QTY_ON_HAND

FROM SALES LEFT OUTER JOIN
(SELECT PROD_SKU, BRAND, YEAR , CITY , COUNTRY,

AVG(QTY_ON_HAND) AS QTY_ON_HAND
FROM INVENTORY
GROUP BY PROD_SKU, BRAND, YEAR , CITY , COUNTRY

) INVENT
ON SALES . PROD_SKU = INVENT . PROD_SKU
AND SALES .BRAND = INVENT .BRAND
AND SALES . YEAR = INVENT . YEAR
AND SALES . CITY = INVENT . CITY
AND SALES .COUNTRY = INVENT .COUNTRY

Suppose that we want to achieve schema augmentation using drill across queries.
As defined before, drill-across operations are only possible through conformed
dimensions. This has two consequences in our augmentation scenario. First, non-
common dimensions must be removed from each fact table (which entails to "rolling-
up" the facts of each table). Second, the two fact tables must have the same
granularity on their common dimensions PROD and TIME, which is not the
case since SALES records total sales for every year and INVENTORY records
inventory levels for every month. To align the granularity of the two fact tables
on TIME, the facts of INVENTORY must be rolled up to the YEAR level. Thus,
two separate pre-processing queries Q (SALES) and Q (INVENTORY) must be
defined and executed on each fact table to enable a drill-across operation. In this

case, Q (SALES) and Q (INVENTORY) are aggregation query that computes the
sum of the sales amount and average of inventory quantity on hand respectively
grouped by PROD_SKU, BRAND, YEAR (the result is shown in Figure 5.6). Then a new
fact table SALES_INVENTORY is created using an outer-join over Q (SALES) and
Q (INVENTORY) in Figure 5.6 through dimensions PROD and TIME.

Figure 5.6: The integration of SALES and INVENTORY

Listing 5.5: Drill-across query over SALES and INVENTORY

SELECT PROD_SKU, BRAND, YEAR , SUM_AMOUNT, AVG_QTY_ON_HAND
FROM Q(SALES) AS Q_SALES FULL OUTER JOIN Q(INVENTORY) AS Q_INVENTORY
ON Q_SALES . PROD_SKU = Q_INVENTORY . PROD_SKU

AND Q_SALES .BRAND = Q_INVENTORY .BRAND
AND Q_SALES . YEAR = Q_INVENTORY . YEAR

SALES_INVENTORY (PROD_SKU, BRAND, YEAR, SUM_AMOUNT, AVG_QTY_ON_HAND)

In the drill-accross query scenario, the two queries Q(SALES) and
Q(INV ENTORY) in the FROM clause have to be defined by the user who wants to
extend the schema of SALES with attributes from INVENTORY. In particular, the
aggregation function to apply on the measure attributes must be properly selected.
Furthermore, in comparison with the approach proposed in this thesis, drill-across
queries are more restrictive since they are limited to conformed dimensions.

In the schema augmentation framework, drill-across queries can be simulated as
a special case with some restrictions. The first restriction is that the start and can-
didate tables are necessarily fact tables. Schema matchings in drill-across queries
are limited to identical and shrunken conformed dimensions. Thus, other heuristic
(similarity- and value-based) and reliable (FK-PK constraints) schema matchings
which can be used in schema augmentation but do not lead to conformed dimen-
sions are also excluded in the drill-across query scenario. Both restrictions reduce

many opportunities to combine fact and dimension tables with respect to schema
augmentation operations.

5.6.2 Drill-across queries using compatible dimensions

Paper [30] describes a framework for applying drill-across queries in the context of
heterogeneous data sources. Drill-across queries are only allowed through compatible
dimensions, which reduces the limitation imposed by conformed dimensions. Two
dimensions are compatible if they match "perfectly" by satisfying three properties:

1. coherency: the matching preserves the hierarchy levels;

2. soundness: the matching preserves the domain values of each level;

3. consistency: the matching preserves the child-parent value mappings between
hierarchy levels.

We illustrate the notion of compatible dimensions in the following example.

Example 5.9. Consider the drill-across query scenario in Example 5.8 merging tables
SALES and INVENTORY of Figure 2.9 on Page 37. Table SALES_INVENTORY
does not contain dimension STORE (it is reduced by aggregation) because this
dimension does not conform to dimension WAREHOUSE. Dimension STORE

is not compatible with dimension WAREHOUSE since the domain values of the
shared attributes are not identical (soundness condition).

We now illustrate the two ways for building compatible dimensions between
WAREHOUSE and STORE presented in [30]. The source table and target
table are the same as in Example 5.8, so Step 1 is identical. We then continue with
step 2, inferring schema matchings between SALES and INVENTORY. Because
PRODUCT and TIME are conformed dimensions, they are also compatible dimen-
sions. The main goal is then to transform dimensions WAREHOUSE and STORE

into compatible dimensions. The schema matchings between the two dimensions
are shown in Figure 5.7a.

Step 2: Infer conformed dimensions

Loosely coupled approach: The loosely coupled approach generates query expres-
sions to propagate common tuples between WAREHOUSE and STORE for
creating a perfect match. Observe that the matching is consistent and coherent.
We therefore must create a query that makes the matching sound. This can be

(a) Two matched dimensions

(b) Loosely coupled approach (c) Tightly coupled approach

Figure 5.7: Two approaches to formulate compatible dimensions

obtained by the following two semi-join query expression applied on STORE

(D1) and WAREHOUSE (D2):

E1(D1) = πCITY,STATE,COUNTRY(D1 ⋉CIT Y D2)

E2(D2) = πCITY,STATE,COUNTRY(D2 ⋉CIT Y D1)

Queries E1(D1) and E2(D2) project both tables on the common attributes
CITY, STATE, COUNTRY. Because the matching between WAREHOUSE and
STORE is consistent, it is sufficient to match both dimension tables on the
lowest level attribute CITY within the three matching attributes and we also
can conclude that E1(D1)=E2(D2). The two result dimensions shown in
Figure 5.7b are now compatible.

Tightly coupled approach: The second approach to build compatible dimensions
is called tightly coupled approach which is obtained by deriving the union
of WAREHOUSE and STORE as a new dimension. This can be ob-

tained by applying a outer join which generates a new bottom level attribute
STORE_ID_WH_ID, the new bottom level attribute is a concatenation of values in
STORE_ID and WH_ID.

Listing 5.6: Query QD

SELECT CONCAT(STORE_ID , WH_ID) AS STORE_ID_WH_ID ,
STORE_ID , WH_ID,
CITY , STATE , COUNTRY

FROM STORE JOIN WAREHOUSE
ON STORE . CITY = WAREHOUSE. CITY
AND STORE . STATE = WAREHOUSE. STATE
AND STORE .COUNTRY = WAREHOUSE.COUNTRY

The new dimension is shown in Figure 5.7c, and a perfect match of dimensions
WAREHOUSE and STORE.

Step 3: Generate schema mapping. The schema mapping is built by joining
Q 2(SALES) and Q 2(INVENTORY) using conformed dimensions PROD and
TIME, and compatible dimensions E1(D1), E2(D2) as shown in Figure 5.8a (or D

as shown in Figure 5.8b). Q 2 aggregates group-by attributes PROD_SKU, BRAND, YEAR,
CITY and COUNTRY.

Listing 5.7: Query to generate SALES_INVENTORY_2

SELECT PROD_SKU, BRAND, YEAR , CITY , COUNTRY, SUM_AMOUNT, AVG_QTY_ON_HAND
FROM Q2(SALES) JOIN Q2(INVENTORY)

ON Q2(SALES) . PROD_SKU = Q2(INVENTORY) . PROD_SKU
AND Q2(SALES) .BRAND = Q2(INVENTORY) .BRAND
AND Q2(SALES) . YEAR = Q2(INVENTORY) . YEAR
AND Q2(SALES) . CITY = Q2(INVENTORY) . CITY
AND Q2(SALES) .COUNTRY = Q2(INVENTORY) .COUNTRY

The result table SALES_INVENTORY_2 has the following schema:

SALES_INVENTORY_2 (PROD_SKU, BRAND, YEAR, CITY, COUNTRY, SUM_AMOUNT, AVG_QTY_ON_HAND)

Compatible dimensions using the loosely or tightly coupled approaches relax the
restriction for conformed dimensions that domain values and attribute names must
be identical. New schema matchings can be found using the two approaches for cre-
ating compatible dimensions by generating new hierarchies. In the loosely coupled
approach, the dimension hierarchies are reduced to the set of common attributes and
all other attributes are removed (for example, attribute WH_ID in WAREHOUSE

(a) Integration using dimensions E1(D1) and E2(D2)

(b) Integration using dimension D

Figure 5.8: The integration of SALES and INVENTORY using compatible dimensions

and attribute STORE_ID in STORE are removed). Removing attributes is a significant
modification of the existing dimensions that also has a string impact on the related
fact tables which must be examined by the data experts. In the tightly coupled
approach, all attributes of all dimensions are preserved which might result in a
complex hierarchy (for example D). As we will discuss in Section 5.7, complex
hierarchy structures also introduce new issues for correctly aggregating data over
these structures. In addition, drill-across queries using compatible dimensions are
still restricted to fact tables.

5.7 Summarizable Analytic Tables

The notion of summarizability was introduced in the context of analytic tables with
two different but related perspectives, which are the statistical and multidimensional
(OLAP) data modeling perspectives. A common problem is to define correctness
conditions for the computation of an aggregate query over an analytic table. In this

section, we are mainly interested in conditions that are expressed over a database
schema or an aggregate query. We review existing approaches, compare each
proposition with our work, and emphasize the original contributions of our work.
To facilitate comparisons, we use the notations for analytic tables introduced in this
thesis to describe the propositions made in previous works.

5.7.1 Summarizability in statistical data models

The notion of summarizability was initially defined by Rafanelli and Shoshani [52] for
statistical databases and later refined in [23]. In this context, base data, also referred
to as "micro-data", describe all the details about the objects or individuals over
which a summarization operation can be applied to produce a so-called statistical
object, also referred to as "macro-data". Using the terminology defined in this thesis,
base data can be modelled as either a non-analytic table or a fact table that has the
finest possible granularity, summarization operations are aggregate queries with
a semantics that ignores group-by attributes having null values, and a statistical
object can be modeled as a fact table that results from a summarization operation
over the base data. However, specific assumptions are made on a fact table. Firstly,
all facts in a fact table have the same granularity, which means that all measure
attributes depend on all the dimensions of a fact table, and not a subset of those
dimensions. Secondly, all dimensions in a fact table are independent (that is, no
dimension functionally depends on other dimensions). Thirdly, a measure attribute
A is associated with the list of summary functions (i.e., aggregate functions) that can
be applied to A. Dimensions, in the statistical data model of [23], are restricted to
strict hierarchy types, that is, each attribute of a dimension has at most one parent
attribute in the hierarchy type. Hierarchy types have a single bottom and top level
attribute.

Summarizability is defined as the property of a statistical data model which “guaran-
tees correct results of summary operations over statistical objects”. More precisely,
suppose we have a statistical object modeled as a fact table T (S) and a summa-
rization query1 Q over T , Q = Agg∗

T (F (A)|X), where A is a summary attribute
in S, F is a function "applicable" to A (this notion will be explained below), X is
a set of dimension attributes in S, and Agg∗ denotes a summarization operation
that does not consider tuples with null values in X attributes. We shall say that
attribute A is summarized along the dimension attributes that are not in X. We
also assume that T is itself built using a summarization query from a base table T0.

1We use the expression "summarization query" to distinguish it from aggregation query, which uses
the SQL semantics for null values.

Then, the summarizability property consists of defining conditions under which the
summarization query Q is correct, which means that there exists a function G such
that: Agg∗

T0
(F (A)|X) = Agg∗

T (G(A)|X). Thus, summarizability is formulated at the
level of a given summarization query.

Three necessary conditions are proposed by Lenz and Shoshani in [23] to check
whether a summarization query Q = Agg∗

T (F (A)|X), as defined above, is correct. Let
SD be the set of dimension attributes for dimension D in S, and S⊤

D be the bottom
level attribute of SD. The conditions defined in [23] are:

1. Disjointness. For each dimension D along which summarization is done in
Q, the child-parent value mappings between the dimension attributes of D

in T0 should be many to one. This could be expressed by requiring that the
corresponding edges in the attribute graph of dimension D are labelled as f .

2. Completeness with respect to F (A). For each dimension D of T the domain of
values of each attribute in SD in T , must be complete, that is: (1) the attribute
values of S⊤

D contains all possible values with respect to T0, as required by
F (A), and (2) every value of a dimension attribute that is a child level of S⊤

D

must map to a parent value in S⊤
D within T0.

3. Applicable summary function. Summary function F (A) should be "applicable"
with respect to all dimensions along which summarization is done in Q .

We comment each condition. The first condition imposes that each hierarchy along
which summarization is done is strict, which actually implies that the lowest level
attribute of each dimension is the identifier of the dimension. In the original
formulation of [23], the disjointness condition is expressed over the attributes of
D in T0 that are sub-levels of the attributes of SD −X but the authors also impose,
by definition of a statistical object, that the hierarchy of attributes in SD is strict.
We then grouped all conditions in our formulation of the first condition. In our
work, we address the problems raised by non-strict hierarchies by propagating the
aggregable properties of an aggregable attribute after an aggregation is done (see
Proposition 3.6). Note that a related problem, is the detection of ambiguous analytic
tables (see Definition 3.13) and ambiguous queries. We however do not reject
ambiguous queries as [23] do by imposing strict hierarchies in T , but instead nullify
summary attribute values for those tuples that are ambiguous in the result of an
aggregate query. This will be illustrated later.

The second condition on completeness has multiple facets. One is the interpretation
of expression "all possible values" in item (1) of the condition. Take for instance
table STORE_SALES shown in Table 5.7a, how do we know that all possible values

are listed in the domain of attribute STORE_ID? One interpretation is that we have
an external knowledge of whether the list of all values listed in the base table T0

from which the statistical object T is built is complete. The other interpretation is
that the only possible values are exclusively those listed in the base table T0. We
used this later interpretation. In our work, we assume the existence of a dimension
table, like SALESORG, that contains all stores. We therefore adopt a Closed World
Assumption [16] on the dimension table: the only dimension values that exist are
those listed in the dimension table.

Another facet of the completeness condition is that item (1) is asserted with respect
to a summarized attribute F (A). This means that the user who is formulating query
Q must decide whether completeness is needed or whether the values listed in T

are sufficient to compute a summary attribute. In our work, we follow a similar
approach by providing the option to the user to decide if completeness must be
enforced during a merge (see algorithms in Section 4.5). However, our completeness
requirement is weaker as we shall see in Example 5.11 below.

Finally, the third facet of the completeness condition is captured in the condition of
item (2). It implies that the bottom level dimension attributes in T are mandatory.
We do not have such a restriction in our work due to our interpretation of nulls and
our use of (SQL) aggregate operations that handle null values as regular values.

The third condition in the definition focuses on testing the compatibility between
the type of dimensions and the type of measures used in T . The following types of
measures are distinguished: stock (i.e., a simple value at a particular point in time),
flow (i.e., cumulative values over a period) and value-per-unit (i.e, determined value
for a fixed time). Dimensions can be of type temporal or non-temporal. When a
measure attribute A is aggregated using a given function over some dimension D, the
types of A and D should be compatible with respect to that function. For instance, let
us consider the two common aggregate functions: SUM and AVG. Measure attribute
ANNUAL_INCOME is a measure of type flow so it can be summed and averaged over
both temporal and non-temporal dimensions. Attribute BALANCE of credit cards is a
measure of type stock, so it cannot be summed up over temporal dimensions like
TIME, but it can be averaged over non temporal dimensions. Finally, attribute
ITEM_PRICE is of type value-per-unit, so it cannot be summed over any dimension but
it can be averaged. In our work, the third condition of [23] is captured by our more
general notion of "aggregable property" but we leave open the method by which
aggregable properties are obtained.

We now illustrate the possible correctness issues that arise when a summarization
query is expressed over a fact table and draw a comparison with our work.

Table 5.4: Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s COCA COLA United States 2017 5 000
cz-tshirt-s COCA COLA United States 2018 7 000
cz-tshirt-s ZARA Spain 2017 5 000
cz-tshirt-s ZARA Spain 2018 7 000
coca-can-33cl COCA COLA United States 2017 10 000

Example 5.10. Consider the base table PRODUCT_LIST (PROD_SKU, COUNTRY,
BRAND, YEAR, QTY) defined over dimension MKT_PROD and TIME whose
instance is displayed on Table 5.4. We assume that all products are
listed in PRODUCT_LIST. Suppose that we define a statistical object
PRODUCT_SUM (BRAND, YEAR, TOTAL) built using a summarization query:
Agg∗

P RODUCT _LIST (COUNT_DISTINCT(PROD_SKU)|BRAND, YEAR), whose result is
displayed on Table 5.5.

Table 5.5: Table PRODUCT_SUM

BRAND YEAR TOTAL

COCA COLA 2017 2
COCA COLA 2018 1
ZARA 2017 1
ZARA 2018 1

Now, consider a summarization query:

Q1 = Agg∗
P RODUCT _SUM (SUM(TOTAL)|BRAND)

that aggregates TOTAL along dimension YEAR. The disjointness condition of [23] is
obviously satisfied by dimension TIME. However, aggregable attribute TOTAL is of
type stock, which means that, by the third condition of [23], it cannot be summed up
along a temporal dimension like TIME. Indeed, the number of distinct products by
brand reported by query Q1 (e.g., value 2 for brand ZARA) would be different from
the number directly computed from PRODUCT_LIST (e.g., 1 for brand ZARA).
Hence, query Q1 is considered to be incorrect.

Now, consider another query:

Q2 = Agg∗
P RODUCT _SUM (SUM(TOTAL)|YEAR)

Here, the disjointness condition is not satisfied since for dimension MKT_PROD

the product “cz-tshirt-s” maps to different BRAND values. Again, the number of
distinct products by year reported by query Q2 (e.g., value 2 for year 2018) would
be different from the number directly computed from PRODUCT_LIST (e.g., 1 for
year 2018). Hence, query Q2 is also considered to be incorrect. Thus, no further
summarization of PRODUCT_SUM is possible.

By comparison with our work, the same result is obtained by ob-
serving that the answer to the following question is negative: "In
PRODUCT_LIST, is PROD_SKU summarizable with respect to COUNT_DISTINCT
and X = {BRAND, YEAR}"? Per Proposition 3.5, the answer would be pos-
itive if: (1) aggPROD_SKU(COUNT_DISTINCT, {PROD_SKU, COUNTRY}) holds in
PRODUCT_LIST, and (2) the literal functional dependency SD − X 7→ X, where
SD is the set of dimension attributes, holds in PRODUCT_LIST. Condition (1)
is verified since PROD_SKU is aggregable using COUNT_DISTINCT along any di-
mension attribute. However, SD − X, which is {PROD_SKU, COUNTRY}, does not
determine X, and therefore condition (2) is not satisfied. Hence, we conclude that
PRODUCT_SUM enables incorrect summarization operations (by comparison to
PRODUCT_LIST).

Table 5.6: Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s-17 COCA COLA United States 2017 5 000
cz-tshirt-s-18 COCA COLA United States 2018 7 000
cz-tshirt-s-17 ZARA Spain 2017 5 000
cz-tshirt-s-18 ZARA Spain 2018 7 000
coca-can-33cl COCA COLA United States 2017 10 000

We can also detect which aggregation query is correct over PRODUCT_SUM
by computing the aggregable properties on attribute TOTAL using propagation
rules (see Proposition 3.6). For instance, take query Q1. As explained be-
fore, aggPROD_SKU(COUNT_DISTINCT, X ′) holds in PRODUCT_LIST, where
X ′ contains all dimension attributes of PRODUCT_LIST. So if S is the
schema of PRODUCT_LIST, X ′ ∩ S = {BRAND, YEAR}. The dimension attributes
of PRODUCT_SUM that are not determined by the dimension attributes of
PRODUCT_LIST not in PRODUCT_SUM is: K = {BRAND, YEAR}, so X =
X ′ ∩ S−K = ∅, and aggTOTAL(COUNT_DISTINCT, ∅) holds in PRODUCT_SUM.
However, suppose that table PRODUCT_LIST is such that a given product gets
a different PROD_SKU every year (so the table could look like Table 5.6), then the
LFD PROD_SKU 7→ YEAR would hold in PRODUCT_LIST and we would have: K =

{BRAND}, hence aggTOTAL(COUNT_DISTINCT, YEAR) holds in PRODUCT_SUM
and query Q1 is now correct. We currently do not check LFD across dimensions and
require that such an aggregable property is explicitly provided by the user to enable
query Q1 (the default empty set is currently automatically generated).

Example 5.11. Consider another statistical object modeled by a fact table
STORE_SALES shown in Table 5.7a where STORE_ID, CITY, STATE and COUNTRY are
attributes of dimension SALESORG, attribute YEAR is from dimension TIME and
attribute AMOUNT represents the sales amount of each store. This table is computed
using a summarization query from table SALES (PROD_SKU, BRAND, MONTH, YEAR,
STORE_ID, CITY, STATE, COUNTRY, AMOUNT). We assume that AMOUNT is a measure of
type flow which can be summed over any dimension. We also suppose also that all
possible values for the dimension are listed in a table SALESORG with STORE_ID

as a dimension identifier.

Table 5.7: Fact and dimension table

(a) STORE_SALES

STORE_ID CITY STATE COUNTRY YEAR AMOUNT

Oh_01 Dublin Ohio USA 2017 3.2
Ca_01 Dublin California USA 2017 5.3
Oh_01 Dublin Ohio USA 2018 8.2
Ca_01 Dublin California USA 2018 6.3
Pa_01 Paris - France 2017 45.1

(b) SALESORG

STORE_ID CITY STATE COUNTRY

Oh_01 Dublin Ohio USA
Ca_01 Dublin California USA
Ca_02 Palo Alto California USA
Pa_01 Paris - France

Consider a summarization query:

Q1 = Agg∗
ST ORE_SALES(SUM(AMOUNT)|CITY)

that adds all amounts by city (so, aggregate along dimension attributes of
SALESORG and TIME). The result is displayed in Table 5.8a. The disjoint-
ness condition of [23] is not satisfied since for dimension SALESORG city “Dublin”
maps to different STATE values.

By comparison with our work, we would propagate the aggregable property of
AMOUNT from SALES to STORE_SALES using rule Proposition 3.6 case 1, which

yields aggAMOUNT(SUM, {AMOUNT, X}), where X is the set of dimension attributes
in STORE_SALES since function SUMis distributive using SUM. Hence, we con-
sider AMOUNT to be summarizable with respect to SUMand X. However, we would
say that the summary value for the tuple with city “Dublin” is ambiguous (because it
would add up the amounts of stores “Oh_01” and “Ca_01”). Thus, we would return
a null value for SUM(AMOUNT) while the tuple for “Paris” that is not ambiguous
will be returned with aggregated value 45.1 (See Table 5.9a).

Table 5.8: Results of summarization queries

(a) Q 1(STORE_SALES)

CITY SUM(AMOUNT)

Dublin 23
Paris 45.1

(b) Q 2(STORE_SALES)

STATE SUM(AMOUNT)

Ohio 11.4
California 11.6

To illustrate the completeness issue, consider now the following query:

Q 2 = Agg∗
ST ORE_SALES(SUM(AMOUNT)|STATE)

that adds all amounts by state (see Table 5.8b. Assuming that SUM(AMOUNT) re-
quires a complete answer, the second condition of [23] is not satisfied by item
(1) since attribute STORE_ID does not contain all stores for STATE ‘California’. In-
deed, Q 2 is considered to return an incorrect SUM(AMOUNT) value for ‘California’
because STORE_SALES "misses" the sales amount of store Ca_02. However, if
STORE_SALES is supposed to contain all sales for the current month (i.e., Ca_02
did not sell anything) we could consider that item (1) of the completeness condition
is not violated for SUM(AMOUNT) in query Q 2.

To compare with our work, if STORE_SALES was only containing sales for state
‘Ohio’, we would consider query Q 2 to be complete because no city is missing from
state ‘Ohio’ in SALESORG. The completeness condition of [23] would still not be
satisfied.

Table 5.9: Results of aggregation queries

(a) Q 1(STORE_SALES)

CITY SUM(AMOUNT)

Dublin -
Paris 45.1

(b) Q 2(STORE_SALES)

STATE SUM(AMOUNT)

Ohio 11.4
California 11.6
- 45.1

Item (2) of the second condition is also not satisfied because city ‘Paris’ does not map
to a parent value in attribute STATE. Indeed, if we add all amounts in the result of Q2

we get a value of 23 which is obviously not the correct total amount. In our context,
the result of Q2 would contain a tuple with an amount value of 45.1 for value of
state null (See Table 5.9b). Hence, completeness would not be compromised.

5.7.2 Summarizability in multidimensional data models

In a multidimensional database context, summarizability refers to the property
that “the correct computation of higher-level aggregates over a fact table can be
obtained from previously available lower-level aggregates over the same table”.
There, the definition of summarizability is equivalent to the definition we introduced
in Definition 3.10 on Page 56. Given a summarization query Q = Agg∗

T (F (A)|X)
over a fact table T , we want to know if A is summarizable with respect to F and X,
that is, higher-level aggregates F (A) can be computed correctly from the result of
Q using any query Q ′ = Agg∗

Q (F (A)|X′), where X ′ ⊂ X and A is the name of the
attribute computed by F (A) in Q . While [23] is interested to characterize which
query Q ′ is correct, the summarizability conditions for an attribute with respect to a
function and a set of dimension attributes is interested to capture properties that will
make any query Q′ correct. We shall see that it is however possible to characterize
summarizability at the level of a query when the general property does not hold.

In this context, we review different solutions that have been proposed to either
detect if an aggregation over a fact table is summarizable, or process an aggregation
query in such a way that future incorrect aggregations are prevented.

Other solutions propose an alternative modeling of analytic data, or methods to
modify the representation of dimension data, to enforce summarizability of aggre-
gation queries. We do not consider these solutions in the following sections and a
survey can be found in [26].

Conditions over hierarchies and functions

In [21], [29], Pedersen et al. use a more general data model for analytic data than
the model of [23]. As we did before, we describe the data model of [21] using our
notations and we ignore very specific concepts that were introduced to deal with
time-varying dimensions and precision.

In [21], dimensions can include multiple hierarchies, that is, the hierarchy type
associated with a dimension can be non-strict. Fact tables are also generalized as
follows. There is no distinction of measure attributes in a fact table. Any attribute
is aggregable, or can be a summary attribute using the terminology of [23]. This
specificity has however no impact on the summarizability conditions since we are
interested in characterizing queries over fact tables in which aggregated attributes
are indicated. Thus, we shall ignore that specificity in the rest. Facts in a fact table
are defined over all dimensions but some values of dimension attributes may not
be characterized and hence have a null value. Dimensions in a fact table can have
mutual dependencies, that is, the value of one dimension can depend on the values
of other dimensions. Finally, each attribute is associated with the type of aggregate
function that can be applied to it. More specifically, [21] distinguishes between three
types of aggregation functions:

1. Σ functions, which are applicable to data that can be added together,

2. Φ functions, which are applicable to data that can be used for average calcula-
tions, and

3. c functions, which are applicable to data that can only be counted.

Considering the standard aggregation functions, we have Σ =
{SUM, COUNT, AVG, MIN,

MAX}, Φ = {COUNT, AVG, MIN, MAX} and c = {COUNT}. The aggregation
types are ordered in increasing order as: c, Φ, Σ.

Given a summarization query Q = Agg∗
T (F (A)|X) over a fact table T , we want to

know if A is summarizable with respect to F and X, that is, higher-level aggregates
F (A) can be computed correctly from the result of Q using some query Q ′ =
Agg∗

Q (F (A)|X′), where X ′ ⊂ X and A is the name of the attribute computed by F (A)
in Q . Note that this requires that both Q and Q ′ are correct queries in the sense of
[23]. However, the characterization of summarizability is expressed with respect to
the summarization operation done in Q .

Given a summarization query Q = Agg∗
T (F (A)|X) over a fact table T , the conditions

proposed by Pedersen et.al. in [21] to determine if A is summarizable with respect
to F and X are the following. We denote XD as the set of dimension attributes for
dimension D in X.

1. Function F must be applicable to A, that is, F must belong to the aggregation
type of A.

2. Function F must be distributive over the domain of values in A.

3. For every dimension D, all the paths from the bottom level attribute up to the
attributes XD must be strict in D (Definition 2.9 on Page 27).

4. For every dimension D, all the hierarchies up to the attributes XD must be
onto (Definition 2.7 on Page 26) and covering (Definition 2.8 on Page 27).

We now comment each condition and draw comparisons with the conditions of
Lenz and Shoshani [23] and our work. The first condition of [21] assumes, like
in [23], that we know the functions that are applicable to an aggregable attribute.
However, the notion of aggregation type goes further since it also partially captures
the notion of applicable function as defined in [23]. This is partially done because,
unlike [23] which considers the temporality of dimensions, an aggregation type is
not defined with respect to the type of dimensions along which a summarization
can be performed. For the same reason, the notion of aggregation type is weaker
than our notion of aggregable property (Definition 2.12) that specifies the maximum
number of dimensions along which an aggregation function can be applied.

The second condition uses a definition of distributive function that is more restrictive
than our Definition 3.11 because it requires that F is such that for any two sets, V1

and V2, F (V1,∪V2) = F (F (V1)∪F (V2)). Thus, functions like COUNTare discarded.
Otherwise, the second condition is similar to our Proposition 3.4. It also relates
to the third condition of [23], as shown previously in [20], which compares the
categorization of measures of [23] with the notions of additive and semi-additive
measures.

The third condition given by the strictness requirement is similar to the first condition
of [23]. The same comparison we made with our work before also applies to this
condition.

In the fourth condition, the onto and covering requirements are related to a semantics
of aggregation that ignores null values in group-by attributes. These requirements
are equivalent to item (2) of the second condition (completeness) of Lenz and
Shoshani [23] but does not cover item (1) which is ignored in [21]. Indeed,
suppose that store ‘Pa_01’ is removed from both STORE_SALES and SALESORG

in Example 5.11. Then, according to the definition of [21], AMOUNT is summarizable
with respect to SUM and grouping attribute STATE. Therefore query Q2 is considered
to be correct while it does not meet item (1) of the completeness condition of [23].
In our work, we assume a standard SQL semantics of aggregation which treats a
null value as a regular value, so the previous anomalies targeted by the onto and
covering requirements do not exist.

Multidimensional normal forms

Several works proposed multidimensional normal forms for analytic tables that
provide guarantees for the correctness of summarization queries [19], [24]. These
normal forms can be used to design dimension and fact tables over which correct
summarization queries can be easily detected and evaluated.

We first describe the multidimensional data model considered by these previous
works using our terminology and notations. Dimensions are instances of hierarchy
types that satisfy some constraints: the levels of a hierarchy type can be either
mandatory or optional and there exist a single bottom level type and an implicit top
level type, called ALL. In the attribute graph defined over the attribute hierarchy of
a dimension, an optional level corresponds to an attribute that can be bypassed and
whose value in a dimension table can be null. The hierarchy in each dimension is
strict (in the sense of NFD), that is, each arc in the attribute graph of the dimension
between two attributes Ai and Aj , such that Ai ≼ Aj , is labelled with a 1. A
dimension is also associated with a (possibly empty) set of context dependencies: let
Ai and Aj be two dimension attributes of a dimension D such that Ai is optional,
Aj ̸= ALL, and Ai ≼ Aj . If c ∈ dom(Aj) and c ̸= null, then (Ai, Aj , c) is a
context dependency for D stating that for every tuple t of the dimension table,
t.Aj = c ⇔ t.Ai ̸= null. Intuitively, the interpretation of a context dependency is
that Aj plays the role of a discriminating attribute in the hierarchy and value c is the
discriminating value to indicate when the optional attribute Ai has a non-null value.
Note that the use of an equivalence (⇔), in the above formula, is quite strong since
it forces the existence of a single discriminating value.

A fact table is defined over a set of dimensions at the finest level of detail, that is,
all dimension attributes of a dimension are included in the schema of the fact table,
and each measure in the fact table is determined (in the sense of NFD dependencies)
by the set of bottom level dimension attributes in each dimension. We assume for
simplicity here that, unlike [24], measures do not depend on each other, which does
not limit the generality of the conditions for summarizability discussed later in this
section. In addition, summarizability constraints in [24] express which measure
in a fact table may be aggregated along what dimension hierarchy according to
what aggregation function whereas [19] uses the same categorization of measure
attributes as [23]. However, unlike the aggregable properties proposed in this thesis,
no formal treatment of summarizability constraints is provided in [24].

By comparison with [23], fact tables here model "micro data" because they represent
facts at their lowest level of granularity. Note that although fact tables in [21] can

Table 5.10: PROD_SALES

PROD_SKU SUBCATEGORY CATEGORY BRAND AMOUNT

p_01 Video projector video Epson 42
p_02 TV video Philips 58
p_05 TV video Samsung 90
p_03 Radio audio Philips 45
p_04 CD-player audio Samsung 5

represent facts at a coarser granularity, their summarizability conditions impose that
the bottom level dimension attributes of each dimension determine (in NFD sense)
measure attributes. Next, as in [21] and unlike [23], non-strict hierarchy types
are allowed as well as optional dimension attributes. In [21], fact tables allowed
dimensions that are mutually dependent but, as said before, this has no impact on
summarizability. The novelty of [19], [24] in comparison with [21] is the addition
of context dependencies to the data model.

In [19], the following multidimensional normal form, called MNF, is proposed for a
fact table (we actually combined in our definition below the conditions originally
expressed as Dimensional Normal Form and Multidimensional Normal Form in
[19]).

Let T be a fact table defined over a set of dimensions with a measure (summary)
attribute A. Table T is in Multidimensional Normal Form (MNF) if the following
conditions are satisfied:

1. For each dimension of T , (1) dimension attributes are all mandatory attributes,
and (2) the values of the bottom level dimension attribute in the dimension
are complete.

2. All dimensions are mutually independent, i.e., there is no NFD between any
two dimension attributes of two distinct dimensions.

3. The set of (unique) bottom level attributes of all dimensions functionally
determines (FD) attribute A.

Example 5.12. Fact table STORE_SALES of Table 5.7a on Page 145 is not in MNF
since condition 1 is violated (e.g., STATE is optional). The fact table PROD_SALES
displayed in Table 5.10 (using dimension PROD(PROD_SKU, SUBCATEGORY, CATEGORY,
BRAND) whose attribute graph is depicted in Figure 2.6 on Page 25) is in MNF if we
assume that all products are listed in the table.

Let T be a fact table in MNF, and Q = Agg∗
T (F (A)|X) be a summarization query over

T . Then, using the same definition of summarizability as before (on Page 148), A

is summarizable with respect to F and X if F is applicable to A with respect to any
subset of X in the result of Q . Here, the notion of applicability of F to A can be
expressed using either the categorization of attributes [19] or the summarizability
constraints on A [24], the later being more ambiguous as we stated earlier.

We now comment each condition in the definition of MNF. In the first condition,
item (1) is equivalent to the conditions on hierarchies expressed by [21]. Indeed, if
all dimension attributes are mandatory they cannot have null values and all NFD
become FD between attributes, which implies that the hierarchy is strict. Since
there are no null values, all hierarchies are also covering. The third condition
of the definition implies that all the hierarchies are also onto since bottom level
attributes cannot have null values by definition of FD. Item (2) of the first condition
is analogous to the completeness condition of [23]. Here again, the means to test
this requirement are left unspecified and seem to require some external knowledge.
Note that in [24], this point on completeness is simply dismissed. Finally, the second
condition is not really needed for summarizability; it has been added to assure that
dimensions do not share dimension attributes. Note that in [24], this condition is
expressed by requiring that for every measure A of T , the bottom level dimension
attributes in the schema of T form a primary key in T and there is no other primary
key for A.

Since the conditions provided by MNF for summarizability are similar to the previous
work of [23] and [21], the same remarks apply for the comparison with our work.

The previous definition of MNF is quite restrictive since the data model allows fact
tables to have optional dimension attributes which are forbidden by MNF. The next
definition extends MNF to a so-called Generalized Multidimensional Normal Form
(GMNF) as follows. We describe here the slightly more general definition of [24].

Let T be a fact table defined over a set of dimensions with a measure (summary)
attribute A, T is in Generalized Multidimensional Normal Form (GMNF) if the
following conditions are satisfied:

1. For each dimension D of T : (1) for every optional dimension attribute Ai of D,
there exists a context dependency (Ai, Aj , c) in D, (2) the values of the bottom
level dimension attribute in D are complete.

2. All dimensions are mutually independent, i.e., there exists no NFD between
any two dimension attributes of two distinct dimensions.

Table 5.11: PROD_NEW_SALES

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES BRAND AMOUNT

p_01 Video projector video 1920x1080 Epson 42
p_02 TV video 3840x2160 Philips 58
p_05 TV video 3840x2160 Samsung 90
p_03 Radio audio - Philips 45
p_04 CD-player audio - Samsung 5

3. The set of (unique) bottom level attributes of all dimensions functionally
determines (FD) attribute A.

We comment these conditions. Item (2) of the first condition, as well as the second
and third conditions are inherited from MNF. The true difference is brought by item
(1) of the first condition. It constrains the semantics of every optional dimension
attribute Ai so that there exists at an upper level an attribute Aj that plays the role
of discriminator for Ai. Note that Aj can itself be an optional attribute, in which
case there will again be a context dependency (Aj , Ak, c′) in D. Eventually, the
discriminator attribute will be a mandatory attribute since by definition of context
dependency, the upper level attribute cannot be ALL.

Example 5.13. Consider an extended version of the product dimension
PROD_NEW , whose attribute graph is depicted in Figure 5.9, in which a new
attribute VIDEO_RES is added such that VIDEO_RES ≼ CATEGORY and PROD_SKU ≼

VIDEO_RES. Consider the fact table PROD_NEW_SALES over PROD_NEW whose
instance is displayed in Table 5.11.

Figure 5.9: Attribute graph of PROD_NEW

Now, assume that we have a context dependency associated with PROD_NEW :
(VIDEO_RES, CATEGORY, ‘video’). Then, table PROD_NEW_SALES is in GMNF if we
assume that all products are listed in the table. It is easy to see that conditions 2
and 3 are satisfied on the attribute graph. Condition 1 is also satisfied because the
only optional attribute VIDEO_RES has an upper level discriminating attribute with
value ‘video’.

Suppose that we add another optional attribute LED_TECH to PROD_NEW

such that: LED_TECH ≼ VIDEO_RES, LED_TECH ≼ SUBCATEGORY and PROD_SKU ≼

Table 5.12: PROD_NEW_SALES2

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES LED_TECH BRAND AMOUNT

p_01 Video projector Video 1920x1080 - Epson 42
p_02 TV Video 3840x2160 LED UHD 4K Philips 58
p_05 TV Video 3840x2160 OLED UHD 4K Samsung 90
p_03 Radio Audio - - Philips 45
p_04 CD-player Audio - - Samsung 5

LED_TECH. This leads to a new dimension PROD_NEW2 whose attribute graph
is depicted in Figure 5.10. If we add a context dependency associated with
PROD_NEW2: (LED_TECH, SUBCATEGORY, ‘TV’), then table PROD_NEW_SALES2,
defined over PROD_NEW2, with an instance displayed in Table 5.12, is still in
GMNF.

Figure 5.10: Attribute graph of PROD_NEW

As a final example, fact table STORE_SALES of Table 5.7a on Page 145 is not in
GMNF since condition 1 is violated. The optional STATE has a null value for different
countries and it is not possible to create a single context dependency for attribute
STATE using either attribute COUNTRY or CONTINENT.

Similarly to MNF, we can now define summarizability for fact tables in GMNF as
follows. Let T be a fact table in GMNF, and Q = Agg∗

T (F (A)|X) be a summarization
query over T . Then, A is summarizable with respect to F and X if :

1. F is applicable to A with respect to any subset of X in the result of Q .

2. One of the two conditions hold:

a) X does not contain any optional dimension attribute, or

b) if X contains an optional attribute Ai then let (Ai, Aj , c) be the associated
context dependency, a filter condition: Aj = c must be applied on T

before the summarization query is applied

In other words, summarizability holds provided that a subset of the fact table is
considered, and this subset is given by the context dependencies of the dimensions
over which the fact table is defined.

Example 5.14. Consider a summarization query Q 1 that adds AMOUNT in table
PROD_NEW_SALES2 grouped by CATEGORY and BRAND. Then AMOUNT is summariz-
able with respect to SUM and X = {CATEGORY, BRAND} because SUM is still applicable
to the resulting AMOUNT attribute and X only contains mandatory attributes. Consider
another summarization query Q2 that adds AMOUNT in table PROD_NEW_SALES2
grouped by VIDEO_RES and BRAND. Then, provided that PROD_NEW_SALES2 is
first filtered with a filter: CATEGORY = ’Video’ before applying Q2, then AMOUNT is
summarizable with respect to SUM and X ′ = {VIDEO_RES, BRAND}.

We now compare GMNF with our work in the same context. Going back to Exam-
ple 5.14, attribute AMOUNT is determined (in LFD sense) by the minimal subset of
dimension attributes {PROD_SKU}, which in turns determines all other dimension
attributes of PROD_NEW_SALES2. Since SUM is applicable to AMOUNT, by Defi-
nition 2.12 on Page 32, aggAMOUNT(SUM, Z) holds in PROD_NEW_SALES2, where
Z is the set of all dimension attributes of PROD_NEW_SALES2. Consider first
query Q1 of Example 5.14. By Proposition 3.4 on Page 56, attribute AMOUNT is
summarizable with respect to SUM and X = {CATEGORY, BRAND} since X ⊂ Z and
SUM is distributive. Consider now query Q2, since X ′ = {VIDEO_RES, BRAND} is a
subset of Z, attribute AMOUNT is also summarizable with respect to SUM and X ′,
without requiring any pre-filtering of PROD_NEW_SALES2. The reason why this
happens is our usage of SQL aggregation operations that considers null values as
regular values. Indeed, the result of Q2 is displayed in Table 5.13, and it is easy to
see that the summarizability condition is satisfied.

Table 5.13: Query result of Q2

VIDEO_RES BRAND AMOUNT

1920x1080 Epson 42
3840x2160 Philips 58
3840x2160 Samsung 90
- Philips 45
- Samsung 5

Reasoning over constraints on dimensions

In [25], the conditions for summarizability use constraints that are expressed over
dimensions and generalize the idea of context dependencies introduced in [19],
[24].

As before, we first describe the multidimensional data model of [25] using our
notations. Dimension hierarchies always have one top level attribute called ALL

and possibly multiple bottom level attributes. As in [19], [21], [24], a dimension
attribute can have multiple parent dimension attributes in the hierarchy (dimensions
are called "heterogeneous"), and there can be both, mandatory and optional di-
mension attributes. Every child-parent attribute mapping should be functional (i.e.,
every value only maps to one parent value), which means that an NFD dependency
holds between any pair of attributes Ai, Aj where Ai ≼ Aj . As in [19], [24], fact
tables are defined over dimensions at the finest level of detail, that is, the schema
of the fact table includes the bottom level attributes of the dimensions. Measure
attributes are determined by all the dimensions and can only be aggregated using
distributive functions (defined as in our Definition 3.11 on Page 56). Dimensions are
also supposed to be mutually independent in a fact table. These later requirements
are more restrictive than in our data model since we allow measures that only
depend on a subset of dimensions.

In [25], Hurtado et.al. define summarizability as a property of dimensions. The
rationale is that if we can characterize summarizability for dimensions, then any fact
table built over summarizable dimensions will have summarizable measures. Let
D be a dimension, X a subset of dimension attributes, and B a dimension attribute
in D such that Ai ≼ B for some attribute Ai of X. The notion of summarizability
is formalized by the equivalence of two summarization queries. Attribute B is
summarizable from X in D if and only if for every fact table T defined over D and
distributive aggregate function F using G we have:

Agg∗
T (F (M)|B) = Agg∗

T ′(G(M)|B) (5.1)

where M is a measure attribute in T , and T ′ = Agg∗
T (F (M)|X′ ∪ B), X′ ⊆ X.

The summarizability condition can then be expressed independently of the fact
tables which refer to these dimensions, as follows. Attribute B is summarizable
from X in D if and only if for every bottom level attribute A⊥ of D, we have:

Table 5.14: PROD_NEW

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES BRAND

p_01 Video projector Video 1920x1080 Epson
p_02 TV Video 3840x2160 Philips
p_05 TV Video 3840x2160 Samsung
p_03 Radio Audio - Philips
p_04 CD-player Audio - Samsung

ΠA⊥,B(D) =
⋃

Ai∈X(ΠA⊥,Ai(D) ▷◁Ai ΠAi,B(D)). Here, Π denotes a duplicate elimi-
nation projection and ▷◁ denotes a null-eliminating join. We illustrate this condition
below.

Example 5.15. Consider the product dimension PROD_NEW

in Table 5.14. Then attribute CATEGORY is summarizable from
X = {SUBCATEGORY} because ΠPROD_SKU,CATEGORY(PROD_NEW) =
ΠPROD_SKU,SUBCATEGORY(PROD_NEW)

⋃
ΠSUBCATEGORY,CATEGORY(PROD_NEW). However, attribute CATEGORY is
not summarizable from X = {VIDEO_RES} because the join between
ΠPROD_SKU,VIDEO_RES(PROD_NEW) and ΠVIDEO_RES,CATEGORY(PROD_NEW)
eliminates products ’p_03’ and ’p_04’.

The above definition of summarizability relates to our definition 3.10 as follows. An
attribute B is summarizable from X in D if and only if for any fact table T defined
over D such that a measure attribute M depends on the bottom-level attributes
of D and F is a distributive function using G over the partitions of A, then M is
summarizable with respect to X ∪B and F for a subset the subset of attributes {B}.
Thus, instead of enforcing equation 5.1 for every subset of X∪B as in our definition
(where it is denoted Z2), it is only enforced for {B}.

Consequently, the summarizability definition of Hurtado et al. could be used, as in
[23], to characterize correct summarization queries. Let T be a fact table resulting
from a summarization query over a table T0 and having a measure attribute M . Let
Q = Agg∗

T (F (M)|X) be a summarization query over a T , then Q is correct if every
attribute B of a dimension D in X is summarizable from XD −B in D.

To check summarizability, Hurtado et al. propose to specify constraints on dimensions
and then transform the summarizability problem into the problem of verifying the
satisfaction of a set of dimension constraints by some dimension schema. Let Ai

be dimension attributes of a dimension D, the following types of constraints are
introduced.

1. D |= ⟨Ai, Ai+1, ..., Aj⟩ means that for every attribute value v of Ai, there exists
a path in D from v to a value of Aj going through a value of Ai+1. We shall
say that Ai rolls up to Aj

2. D |= ⟨Ai, ..., Aj = k⟩ means that for every attribute value v of Ai, there exists a
path in D from v to an attribute value v′ of Aj if and only if v′ = k

Constraints can then be composed using the usual Boolean logical connectives. Now,
assume that a set of constraints have specified on the schema of D. To determine if
attribute B is summarizable from X in D, one must determine if, for each bottom
level attribute A⊥ of D, the following constraint is satisfied :

D |= ⟨A⊥, ..., B⟩ =⇒ (⟨A⊥, ..., A1, ..., B⟩ ⊕ ...⊕ (⟨A⊥, ..., An, ..., B⟩)

where X = {A1, ..., An} and ⊕ denotes an exclusive disjunction.

We use the following examples to illustrate the use of constraints to determine
summarizability.

Example 5.16. Consider dimension PROD_NEW whose hierarchy type is dis-
played in Figure 5.11. All the child-parent mappings in PROD_NEW are func-
tional except for attribute VIDEO_RES. Thus, the two following constraints (a) and
(b) are expressed on PROD. Note that constraint (a) is equivalent to the context
dependency of [19], [24].

(a) Hierarchy type of
P ROD_NEW

(a) ⟨PROD_SKU, VIDEO_RES, CATEGORY =′

V ideo′⟩
(b) ⟨Ai, Aj⟩, for all edges (Ai, Aj) in the hier-

archy type

(b) Constraints on P ROD_NEW

Figure 5.11: The dimension schema of PROD_NEW

Constraint Meaning

(a) A value of PROD_SKU rolls up to VIDEO_RES and CATEGORY

only for the ’Video’ value of CATEGORY

(b) All other attributes directly roll up to their parent attribute

To determine if CATEGORY is summarizable from X = {SUBCATEGORY} we must deter-
mine if the following constraint can be satisfied:

PROD |= ⟨PROD_SKU, . . . , CATEGORY⟩ ⇒ ⟨PROD_SKU, SUBCATEGORY, CATEGORY⟩

Using the constraints we have ⟨PROD_SKU, SUBCATEGORY⟩ and
⟨SUBCATEGORY, CATEGORY⟩, which can be composed. Therefore, the condition
holds and CATEGORY is summarizable from X.

Example 5.17. we now consider a variation of the previous example in which
VIDEO_RES has now SUBCATEGORY for parent in the hierarchy type. A disjunction
constraint is now expressed for constraint (a), which cannot be expressed in [24].
In this example, SUBCATEGORY is not summarizable from VIDEO_RES.

(a) Hierarchy type of
P ROD_NEW

(a) ⟨PROD_SKU, VIDEO_RES, SUBCATEGORY =
’TV’ ⟩ ⊕
⟨PROD_SKU, VIDEO_RES, SUBCATEGORY =
’Video projector’ ⟩

(b) ⟨Ai, Aj⟩, for all other edges (Ai, Aj) in the
hierarchy type

(b) Constraints on P ROD_NEW

Figure 5.12: The dimension schema of PROD_NEW

It is clear that the data model and constraints proposed by [25] subsume the
data model with context dependencies of [19], [24]. We can then generalize
the summarizability property for queries as we did before for tables which are in
GMNF.

To conclude the comparison with our work, it must be noted that the method
Hurtado et al. has several limitations. First, it does not accept non-strict hierarchies:
dimension attributes can be optional but when they have a non-null value, their value
maps to a single parent value in the hierarchy. Second, it does not accept measures
that do not depend on all dimensions. Third, the method does not take into account
the notion of completeness captured by item (1) in the completeness condition
of [23]. We already explained how this notion is captured in our work. Last, the
expression of comprehensive dimension constraints can be labor-intensive.

5.7.3 Conclusion on summarizability

The above works on summarizability were mostly focused on the conditions that the
value mappings between attributes should be one-to-one and the domain values of
each attribute should be complete [23]. Other works also concentrate on type com-
patibility between measures and dimensions. [6] captured the ability of summing up
measures and classified measures as additive, semi-additive and non-additive. Aggre-
gations using function SUM can be applied on additive measures safely, and cannot
be applied on non-additive measures. Semi-additive measures cannot be aggregated
along all dimension attributes. For example, in fact table SALES_SUM, measure
SALES_SUM is additive whereas attribute QTY_ON_HAND in table INVENTORY is
semi-additive because it can not be summed up over temporal attributes like YEAR.
[27] provides a detailed case analysis for possible factors impacting additivity.

[20] combined the classifications of [23] and [27] and introduced a new classifica-
tion of measures defining five measure types : tally, semi-tally, reckoning, snapshot
and conversion factor. For example, attribute SUM_SALES in SALES_SUM is tally since
it it is summarizable over any dimension and attribute QTY_ON_HAND in INVENTORY
is reckoning measure since it is only summarizable over non-temporal dimensions.
Attribute STOCK_PRICE is a snapshot measure and TEMPERATURE is conversion factor
measure (both are not summarizable).

[32] separated summarization problems into schema level problems (e.g., non-strict
hierarchy), data level problems (e.g., imprecision on measure values) and com-
putation level problems (e.g., type compatibility[23]). [26] makes a survey on
summarizability issues and classifies summarizability solutions into two axes: 1) so-
lutions which give guidelines for designing complex multidimensional structures and
2) solutions for summarizability problems over existing complex multidimensional
structures.

We introduce our solutions in Sections 3.4.1 to 3.4.3 and propose a new way to
enforce summarizability even when the hierarchy is non-strict, non-covering and
non-onto. The summarizability conditions proposed in [29] require that hierarchies
should be strict, covering and onto to avoid double counting during aggregation.
In our model, this corresponds to the problem of ambiguity where the aggrega-
tion groups cannot identify a unique path in the hierarchy. Aggregations that are
ambiguous can be detected and ambiguous values can then be annotated (see Sec-
tion 3.4.2). Whether the aggregate functions are distributive is expressed using
aggregable properties providing additional information on the aggregable dimen-
sions (see Section 3.4.1). Furthermore, we consider the problem of incomplete

merge and propose a solution to complete the domain values by adding missing
tuples (see Section 3.4.3). This issue has not been discussed in previous works on
summarizability.

5.8 Summary

Table 5.15 gives a global summary for the four approaches mentioned above and
our approach. For each approach, Table 5.15 lists its input metadata, the required
user actions, and the final result. Optional input items and user actions are in italic.
= Besides, the possibilities of automate the process are also discussed, there are
three steps considered: discovering schema matchings between schemas, inferring
schema mappings using known schema matchings, and generating the final query to
create the desired schema.

Schema integration: Schema integration approach takes a set of source schemas as
input and generates a unified, global schema that represent all the source schemas.
The integration is mainly a manual process which heavily relies on the human
understanding of the source schemas to identify and solve semantic and structural
conflicts. The solutions to solve conflicts are various and human decisions are almost
needed in every schema integration step. For example, to solve schema conflict
of two schemas containing different identifiers, the identifier of the global schema
could either be the union or the intersection of the two identifiers. The generation
of such a global schema therefore needs actions of users with a deep knowledge of
the respective source schemas.

Data integration: Data integration approach reduces human effort by automating
the detection of schema matchings and the definition of schema mapping queries.
The approach takes a set of source schema as input, user is then required to specify
the schema of the mediated table. Schema matchings between source schema and
the mediated table can be either given as input or detected automatically. Within a
set of schema matchings, the system can suggest schema mappings which can be
selected and adapted by the user.

Schema complement: Schema complement approach completely automates the
schema matching, schema mapping and query generation steps by exploiting seman-
tic metadata like functional dependencies. The approach reduces user interaction to

the selection of a source table and a desired target table with new attributes. The
outcome is to create a merge query that joins the source and target tables.

Drill-across queries: Drill-across approach also automates the schema matching,
schema mapping and query generation steps by analyzing source schemas and
building schema matchings through conformed dimensions. Users must express a
drill-across query that takes at least two fact tables as input and returns a new target
table which is the merge of the input fact tables.

Schema Augmentation: Schema augmentation approach is an extension of the
schema complement approach. The schema matchings can be automatically obtained
from different kinds of metadata (foreign-key dependencies, view definitions and
user queries) in form of join and attribute mapping relationships. The schema
mapping and merge query generation steps are completely automated. The user just
selects a start table and a desired target table with new attributes.

Ta
bl

e
5.

15
:

C
om

pa
ri

so
ns

of
fo

ur
sc

he
m

a
an

d
da

ta
in

te
gr

at
io

n
ap

pr
oa

ch
es

A
pp

ro
ac

he
s

In
pu

t
M

et
ad

at
a

R
eq

ui
re

d
U

se
r

A
ct

io
ns

A
ut

om
at

is
at

io
n

op
po

rt
un

it
ie

s
R

es
ul

t
Sc

he
m

a
Sc

he
m

a
M

er
ge

m
at

ch
in

gs
m

ap
pi

ng
s

qu
er

y

Sc
he

m
a

In
te

gr
at

io
n[

41
]

–
A

se
t

of
so

ur
ce

sc
he

m
as

–
A

na
ly

si
s

so
ur

ce
sc

he
m

as
–

So
lv

e
co

nfl
ic

ts
be

tw
ee

n
sc

he
m

as
–

M
er

ge
(o

r
tr

an
sf

or
m

)
sc

he
m

as

N
o

N
o

N
o

A
un

ifi
ed

,g
lo

ba
ls

ch
em

a
w

hi
ch

co
ul

d
re

pr
es

en
t

al
lt

he
so

ur
ce

sc
he

m
as

M
ed

ia
ti

on
-b

as
ed

D
at

a
In

te
gr

at
io

n[
42

],
[4

3]
–

A
se

t
of

so
ur

ce
sc

he
m

as
–

Sc
he

m
a

m
at

ch
in

gs
be

tw
ee

n
so

ur
ce

sc
he

m
a

an
d

m
ed

ia
te

d
ta

bl
e

–
D

efi
ne

th
e

sc
he

m
a

of
th

e
m

e-
di

at
ed

ta
bl

e
–

In
fe

r
sc

he
m

a
m

ap
pi

ng
s

N
o

Ye
s

Ye
s

A
qu

er
y

th
at

m
er

ge
s

th
e

so
ur

ce
sc

he
m

as
an

d
ge

n-
er

at
es

th
e

m
ed

ia
te

d
ta

-
bl

e

Sc
he

m
a

C
om

pl
em

en
t[

12
]

–
A

so
ur

ce
ta

bl
e

–
A

se
t

of
so

ur
ce

sc
he

m
a

–
Se

le
ct

ta
rg

et
ta

bl
e

Ye
s

Ye
s

Ye
s

A
n

au
gm

en
te

d
so

ur
ce

ta
-

bl
e

w
it

h
ne

w
at

tr
ib

ut
es

fr
om

ta
rg

et
ta

bl
e

D
ri

ll
A

cr
os

s[
6]

–
A

se
t

of
so

ur
ce

sc
he

m
as

–
A

se
t

of
di

m
en

si
on

s
us

ed
in

th
e

so
ur

ce
so

ur
ce

sc
he

m
as

–
Se

le
ct

at
le

as
t

tw
o

so
ur

ce
fa

ct
ta

bl
es

Ye
s

Ye
s

Ye
s

A
ne

w
fa

ct
ta

bl
e

co
n-

ta
in

s
al

lt
he

m
ea

su
re

s
of

so
ur

ce
fa

ct
ta

bl
es

Sc
he

m
a

A
ug

m
en

ta
ti

on
s[

53
]

–
A

so
ur

ce
ta

bl
e

–
A

se
t

of
so

ur
ce

sc
he

m
a

an
d

m
et

ad
at

a
of

th
es

e
sc

he
m

as
–

H
ie

ra
rc

hy
de

fin
ed

in
th

e
sc

he
m

as
–

A
gg

re
ga

bl
e

pr
op

er
ti

es
of

at
-

tr
ib

ut
es

–
Se

le
ct

ta
rg

et
ta

bl
e

–
C

ho
os

e
re

du
ct

io
n

op
er

at
io

ns
–

Se
le

ct
ne

w
at

tr
ib

ut
es

–
Se

le
ct

th
e

pa
th

to
m

er
ge

Ye
s

Ye
s

Ye
s

A
n

au
gm

en
te

d
so

ur
ce

ta
-

bl
e

6
Applications and Experiments

Contents
6.1 Performance Tests . 165

6.1.1 Attribute graph computation 165

6.1.2 Dimension identifier computation 171

6.2 Validation with Real Datasets . 171

6.2.1 Business use case . 171

6.2.2 Feature engineering use case 180

In this chapter, we describe the experiments we carried out using the implementa-
tion of our framework discussed in Chapter 4. The experiments covered both the
efficiency of the implementation and the validation of our approach.

6.1 Performance Tests

The performance experiments evaluate the performance of the implementation
of the attribute graph generation algorithm ATG (Algorithm 1, page 87 and the
dimension identifier computation CDI (Algorithm 2, page 89). The experiments are
conducted on a HANA instance with 250 GB of main memory and 300 GB of disk
space.

6.1.1 Attribute graph computation

The ATG algorithm takes a hierarchy table (HT) as input and computes the at-
tribute graph by applying a sequence of SQL queries (the steps are described in in
Section 4.2.1 and the SQL queries are described in ??). The hierarchy table HT is

165

the only input and the performance of ATG mainly depends on the size, the number
of null values and the number of attributes in HT.

Each hierarchy table HT is an encoding of a dimension table and its size depends
on the size of the dimension table, the size of the attribute active domains (distinct
values for each attribute), the number of distinct child-parent value mappings in the
hierarchy instance etc. More formally, we can identify the following four parameters
that have an effect on the size of HT :

1. The size of the input dimension table (number of rows);

2. The number of hierarchy nodes / dimension attributes (without ⊥ and ⊤);

3. The number of +-edges in the resulting attribute graph;

4. The total number of edges in the resulting attribute graph.

To evaluate the performance impact of each parameter, we generated several sets of
hierarchies (dimension tables), where for each set we vary one parameter.

Experiment 6.1: Varying the dimension table size
The size of the hierarchy table HT increases along with the size of the dimension ta-
ble and we expect that the ATG computation time should increase proportionally.

We generate six dimension tables for this experiment. To measure only the influence
of the table size, we enforce that the dimension table does not contain any null
values and the resulting attribute graphs all have a strict linear structure. Then, the
attribute graph of a hierarchy with n nodes (attributes) has exactly n− 1 edges and
all edges are labeled by f . The tuple generation algorithm for each attribute in the
hierarchy a new unique value, which is the concatenation of its parent-attribute value
with a randomly generated numeric value in the interval [0, 9999]. This randomized
process produces linear hierarchies with no null values where each attribute literally
determines its parent attribute (the corresponding attribute graph only contains
f -edges).

Example 6.1. The generated tuples of a dimension table T with attributes L1 ≼ L2 ≼

L3 ≼ L4 ≼ L5 are shown in Table 6.1. Each value is computed by its parent value
concatenating a random numeric value in the interval [0, 9999].

Table 6.1: A dimension table with a strict linear structured hierarchy

L1 L2 L3 L4 L5

t1 63.789.266.7426.2629 63.789.266.7426 63.789.266 63.789 63
t2 99.729.575.186.7874 99.729.575.186 99.729.575 99.729 99

. . .

The computation time of the six linear dimension tables with 5 attributes is shown
in Figure 6.1. The result shows that the computation time increases linearly with
the input dimension table size. As detailed in ??, SQL query used to compute the
attribute graph is a one-pass procedure using simple selections and joins, so the
computation time of SQL query increases together with the size of the table that the
query applied.

5K 10
K

50
K

10
0K

50
0K

1.1
M

100

101

102

C
om

pu
ta

ti
on

ti
m

e
(s

)

Figure 6.1: Computation time for different dimension table size (number of rows)

Experiment 6.2: Varying the number of dimension attributes
In this experiment, we control the number of dimension attributes in the dimension
table. When the number of dimension attributes grows, the total amount of distinct
attribute domain values in the dimension table also grows and will increase the
size of the HT which causes the augmentation of the attribute graph’s computation
time.

We use the same tuple generation process as in Experiment 1 for producing di-
mension tables with a strict linear hierarchy. Each attribute then has an active
domain of the same size which corresponds to the number of tuples in the table. We
reuse the two dimension tables with 10K and 50K rows and five attributes (nodes)
generated for Experiment 1 and generate four other dimension tables by augmenting
the number of attributes. We obtain two sets of tables with 10K and 50K rows

respectively, where each sets contains three dimension tables with respectively 5, 10
and 20 attributes.

The computation time for each table is shown in Figure 6.2. The result shows
that the computation time increases linearly with the number of attributes in the
dimension table. HT describes for each node in the complete paths from the bottom
level attribute value to the top level attribute value. Then, for a strict linear hierarchy,
each new attribute increases the size of HT by the number of attribute values and,
since the number of the complete paths remains the same (10K rows or 50K rows),
HT grows linearly. Since the performance of TGTG increases linearly with the
size of HT , in our experiments it also grows linearly with the number of attributes.
We can conclude that for linear strict hierarchies, the performance of ATG mainly
depends on the size of HT and is independent of the number of attributes.

5 Nodes 10 Nodes 20Nodes

1
5

15

30

60

C
om

pu
ta

ti
on

ti
m

e
(s

)

Table with 10K rows
Table with 50K rows

Figure 6.2: Computation time for different number of nodes

Experiment 6.3: Varying the number of +-edges
In the third set of experiments, we relax the condition of strictness (each value

has a single parent) and allow attribute values to have several parent values. This
introduces +-edges in the corresponding attribute graphs and increases the size of
the HT table (the number of non-strict child-parent value mappings in the hierarchy
leads to the augmentation of the complete paths to the top level attribute value
for certain domain values). To achieve non-strictness, we modify the generation of
the dimension table with 10K rows over 10 attributes and generate five dimension
tables with an increasing number of +-edges in the result attribute graphs. These
+-edges are simply created by removing the parent prefix of the values for certain
attributes.

Example 6.2. Tuples of a dimension table T with attributes L1 ≼ L2 ≼ L3 ≼

L4 ≼ L5 are shown in Table 6.2. The attribute values of L3 are generated without

concatenating its parent values. Then, for example, t3 and t4 share the same value
of L3 but have different values for attribute L4. Consequently, the edge (L3, L4) is a
+-edge.

Table 6.2: A dimension table with one +-edge

L1 L2 L3 L4 L5

t3 63.789.266.7426.2629 63.789.266.7426 266 63.789 63
t4 10.124.266.1924.9275 10.124.266.1924 266 10.124 10

. . .

We generate 5 dimension tables which contain contain 10K rows over 10 attributes
with respectively 0, 2, 4, 6, 8 +-edges. Figure 6.3 shows the performance evolution
for additional +-edges. We can see that, contrary to the previous experiments, where
the computation time increased with the size of the HT table, in this experiment the
time for computing the attribute graph decreases with the number of +-edges. This
result can be explained by the fact that the number of distinct attribute values of
certain attributes decreases. Based on the SQL query shown in ?? Step 4 (??), when
the number of distinct attribute values of certain attributes decreases, the number of
partitions by attribute values decreases and the intermediate tables becomes smaller
(e.g., time to compute PLUS_EDGE_WITH_NULL), this decreases the computation
time for Step 4 in Algorithm 1 (Page 87). Since there are no nullable attributes, Step
5 in Algorithm 1 is ignored.

0 2 4 6 8

2

3

4

5

C
om

pu
ta

ti
on

ti
m

e
(s

)

Figure 6.3: Computation time for different number of +-edges

Experiment 6.4: Varying the numbers of attribute graph edges
Finally, we relax the constraint of linearity and generate dimension tables producing
attribute graphs with a varying numbers of optional edges.

To avoid the impact of +-edges, we enforce the resulting attribute graphs to only
contain f -edges and 1-edges. We generate two sets of dimension tables with 10
and 20 attributes respectively, and augment the number of edges for each set. The
number of edges is modified by introducing null values for some attribute which
produces additional optional attribute graph edges that jump over this attribute. The
table generation still follows the same rules as in Experiment 1 (page 166) where
attribute values are a concatenation of their parent values and a random numeric
value between [0, 9999]. The only change consists in introducing random null

values. To ensure that the additional edge created by some null values is a f -edge,
non-null attribute values are a concatenation of their first non-null ancestor value
concatenated with the symbol ‘-’ and the randomly generated numeric values.

Example 6.3. Some tuples of a dimension table T with attributes L1 ≼ L2 ≼ L3 ≼

L4 ≼ L5 are shown Table 6.3. The first tuple generates an f -edge from attribute L2 to
attribute L3 and the second tuple and additional edge from attribute L2 to L4 because
of the null value in attribute L3. Tuple t6 contains a null value for L3 and t6.L2 uses
‘10.124.-’ to represent its parent value where ‘-’ represents the null value in L3 and
‘10.124’ represents the value of L4 concatenated with the value of L5. Each value of
L2 and each non-null value of L3 contain their unique concatenated parent values.
The edge (L3, L4) has label 1 and both edges (L2, L3) and (L2, L4) have label f . There
is no label +-edge in the attribute graph generated by T .

Table 6.3: A dimension table with one additional edge

L1 L2 L3 L4 L5

t5 63.789.266.7426.2629 63.789.266.7426 63.789.266 63.789 63
t6 10.124.-.1924.9275 10.124.-.1924 - 10.124 10

. . .

We generate 8 dimension tables containing 10K rows over 10 and 20 attributes
respectively. Figure 6.4 shows the performance evolution for hierarchies with
different additional edges. The number of additional edges is the difference between
its actual edge number and n− 1 (n is the total attribute number). The size of the
HT will augment proportionally the number of edges in the result attribute graph,
and we might expect that the computation time of generation attribute graph will
increase in consequence. However, as the results show, the computation time slightly
decreases with the number of additional edges. Similar to Experiment 3, this result
can be explained by the fact that the number of attribute values of certain attributes
decreases, which decreases the computation time for Step 4 in Algorithm 1. Because

there are nullable attributes, Step 5 in Algorithm 1 can not be ignored, the decrease
of time here is less significant than Experiment 3.

0 1 2 3 4 8 9

3

5

13

15

C
om

pu
ta

ti
on

ti
m

e
(s

)

Table with 10 nodes
Table with 20 nodes

Figure 6.4: Computation time for different number of additional edges

Finally, for hierarchies of less than 10 nodes and less than 50K rows, which corre-
sponds to a large number of real use cases, the computation of an attribute graph
takes less than 20 seconds. For a dimension table with a very large sample size of
1.1M rows and 5 nodes, the computation of the attribute graph takes 67 seconds,
which is still acceptable for a system background call.

6.1.2 Dimension identifier computation

Algorithm 2 (page 89) computes the dimension identifier Y for a set of attributes
X such that Y 7→ X (CDI) using the attribute graph D of a dimension table. It is
obvious that the performance of CDI only depends in the attribute graph D and is
independent of the size of the dimension table.

We tested the performance of CDI with 20 different attribute graphs containing 5 to
20 nodes and 4 up to to 28 edges. With X equal to the set of all attributes (nodes),
all dimension identifiers are computed in less than 9 milliseconds with a variation of
2 milliseconds.

6.2 Validation with Real Datasets

6.2.1 Business use case

Our second series of experiments evaluates the practical usage of our REST ser-
vices implementing Algorithm 3 for Computing Schema Augmentations (CSA),

Algorithm 4 for Reduction Query Generation (RQG), and Algorithm 5 for Merging
Schema Augmentations(MSA) described in Chapter 4. The experiments are done on
an SAP server with 2 TB of main memory and 1 TB of disk space.

Business Dataset

We use the dataset extracted from a real-world business intelligence application
running for a worldwide clothing company which performs retail store stock analysis,
customer analysis and customer segmentation. The application contains 42 informa-
tion views representing dimension tables, and 145 carefully optimized information
views representing fact tables.

We categorize the fact table views into the following four types:

• first-level views (22 views) are the views defined as star joins between a non-
analytic table storing facts (possibly completed by using left-outer joins with
other tables providing details) and dimension tables.

• join views (72 views) are the views defined using a sequence of joins (mostly
left-outer joins) or star joins among analytic and non-analytic tables, possible
contain some aggregations. They are also called hand-craft views and denoted
by HCV.

• union views (36 views) are the views defined by the union of two or more
analytic tables.

• aggregation views (15 views) are the views defined by aggregation and projec-
tion queries on other fact tables.

Example 6.4. Figure 6.5 shows four different types of views defined in the business
application. Dimension tables are represented by bold rounded rectangles, fact
tables by bold square rectangles, database tables by regular square rectangles, and
intermediate tables by dashed rectangles. Intermediate tables store temporary
results during the view constructions (e.g. TEMP_1 stores the temporary result of
the join between ct_LINEITEM and ct_TRANSACTION).

Fact table TRANSACTION shown in Figure 6.6a is a first-level view, it is de-
fined as a star join between the non analytic table ct_TRANSACTION and five
dimension tables CUSTOMER, WORKSTATION , TIME, TRANSACTION

and STORE. Fact table POSDM_TRANS shown in Figure 6.6b is a join view, it
contains a sequence of joins between tables ct_LINEITEM, ct_TRANSACTION,

Figure 6.5: Constructions of views

(a) First-level view: TRANSACTION (b) Join view: POSDM_TRANS

(c) Union view: SALES (d) Aggregation view: AGG_WEB_ORDER

ct_ITEM_DISCOUNT, ct_ITEM_TAX and ct_WEB_ORDER, followed by a star
join with dimension tables dPROD, dTIME, dCUST and dSTORE, there are ag-
gregations applied on table ct_ITEM_DISCOUNT and ct_ITEM_TAX. Fact table
sales shown in Figure 6.6c is a union view, it is defined by a union between three
fact tables POSDM_SALES, POSDM_DISCOUNT and POSDM_TAX. Fact table
AGG_WEB_ORDER shown in Figure 6.6d is an aggregation view, it is defined as
an aggregation on the fact table WEB_ORDER.

Data preparation

In our first experiment, we select a user-defined join view, also called Hand-Crafted
View (denoted by HCV), as a target and verify if we can generate an equivalent
view (denoted by GV for Generated View) by iteratively extending a first-level start
view (table) through possibly several schema augmentation steps, each of which
consisting of a sequence of CSA - RQG - MSA API calls. At each iteration, we simulate
a user who selects a suggested target schema augmentation, and possibly defines
a filter condition on some attributes of the target table or adds some calculated
attributes after the merge.

We illustrate our protocol with the example of an Hand-Crafted View (HCV) –
POSDM_TRANS defined as Figure 6.6b. The definition of the HCV starts from a non-
analytic table ct_LINEITEM, performs a sequence of left-outer joins with four non-
analytic tables storing different facts: ct_TRANSACTION, ct_ITEM_DISCOUNT,
ct_ITEM_TAX and ct_WEB_ORDER, followed by a star-join with dimension ta-
bles TIME, PRODUCT , STORE and CUSTOMER.

Before running our experiment, we first extracted the attribute graphs of all di-
mension tables (dTIME, dLINEITEM, dWORKSTATION, dTRANS, dSTORE,
dPROD, dTAX, dORDER, dCUSTOMER and dDISCOUNT) and of five first-level
views corresponding to the non-analytic tables used in HCV:

• LINEITEM is defined over the non-analytic table ct_LINEITEM and di-
mensions dTIME, dLINEITEM, dWORKSTATION, dTRANS, dSTORE and
dPROD, with two measures QUANTITY and SALES_AMOUNT.

• TRANSACTION is defined over the non-analytic table ct_TRANSACTION
and dimensions dWORKSTATION, dTIME, dTRANS, dSTORE and
dCUSTOMER, with measure TOTAL_COST.

• ITEM_DISCOUNT is defined over the non-analytic table
ct_ITEM_DISCOUNT and dimensions dTIME, dLINEITEM,
dWORKSTATION, dTRANS, dSTORE and dDISCOUNT, with mea-
sure DISCOUNT_AMOUNT.

• ITEM_TAX is defined over the non-analytic table ct_ITEM_TAX and di-
mensions dTIME, dLINEITEM, dWORKSTATION, dTRANS, dSTORE and
dTAX, with measure TAX_AMOUNT.

• WEB_ORDER is defined over the non-analytic table ct_WEB_ORDER and
dimensions dTIME, dSTORE, dORDER and dCUSTOMER, with two mea-
sures ORDER_AMOUNT and SHIPPING_COST.

We also define the aggregable properties of all measure attributes (SALES_AMOUNT,
QUANTITY, DISCOUNT_AMOUNT, etc.) using the rules defined in Section 2.2.6.

The first-level views; the dimension tables and the underlying non-analytic tables are
crawled to extract all direct and derived relationships (including PK-FK relationships)
and to compute the dimension and fact identifiers, as explained in Section 4.2. An
extract of the resulting SC graph among analytic tables is shown in Figure 6.7.

Figure 6.8 gives a partial view of the SC graph for the analytic tables joined in
the HCV. The table cardinalities range from 1.4M rows (WEB_ORDER) to 23M

Figure 6.7: Complete SC graph for analytic tables

rows (ITEM_TAX and LINEITEM). We use the notation WEB_ORDER(D5, D8)
to state that the fact identifier of table WEB_ORDER is the union of dimension
identifiers of dimension D5 and D8. For clarity, the figure does not show the edges
corresponding to derived relationships. In particular, all five fact tables are pairwise
connected by derived SC edges as shown in Figure 6.7. The primary keys of non-
analytic tables are propagated to the corresponding fact tables (views) to account
for the dependencies between dimensions, e.g. in WEB_ORDER, the dependency
as {D5, D8} 7→ D7 is propagated from the primary key of ct_WEB_ORDER.

Figure 6.8: Partial SC graph for analytic tables

Experiment 6.5: Controlled Generation of Hand-Crafted View HCV
The goal of this experiment is to show that an expert can use our schema com-

plement workflow to generate a view (GV) which is equivalent to the pre-selected
hand-crafted view (HCV).

We apply our schema augmentation REST service workflow to generate the view
GV starting from the first level fact table LINEITEM. This table is merged with
other tables in eight successive schema augmentation steps illustrated by numbered
arcs in Figure 6.8. The final result GV should produce the same table (schema and
contents) as HCV.

GV is generated in 8 steps where each steps merges the result of the previous step
with a new dataset:

1. Step 1 adds some attributes from dimension dCUSTOMER (D7) by a "natural"
merge (the SC edge in Figure 6.7 from LINEITEM to TRANSACTION has
label “NAT”).

2. In steps 2 and 3, LINEITEM is complemented with measure attribute
DISCOUNT_AMOUNT from table ITEM_DISCOUNT and measure attribute
TAX_AMOUNT from table ITEM_TAX. Both SC edge connecting LINEITEM
to these two tables in Figure 6.7 have label “AUG”. Table ITEM_DISCOUNT
is first transformed by an aggregate reduction over attributes from dimension
D10 : dDISCOUNT into a natural schema complement of the result of step 1
before being merged. The same "reduce and merge" step is applied to table
ITEM_TAX which is first reduced over attributes from dimension D6 into a
natural schema complement before being merged with the result of step 2.

3. Step 4 adds attributes from dimension D8 : dORDER. The SC edge from
LINEITEM to WEB_ORDER has label “AUG” with common attributes from
dimensions D3 : dTIME and D5 : dSTORE. We define a relationship between
dimensions D4 : dTRANS and D8 : dORDER (dotted line in Figure 6.8) and
compute the augmented merge with table WEB_ORDER.

4. Steps 5 to 8 add the attributes from dimensions D7 : dCUSTOMER,
D3 : dTIME, D5 : dSTORE and D9 : dPROD by a sequence of natural merge
operations.

Finally, we compare the number of rows and the values of the hand-crafted view
HCV and the generated view GV generated by the previous steps over the real-world
dataset. Both view definitions compute the same result and we conclude that we
were able to rebuild the hand-crafted view in a structured and controlled way using

our REST services. In particular, we can also formally state that GV satisfies the
quality criteria introduced in Section 3.4 which were not guaranteed by HCV .

Experiment 6.6: Materalization Cost : GV versus HV
Our second use-case experiment compares the computation performance of the

original view HCV and the generated view GV using SQL queries. The performance
measures were done on a server with 2 TB of main memory and 1 TB of disk
space. We might expect that the materialization of GV takes more time than the
materialization of HCV since the HCV SQL query directly accesses the non-analytic
tables and might benefit from the existing indexes on these tables.

We first compared the time necessary for a complete materialization of both views
and can observed that the computation of GV is 1.5 times slower than the compu-
tation HCV which confirms our initial assumption. Secondly, we applies a series
of aggregation queries with random combinations of dimension attributes and ag-
gregable attributes on HCV and GV. The performance results are more open to
discussion. In 17% of the cases, GV performs 1.15 to 3.1 faster than HCV, and in
74% of the cases, HCV performs 1.1 to 4.5 faster than GV. In the rest of cases, both
have similar performance.

In order to better understand the factors causing these performance variations we
compared the execution plans of the queries generated for GV and HCV. In Table 6.4
shows the execution times of two simple aggregation queries in HCV and GV and we
can see that both queries have an opposited behavior when executed on GV and on
HCV. Their execution plans are shown in Figures 6.9a and 6.9b. The query plans

Table 6.4: Performance of Q 1, Q 2 in GV and HCV

Q 1 Q 2

HCV (in s) 10.33 2.61
GV (in s) 3.53 10.144

are deployed and executed on two different HANA query engines, an analytic query
engine (solid green box) and a non-analytic query engine (dashed orange box). By
comparing the execution plans with the execution time in Table 6.4, we observe that
query plans using both engines take more time than queries executed in a single
engine: query plan Q 1(HCV) uses both engines and costs 8 seconds more than
query plan Q 1(GV) which is executed only on one engine. This difference is probably
related to the additional overhead for switching between these to engines. We can

(a) Execution plans of Q 1

(b) Execution plans of Q 2

Figure 6.9: Query execution plans comparisons

conclude that the performance variations are mainly caused by the optimization
strategy and the switching overhead for plans using both query engines.

Observations

Experiments 5 and 6 illustrate that our REST-based schema augmentation workflow
can be used to regenerate for a randomly chosen join-view HCV (which represents
half of the fact tables of the considered application) an equivalent view (GV) with
comparable execution performance. This is a very positive result since it illustrates
that our schema augmentation workflow can assist business users to build complex
views by manipulating analytic views with meaningful attributes. By contrast with
our solution, the creation of an HCV requires a strong programming (SQL) and data
modeling expertise to manually build these views and a precise knowledge of the
database schema to express the join conditions, to decide when a pre-aggregation
is necessary, to identify useful measure attributes and to choose which aggregation

functions are applicable to them. The preliminary price to pay for our approach is
the creation of all the necessary first-level views. However, this overhead is rapidly
amortized with the number of join views in the application. In addition, it is possible
to capitalize on the SC graph for the definition of future views.

Figure 6.10: Attribute graph in dimension STORE

Illustration of ambiguous value detection

As another substantial advantage, our REST service provides quality guaran-
tees that are difficult to fulfill by the developer of an HCV view. To illustrate
this point, suppose that the aggregated view AGG_WEB_ORDER shown in Fig-
ure 6.6d is created as: AggWEB_ORDER(SUM(ORDER_AMOUNT) | X ∪ A_STORE) where
X = {DATE, CUSTOMER_NO} and A_STORE is the set of the dimension attributes of
dimension dSTORE whose validated attribute graph is depicted on Figure 6.10.
Now suppose that an expert wants to extend an HCV with a new measure at-
tribute SUM(ORDER_AMOUNT) by joining HCV with AGG_WEB_ORDER on at-
tributes X ∪ JA_STORE, where JA_STORE is a subset of A_STORE. The choice of the
attributes in JA_STORE strongly influences the correctness of the obtained result,
and in particular the existence of ambiguous values. Table 6.5 shows the cases of
ambiguous values for SUM(ORDER_AMOUNT), depending on the attributes contained
in JA_STORE, that would be detected by our RQG API if AGG_WEB_ORDER was
selected as a target schema augmentation.

Table 6.5: Detection of ambiguous values

Attributes in JA_STORE Is ambiguous Missing attributes

PLANT, CCOUNTRY, CENTITY N -
CENTITY, CCLUSTER, CSREGION, CREGION N -
CCOUNTRY, CSREGION Y CCLUSTER
CCLUSTER, CREGION Y CSREGION

6.2.2 Feature engineering use case

In the following experiment, we validate again the usage of our REST service in a
feature engineering application.

Feature Engineering Dataset

We perform the experiment in a predictive analysis application of a retail bank where
data analysts want to predict whether clients without a credit card will obtain a card
within 3 months following a given reference date.

The application uses tables from a publicly available database PKDD [54]. The tables
are related through PK-FK relationships as shown in Figure 6.11. Each account
has both static characteristics (e.g. date of creation, branch address) stored in
table ACCOUNT and dynamic characteristics (e.g. debited and credited payments,
account balance) stored in table TRANSACTION. Table CLIENT describes charac-
teristics of persons who can use and own accounts. Clients and accounts are related
by table DISPOSITION: one client can use several accounts and one account can
by used by several clients, but each account can only be owned by one client. Table
CREDIT_CARD describes the credit cards that are issued for an account. Tables
GEOCODE and TIME provide detailed geographical and time information.

Figure 6.11: Relationships for the bank retail database

The application development includes a feature engineering step to build a training
dataset. This training dataset is reused as input information for further operations
during the prediction analysis. The training dataset is built by starting from a table
describing a CLIENT entity and a reference date. The developer augments this table
with as many new attributes (denoted by features) as possible through a sequence
of database queries. The goal is to better describe the past behaviours of their
client entities, for example, the amount and balance of their credit card during the
past 12 months, whether they got a new card in the past three months, etc). The
final feature dataset is denoted by FEAT. The augmentation queries include joins,
calculated projections, filters, aggregations and pivot operations.

Data Preparation and Experiments

The goal of our experiment is to verify if a data scientist can semi-automatically
generate a view GV that is equivalent to FEAT by iteratively extending the dimension
table representing a client entity through several schema augmentation steps.

In our experiment, the script of SQL queries used to build the training dataset (FEAT)
consists of around 1, 500 lines of code comprising many sub-queries involving 16
joins and 132 expressions to compute measure attribute values.

Before running our experiment, we first created 6 dimension tables, denoted by
dACCOUNT, dGEO, dCLIENT, dCARD, dTIME and dTRANSACTION, and 3
fact tables over the bank retail database tables as:

• TRANS is defined over database table TRANSACTION and dimensions
dTIME, dACCOUNT and dTRANSACTION and has two measures AMOUNT

and BALANCE.

• ACC_DISPO is defined over database table DISPOSITION and dimensions
dCLIENT and dACCOUNT.

• CARD_DISPO is defined over a join of tables CREDIT_CARD and
DISPOSITION, and over dimensions dCLIENT, dTIME and dCARD.

The attribute graphs of the dimension tables and the aggregable properties of
measures for the fact tables are defined manually. Finally, all tables are crawled by
the HANA Crawlers to extract all direct and derived relationships (including PK-FK
relationships) and to compute the dimension and fact identifiers. The resulting SC
graph is shown in Figure 6.12.

Figure 6.12: SC graph for the analytic tables

Experiment 6.7: Feature Table View Generation
The view generation process starts from the dimension table dCLIENT(CLIENT_ID,

GEO_ID, BIRTH_DATE, SEX, ...), which identifies a client entity, and applies a sequence
of schema complement / augmentation steps as indicated by the numbered arrows
in the SC graph of Figure 6.12.

1. In Step 1 performs a natural merge of dCLIENT and dGEO using common
attribute GEO_ID (“NAT” edge in Figure 6.12).

2. In step 2 applies an augmented merge of the previous table with fact ta-
ble ACC_DISPO using the common attribute CLIENT_ID to add attribute
ACCOUNT_ID (“NAT” edge in Figure 6.12). This step multiplies the rows in
dCLIENT.

3. In step 3, the resulting table is augmented with detail attributes from di-
mension dACCOUNT through a “NAT” edge using the common attribute
ACCOUNT_ID.

4. In step 4, measures from fact table TRANS are added. The SC edge from
dCLIENT to TRANS is labeled “AUG” with common attribute ACCOUNT_ID.
To apply a natural merge of augmented dCLIENT with TRANS, a reduction
query that reduces attributes DATE, TRANS_ID is executed. The following user-
defined actions have also been executed:

a) User actions: a filter on attribute DATE pre-selects the facts within the 12
months preceding a user-given reference date; the attribute TRANS_TYPE

is pivoted as a column with values coming from measures AMOUNT and
BALANCE.

b) Reduction operations: A calculated attribute MONTH(DATE) (transaction
month) is pivoted as a column with values from measures AMOUNT and
BALANCE; the attribute TRANS_ID is removed by an aggregation reduction.

The two operations are injected in the reduction query generation over table
TRANS. The final query is used to be merged with data set dCLIENT.

5. In Step 5, a new measure attribute that gives the number of credits cards for
each client is added from table CARD_DISPO. The SC edge from dCLIENT
to CARD_DISPO has label “AUG” and common attribute CLIENT_ID. A re-
duction query is applied on CARD_DISPO that removes DATE and computes
an aggregated CARD_ID using aggregation function COUNT . Then a natural
merge is computed between the previously augmented dataset dCLIENT and
the reduced fact table CARD_DISPO.

The final result table GV has 156 attributes of which 135 are measures. Both, the
generated table GV and the user defined table FEAT, are identical. We show in
Figure 6.13 the complete definition of GV where each temprorary result represents
a step in the view generation process.

Figure 6.13: Construction of GV

Observations

Our semi-automatic view generation process has several advantages versus the
manual creation of table FEAT. First, the schema augmentations required to build
table FEAT are successfully suggested by our CSA API and the order in which they
are returned matches pretty well the user needs. Second, the simple user actions in
steps 4 and 5 yield complex reduction queries involving filter, pivot, and aggregate
operations through the RQG API. Isolating the reduction actions in the generation
process provides a great flexibility. For instance, in Step 4, the filter conditions
could be changed to select facts within the 2 years preceding the reference date, or
the pivot operations could be changed to WEEK(DATE). Third, the formal aggregable
properties on fact table TRANS enables a fine control of which aggregate functions
can be applied to measures AMOUNT and BALANCE in Step 4. For instance, function
SUM cannot be applied to BALANCE. Finally, our method for propagating aggregable
properties controls the dimensions with respect to which measure COUNT(CARD_ID)

can be aggregated after Step 5 since the measure only depends on CLIENT_ID.

Note that our REST service could be directly applied to an SC graph consisting only
of the retail database tables (i.e., without creating any dimension or fact table) and
would still produce table FEAT as result. However, working directly with database
tables has two main drawbacks. First, the user must understand the operational data
model of the database that carries many attributes that are irrelevant for business
data analysis. Second, the benefits of metadata such as the separation of dimension
and measure attributes and the definition of aggregable properties would be lost.

7
Summary and Perspectives

Contents
7.1 Summary . 185

7.2 Future Work Directions . 186

7.2.1 Schema matching discovery 186

7.2.2 User-specified augmentation and reduction operation sug-
gestion . 187

7.1 Summary

In this thesis, we present a complete solution for discovering and merging schema
augmentations for analytic and non-analytic tables. We introduce attribute graphs to
describe the logical structure of hierarchical dimensions and aggregable properties to
express the capability of aggregation for each attribute. Attribute graphs capture
the functional (FD) and literal functional (LFD) dependency constraints in analytic
tables and define an efficient data structure for computing dimension and fact
identifiers. We introduce schema augmentation graphs which facilitate the process
of discovering candidate augmentation tables (schemas) for extending some given
start tables. Our model includes the definition of three reduction operations to
transform schema augmentation tables into natural schema complement tables.
We also introduce formal quality conditions to check the correctness of the target
augmentation table by detecting ambiguity and incompleteness issues with respect to
the underlying dimensions and start table. We also present a number of algorithms
for validating and repairing schema augmentation tables before merging them with
the start table. The theoretical model and the is completely implemented in SAP
HANA and accessible through an API interface. We also validated the performance
and usability of our model through a series of experiments and different application
scenarios.

185

Our schema augmentation approach generalizes the existing state of the art on
schema complements and drill-across queries. It only requires the source schema
definitions and some automatically generated and user-defined attribute metadata
(aggregable properties) to detect schema augmentations and produce correctly
aggregated schema complements. It reduces the assumptions enforced by previous
approaches on the input datasets and accepts non-strict, non-covering and non-onto
dimension hierarchies with multiple top-level attributes.

7.2 Future Work Directions

The results of this thesis opens several directions for future work.

7.2.1 Schema matching discovery

Our work only considers reliable one-to-one schema matchings defined by attribute
mapping relationships, join relationships and derived relationships. The discovery of
the relationships are embedded into the metadata loader as explained in Chapter 4.
One perspective of our work is to extend our approach to other types of schema
matchings that can be discovered automatically through heuristic methods [12],
[14], [46], [51]. Whereas heuristic schema matching algorithms introduce uncertain
table relationships, they can produce new interesting schema augmentation candi-
dates which are not detected through reliable schema matchings. Many-to-many
relationships also are a challenge for our approach, since they require the generation
of more sophisticated schema mapping queries including data fusion operators.

Example 7.1. For example, consider the dimension STORE from Figure 6.10 on
Page 179 and a non-analytic table COUNTRY_CODE with tuples as shown in
Table 7.1:

Using the instance-based matching described in Section 5.3 on Page 114, we
could compute the Jaccard similarities between attribute domains of STORE

and COUNTRY_CODE to discover possible schema matchings. Then, a poten-
tial schema matching is STORE.CCOUNTRY ∼= COUNTRY_CODE.COUNTRY_NAME

with score J(STORE.CCOUNTRY, COUNTRY_CODE.COUNTRY_NAME) = 0.75.

Table 7.1: Table STORE and COUNTRY_CODE

(a) ST ORE

PLANT CENTITY CCOUNTRY CCLUSTER CREGION

9044 XAGNER CHINA CHINA ASIA
1159 ROZAS SPAIN SPAIN & PORTUGAL EMEIA
1029 RENNES FRANCE FRANCE & BELGIUM EMEIA

(b) COUNTRY_CODE

COUNTRY_NAME 2_CHAR 3_CHAR UN_CODE

SPAIN ES ESP 724
FRANCE FR FRA 250
CHINA CN CHN 156
PORTUGAL PT PRT 620

7.2.2 User-specified augmentation and reduction operation
suggestion

In our current implementation, the user selects the start table and a candidate target
table for generating a merge query. When necessary, for transforming a target table
into a schema complement, the user specifies the reduction operations for each
attribute that needs to be reduced. The manual choice of the target table and the
reduction operations introduces more flexibility and control, but requires from the
user some basic knowledge about the schema of the target table.

On future goal of our schema augmentation service is to assist users in their choice
by generating ranked lists of candidate target tables and recommended reduction
operations. The ranking criteria could be various and based on user-defined key-
words or data-specific criteria like the data coverage of the common attributes or the
distance of the target table from the start table in the schema complement graph.
Reduction operations could be proposed based on the user preferences, on the user
action history or on the desired data types of the reduced attributes.

Example 7.2. Consider table INVENTORY of Figure 2.9 on Page 37 as the start
table. All other tables in Figure 2.9 are schema augmentation candidates for table
INVENTORY. We could rank these tables as follows:

• Dimension tables TIME, PROD, WAREHOUSE, TAX, STORE get
higher scores when the user wants to augment INVENTORY with new dimen-
sion attributes.

• Fact tables SALES, SALES_SUM get higher scores when the user wants to
augment INVENTORY with new measures.

• WAREHOUSE, PROD, TIME, TAX, SALES, SALEs_SUM get higher
scores when the user prefers the “closest” target tables.

• SALES gets the highest score when the user prefers the “most similar” target
tables (SALES has five attributes common with INVENTORY).

Assuming STORE is selected as the target table, attribute STORE_ID must be reduced.
The system might suggest ranking among the three reduction operations based on
the following observations. An aggregate reduction could count the number of stores
grouped by CITY, STATE, COUNTRY. A second possible reduction could be to pivot table
STORE by attribute STORE_ID. However, since STORE_ID is the dimension identifier,
a pivot reduction would produce a new column for each store, and each tuple
would have only one new column with a non-null value. Finally, filter reduction
would produce a result table with a single tuple (store). The final ranking would
put pivoting at the end of the list (two many columns with many null values)
and probably prefer aggregation to filtering except if the user is interested into a
particular store.

Bibliography

[1] C. S. Jensen, T. B. Pedersen, and C. Thomsen, Multidimensional Databases
and Data Warehousing. Jan. 1, 2010.

[2] “Business Intelligence and Analytics Software.” (), [Online]. Available: https:
//www.tableau.com/ (visited on 01/10/2019).

[3] “Power BI | Interactive Data Visualization BI Tools.” (), [Online]. Available:
https://powerbi.microsoft.com/en-us/ (visited on 01/10/2019).

[4] “Data Analytics for Modern Business Intelligence | Qlik.” (), [Online]. Avail-
able: https://www.qlik.com/us (visited on 01/10/2019).

[5] “Sap Analytics Cloud.” (), [Online]. Available: https://www.sapanalytics.
cloud/ (visited on 03/09/2020).

[6] R. Kimball and M. Ross, The Data Warehouse Toolkit. 3rd: John Wiley & Sons,
2013, ISBN: 978-1-118-53080-1.

[7] SAP. “The virtual data model in sap s/4hana.” (), [Online]. Available:
https://help.sap.com/viewer/6b356c79dea443c4bbeeaf0865e04207/
1809.000/en-US/8573b810511948c8a99c0672abc159aa.html (visited on
08/26/2019).

[8] A. Pattanayak, “High performance analytics with sap hana virtual models,”
Journal of Computer and Communications, vol. 5, no. 07, pp. 1–10, 2017.

[9] Trifacta. “Data Wrangling Tools & Software | Trifacta.” (), [Online]. Available:
https://www.trifacta.com/ (visited on 01/10/2019).

[10] “Paxata | Self-Service Data Preparation for Data Analytics.” (), [Online].
Available: https://www.paxata.com/ (visited on 01/10/2019).

[11] “SAP Agile Data Preparation and Transformation Solution.” (), [Online].
Available: https://www.sap.com/products/data- preparation.html
(visited on 01/10/2019).

[12] A. Das Sarma, L. Fang, N. Gupta, et al., “Finding related tables,” in Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data,
ACM, 2012, pp. 817–828.

[13] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri, “InfoGather: Entity
augmentation and attribute discovery by holistic matching with web tables,”
en, in Proceedings of the 2012 international conference on Management of Data
- SIGMOD ’12, ACM Press, 2012, pp. 97–108, ISBN: 978-1-4503-1247-9. DOI:
10.1145/2213836.2213848.

[14] D. Deng, R. C. Fernandez, Z. Abedjan, et al., “The Data Civilizer System,” in
CIDR, 2017.

[15] J. D. Ullman, H. García-Molina, and J. Widom, Database System: The Complete
Book, 2nd ed. Prentice Hall, 2008.

189

https://www.tableau.com/
https://www.tableau.com/
https://powerbi.microsoft.com/en-us/
https://www.qlik.com/us
https://www.sapanalytics.cloud/
https://www.sapanalytics.cloud/
https://help.sap.com/viewer/6b356c79dea443c4bbeeaf0865e04207/1809.000/en-US/8573b810511948c8a99c0672abc159aa.html
https://help.sap.com/viewer/6b356c79dea443c4bbeeaf0865e04207/1809.000/en-US/8573b810511948c8a99c0672abc159aa.html
https://www.trifacta.com/
https://www.paxata.com/
https://www.sap.com/products/data-preparation.html
https://doi.org/10.1145/2213836.2213848

[16] “Closed World Assumption.” (), [Online]. Available: https://en.wikipedia.
org/wiki/Closed-world_assumption (visited on 03/01/2019).

[17] A. Badia and D. Lemire, “Functional dependencies with null markers,” The
Computer Journal, vol. 58, no. 5, pp. 1160–1168, 2014.

[18] P. Atzeni and N. M. Morfuni, “Functional dependencies in relations with null
values,” Inf. Process. Lett., vol. 18, no. 4, pp. 233–238, 1984, ISSN: 0020-0190.
DOI: 10.1016/0020-0190(84)90117-0.

[19] W. Lehner, J. Albrecht, and H. Wedekind, “Normal forms for multidimen-
sional databases,” in Scientific and Statistical Database Management, 1998.
Proceedings. Tenth International Conference on, IEEE, 1998, pp. 63–72.

[20] T. Niemi, M. Niinimäki, P. Thanisch, and J. Nummenmaa, “Detecting sum-
marizability in OLAP,” Data & Knowledge Engineering, vol. 89, pp. 1–20, Jan.
2014, ISSN: 0169023X.

[21] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “A foundation for capturing
and querying complex multidimensional data,” Information Systems, vol. 26,
no. 5, pp. 383–423, 2001, ISSN: 03064379. DOI: 10.1016/S0306-4379(01)
00023-0.

[22] A. Shoshani, “OLAP and statistical databases: Similarities and differences,”
in Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, ACM, 1997, pp. 185–196.

[23] H.-J. Lenz and A. Shoshani, “Summarizability in OLAP and statistical data
bases,” in Proceedings of the Ninth International Conference on Scientific and
Statistical Database Management (SSDBM ’97), 1997, pp. 132–143.

[24] J. Lechtenbörger and G. Vossen, “Multidimensional normal forms for data
warehouse design,” Information Systems, vol. 28, no. 5, pp. 415–434, 2003.

[25] C. A. Hurtado, C. Gutierrez, and A. O. Mendelzon, “Capturing summarizability
with integrity constraints in OLAP,” ACM Transactions on Database Systems,
vol. 30, no. 3, pp. 854–886, 2005, ISSN: 03625915.

[26] J.-N. Mazón, J. Lechtenbörger, and J. Trujillo, “A survey on summarizability
issues in multidimensional modeling,” Data & Knowledge Engineering, vol. 68,
no. 12, pp. 1452–1469, 2009, ISSN: 0169023X.

[27] J. Horner, I.-Y. Song, and P. P. Chen, “An analysis of additivity in OLAP
systems,” in Proceedings of the 7th ACM international workshop on Data
warehousing and OLAP, ACM, 2004, pp. 83–91.

[28] S. S. Stevens, “On the theory of scales of measurement,” Science, vol. 103,
no. 2684, pp. 677–680, Jun. 1946.

https://en.wikipedia.org/wiki/Closed-world_assumption
https://en.wikipedia.org/wiki/Closed-world_assumption
https://doi.org/10.1016/0020-0190(84)90117-0
https://doi.org/10.1016/S0306-4379(01)00023-0
https://doi.org/10.1016/S0306-4379(01)00023-0

[29] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “Extending practical pre-
aggregation in on-line analytical processing,” in Proceedings of the 25th In-
ternational Conference on Very Large Data Bases, ser. VLDB ’99, San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 663–674, ISBN:
1558606157.

[30] R. Torlone, “Two approaches to the integration of heterogeneous data ware-
houses,” Distributed and Parallel Databases, vol. 23, no. 1, pp. 69–97, 2008,
ISSN: 0926-8782, 1573-7578.

[31] A. Abelló, J. Samos, and F. Saltor, “On relationships offering new drill-across
possibilities,” in Proceedings of the 5th ACM international workshop on Data
Warehousing and OLAP, ACM, 2002, pp. 7–13.

[32] J. Horner and I.-Y. Song, “A taxonomy of inaccurate summaries and their
management in OLAP systems,” in International Conference on Conceptual
Modeling, vol. 3716, Berlin, Heidelberg: Springer, 2005, pp. 433–448.

[33] J. Lee, M. Muehle, N. May, et al., “High-performance transaction processing
in SAP HANA,” IEEE Data Eng. Bull, vol. 36, no. 2, pp. 28–33, 2013.

[34] SAP HANA Modeling Guide. SAP, 2019. [Online]. Available: https://help.
sap.com/doc/227fc55c4fc44a43b43752d6b127bdf3/2.0.04.

[35] R. Brunel, J. Finis, G. Franz, et al., “Supporting hierarchical data in SAP
HANA,” in Data Engineering (ICDE), 2015 IEEE 31st International Conference
on, IEEE, 2015, pp. 1280–1291.

[36] M. Paradies, C. Kinder, J. Bross, T. Fischer, R. Kasperovics, and H. Gildhoff,
“GraphScript: Implementing complex graph algorithms in SAP HANA,” in
Proceedings of DBPL 2017, Munich, Germany: ACM Press, 2017, pp. 1–4.

[37] In SAP HANA SQL and System Views Reference, SAP, 2016, pp. 88–99.

[38] “Unit converter.” (), [Online]. Available: https://www.unitconverters.
net/.

[39] E. Roschke, “Units and conversion factors,” 2001.

[40] “SAP HANA smart data integration and SAP HANA smart data quality - SAP
help portal.” (), [Online]. Available: https://help.sap.com/viewer/p/
HANA_SMART_DATA_INTEGRATION (visited on 01/10/2019).

[41] C. Batini, M. Lenzerini, and S. B. Navathe, “A comparative analysis of method-
ologies for database schema integration,” ACM computing surveys (CSUR),
vol. 18, no. 4, pp. 323–364, 1986.

https://help.sap.com/doc/227fc55c4fc44a43b43752d6b127bdf3/2.0.04
https://help.sap.com/doc/227fc55c4fc44a43b43752d6b127bdf3/2.0.04
https://www.unitconverters.net/
https://www.unitconverters.net/
https://help.sap.com/viewer/p/HANA_SMART_DATA_INTEGRATION
https://help.sap.com/viewer/p/HANA_SMART_DATA_INTEGRATION

[42] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, “Data-driven understanding
and refinement of schema mappings,” in Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, 2001, pp. 485–496.

[43] R. J. Miller, L. M. Haas, and M. A. Hernández, “Schema mapping as query dis-
covery,” in Proceedings of the 26th International Conference on Very Large Data
Bases, ser. VLDB ’00, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2000, pp. 77–88, ISBN: 1558607153.

[44] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema
matching,” the VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[45] Z. Bellahsene, A. Bonifati, and E. Rahm, Eds., Schema Matching and Mapping,
en. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-
3-642-16518-4.

[46] A. Doan, A. Halevy, and Z. Ives, Principles of Data Integration, 1st. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012, ISBN: 0124160441.

[47] S. Ram and V. Ramesh, “Schema integration: Past, present, and future,”
Management of Heterogeneous and Autonomous Database Systems, pp. 119–
155, 1999.

[48] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table union search on open
data,” en, Proceedings of the VLDB Endowment, vol. 11, no. 7, pp. 813–825,
Mar. 2018, ISSN: 21508097.

[49] P. Jaccard, “The Distribution of the Flora in the Alpine Zone.1,” en, New
Phytologist, vol. 11, no. 2, pp. 37–50, 1912, ISSN: 1469-8137. (visited on
11/28/2019).

[50] J. Bleiholder and F. Naumann, “Data fusion,” ACM computing surveys (CSUR),
vol. 41, no. 1, pp. 1–41, 2009.

[51] M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for the
relational web,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 1090–
1101, 2009.

[52] M. Rafanelli and A. Shoshani, “Storm: A statistical object representation
model,” in International Conference on Scientific and Statistical Database
Management, vol. 420, Berlin, Heidelberg: Springer, 1990, pp. 14–29. DOI:
10.1007/3-540-52342-1_18.

[53] R. Liu, E. Simon, B. Amann, and S. Gançarski, “Discovering and merging
related analytic datasets,” Information Systems, vol. 91, p. 101 495, 2020.

[54] “Home page of pkdd discovery challenge.” (), [Online]. Available: https:
//sorry.vse.cz/~berka/challenge/PAST/index.html.

https://doi.org/10.1007/978-3-642-16518-4
https://doi.org/10.1007/978-3-642-16518-4
https://doi.org/10.1007/3-540-52342-1_18
https://sorry.vse.cz/~berka/challenge/PAST/index.html
https://sorry.vse.cz/~berka/challenge/PAST/index.html

List of Figures

1.1 View definition of tables SALES and DEM 4

2.1 Examples of definitions of analytic tables 17

2.2 Relations between analytic tables and non-analytic tables 17

2.3 Hierarchy types . 19

2.4 Hierarchy instance examples . 19

2.5 Attribute graph of dimension REGION 24

2.6 Attribute graphs of dimensions WAREHOUSE, STORE, PROD, TIME
and TAX . 25

2.7 Relations between hierarchy, dimension table and attribute graph . . . 28

2.8 Attribute graph of dimension MKT_PROD 33

2.9 Examples of relationships . 37

3.1 Partial hierarchy in dimension STORE 63

3.2 Attribute graphs of dimensions D1, D2 66

3.3 Partial hierarchy instances . 68

4.1 Architecture overview . 78

4.2 SC graph example for Figure 2.9 . 92

4.3 The complete workflow of merging T1 and T2 103

4.4 An overview of different adapters for SAP HANA 106

5.1 Transformed schemas and their relationships 113

5.2 Join relationships and schema matchings 120

5.3 Join relationships and schema matchings 122

5.4 Schema matchings between source schemas 130

5.5 Fact tables SALES and SALES_SUM 133

5.6 The integration of SALES and INVENTORY 135

5.7 Two approaches to formulate compatible dimensions 137

5.8 The integration of SALES and INVENTORY using compatible dimen-
sions . 139

5.9 Attribute graph of PROD_NEW . 153

5.10 Attribute graph of PROD_NEW . 154

193

5.11 The dimension schema of PROD_NEW 158
5.12 The dimension schema of PROD_NEW 159

6.1 Computation time for different dimension table size (number of rows) 167
6.2 Computation time for different number of nodes 168
6.3 Computation time for different number of +-edges 169
6.4 Computation time for different number of additional edges 171
6.5 Constructions of views . 173
6.7 Complete SC graph for analytic tables 175
6.8 Partial SC graph for analytic tables . 175
6.9 Query execution plans comparisons . 178
6.10 Attribute graph in dimension STORE 179
6.11 Relationships for the bank retail database 180
6.12 SC graph for the analytic tables . 182
6.13 Construction of GV . 183

List of Tables

1.1 Tables SALES, DEM, SALESORG, REGION , TIME 5

1.2 SALES_SALESORG . 6

1.3 SALES_DEM . 8

1.4 AGG_DEM . 9

1.5 SALES_AGG_DEM . 9

1.6 SALES_SALESORG_DEM . 10

1.7 SALES_SALESORG_DEM′ . 10

2.1 Dimension table REGION . 20

2.2 Differences between LFD and NFD . 22

2.3 PRODUCT_LIST . 33

2.4 Categories of aggregable attributes . 34

2.5 Category of the domain and the co-domain for common aggregation
functions . 34

2.6 Summary of data model concepts . 42

3.1 Examples of aggregate queries . 49

3.2 Examples of filter queries . 49

3.3 Examples of pivot queries . 50

3.4 Table PRODUCT_LIST . 54

3.5 Table PRODUCT_LIST_COUNT . 55

3.6 Example of incomplete merge . 66

3.7 Examples of table SALES, INVENTORY and STORE 71

3.8 Complete merge of T0 and T . 71

3.10 Result of aggregation queries on T . 73

4.1 Attribute graph for dimension WAREHOUSE 85

4.2 A tuple from hierarchy table . 86

4.3 Attribute graph for dimension REGION 88

4.4 Effects on dimension identifiers by attribute graph 91

4.5 T2 in the result . 93

4.6 User actions to create a reduction query 97

195

5.1 Schema matchings from Figure 5.2 . 120
5.2 Schema matching extracted from Figure 5.3 123
5.3 Schema matching specified in Figure 5.4 131
5.4 Table PRODUCT_LIST . 143
5.5 Table PRODUCT_SUM . 143
5.6 Table PRODUCT_LIST . 144
5.7 Fact and dimension table . 145
5.8 Results of summarization queries . 146
5.9 Results of aggregation queries . 146
5.10 PROD_SALES . 151
5.11 PROD_NEW_SALES . 153
5.12 PROD_NEW_SALES2 . 154
5.13 Query result of Q2 . 155
5.14 PROD_NEW . 157
5.15 Comparisons of four schema and data integration approaches 163

6.1 A dimension table with a strict linear structured hierarchy 167
6.2 A dimension table with one +-edge . 169
6.3 A dimension table with one additional edge 170
6.4 Performance of Q 1, Q 2 in GV and HCV 177
6.5 Detection of ambiguous values . 180

7.1 Table STORE and COUNTRY_CODE . 187

	Titlepage
	Acknowledgement
	Introduction
	The Role and Evolution of Analytics
	Main Challenges
	Relationship extraction
	Avoid row multiplication
	Avoid incorrect and ambiguous reduction
	Avoid incomplete merge

	Research Contributions
	Organization of the Manuscript

	Data Model
	Model Overview
	Analytic Tables
	Preliminaries
	Hierarchical dimension tables
	Dimension identifiers and attribute graphs
	Capturing hierarchy properties with attribute graphs
	Multidimensional fact tables
	Aggregable attributes in analytic tables

	Table Relationships
	Join and attribute mapping relationships
	Derived relationships
	Relationships in drill-across OLAP queries

	Conclusions

	Schema Augmentations and Quality Guarantees
	Schema Augmentations
	Natural Schema Complement
	Reduction Queries
	Quality Criteria of Schema Augmentations
	Propagation of aggregable properties
	Non-ambiguous aggregable attributes
	Complete merge results
	Summarizability revisited

	Architecture and Algorithms
	SAP HANA Architecture
	Dimension and Fact Identifier Computation
	Computation of attribute graphs
	Dimension and fact identifiers
	Maintaining dimension identifiers

	Schema Complement Computation
	Schema complement graph
	Finding schema augmentations
	Unit conversions

	Reduction Query Generation
	Merge Query Manager
	Extension to Heterogeneous Data Sources
	Conclusions

	State of the art
	Introduction
	Schema and data integration
	Drill-across and summarizability
	Schema augmentation

	Schema Integration
	Approach
	Examples

	Schema Matching Discovery
	Heuristic schema matching discovery
	Reliable schema matching discovery

	Mediation-based Data Integration
	Approach
	Examples

	Schema Augmentation and Entity Complement
	Schema augmentation approaches for web tables
	Entity complement approaches

	Drill-across Queries in Multi-dimensional Databases
	Drill-across queries using conformed dimensions
	Drill-across queries using compatible dimensions

	Summarizable Analytic Tables
	Summarizability in statistical data models
	Summarizability in multidimensional data models
	Conclusion on summarizability

	Summary

	Applications and Experiments
	Performance Tests
	Attribute graph computation
	Dimension identifier computation

	Validation with Real Datasets
	Business use case
	Feature engineering use case

	Summary and Perspectives
	Summary
	Future Work Directions
	Schema matching discovery
	User-specified augmentation and reduction operation suggestion

	References
	List of Figures
	List of Tables

