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) appeared shortly after. However, it was not until the early 2020s that truly realistic generation was made possible, and fast and intuitive photo editing applications were released. Today, semantic image editing, where high-level image characteristics are easily modified, is finally possible (albeit not yet perfect). An image edit which may have taken hours just a few years ago can now be achieved in a matter of seconds. This thesis, started in 2020, had the unique opportunity to benefit from the recent groundbreaking advances in generative AI. Indeed, our work followed and contributed to the recent trends in photo editing which allowed intuitive and semantic image editing.

Artificial Intelligence (AI) refers to the development of computer systems which are able to perform tasks which typically require human-intelligence. The term AI is ambiguous and constantly evolving -what are the tasks which "typically require human-intelligence"? For simplicity's sake, the AI that we refer to in our work can be more precisely defined as Machine Learning (ML), which consists in (1) designing a parameterized mathematical model, a Neural Network (NN) f θ as well as a loss function and (2) developing algorithms to calculate the parameters θ of the NN which minimize the loss function using real-world data as the "ground-truth". In particular, complex and "deep" functions, referred to as 1

A B S T R A C T

Real image editing has a rich history, dating back about two centuries. Traditional digital image editing requires strong artistic skills and significant time (several hours for each image which we wish to edit). Recently, important progress has been made in generative modeling which allowed the creation of realistic and high-quality images. However, the task of image editing has been less studied. Image editing consists in simultaneously synthesizing new characteristics while preserving original image attributes intact. This inherent tradeoff between synthesis and preservation renders the task particularly difficult.

In this thesis, we approach the task through different angles, exploiting three different families of generative models: Variational Autoencoder (VAE), Generative Adversarial Network (GAN) and Denoising Diffusion Probabilistic Model (DDPM).

We first study how to use a pre-trained GAN to modify a real image. While latent-space manipulation methods are well-studied to modify a GAN-generated image, they extend poorly to real images. We study the reasons for this and propose to enforce editability directly into the GAN inversion loss term, which results in high-quality edits.

Then, we leverage a vector-quantized variational autoencoder (VQ-GAN) to obtain a compact representation of an image. The goal is to optimize this latent vector to match a user-given target text prompt. We use CLIP text and image encoders to represent images and text in a joint representation space. We thoroughly study the use of regularizers to encourage strong fidelity to the original image as well as coherent editing to the text prompt. We propose a robust and standardized evaluation protocol for text-guided editing.

Finally, we leverage DDPMs, where we study the particular task of inpainting. We base our method on the standard DDPM inpainting procedure, which, at each step of the denoising process, replaces the region which should stay intact by the real image noised at this level. While DDPMs naturally blend these two regions due to their iterative denoising nature, the blending is not "fast enough" which results in disharmonized images. We define our custom harmonization loss and use its gradient to update the intermediate latent noise maps in each step of the denoising process, resulting in high-quality results for various models. i

R É S U M É

L'édition des images a une histoire riche, datant d'environ deux siècles. L'édition digitale "classique" des images nécessite une forte maitrise artistique et beaucoup de temps (plusieurs heures pour chaque image que l'on souhaite modifier). Récemment, d'importants progrès en modélisation générative ont permis de créer des images réalistes de haute qualité. Cependant, la tâche d'édition d'une image réelle est moins étudiée. Elle consiste à la fois à synthésiser une nouvelle charactéristique de l'image et à garder une autre partie fidèle à l'originale, ce qui rend la tâche particulièrement ardue.

Dans cette thèse, nous abordons cette tâche d'édition sous différents angles, en exploitant trois familles de modèles génératifs : les VAE, les GAN et les DDPM.

Nous étudions dans un premier temps comment utiliser un GAN pré-entrainé pour éditer une image réelle. En effet, les méthodes pour éditer les images générées pour un GAN sont bien connues, mais se transposent mal au cas des images réelles. Nous en étudions les raisons et proposons une solution pour mieux projeter une image réelle dans l'espace latent du GAN afin d'assurer une édition de qualité.

Ensuite, nous utilisons des autoencodeurs variationnels avec quantification vectorielle (VQ-GAN) pour avoir une répresentation compacte de l'image. L'objectif est d'optimiser le vecteur latent de celle-ci pour se rapprocher d'un texte exprimé comme une requête pour l'édition. Nous utilisons des encodeurs CLIP pour représenter l'image et le texte dans un espace commun. Nous proposons une façon pour optimiser les hyperparamètres assurant une grande fidelité à l'image originale et une édition cohérente à la requête textuelle. Nous proposons un protocole d'évaluation robuste et montrons l'intérêt de notre méthode.

Enfin, dans un troisième temps, nous traitons l'édition d'image comme un problème particulier d'inpainting. Nous exploitons un DDPM pré-entrainé et nous nous basons sur la méthode d'inpainting classique, en remplacant à chaque étape du processus de débruitage la région qu'on ne souhaite pas modifier par l'image réelle bruitée. Cependant, cette méthode est susceptible d'introduire une distorsion entre la région générée et la région réelle. Nous proposons une méthode basée sur le gradient d'une fonction assurant la cohérence entre les deux régions. Nous guidons le processus de débruitage avec ce gradient. Nous produisons des images de grande qualité pour différents modèles.
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Émile, thank you for showing me what the purest forms of curiosity and determination look like. You kept my final phD days busier than I could sometimes handle, but your morning toothless smiles fueled me more than any full-night of sleep could have. I love you. v a Deep Neural Network (DNN), are defined using upwards of 175 billion learnable parameters [START_REF] Brown | Language Models are Few-Shot Learners[END_REF])! This branch of AI, Deep Learning (DL), has achieved remarkable results in recent years, which have fueled today's research trends of making bigger models and training with more data. In this work, we more specifically delve into the realm of Computer Vision (CV), which focuses on the understanding and manipulation of numerical images. Indeed, numerical images can be easily represented to a computer in the form of RGB matrices.

Throughout recent history, society at large went from waves of excitement and fear to sheer disappointment about the prospects of AI. AI confronted us with the uncomfortable question, "what does it mean to be human?". As AI started beating humans in checkers [START_REF] Schaeffer | Checkers Is Solved[END_REF], then chess [START_REF] Campbell | Deep Blue[END_REF], and more recently Go [START_REF] Silver | Mastering the game of go without human knowledge[END_REF], humans reluctantly accepted that computers are superior in developing long-term strategy in games with simple rules and rewards. Likewise, language generation and translation, previously thought to be too complicated and nuanced for computers to understand, has achieved human-like capacities in recent years. Of course, we have always clinged to the last untouchable area of unique humaneness: creativity. Machines couldn't possibly have the creativity to create images which match the genius of Leonardo da Vinci or Picasso. However, this again proved to be false in recent years with a computer-generated image winning an artwork competition in 2022 (Sincarnate n.d.) using the latest generative models. This thesis will explore this subfield of Generative AI, and in particular, image editing with DNNs.

PhD Thesis Context

Meero

Created in 2014, Meero is a French startup which specializes in digital image processing using AI. Meero made history in 2019 when it raised a recordbreaking $230 million, becoming one of France's only "unicorns". Meero enhances real-world images from markets ranging from real-estate to food photography to e-commerce. Meero proposes technology such as background-removal, colorenhancement, object removal and super-resolution. The majority for these imagemanipulation algorithms relies on research in DL. It is important to note that there is often a disparity between the results proposed by state-of-the-art research for datasets and the expected image quality Meero's clients have. Firstly, research in the field often works with "small" images (ImageNet (J. [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF], for example, uses 256x256 resolution). Meero's clients, on the other hand, require -Using Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]) to generate a photo of "a giraffe riding a unicycle on the moon" images of upwards of 5000x5000 resolution, which brings challenges for DL applications. Moreover, generated images in research papers often have visible artifacts, which is acceptable in the context of research but unacceptable for clients expecting a beautiful image. A goal of this thesis is to bridge the gap between research and real-world applicability.

Image Generation

Image generation has seen phenomenal and almost unbelievable progress in recent years, mainly due to improvements in model architecture, increasing model capacity, and increasing the size of training datasets. In 2013, the Variational Auto-Encoder (VAE) [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF]) allowed blurry, low-quality results of images in a particular domain. In 2014, GANs were introduced, which Yann LeCun, a DL pioneer, described as "the most interesting idea in the last 10 years in Machine Learning". Indeed, the "generator" was trained not alone, but in unison with another network, the "discriminator", both trained "adversarially" (their respective objectives are opposing). The GAN frenzy lasted until the start of the 2020's, and for the first time allowed truly realistic generations of images in restricted domains, particularly faces. Indeed, the popular website displayed the uncannily realistic face generations using StyleGan [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. However, GANs struggled with larger and more diverse domains, leaving room for other architectures, like the Vision Transformer (ViT) [START_REF] Ding | Cogview: Mastering text-to-image generation via transformers[END_REF][START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF][START_REF] Ramesh | Zero-shot text-to-image generation[END_REF]. Only recently, remarkable progress was made with DDPM [START_REF] Ho | Denoising diffusion probabilistic models[END_REF]A. Nichol et al. 2021;[START_REF] Ramesh | Hierarchical text-conditional image generation with clip latents[END_REF][START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]Saharia et al. 2022b). These models, as we will later see, have a simple loss function and allow stable training even when scaling up their architecture. As DDPMs quickly made their way to becoming state-of-the-art for various datasets, particularly Im-ageNet (J. [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF], researchers started to scale up the models further and train them on massive billion element text-image datasets. The past few years have welcomed a true revolution in Image Generation, allowing generation of images which are not only realistic, but also of unprecedented diversity. Indeed, a completely imaginary and absurd prompt such as "a giraffe riding a unicycle on the moon" actually produces a plausible output image, as shown in 1.1.

Image Editing

Before digital photography, photographs were created in multiple steps: first, light interacts with light-sensitive chemicals on a camera's film, which produces a negative photograph; then, the negative photograph can be developed into a positive photograph in a darkroom with the help of chemicals. Before digital editing, real-image editing consisted in manually manipulating the negative photograph before further processing it to develop the positive image. These practices date back to the 1840s, almost 200 years ago.

In contrast, real-image editing with DL has a relatively recent history, mainly taking off following the introduction of GANs after 2014. Image editing has foundations as an Image-to-Image translation problem, where a DNN is trained to learn the transformations from one domain to another (Isola et al. 2017a). These edits were initially limited to edits akin to style-transfer, like transforming photographs to paintings or night images to day images, and often presented visible artifacts. Over time, image-editing techniques became more elaborate, where the editing operation could change specific attributes (like man→woman) [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF] or use a user-given text prompt (B. Li et al. 2020). These methods still struggled with artifacts and fidelity to the input image, though, since changes were effected in a fully-convolutional manner. More recently, the latest GANs [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] were shown to have localized and meaningful editing capabilities via their latent code, allowing semantic edits like man→woman while more faithfully preserving the initial image. Other works perform manipulation of the learned weights within a trained network for even more controllable generation [START_REF] Bau | Rewriting a deep generative model[END_REF]. Using a pre-trained generative prior, like a GAN or DDPM, has the advantage of leveraging the learned relationships in a large and powerful network. Training an editing network from scratch, however, requires large amounts of data and computation power, while only allowing limited types of editing instructions. Moreover, manipulating the internal weights and latent code of a pre-trained network typically allows for more natural edits than a trained editing network. However, generalizing these edits to real images is not straightforward, as we need an effective way to encode a real image into the network. Moreover, using a pre-trained generative network may limit us to the distribution of the training dataset. In this thesis, we explore these problems when leveraging and manipulating the compact representations of pre-trained generative priors to effectuate target editing operations.

Our use of DNNs for image editing in 2023 can be seen as an amusing echo to the image editing performed almost 200 years ago. Indeed, if the compact negative image is seen as the "latent image" of traditional photography, traditional image editing techniques consisted in manipulating this "latent image" before "decoding" it into a positive image. Likewise, we focus on manipulating the latent vectors of various generative models while striving to push the generated image to be as natural as possible.

Contributions

Editing real images with AI is a unique case where the "artificial" meets "human". While a fake image which is entirely generated by an AI system is trained to be harmonious by the model, an edited image requires a generation which is not only realistic but also faithful to the original image. This tradeoff between editing success and fidelity to the original image is a recurrent theme which we will see throughout our thesis, both to build our methods as well as evaluate them. We tackle several different families of editing operations (attribute editing, text-guided editing, and inpainting) and leverage different generative models to accomplish our task.

Throughout this thesis, we would like the reader to be aware of the three objectives we have when it comes to image editing:

1. Fidelity to the input image 2. High quality output image 3. Fidelity to the edit operation We approach image editing from several different lenses, which we quickly summarize here:

• Chapter 3: editing imag es with a pretrained gan

We first approach real image editing by generalizing GAN latent manipulation techniques to real images. Indeed, latent manipulation produces meaningful and realistic edits to generated images, but requires a real im-age to first be inverted into a GAN before applying the same techniques. However, naively inverting an image into a GAN produces poor edits of the image. We analyze the reasons for this and we propose a better strategy for GAN inversion, with editability as our motivation. The work in this chapter has led to the following conference publication:

• Asya Grechka, jean Francois Goudou, and Matthieu Cord (2021a). "MAGE-Cally invert images for realistic editing". In: Proceedings of the British Machine Vision Conference (BMVC)

• Chapter 4: text -guided image editing While our inversion strategy allowed meaningful edits, it still struggled with out-of-domain images with regards to the pre-trained GAN. In this chapter, we decide to circumvent inversion altogether and optimize the latent vector of an autoencoder to perform text-given edits. Our method relies on wellstudied regularizers to produce a high-quality edited image. The work in this chapter has led to the following conference publication:

• Guillaume Couairon, Asya [START_REF] Couairon | FlexIT: Towards Flexible Semantic Image Translation[END_REF]. "FlexIT: Towards Flexible Semantic Image Translation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

• Chapter 5: gradientguided inpainting with a ddpm While the previous work can be flexibally applied to any given image and text-prompt, the lack of a strong generative prior sometimes makes the editing operation fail. In this chapter, we look into the use of using a DDPM for the specific task of inpainting. Indeed, we can guarantee fidelity to the input image while producing a high-quality generation thanks to the pretrained DDPM. Our work is currently in submission:

• Asya Grechka, Guillaume [START_REF] Couairon | Zero-shot spatial layout conditioning for text-to-image diffusion models[END_REF]. "Grad-Paint: Gradient-Guided Inpainting with Diffusion Models". In: arXiv preprint C h a p t e r

R E L AT E D W O R K

In this chapter, we will first give a quick overview of Neural Network Learning before going into the details of the separate families of generative networks which were used in our work. Then, we will discuss different approaches to image editing. Finally, we will discuss our contributions and where our work situates among the described context of existing works.

Neural Network Learning

A Neural Network (NN) can represent any parameterized and differentiable mapping function f θ : X → Y between an input space X and an output space Y. Each layer of the NN is a differentiable mathematical function. A Deep Neural Network (DNN) refers to defining many layers (with many learnable parameters) in this network, allowing us to represent extremely complicated functions. The application and training of these models is referred to as Deep Learning (DL). In the case of supervised learning, we have access to a ground-truth dataset D = {(x 1 , y 1 ), ..., (x N , y N )} which associates every datapoint x i ∈ X to its ground-truth label y i ∈ Y. In the case of unsupervised learning, we only have access to unlabelled training data D = {x 1 , ..., x N }. We define a differentiable loss function L which estimates the error of the NN prediction f θ . Because the NN is fully differentiable, we are able to calculate the gradient of the loss function with respect to the NN parameters θ, and thus iteratively optimize them. At the core level, the iterative algorithm which trains a NN is called Gradient Descent, although many variants have been introduced to improve or speed up training [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF].

DL is used today in multitudes of fields and applications. Any data which can be numerized can then be used to train DNNs. In the particular case of Computer Vision (CV), we aim to build models which treat image data. In this case, X are images, represented as n×m×c matrices in which each value is an integer between 0 and 255. The number of channels c is 1 in the case of black and white images and 3 in the case of colored images. Historically, handcrafted features were extracted from images and then aggregated in an approach similar to "bag of words" [START_REF] Ahonen | Face recognition with local binary patterns[END_REF][START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]) before inserted in a shallow network which calculated the prediction. In 2012, AlexNet (Alex Krizhevsky et al. 2012b) became the first deep Convolutional Neural Network (CNN) to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition for classifying diverse images. Here, small "kernels" of trainable weights were used throughout the network, learning hierarchical features without any need of handcrafting features. Improvements in coming years came with prominent architectures like VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], which had a deeper architecture with smaller kernels and ResNet (He et al. 2016a), which introduced residual connections. In recent years, Visual Transformer architectures [START_REF] Chen | Pali: A jointly-scaled multilingual language-image model[END_REF][START_REF] Dosovitskiy | An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[END_REF][START_REF] Touvron | Training data-efficient image transformers and distillation through attention[END_REF]) became state-of-the-art for the task of image classification. Like their Natural Language Processing (NLP) counterparts, Visual Transformers treat images as a sequence of "tokens" -created by extracting and flattening patches across the image before learning their deeper embeddings through their signature "attention" mechanism.

Generative Models

Generative Models model the distribution p(x) of a given dataset D X and provide a way to generate new data points from this distribution. In this section, we will first investigate the various generative models from the scope of unconditional generation before describing their conditional counterparts. In the unsupervised setting, we only have access to a given dataset D X and we wish to model D X 's distribution with a DNN. Although we do not have ground-truth labels, we must still define a loss function in order to backpropogate through the network and update its parameters, as described in the section above. The different families of generative models each propose to optimize a distinct loss function which have their advantages and disadvantages.

We specifically focus on image generation, particularly high-quality imagegeneration. Although generative models can be applied to other forms of data as well, like numerical data, text, or speech, it is important to keep in mind that in the context of this thesis, we are dealing with very high-dimensional data (in the case of a 500 × 500 image, there are 750000 dimensions represented with 8-bit values). Thus, models which assume that data follows a pre-defined distribution, like Gaussian Mixture Models [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], are ineffective for our goal. Indeed, DNNs specifically have had the most success modeling this complicated form of data. In this work, we specifically use three families of different generative models: Variational Autoencoder (VAE)s, Generative Adversarial Network (GAN)s and Denoising Diffusion Probabilistic Model (DDPM)s. These families have had great success in the task of image generation and we use these three families in 

Variational Auto-Encoders

Introduced by [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF]D. J. Rezende et al. 2014, VAEs are based on the variational inference framework. This framework will be presented here and then later be brought to the context of DL.

VAE Framework Let's consider a dataset of observations x ∈ D X , a prior distribution of unobserved latent variables p(z). The joint probability of this model can be written as p(x, z) = p(x|z)p(z). The goal of variational inference is to infer good values of the latent variables and calculate the posterior (intractable) p(z|x).

Variational inference approximates the posterior with a family of distributions, typically multivariate Gaussian distributions, noted as q λ (z|x). To measure the similarity between the variational posterior q λ (z|x) and the true posterior p(z|x), we can use the Kullback-Leiber (KL) divergence which measures the similarity between two distributions. However, KL(q λ (z|x)||p(z|x)) is again intractable.

The marginal log-likelihood can be decomposed as follows:

log p(x) = ELBO(λ) + KL(q λ (z|x)||p(z|x)) (2.1)
with

ELBO(λ) = E q λ(z|x) [log p(x|z)] -KL(q λ (z|x)||p(z)) (2.2)
Because the KL divergence is always positive, minimizing the right term in Eq. 2.1 (which is intractable) is equivalent to maximizing ELBO(λ), which is tractable. Indeed, ELBO(λ) is a lower bound on the the marginal log-likelihood of the observed data log p(x).

DNN Context

In the context of DL, we parameterize the approximate posterior q θ (z|x) with an encoder network which takes as input an image and outputs the parameters to a probability density. This is typically a multivariate Gaussian distribution, defined by a mean µ θ and standard deviation σ θ . Sampling from this distribution gives us a latent vector z. Similarly, we parameterize the likelihood p ϕ (x|z) with a decoder (generative network), which takes as input a latent vector z and outputs parameters of the data distribution. For practical purposes, this distribution is typically a set of independent Bernouilli parameters or a multivariate Gaussian with fixed variance. In this way, the decoder network simply outputs the reconstructed image directly. The parameters θ and ϕ are the weights to the encoder and decoder respectively, and can be optimized via gradient descent. Note that when sampling a latent vector z from the output given by the encoder, we perform a reparametrization trick which allows us to backpropagate through the encoder network. This consists in sampling a random vector ϵ ∼ N (0, I d ) and then reparameterizing to obtain the latent vector z with z = µ θ + σ θ * ϵ. The basic architecture can be visualized in the first row of Figure 2.1.

We minimize the following loss function:

L = 1 N N i l i (2.3)
where

l i (θ, ϕ) = -ELBO(θ, ϕ) = -E q θ (z|x i ) [log p ϕ (x i |z)] + KL(q θ (z|x i )||p(z)) (2.4)
and N is the number of datapoints.

The left term can be seen as the reconstruction loss, which refers to how well the VAE manages to reconstruct a given image. The right term can be seen as a regularizer which encourages the learned latent space to be meaningful. Without this regularizer, the encoder could assign a unique location for each image in the dataset. Although this would be easier to decode, the learned representation of the latent would not be meaningful, which is one of our goals when learning this deep representative space. A meaningful latent space implies that two datapoints close in the latent space are also close in the image space.

Disentanglement In fact, [START_REF] Higgins | beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework[END_REF] show that when putting more penalty on the the KL-divergence term in Equation 2.4, known as β-VAE, the VAE produces disentangled representations. Disentanglement refers to a learned latent space in which each latent factor is mapped to an independent generative factor. For example, in a disentangled representation, one latent factor could control rotation while another one could control size. A disentangled latent space can be especially attractive in the case of image editing, which will be discussed later in 2.3.3.

Generative Adversarial Networks

We will now introduce GANs, a framework introduced by I. J. Goodfellow et al. 2014 which has been become a core component in image generation and image editing applications.

In contrast with VAEs, GANs do not explicitly model the probability distribution of the data p(x). Instead, GAN use two networks, the generator G and the discriminator D which are trained together adversarially. Similarly to VAE, we use a latent space z ∈ Z which will be used as input for the generator network. Unlike VAEs, this latent space is not learned, and is typically defined as N (0, I d ), with d the dimension of the latent space.

Concretely, the objective function of GANs is posed as a zero-sum game between D and G, defined as follows:

min G max D E x∼p(x) [log(D(x))] + E z∼p(z) [log(1 -D(G(z)))]
(2.5)

For the discriminator, the goal is posed as a binary classification problem: correctly classify the real images from p(x) as well as the fake images generated from G(z). The generator has the opposite objective and "wants" to produce images that cannot be easily classified by the discriminator. 2.8 is equivalent to minimizing the Jensen-Shannon Divergence (JSD) between the distribution of real images and distribution of fake images. However, training GANs in practice is not straightforward, for reasons we will examine here.

Minimizing Equation

GAN Architecture

When referring to GANs, we typically refer to the training mechanism using the zero-sum GAN loss (Equation 2.8). This requires some generative network and a discriminator network trained jointly, but there is no further constraint on the architecture used by a GAN. Indeed, a VAE's decoder architecture can be practically identical to a GAN's generator network, both transforming a latent vector z into an image. Similarly, the discriminator can simply resemble a CNNclassifier architecture. For this reason, there is nothing stopping us from having hybrid architectures which combines the typical encoder-decoder of a VAE with a discriminator and a GAN loss, as has been done by several works [START_REF] Donahue | Adversarial Feature Learning[END_REF][START_REF] Dumoulin | Adversarially Learned Inference[END_REF][START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF][START_REF] Larsen | Autoencoding beyond pixels using a learned similarity metric[END_REF][START_REF] Xian | fvaegan-d2: A feature generating framework for any-shot learning[END_REF]).

In the case of images, Figure 2.2 shows a typical GAN architecture based on a CNN, coined Deep convolutional GAN (DCGAN) [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. This basic architecture uses upsampling blocks (composed of deconvolutional layers) for the generator and downsampling blocks (composed of convolutional layers) for the discriminator, which further works build off from.

GAN Weaknesses

Training Instability In theory, we can expect to optimize Equation 2.8 by first optimizing D optimally before optimizing G. In practice, however, training GANs is effectuated by alternating gradient descent steps to the discriminator and generator. However, GANs are prone to important training instability.

One of the most notable issues when optimizing Equation 2.8 by alternating gradient descent steps is training collapse due to a too-strong discriminator. [START_REF] Arjovsky | Towards Principled Methods for Training Generative Adversarial Networks[END_REF] shows that in the case of image generation, a "perfect" discriminator exists which can perfectly separate real data from fake data. What's worse, as the discriminator gets stronger, the gradients given to the generator will vanish [START_REF] Arjovsky | Towards Principled Methods for Training Generative Adversarial Networks[END_REF]. This means, of course, that training collapses, since the generator can no longer improve. It's important to note that this gets exacerbated in the case of high-resolution synthesis. Indeed, while high-resolution images improves discriminability [START_REF] Odena | Conditional Image Synthesis with Auxiliary Classifier GANs[END_REF], high-resolution synthesis becomes a harder task for the generator [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]. Moreover, in the case of highresolution synthesis, the size of the mini-batch must be smaller (since the images are more memory-intensive) and thus the generator has even guidance from the gradients. The GAN's training stability and the GAN's capacity to generate highresolution images thus goes hand-in-hand. Although the reverse problem could also occur in practice (a strong generator which too-easily tricks the discriminator, causing the discriminator "stuck" during learning), this occurs less often given the fact that the discriminator's job is inherently easier.

Mode Collapse

Mode collapse refers to the generator collapsing to only produce one sample or one family of similar samples. In this case, a single generated sample which is classified as realistic by the discriminator will push the generator towards this sample. The adversarial nature of a GAN often pushes it to drop modes which are deemed less realistic.

Unstructured latent space

Because the latent space is fixed instead of learned, the latent space of a GAN can be unstructured and typically entangled. Although not problematic in itself, it can be prohibit or limit fine-grained control for generation or manipulation.

No inference for z Because a GAN typically lacks an encoder network (with the exception of hybrid VAEs/GANs as mentioned in 2.2.2.1), we cannot easily obtain the latent GAN code corresponding to a real image. This makes high-level image editing problematic.

The works and techniques described below ultimately allowed GANs to become state-of-the-art in image synthesis.

GAN Improvements

We will now discuss some recent advances which address the aforementioned weaknesses as well as the recent works which finally allowed very high-resolution synthesis.

Non-saturating GAN loss

The non-saturating GAN loss, introduced in the original GAN paper (I. Goodfellow et al. 2014) changes the objective of the generator from Equation 2.8 to:

min G E z∼p(z) [-log(D(G(z)))]
(2.6)

This reframes the initial goal posed by Equation 2.8. Instead of minimizing the probability that the generated samples are classified as fake, Equation 2.6 maximizes the probability that the generated samples are real. This objective provides stronger gradient information to the generator early in training and aims to treat the vanishing gradients problem evoked above. Although this change in objective does indeed help for vanishing gradients, gradients still become very noisy with little value to the generator when the discriminator becomes too strong [START_REF] Arjovsky | Towards Principled Methods for Training Generative Adversarial Networks[END_REF]. [START_REF] Salimans | Improved Techniques for Training GANs[END_REF], consists in providing extra information to the discriminator regarding the variety of the samples in the current mini-batch. Concretely, for a single sample, we calculate its distance (in a feature space) to all the other samples, sum these distances and concatenate this value to the generated sample x i . Other work uses a variant of this by performing standard deviation in the feature space and concatenates these values to the input of the discriminator [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF].

Minibatch Discrimination Minibatch discrimination, introduced by

Because the discriminator will have access to extra information (very small distances correlate with fake samples), the generator will be encouraged to produce more diverse samples. However, this approach depends on the batch size, which, in the case of high-resolution synthesis, is quite low to accommodate the memory constraints of large images. Moreover, it is not immune to the GAN dropping some modes. Progressive Growing of GANs In 2017, Karras introduced Progressive Growing of GANs (PGGAN) [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF], which further tackles GANs' instability problems specifically for the goal of high-resolution image resolution. This was the first GAN architecture which successfully managed to generate high-quality images of 1024 × 1024 resolution. The intuition is straightforward: instead of brutally generating high-resolution images which is prone to heavy instability for the reasons mentioned above, the generator and discriminator should be trained progressively from low-resolution generation to high-resolution generation. Figure 2.3 shows the training mechanism for this architecture. The generator and discriminator, mirror architectures of each other, are first trained to successfully generate 4 × 4 resolution images. This is an easy task for the generator, and is successfully trained without much training difficulty. When training is complete, another upsampling and downsampling block are respectfully added to the generator and discriminator. At each new addition of a new block, the generation gradually blends a simple nearest-neighbor upsampling of the previous layer with the generation of the newly trained network. As training converges (visually or by some pre-defined metric), a new block of layers are added to the discriminator and generator. Because at each new addition of an upsampling block, the generator's weights are already at decent starting points, the gradients from the discriminator are more likely to be able to guide the generator in the right direction.

Spectral Normalization

Later work [START_REF] Karnewar | Msg-gan: Multi-scale gradients for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] builds off this framework in a single architecture which implicitly performs progressive-growing without explicitly changing the architecture at each new resolution addition.

A learned and disentangled latent-space Introduced in 2020, StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]) and later StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]) revolutionized GAN synthesis by introducing a new latent space which is learned, rather than the typical fixed N (0, 1). Figure 2.4 summarizes this architecture. We define a simple Multi-Layer Perceptron (MLP) network which maps the mapping latent vector from the N (0, 1) space to a new learned W space. This latent code is first projected to another space (the A blocks in Figure 2.4) and then modulates the feature maps via Adaptive Instance Normalization (AdaIN) layers (X. [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF], given by the following equation:

AdaIN(x i , y) = y s,i x i -µ(x i ) σ(x i ) + y b,i (2.7)
where x i is the i th feature map in the current layer and y is the learned style parameters for the current block.

Because each feature map is normalized via the AdaIN operation, only the current style at the current scale-specific block controls the modification at this In later work, [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] improves upon this work by improving the architecture, improving the modulation and demodulation scheme of AdaIN and adding perceptual path regularization for even more smoothness in the latent space. This encourages for small changes in the latent space to produce small changes in the image space. With these improvements, StyleGAN2 quickly became the state-of-the-art in image generation for constrained datasets like faces [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]Z. Liu et al. 2015), bedrooms and animals (F. [START_REF] Yu | LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop[END_REF] for many years to come. Moreover, with its powerful latent space, StyleGAN2 opened the door for many works on image editing, more of which will be discussed in 2.3. [START_REF] Sauer1 | Projected GANs Converge Faster[END_REF] shows that instead of training the discriminator to discriminate the image, they use fixed projectors and multiple discriminators, each one operating on a different scale. They use a pre-trained feature extractor and random fixed projectors to use as input for the multi-scale discriminators, which they argue is less prone to the discriminator "focusing" on one area of the image. They show that these projected GANs not only outperform the baseline GANs, but also converge at a much faster rate: matching the baseline's performance after only 3 hours of training compared to the previous 5 days of training.

Projected GANs

Conditional GANs

GANs can be conditioned on some condition c, known as Conditional GAN (cGAN)s [START_REF] Mirza | Conditional generative adversarial nets[END_REF]. cGANs condition both the generator and discriminator on the condition, and Equation 2.8 can be rewritten as follows:

min G max D E x,c∼p(x,c) [log(D(x, c))] + E z∼p(z),c∼p(c) [log(1 -D(G(z, c), c))]
(2.8)

The condition can be a class label, a vector, or an image. The latter case is known as image-to-image translation, and will be discussed in more detail in section 2.3.1. Although unconditional GANs achieved remarkable, photo-realistic synthesis on restricted datasets like faces, conditional GANs historically struggled on more diverse datasets like ImageNet. In 2019, however, significant progress on this front was made with BigGan [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF], which achieved state-the-art results on ImageNet, significantly outperforming previous methods. They used a residual architecture, GAN hinge loss [START_REF] Lim | Geometric gan[END_REF]) (a variant of the adversarial loss), spectral normalization [START_REF] Miyato | Spectral Normalization for Generative Adversarial Networks[END_REF], class-conditional Batch Normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], scaling up the layer sizes, and increased batch size. BigGAN remained state-of-the-art for ImageNet synthesis for several years until diffusion models outperformed them, which we describe in the next section. Class-conditioning helps provide the GAN with additional information, helping training stability and mode-collapse. If, however, data labels are not available, unconditional GANs struggle to represent a diverse distribution like ImageNet. To combat this, [START_REF] Casanova | Instance-Conditioned GAN[END_REF] proposed Instance-GAN, where the generator and discriminator are conditioned on a single SwAV [START_REF] Caron | Unsupervised Learning of Visual Features by Contrasting Cluster Assignments[END_REF] embedding of a real image. The discriminator then only observes the K nearestneighbors as "real samples" while the generator aims at generating images close to the input image. Generating a variety of samples is possible in this way even without labels.

Denoising Diffusion Probabilistic Models

Although DDPMs have roots dating from earlier years [START_REF] Sohl-Dickstein | Deep unsupervised learning using nonequilibrium thermodynamics[END_REF], the model became especially prominent in 2020 by Ho et al. 2020, using a UNet architecture as the denoiser, which has since become standard practice. [START_REF] Ho | Denoising diffusion probabilistic models[END_REF] acheived similar results to their GAN counterparts for various datasets. Then, [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF] adapted the model and achieved state of the art results on ImageNet and various LSUN datasets like Bedrooms, Horses and Cats, outperforming BigGAN [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF] and StyleGAN [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. Even more recently, DDPMs achieved image synthesis from free-form text of remarkable quality [START_REF] Frans | CLIPDraw: exploring textto-drawing synthesis through language-image encoders[END_REF]A. Nichol et al. 2021;[START_REF] Ramesh | Hierarchical text-conditional image generation with clip latents[END_REF][START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]Saharia et al. 2022b), These models capture complex intrinsic knowledge about the world from the billions of images used to train them [START_REF] Schuhmann | Laion-5b: An open large-scale dataset for training next generation image-text models[END_REF], which allows high-quality generation of even completely imaginary concepts, like "a dragon fruit wearing karate belt in the snow."

In this section, we will first present the general framework of diffusion models. Then, we will present their conditional variant and techniques used to improve synthesis quality. Finally, we will go into more detail of some of the recent prominent models which have achieved photo-realistic results.

Framework

Introduced by Sohl-Dickstein et al. 2015 and improved by [START_REF] Ho | Denoising diffusion probabilistic models[END_REF], the DDPM is a class of generative models trained to remove various levels of noise added to an input training image, as illustrated in Fig. 2.1. Given an input image x 0 , the forward process refers to the creation of the latent variables x 1 , ..., x T by gradually noising the latents incrementally with gaussian noise, controlled by a variance schedule β t which grows from 0 to 1. Note that the schedule of β t is an implementation choice: Ho et al. 2020 proposed a linear schedule while Dhariwal et al. 2021 proposed a cosine-based schedule which improved performance.

Concretely:

x t = 1 -β t x t-1 + β t ϵ
(2.9)

By posing α t = T i=1 (1 -β i ) and through reparameterization, a nice property of DDPMs is that we can always express a latent map x t in relation to the initial image x 0 :

x t = √ α t x 0 + √ 1 -α t ϵ (2.10)
Where t varies from 0 to T and determines the mixing coefficient α t , which monotonically decreases from α 0 = 1 (no noise) to α T ≃ 0 (almost pure noise) for a large integer T .

The reverse process refers to learning a model ϵ θ which approximates the noise added at a given timestep t. Specifically, DDPMs are trained with the following objective:

L = E x 0 ,t,ϵ ∥ϵ -ϵ θ (x t , t)∥ 2 2 ,
(2.11)

Sampling

At inference time, a new sample from the training distribution can be obtained by starting from random Gaussian noise x T ∼ N (0, I), and iteratively refining it with the noise estimator network with the following equations, called DDPM sampling equations [START_REF] Ho | Denoising diffusion probabilistic models[END_REF]:

x0 = 1 √ α t (x t - √ 1 -α t • ϵ θ (x t , t)) x t-1 = (α t-1 -α t ) √ α t-1 α t-1 (1 -α t ) x0 + (1 -α t-1 ) √ α t (1 -α t ) √ α t-1 x t + σ t z
where t goes from T to 1, σ t is a variance parameter (either learned or fixed), and z ∼ N (0, I). In practice, the noise estimator network is modelled as a UNet [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] which inputs the noise map x t concatenated with the timestep embedding of t.

Without any modification, sampling with diffusion models is very costly, as it requires T (which is usually on the magnitude of several thousands) forward passes to generate an image, a much slower process than their GAN counterparts which only require one forward pass. On a modern GPU, a single sampling takes several minutes. A. Q. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF] shows that we can resample the number of steps and obtain their corresponding variances and perform fewer sampling steps during inference. They show that 100 steps is sufficient for high-quality generation with their model trained with 4000 steps. J. Song et al. 2021 show that this strategy works even better with a deterministic model, and can reduce the amount of steps down to 20. Finally, [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF] show that we can considerably reduce training and inference complexity by working with latents x t in a compressed space rather than the original image dimensions.

Conditional DDPMs

Conditional diffusion models (N. [START_REF] Chen | Wavegrad: Estimating gradients for waveform generation[END_REF]Saharia et al. 2022a, n.d.) make the denoising process conditional on a signal. Like other conditional generative models, this can be a text, image, segmentation map, etc. In practice, the conditioning is typically done with concatenation to the noise map for modalities other than text, while text typically conditions the generation in multiple layers of the UNet through attention mechanisms (A. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF][START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]Saharia et al. 2022b).

Classifier-Guidance To improve generation quality, [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF][START_REF] Sohl-Dickstein | Deep unsupervised learning using nonequilibrium thermodynamics[END_REF]Y. Song et al. 2020 show that it's possible to make use of an auxiliary classifier during sampling to further guide the generation towards the desired output. In particular, an auxiliary classifier p ψ (y|x t , t) can be trained on images of varying noise (x t , t) and be then used to guide the sampling during inference with its gradient ∇ xt log(y|x t , t) further towards the class y. A. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF] similarly shows improved results by using the CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]) model as the classifier.

Classifier-free Guidance Ho et al. 2022 improves upon classifier guidance by proposing classifier-free guidance. Instead of using an auxiliary classifier, classifier-free guidance uses the DDPM itself to further guide the generation. Concretely, it consists in tweaking the training of a conditional DDPM by dropping the text or class label for a percentage of the time (usually, 20%) and instead train with a null-text token or null-class label ∅. Then, during sampling, the output of ϵ θ is extrapolated further in the direction of the class or text with:

εθ (x t |y) = ϵ θ (x t , ∅) + s • (ϵ θ (x t , y) -ϵ(x t , ∅))
(2.12)

where s > 1

A. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF] shows the superiority of this guidance compared to classifier-guidance, and classifier-free guidance is currently standard practice for conditional diffusion models.

Prominent Diffusion Models

Initially, unconditional or class-conditional diffusion models were trained on small datasets which allowed benchmarking against GANs [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF][START_REF] Ho | Denoising diffusion probabilistic models[END_REF]. Recently, works started to train diffusion models on very large billion-element text-image datasets [START_REF] Schuhmann | Laion-5b: An open large-scale dataset for training next generation image-text models[END_REF]) which allowed unprecedented generation in terms of photorealism and diversity. GLIDE (A. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF]) built off the architecture in [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF] to adapt classconditioning to text-conditioning. DALL-E 2 [START_REF] Ramesh | Hierarchical text-conditional image generation with clip latents[END_REF]) also built on this architecture, but conditioned the generation on CLIP Radford et al. 2021 encodings of the image to "unCLIP" the embedding. Imagen (Saharia et al. 2022b) leveraged much larger language model for the text encoder which conditioned generation, showing that performance scales with the text encoder size but not with the UNet size. Latent Diffusion Models [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]) first compresses images into a 8× reduced space with an encoder before performing the diffusion process on these latents, rather than the noised images. Their model requires much less resources for training and also allows for a much faster inference speed. Other actors, like Midjourney, have also released impressive results with their private undisclosed models and weights.

Image Editing

Image editing is a particular case of image synthesis which requires (1) a way to use the input image as input and (2) a specific editing task. There are two ways to approach this problem: training/fine-tuning a network for the task (2.3.1) or leveraging a pre-trained network, which has already learned powerful semantics, and tweaking the internal feature-maps or latent code (2.3.2, 2.3.3). We can look at these approaches from a "coarse-to-fine" point of view -image-to-image models (2.3.1) typically train an entire network from scratch to perform the task at hand, "hacking" generative models (2.3.2) manipulate a subset of internal feature-maps or weights from a pre-trained network, and latent space manipulation (2.3.3) leave the entire network as is, only manipulating the latent code input. The approaches typically vary on the "controllability -practicality" tradeoff. That is, the less we manipulate a pre-trained network, the more tied we are to the original dataset the network was trained on. However, re-training a new network as is typical in imageto-image models requires much more data (which we may not have) and training resources. For the "average" person, it is infeasible to train a model as semantically powerful as state-of-the-art generative models (Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF], for example, cost $160, 000 and 80, 000 A100 (nvidia n.d.) hours to train (Stephenson et al. n.d.)). Moreover, state-of-the-art generative models intrinsically learn powerful concepts, which can be leveraged (see 2.3.3). To summarize, all the following approaches have their merits, and as a general "guideline", the more the input image deviates from the domain of a pre-trained model, the more tweaking (or new training) a user should do.

Image-to-Image Models

Image-to-image models can be seen as a straightforward way to perform image editing when we wish to "translate" an image from a source domain A to a target domain B. In this case, the entire image is typically edited to (1) keep prominent structures of the source image and (2) belong to the target domain. Typical application of these include sketches to photos, photos to paintings, semantic maps to photos, colorization, etc. The task of inpainting, which consists in generating a missing part of an input image, is a particular case of image-to-image models and will be discussed in depth in Chapter 5. Image-to-image translation has almost exclusively been worked on using GANs except in recent works which adapted DDPMs for the task. In the case where we have access to paired data containing before and after images, [START_REF] Isola | Image-toimage translation with conditional adversarial networks[END_REF] proposed a general framework "Pix2Pix" using a cGAN where both the generater and discriminator are conditioned by the input image as well as a fully-convolutional discriminator "PatchGAN", which discriminates patches as real or fake and then aggregates the results. The authors proposed a UNet architecture with skip connections since the input and output images generally share many similar edges and features. The work used an L1 loss as well as a GAN loss, encapsulating the two objectives stated above. Pix2PixHD (T.-C. [START_REF] Wang | High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs[END_REF]) extended this framework for high-resolution images (2048 × 1024). Pix2PixHD used a similar idea to Progressive Growing (see section 2.2.2.3) and first trains a low-resolution generator before adding a highresolution generator to the architecture, with both architectures remaining fullytrainable. Multi-scale discriminators were also added for further training stability. Later GAN-based works extended this, first with spatially-adaptive normalization layers [START_REF] Park | Semantic image synthesis with spatially-adaptive normalization[END_REF]) and then later with a more powerful, spatially-aware discriminator which eliminates the need for a reconstruction loss [START_REF] Sushko | You only need adversarial supervision for semantic image synthesis[END_REF]). More recently, [START_REF] Richardson | Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation[END_REF] adapted the image-to-image framework by training an encoder-decoder network in which the encoder predicts latent codes of StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] to reconstruct the image. With restricted domains where StyleGAN2 excels, such as faces, this produces very natural results, unlike the Pix2Pix (and successors) frameworks, which are prone to artifacts. Recently, conditional DDPMs aborded the image-to-image translation tasks, such as superresolution (Saharia et al. n.d.) and inpainting (A. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF]. Saharia et al. 2022a provide a general image-to-image framework with DDPMs, which builds upon the architecture from [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF] and concatenating the source image with the noise map at every denoising step, as described in 2.2.3.2.

In the case where we don't have access to paired data, different approaches exist. A straightforward approach consists in solely performing style transfer (X. [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] for adapted cases, like photos to paintings. They use a fixed pre-trained VGG encoder [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]) and a trainable decoder network which is trained with a content loss and a style loss (calculated by using the same VGG network). J.-Y. [START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF] produced a novel approach, Cycle-GAN, which consists in training two GANs, along with a cyclic loss the translated source image translated back to the source domain should produce the initial source image. [START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-to-image translation[END_REF]later Choi et al. 2020 proposed a general framework for unsupervised image-to-image translation in the case of multiple domains. The works noted that generalizing a CycleGAN approach would result in a quadratic amount of GANs to train. Instead, Choi et al. 2020 trains one GAN, in which the discriminator predicts scores for each domain, one style encoder, which outputs a style given an image, and one mapping function, which outputs a style given a source domain and a latent vector. The work conditions the generator with the style encoding and allows realistic translations for multiple domains. Recent works with DDPMs leveraged large and powerful pre-trained models for down-stream image-to-image translation tasks, requiring as little as 1000 labelled training data to perform high-quality image-to-image translation [START_REF] Voynov | Sketch-Guided Text-to-Image Diffusion Models[END_REF]T. Wang et al. 2022;L. Zhang et al. 2023).

"Hacking" a generative model

We refer to "hacking" a generative model as manipulating the network's internal trained weights or feature maps in order to have fine-grained control of the output generation. These methods have roots in understanding how the internal structure of DNNs affect their prediction (Y. [START_REF] Chen | Delving Deep into Interpreting Neural Nets with Piece-Wise Affine Representation[END_REF][START_REF] Collins | Deep feature factorization for concept discovery[END_REF][START_REF] Karpathy | Visualizing and understanding recurrent networks[END_REF][START_REF] Strobelt | Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent neural networks[END_REF][START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF]. [START_REF] Bau | Gan dissection: Visualizing and understanding generative adversarial networks[END_REF] extended this to GANs, and showed that specific feature maps in a pretrained GAN corresponded to different concepts. After finding the specific feature maps, they showed that setting the feature map values to 0 or to a given constant respectfully ablated or generated the concept in question. Bau et al. 2019a showed in a later work that this can be extended to real images with inverting a real image into the GAN latent space. [START_REF] Collins | Editing in Style: Uncovering the Local Semantics of GANs[END_REF] extends this work by using spherical k-means to pick out fine-grained concepts before finding their corresponding feature maps to manipulate. They work with the StyleGAN2 latent code, which (being more disentangled) produces more aesthetically pleasing results. [START_REF] Wu | StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation[END_REF] does similar work, except only using the style code (the code after the affine transformations of the latent code) for manipulation. [START_REF] Bau | Rewriting a deep generative model[END_REF] showed that it's possible to "rewrite" a generative model to produce images based on usergiven images, such as mustaches which replace eyebrows. They showed that by re-optimizing a small subset of weights for the output to match the user-generated output, the new rules of the generative model generalize for new images. [START_REF] Cherepkov | Navigating the gan parameter space for semantic image editing[END_REF] shows by manipulating the weights of one convolutional kernal in a StyleGAN2 network, we can train a network to predict the values of these manipulations from generated images and thus learning meaningful semantic edit operations.

Latent Space Manipulation

Latent space manipulation can be seen as a particular case of the previous section where the manipulation is completely limited to the latent space (i.e. the input to the very first layer of a classic GAN like DCGAN or the latent code which gives the style code for style-based GANs). Early work on GANs [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] showed that by performing arithmetic in the pre-trained GAN's latent space, we are able to control the generation. For example, they showed that if they obtain latent vectors a, b and c respectfully for "a man with glasses", "a man without glasses", and "a woman without glasses", performing a-b+c gives a latent vector which produces images of a woman with glasses. Works in latent space manipulation particularly boomed with the arrival of StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] and StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] with their powerful semantic, localized and disentangled latent space. [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF] showed that performing PCA in the latent space of a GAN allows localization and edition of high-level concepts, like gender for faces or color for cars. Similarly, [START_REF] Voynov | Unsupervised Discovery of Interpretable Directions in the GAN Latent Space[END_REF] shows that we can discover important directions in the latent space by training a network to predict the shift that was used in the latent code to produce two generated images. [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Zhuang | Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space Navigation[END_REF] use auxiliary networks which predict image attributes and learn the mapping between latent vectors and image features. Goetschalckx et al. 2019 also uses an auxiliar network which predicts the aesthetics of an image. They train a simple network which learns to modify the latent code of BigGAN [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF]) such that the resulting image is either less or more memorable. Y. Zhang et al. 2021b shows that by manually semantically segmenting a few images, we can learn how to automatically segment newly generated images just from their latent code, thus creating a dataset "for free". [START_REF] Ling | Editgan: High-precision semantic image editing[END_REF] then leverages this work to edit the images by modifying the corresponding segmentation map, and then finding the corresponding latent code to regenerate the edited image. [START_REF] Tewari | Stylerig: Rigging stylegan for 3d control over portrait images[END_REF]Y. Zhang et al. 2020 show that StyleGAN2's latent code learns 3D information which can be leveraged to perform 3D edits of the input image.

Although these works typically focus on GANs, [START_REF] Khrulkov | Understanding ddpm latent codes through optimal transport[END_REF] shows that the latent code of DDPMs is also of interest -using the same latent code for totally different DDPMs produce similar images in terms of semantics and colors, showing that DDPMs generate images from the latent code through optimal transport.

Evaluation for image synthesis and editing

Evaluation Metrics

The models described above provide ways to sample new generated images from the learned model. Measuring image quality, however, is not straightforward like classification tasks. Indeed, when classification accuracy can simply be evaluated with a validation test using the trained model, image quality requires us to compare two distributions to each other, the real images and the generated images. When evaluating models for the task of image synthesis, we have two goals in mind: fidelity and diversity. Fidelity refers to the quality of generated samples in relation to the source dataset. Diversity refers to the variety of images in relation to the source dataset.

Inception Score The Inception Score (IS) was introduced by Salimans et al. 2016 as a way to evaluate GANs for diversity and fidelity. IS relies on a pre-trained classifier (typically a pre-trained InceptionV3 model (Szegedy et al. 2016b)) which classifies the generated samples x to ImageNet classes y. IS calculates the KL-Divergence KL(p(y|x)||p(y)) between the conditional distribution p(y|x) and the marginal distribution p(y). The intuition is that the conditional distribution p(y|x) should have low-entropy (high probabilities imply high image-quality) and the marginal distribution p(y) should have high-entropy (equal probabilites among classes implies diversity). In this case, a high IS means better performance. This score has notable drawbacks -primarily that there there does not have to be any diversity within a generated class to obtain a perfect score. Secondly, there is no comparison to the distribution of real dataset. Finally, this score specifically tailers to ImageNet classes, and makes less sense to evaluate on specific domains like human faces or bedrooms. This metric is typically not used anymore.

FID

The Frechet Inception Distance (FID) score (Heusel et al. 2017b) was proposed to address these drawbacks and was found to be more consistent with human evaluation. This score uses a pre-trained classifier (again, typically the Inception V3 network) as a feature-extractor for the real and the generated images. FID fits a multivariate normal distribution to the generated and real extracted features and computes the Fréchet Distance between these statistics, which can be computed in closed-form. In this case, a small value is better as it signals similarity between the real and generated distributions. FID is very sensitive to different implementations and different sample sizes. The higher the sample size, the more reliable FID, and it requires a sample size of at least the size of the InceptionV3 feature space (2048) for a somewhat accurate estimate. For datasets smaller than this minimum size, the Simplified FID (SFID) was proposed (C.-I. [START_REF] Kim | Simplified Fréchet distance for generative adversarial Nets[END_REF], which does not take into account the offdiagonal terms in the feature covariance matrix to avoid numerical instability. More formally, let µ r and σ r be the mean and standard deviation of inception features for the real images, and µ s and σ s for the synthetic images. The SFID C.-I. [START_REF] Kim | Simplified Fréchet distance for generative adversarial Nets[END_REF] is computed as

SF ID(α) = ∥µ r -µ s ∥ 2 + α∥σ r -σ s ∥ 2 .
(2.13)

Finally, the class Frechet Inception Distance (CFID) (respectfully, class-conditional SFID (CSFID)) is computed in the same manner as the FID (respectfully, SFID) but for each target class separately, and then averaging the resulting scores.

Specifically, with µ r c and σ r c the mean and standard deviation of inception features for the real images belonging to class c, and µ s c and σ s c for the synthetic images, we have

CSF ID(α) = 1 |C| c ∥µ r c -µ s c ∥ 2 + α |C| c ∥σ r c -σ s c ∥ 2 . (2.14)
where α is a parameter to choose.

FID and its variants still face the drawbacks of using an ImageNet pre-trained classifier for performance, which makes less sense for restricted domains like faces or very large datasets like LAION-5B [START_REF] Schuhmann | Laion-5b: An open large-scale dataset for training next generation image-text models[END_REF], although this can be circumvented by using a domain-specific pre-trained classifier. In this case, results between papers are not easily comparable and re-calculation is necessary [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF].

Precision and Recall

The Precision and Recall metrics were proposed by [START_REF] Sajjadi | Assessing generative models via precision and recall[END_REF] and later improved by Kynkäänniemi et al. 2019b. Let's consider the two manifolds of real images P r and generated images P g . Precision, similar to Fidelity, refers to the chance that a generated image looks real (falls within P r ) while Recall, similar to Diversity, refers to the chances that a real image can be generated (falls within P g ). See 2.6 for a visualization. While the FID score aimed to fit a statistical model to define these two distributions P g and P r , Precision and Recall estimates these distributions using a nearest-neighbor approach. Specifically for a set of N real images and N generated images, we first extract their features with a pretrained feature extractor f and obtain their respective manifolds Φ r and Φ g . Then, a given extracted feature ϕ = f (x) belongs to manifold Φ if h(ϕ, Φ) = 1, where

h(ϕ, Φ) = 1, if ∃f (ϕ ′ ) ∈ Φ such that ||ϕ -ϕ ′ || 2 ≤ ||ϕ ′ -N N k (ϕ ′ , Φ)|| 0, else
where k is a parameter to define and

N N k (ϕ ′ , Φ) is the k th nearest neighbor of ϕ ′ in Φ.
Finally, precision can be defined as:

precision(Φ r , Φ g ) = 1 |Φ g | ϕg∈Φg h(ϕ g , Φ r ) (2.15)
And recall as: Precision and Recall was shown to correlate with human perception and allows us to diagnose synthesis problems more precisely (FID encapulates both diversity and fidelity in one single metric which sometimes doesn't allow granularity). Moreover, with this nearest-neighbor approach, we can say that an image is realistic if there exists a feature vector in Φ r which is closer to the test image's feature vector than to its k th nearest neighbor.

recall(Φ r , Φ g ) = 1 |Φ r | ϕr∈Φr h(ϕ r , Φ g ) (2.16)
However, there are problems associated with these Precision and Recall metrics [START_REF] Alaa | How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models[END_REF][START_REF] Naeem | Reliable fidelity and diversity metrics for generative models[END_REF]. Notably, they are not robust to outliars in the generative and real datasets. Note that a generative model which only barely covers dense modes of the real dataset and overwhelmingly produces samples resembling a few real outliars will have perfect precision and recall scores. To adress these, [START_REF] Alaa | How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models[END_REF] recently proposed α-Precision and β-Recall. α-Precision is the fraction of generated examples which resemble the "most typical" fraction α of real samples, while β-Recall is the fraction of real samples covered by the most typical fraction β of synthetic samples. By varying α and β from 0 to 1, we can observe the effects of outliars and thus better evaluate the closeness of the real and generated distributions.

Authenticity All of the above metrics are susceptible to a generative model simply "copying and pasting" the training data. Also proposed by [START_REF] Alaa | How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models[END_REF], authenticity refers to the rate at which a model generates new samples. With α-Precision, β-Recall and authenticity, [START_REF] Alaa | How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models[END_REF] shows that we can more reliably evaluate generative models compared to existing approaches. [START_REF] Oord | Representation Learning with Contrastive Predictive Coding[END_REF]). In the case of text-guided image editing, the CLIP similarity score measures the distance in the embedded space between the target textual description and the edited image. This score is especially used in recent works which perform highly flexible editing [START_REF] Hertz | Prompt-to-prompt image editing with cross attention control[END_REF][START_REF] Mokady | Null-text inversion for editing real images using guided diffusion models[END_REF].

CLIP similarity

LPIPS

In the case of image editing, we can measure the LPIPS (R. [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF]) score between the real image and the edited image. It is a weighted ℓ 2 distance of deep image features, where the weights have been learned to be able to predict human perceptual similarity between patches. This metric was shown to correlate well with human perceptual similarity, unlike other full-reference metrics (like the ℓ 2 distance between pixels). While editing should change the image slightly, an edited image should generally not deviate profoundly from the input image. This metric is generally used alongside other metrics which measure image quality.

Human Evaluation Human evaluation remains a main way of evaluating image quality. S. Zhou et al. 2019 established a standard human benchmark for image evaluation, while other works propose more task-specific surveys. Amazon Mechanical Turk (MTurk) remains a popular tool for image editing evaluation which allows a diverse pool of humans to choose their preferable image edit.

Datasets

As image editing was historically limited to GANs, datasets used for evaluation typically used restricted datasets which could be covered by a GAN's domain. Typically, this meant either a validation set of the training set, or a different dataset altogether which is similar to the training set.

The most common of these restricted datasets are face datasets, since faces are of particular practical use for the public and they present regular structures which react better to generation and editing. Common face datasets include • CelebA (Z. [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF]. It contains 200000 images of celebrity faces of medium-resolution (mostly 178 × 218). Each image is labelled with 40 different binary attributes (e.g. glasses, smile, etc.)

• CelebAHQ [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]. A high-resolution extension of the previous dataset, containing 30000 images of 1024 × 1024 resolution.

• FFHQ [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. Contains 70000 images of 1024 × 1024 resolution scraped from Flikr. This dataset was created to include a much larger variety of faces compared to the previous datasets (which only included celebrities), and includes a variety of ethnicities, genders, ages, and expressions.

Other popular choices for evaluation include: 

Our contributions and positioning

We abord the task of image editing with three different approaches, constituating our three contributions. We will present these contributions in the three following chapters, which are summarized below.

Chapter 3: Real-Image Editing with a pre-trained GAN Firstly, we wanted to leverage the existing works on latent-space manipulation for a pre-trained GAN (2.3.3). We remarked that existing works performed powerful and convincing edits for generated images, but generalized poorly to real images. In order to apply the aformentioned techniques to real images, we must first invert the real image into the pre-trained GAN to obtain its corresponding latent code (since GAN have no inherent encoder network). Motivated by the success of works on latentspace manipulation, we show that we can use a similar technique to perform the inversion of a real image, and thus obtain an editable latent code. We extensively quantitatively and qualitativly evaluate our method on faces and cars datasets.

Chapter 4: Flexible text-guided image editing Although our first contribution works well for images within a pre-trained GAN's domain, editing a more complicated image works poorly. For our second work, FlexIt, we thus took advantage of the recently proposed VQGAN [START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF]) (a type of VAE) to directly encode images into a codebook of vector-quantized feature vectors. We optimize this latent space to match the user's target text using the recently proposed CLIP dual-encoder [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]. Because the VAE was not trained to generate images, its latent code does not capture semantic information like a GAN does, and we thus introduce a way to efficiently tune our hyper-parameters which encompasses our two objectives -(1) obtaining an edited image which matches the target text and (2) minimally changing the input image. We thorougly evaluate our method on the ImageNet dataset, showing that with cleverly tuning of the hyper-parameters, we achieve better results than previous text-guided editing methods.

Chapter 5: Gradient-guided inpainting with a DDPM We again examined the short-comings of our previous works. While FlexIt can indeed edit any image, the VAE's encoder inherently loses original details present in the source image. Moreover, the lack of generative knowledge within the model can sometimes lead to absurd edits which we cannot control. For real-life use-cases, this is not permissible. An editing task can be seen as a conditional inpainting task, in which the condition only holds effect in the region defined by the inpainting mask. We thus aboarded the question of inpainting with DDPMs. Because of their gradual inference nature, we can guarantee zero image fidelity loss in the regions outside of the inpainting mask while continually blending the generated output with the known regions through noising and denoising. However, the denoising process is too fast for the blending to be successfully harmonized, inspiring works which forcefully slow-down the denoising process for better harmonization [START_REF] Lugmayr | Repaint: Inpainting using denoising diffusion probabilistic models[END_REF]. We go through a different route, and instead guide the denoising process with a gradient of a loss specific for harmonization between the two regions. Our method can be applied to unconditional DDPMs as well as conditional ones, and we performed thorough evaluation on face datasets (CelebaHQ and FFHQ), ImageNet, COCO, and Places2.

E D I T I N G I M A G E S W I T H A P R E -T R A I N E D G A N

Introduction

In this chapter, we aboard the question of image editing with a pre-trained deep Generative Adversarial Network (GAN). For the first time, Deep Learning (DL) models, specifically GANs, have achieved photorealistic synthesis [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. Moreover, as discussed in Chapter 2, methods have recently emerged to have semantic control of the generation via clever ways of manipulating the latent vector [START_REF] Abdal | Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF][START_REF] Collins | Editing in Style: Uncovering the Local Semantics of GANs[END_REF][START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF][START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Tewari | Stylerig: Rigging stylegan for 3d control over portrait images[END_REF][START_REF] Wu | StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation[END_REF][START_REF] Zhuang | Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space Navigation[END_REF]. These editing methods also produce photorealistic images, contrary to concurrent image-to-image models which produce noticeable artifacts (albeit being more controllable) (Park et al. 2019a; T.-C. [START_REF] Wang | High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs[END_REF]). In the context of image editing for the general public, latent space manipulation with the latest StyleGAN2 network [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] is thus an enticing area to experiment with.

The extension to real images is natural but not trivial. A latent code first needs to be found such that, when inserted into the StyleGAN network, outputs the original image, a process known as GAN inversion. Although inversions are able to achieve high reconstruction quality [START_REF] Abdal | Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?[END_REF][START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF], problems arise when applying known editing methods onto the inverted images: the editing either does not work at all, or they produce output images of poor quality, presenting artifacts and blur (Y. Zhang et al. 2021a;J. Zhu et al. 2020). We examine the reasoning behind this lack of generalization and propose a solution to this problem by reframing the standard optimization framework for GAN inversion specifically in the lense of editability of the reconstructed image. More precisely, we introduce a term of editability and iMAGe-latEnt Consistency (dubbed "MAGEC ") into the global loss function by using a simple yet effective procedure based on recent latent-manipulation methods. This allows us to explicitly incorporate known editing methods into the GAN inversion optimization scheme to ensure better editability.

We validate our method with extensive qualitative and quantitative evaluation. Notably, we introduce a novel "edit-consistency score" which specifically eval-uates the quality of a projection method in terms of editability. We show that our method outperforms existing baseline methods, and opens the door to new possibilities of editable high-quality image inversions.

In this chapter, we quickly go over some related work necessary for this chapter. Then, we introduce our new GAN inversion MAGEC framework which incorporates editability directly in the loss term. Then, we extensively evaluated our method qualitatively and quantitatively with standard evaluation metrics, comparing our MAGEC inversion to existing baselines. Finally, we introduce a new evaluation metric, the edit consistency score which is specifically adapted to evaluate both the editability and fidelity of a GAN projection.

Our work has led to the following publication:

• Asya Grechka, Jean-Francois Goudou, and Matthieu Cord (2021b). "MAGE-Cally invert images for realistic editing". In: Proceedings of the British Machine Vision Conference (BMVC)

Related Work

Latent Space Manipulation with StyleGAN We briefly discussed latent space manipulation methods with GANs in Chapter 2.3.1. We will go into a bit more detail on recently proposed methods, particularly detailing the methods used for evaluation in this chapter. [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] showed in their original StyleGAN paper that when interpolating between two latent vectors z 1 and z 2 in the latent space, semantically "interpolated" images can be generated through StyleGAN.

InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF]) makes use of an auxiliary classifier on faces which predicts the 40 CelebA (Z. [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF] attributes from a given face image. Then, by generating many (latent, image) pairs with the pre-trained GAN, they obtain (latent, descriptor) training data by applying the auxiliary classifier. Finally, they train an independent SVM [START_REF] Hearst | Support vector machines[END_REF] for each binary attribute which they wish to modify with this training data. In this way, they learn a hyperplane in the latent space which separates positive examples from negative examples in relation to the particular attribute, and can thus navigate through the latent space with the normal of this hyperplane to accentuate or diminish an attribute. Their method displayed convincing results of editing generated images, albeit attributes were entangled with one another (e.g. "glasses" and "old").

StyleFlow [START_REF] Abdal | Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF]) also makes use of an auxiliary classifier and instead of an SVM, they use a Normalizing Flow network conditioned on the attributes which learns a mapping between a noise vector z ∼ N (0, I) and the latent style vector of StyleGAN z. Once trained, a vector z can be sampled with custom attributes to produce a novel z to generate the image wit the modified attributes. They show that their method effectively disentangles the latent space and produces natural edits.

GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF] simply performs PCA in the latent space of the pretrained GAN. Then, a manual labelling step is necessary to show what each of the components correspond to in the image space. This method has the advantage of not relying on an auxiliary classifier but is less controllable than the previous methods.

GAN Inversion GAN Inversion is typically performed in one of three ways: an optimization-based approach which consists in optimizing a latent vector z (or a subset of the GAN's inner parameters) specifically for an input image, a learningbased approach, which consists in training an encoder, typically from generated training of the pre-trained GAN, to predict the latent code from the input image, and finally, a hybrid approach, which consists in initializing the latent vector with the encoder's prediction before performing further instance-based optimization. The instance-based optimization method allows for better reconstruction but is time-consuming, while the learning-based method is the opposite.

GAN inversion has roots shortly after the appearance of GANs themselves in an effort to edit real images via manual drawing techniques (Bau et al. Because fidelity to the input image is of utmost importance when performing high-quality image editing, we prioritize fidelity to the input image over time and thus focus on an optimization-based approach.

MAGEC Inversion

Methodology

GAN-Inversion Framework Given a pre-trained GAN network (generator G, discriminator D) and a real image

x real ∈ R C×H×W such that: G : z ∈ R d -→ x gen ∈ R C×H×W . The GAN-Inversion goal is to find a latent code z inv ∈ R d such that: G(z inv ) = x rec ≈ x real .
For any real x real image, the instance-based optimization problem for GAN inversion is as follows:

1. Initialize z = z 0 . This can be a random latent vector [START_REF] Abdal | Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?[END_REF] 2. Minimize over z a loss L between the synthesized image G(z) and the original one x real . The basic scheme works with a L = L 2 loss for the reconstruction, recently improved with some sort of perceptual loss L percept . The current general framework minimizes the following loss:

z inv = min z L 2 (G(z), x real ) + λL percept (G(z), x real ). (3.1)
Image2StyleGAN++ [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF]) uses two perceptual losses of an Im-ageNet pre-trained VGG-16 network. Recently, it has been observed that using the LPIPS (R. [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF]) perceptual loss gives more robust results [START_REF] Guan | Collaborative Learning for Faster StyleGAN Embedding[END_REF][START_REF] Richardson | Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation[END_REF], as well as adding an "ID" loss which aims at preserving identity [START_REF] Richardson | Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation[END_REF]Tov et al. 2021a).

This classic GAN-inversion framework fares poorly when known editing methods are applied to the inverted latents (see Fig. 3.2) largely due to the fact that the latent vector "overfits" to the image space, exiting the domain of the pre-trained GAN. Our goal is to preserve accurate reconstruction, but improve editability of the latent vector. We solve this using a 2-part strategy. First, like recent latentmanipulation methods, we learn the structure of the latent space with respect to image features. Second, and unlike previous work, we explicitly use this learnt structure to constrain our optimization process. The method is summarized in Fig. 3.1: the novel projection strategy continues to optimize the image-space loss of equation 3.1 (shown in pink), but now also explicitly optimizes at the latent-level (shown in blue). With this new modeling, we can explicitly add editability directly to the loss term. As we can see with in Fig. 3.4, this allows diverse, high-quality edits of our projected latent vectors all while maintaining high reconstruction fidelity.

Latent-Space Supervision

The lack of editability of previous optimization-based methods reveal that the latent vector overfits to the image space. We thus aim to supervise the latent vector directly through the latent space. Inspired by work on latent-space manipulation [START_REF] Abdal | Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF][START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF][START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Tewari | Stylerig: Rigging stylegan for 3d control over portrait images[END_REF][START_REF] Zhuang | Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space Navigation[END_REF], we also link the latent space with the image space, but here with the explicit goal to supervise our loss.

Consider a pre-trained deep network F which inputs an image and outputs some kind of image descriptor d. This could be attributes, keypoints, segmentation map, etc.

As we know from previous work (Yinghao [START_REF] Xu | Generative Hierarchical Features from Synthesizing Images[END_REF], the latent space of recent style-based generative models has high discriminative capacity. Our method aims to link the image descriptors to the latent vector with the simplest network possible so as to minimize "relearning" some part of the GAN network (and thus keep supervision only at the coarsest latent-level). We generate N image-latent pairs and train a simple linear model LinkNet which predicts image descriptors d from the latent vectors z.

Concretely, we train LinkNet using the same exact loss as the deep image descriptor network F was trained with, using the predictors of F as the ground-truth labels. This simple LinkNet will be sufficient for supervising our latent vector directly in the latent space.

MAGEC Loss

Now that we have linked our image and latent space with the simple LinkNet, we can define our iMAGe-latEnt Consistency "MAGEC " loss in the following way, built from Eq.3.1.

First, we add an image-latent consistency loss over the input image and the latent to optimize. We obtain the "ground-truth" image descriptor d using F , then we use our LinkNet to predict the image descriptor d ′ from latent vector z. If the latent vector correctly represents the image, it should be able to predict the associated image predictors.

Second, we add an image-latent edit consistency loss. Let e be a differentiable known editor with i editing operations (for example, an editing operation can be add glasses, remove wrinkles, to woman, etc.). We perform i edits of the latent vector e i (z) and edit the "ground-truth" image descriptor d accordingly to obtain d e i . Our edited latent vector should be able to predict d e i (with LinkNet). See Fig. 3.1 for detailed illustration. -Our proposed optimization framework. We initialize our z vector with z 0 . Then, we generate the associated image with the pre-trained generator to obtain the image-level loss. We predict the latent-level descriptor d ′ with our pre-trained LinkNet. We add a consistency loss of these features with the "ground-truth" features d evaluated from our feature-extractor network F . We add another consistency loss over the edited descriptors (using a differentiable editor e) and the "ground-truth" edits which we obtain by modifying d. This MAGEC loss gives us latent-level optimization which promotes editability and an in-domain output vector.

The MAGEC loss is given as follows:

L MAGEC (z, x real ) = L F (LinkNet(z), d) image-latent consistency + 1 |edits| i∈edits L F (LinkNet(e i (z)), d e i ) image-latent edit consistency (3.2)
where d = F (x real ) and d e i is the modified d according to edit i.

Our final loss is L(z, x real ) = λ MSE L 2 (G(z), x real ) + λ LPIPS L LPIPS (G(z), x real ) + λ ID L ID (G(z), x real ) + λ MAGEC L MAGEC (z, x real ) (3.3)
where As we can see in Fig. 3.1, our framework allows dual supervision, simultaneously in the image and latent spaces. We are able to provide latent editing directly in the loss term, which not only allows to generate editable latents, but also helps to visualize which images are inherently out-of-domain for the GAN in question. Moreover, this framework can be incorporated into any pre-trained GAN, and allows potential further constraint by combining several differentiable editing methods together.

L

Experimental Setup

We propose to evaluate our MAGEC strategy on two benchmarks typically used to evaluate GANs -Faces and Cars. We describe the experimental setup which we used for both of them below. We provide a detailed list of the assets used in our work (datasets, code, and models) in the Appendix in A.1.

Experimental Setup for Face edits

Datasets and Evaluation editors

We perform thorough evaluation of our method using 1000 random samples from the CelebAHQ [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF] dataset. We evaluate our projection on four well-known editing methods: InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF], GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], StyleFlow [START_REF] Abdal | Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF]) and random interpolation between latent vectors [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF].

Pretrained GAN Model

We use StyleGAN2, pre-trained on FFHQ for 1024 × 1024 output resolution as our pre-trained GAN. We use the mapped latent space W and similarly to [START_REF] Abdal | Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?[END_REF][START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF][START_REF] Richardson | Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation[END_REF]Tov et al. 2021a;J. Zhu et al. 2020), we extend this space to W+ by allowing each of the 512-dimensional style vectors to be independent of each other.

Training Configurations

For the feature extractor F , we train an attribute-classifier on CelebA (Z. [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF] to predict 40 binary attributes. We use a ResNet50 backbone (He et al. 2016a) and adjust the dimensions of the last fully-connected layer to 40. We finetuned this model by first training the last layer for 2 epochs with a learning rate of 0.02 and then finetuning the entire model with discriminative learning rates ranging from 0.002 to 0.02, as described in [START_REF] Howard | Universal language model finetuning for text classification[END_REF] To train our LinkNet model, we sample 50, 000 (latent, descriptor) training pairs with our pre-trained StyleGAN2. Note that we use the extended W+ space for generation, meaning that we generate a distinct latent vector for each style block of StyleGAN2. We use the predicted binary labels of F as our ground-truth labels for the LinkNet training.

For our LinkNet model, we use a sigmoid activation function and binary crossentropy loss. We use the Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] optimizer with the default parameters. We trained the model for 10 epochs and evaluated on a separate validation set, achieving a 89% accuracy.

Finally, we use InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] as our editor e to supervise our MAGEC loss, which performs add/remove operations on all 40 attributes.

Optimization Protocol

We initialize z with z avg , by sampling N = 50000 latent vectors with StyleGAN2 and taking the average vector z 0 = z avg . Fig. 3.3a shows the generated output of the average latent vector. We use the Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with the default parameters (β 1 = 0.9, β 2 = 0.999, ϵ = 1e -08 ). We perform our training in two parts. First, we use λ MAGEC = 3e -4 , λ LPIPS = 5e -1 , λ MSE = 1e -3 and λ ID = 3e -4 and perform 100 optimization steps. Then, we set λ MSE = λ LPIPS = 5e -1 for another 100 optimization steps, leaving the other loss coefficients unchanged. The learning rate begins at 0.07 and is exponentially decayed with a decay factor of 0.8 every 25 epochs. Our two-steps procedure is motivated by the fact that instance-based optimization often fails at adding semantic information in the latent vector with small optimization steps. When placing a higher weight on λ MAGEC , we direct our latent vector z to a strong point which captures this semantic information. Once the latent vector is within the correct "area" of the latent space, we can give more relative weight to the loss coefficients related to image reconstruction.

Experimental Setup for Car edits

Datasets and Evaluation Editors We evaluate our method using random images from the Stanford Cars test set (Krause et al. 2013a), not used to train F (detailed below). We use the GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF]) editing method to evaluate editability.

Pretrained GAN Model

We use StyleGAN2, pre-trained on LSUN Cars for 384 × 512 output resolution as our pre-trained GAN. We use the mapped latent space W and as before, we extend this space to W+ by allowing each of the 512dimensional style vectors to be independent of each other.

Training Configurations For our feature extractor F , we use a pre-trained publicly available cars classifier (fishman2008 2019) which classifies the image into one of 196 car models.

Since the "average" latent vector from the pre-trained cars StyleGAN2 is a poor representation of a car (see Fig. 3.3b), we train an encoder E which predicts a latent vector from an image. This was used to initialize the latent vector for further optimization. We used a pre-trained ResNet50 model (He et al. 2016a) as our backbone, and modified the last layers to output a latent vector. Generated data was used for training.

We follow the same training for the LinkNet as before, except we use a softmax activation function to predict the car model, and use the predicted binary label from F as our ground-truth label to supervise training. We achieve a 95% accuracy on our validation set. It should be noted however, that our ground-truth car predictor often classified the generated cars in the same class due to high discrepancy between real and generated cars (generated cars generally don't have distinctive logos).

Finally, we use GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF] as our editor e to supervise our MAGEC loss. It's worth noting that GANSpace does not allow edits of the car model, so our MAGEC loss supervises our training in a weaker fashion than before. Here, the modified "ground-truth" feature vector is simply the image descriptor vector, since the car model should not change with GANSpace edits.

Optimization Protocol

We initialize z with z 0 = E(x real ). Training is again effectuated in two parts. First, we optimize for 50 steps using λ MAGEC = 5e -2 and λ MSE = λ LPIPS = 5e -1 with a learning rate of 0.08. Then, we decrease λ MAGEC = 5e -8 with a learning rate of 0.01 and train for 50 more steps. We use the Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with default parameters for the training. 

Baselines

We compare our method with Image2StyleGAN++ [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF], the stateof-the-art optimization-based method for GAN-Inversion. This method uses the classic loss from Eq. 3.1 (using the Learned Perceptual Image Patch Similarity (LPIPS) (R. [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF]) loss as the perceptual loss) and first optimizes the latent vector for 1000 iterations, then the noise vector for 1000 iterations. We implement their method since public code is not available. This loss can be seen as an ablation of the MAGEC and ID losses from Eq. 3.3, but minimized over more iterations. We also perform an ablation study using our training protocol to optimize Eq. 3.3 but without the MAGEC loss. We initialize the starting vector z 0 for all methods in the same way as us.

Qualitative Results

Fig. 3.4 shows our method and various edits applied on notorious figures. As we can see in Fig. 3.2, our method is visually superior to Im2StyleGAN [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF]) in terms of editing quality. While Abdal et al. 2020 produces artifacts and blur during edits, our method produces sharp, realistic edits. In terms of assessing visual quality, human evaluation is still the gold standard (Tov et al. 2021a;S. Zhou et al. 2019). We have thus provided abundant uncurated visual results using our method and comparing it to Image2StyleGAN++ [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] as well as to our ablated method without the MAGEC loss. Fig. 3.5,3.6,3.7,and 3.8 show examples with the respective four editing methods: Interface-GAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF], StyleFlow [START_REF] Abdal | Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF], GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], and random interpolations [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. When viewing the results, take extra care to notice the reconstructions (compared to the original images) as well as the result of the intended edit operation (with respect to the original image). Figures should ideally be viewed zoomed and in color. Note that ambiguous edit operations like gender, expression and age should flip the attribute in question (for example, age edit means young turns to old, and vice versa). The following general observations can be made:

• Image2StyleGAN++ [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF]) produces very accurate reconstructions, but edits are often of abysmal quality.

• Ablating the MAGEC loss leads to worse reconstructions.

• Ablating the MAGEC loss produces edits that are of good-quality, but often don't respect the edit intention (for example, the glasses edit may not make any noticeable change, despite producing a high-quality image) nor fidelity to the input image.

• Our MAGEC loss gives accurate reconstructions, but also produces the intended edits that are sharper, less noisy, and of higher-quality.

Finally, we applied our method onto images of real cars. Visual results can also be seen in the end of this chapter in Fig. 3.9. As expected, Image2StyleGAN++'s projection leads to distorted and inaccurate edits. When comparing our method to the ablated method, we can see that MAGEC helps editing and reconstruction. Notice the rotation operations for the first and second cars in Fig. 3.9. The red car preserved the "sports car" look while the white car similarly preserved the Audi logo . Finally, the last rows show that we were correctly able to reconstruct the BMW model as well as preserving it during edits.

We used a very general pre-trained classifier F which was rather unrelated to the edits of the GANSpace editor that supervised our training. Moreover, our method assumes that StyleGAN's latent code can predict the specific car model, a strong assumption, especially considering that purely generated car images rarely have a clear logo. It is more likely that the latent code encodes some sort of "shape" which roughly predicts the car model with LinkNet. Despite these limits, we can We should note that the time of our method directly depends on the number of attributes we add to our MAGEC loss (Eq. 3.2). Here, adding editing constraints for 40 attributes leads to a cost of about 5 seconds per image.

see that adding this simple MAGEC loss using an arbitrary auxiliary classifier does indeed improve editing and reconstruction capacity for many cases, giving high promise to the capacity and flexibility of our method.

3.6 Quantitative Evaluation

Reconstruction and Editability

Tab. 3.1 shows the various metrics for reconstruction. Notice that adding our MAGEC loss in Eq. 3.3 leads a better reconstruction. Even when allowing 50% more iterations, our method still performs on par in terms of reconstruction. The MAGEC loss could thus be seen as a prior which speeds up optimization. As expected, Abdal et al. 2020 performs excellent reconstruction, given the time (over 4 minutes) and the under-constrained loss function.

We perform random edits on the 1000 images to obtain 20000 edited images per projection method. The semantic editability of the inverted latent vector is of utmost importance when performing GAN Inversion, but there is no standard metric for measuring this. We first evaluate using common metrics before introducing our novel "editability score".

We aim to evaluate the realism and "coherence" of a given edit. The Frechet Inception Distance (FID) score (Heusel et al. 2017a) is not adapted to measure the quality of the edits, firstly because the original sample size (1000 original images) is well-below the recommended 50,000 needed for an accurate FID score, and secondly because our edits inherently lack diversity (edits of the same image resemble each other). Instead, we use the realism score (Kynkäänniemi et al. 2019a), which evaluates an image instead of a distribution. This is a nearest-neighbor Remark that here, the edits should be cumulative. Our MAGEC loss helps to produce accurate reconstructions as well as the intended edits with high-quality results. ) edits with various inversions. Im-age2StyleGAN++'s method produces good reconstructions but distorted edits. Our method helps in preserving the car model during reconstruction and edits. Remark the top red car when rotated: our method preserves the sports car style. Remark that the Audi logo of the white car is also conserved when rotating. Finally, the bottom red car reveals that our method consistently maintains the correct car model (BMW) during reconstruction and edits. Best viewed zoomed and in color. For reliable interpretation, we perform a paired Student's t-test between our method's metrics and the competing method. The bold values are in line with this significance (p-value < 0.05). Our method consistently produces realistic and coherent images for the task at hand.

based method (higher is better) in which the realism threshold is set to 1 (a score above 1 is a realistic image).

To measure the "coherence" of an edit, we calculate a simple "improved-target" score t to measure the net difference of the predicted attribute probability before and after the attribute-targeted edit by using a pre-trained attribute classifier. We use our trained attribute classifier F to predict this score. A higher value means that the attribute prediction increased after applying the editing method, meaning it reacted accordingly. Note that t ∈ [0, 1]. Remark that this metric is only applicable to the editors which make attribute-specific edits (InterfaceGAN and StyleFlow).

For reliable interpretation of these metrics, we performed a paired Student's t-test on our method and a competing method, as the edit operations were the same for all projected images. Our results are summarized in Tab. 3.2. As we can see, our method performs well on these metrics, always among the best in terms of realism or "coherence". However, these results are not entirely conclusive, and we investigate a better metric in order to evaluate the editability of a given inversion.

Edit-Consistency Score

The standard metrics at evaluating image quality are poorly adapted to evaluating a projection. Firstly, as we saw in the previous section, reconstruction and editability metrics are independent, which makes it difficult to choose a good trade-off without an ad hoc solution. Moreover, the standard image quality metrics presented in Tab. 3.2 have no way of evaluating whether or the edited image is coherent with regards to the input image. We aim to address both of these weaknesses with a custom metric, the edit-consistency score. We first use our projection method p to obtain vector z from x real . Then, we use a known editing method e to edit the vector with respect to a certain attribute, giving us x edit . Then, we re-project it into the latent space to obtain z ′ edit . Finally, we apply the inverse editing method onto z ′ edit to obtain a cyclic image x cyc , which should ideally match the initial projection. Fig. 3.10 shows an overview of how we calculate this score.

InterfaceGAN

We define the edit-consistency loss as follows:

ecs(p, x real ) = 2 × L LPIPS (p(x real ), x cyc ) L LPIPS (p(x real ), x edit ) + L LPIPS (x edit , x cyc ) (3.4)
The intuition is that the cyclic image should resemble the projected image, but images should also react accordingly to editing methods. Remark that a "perfect" ecs score is 0. An ecs of 1 can be seen as a "quality" threshold, since ecs > 1 means that the distance L LP IP S (p(x real ), x cyc ) is larger than one of the two edit operations. See Fig. 3.11 for examples of varying ecs scores. We can now define the edit-consistency score of a projection :

ECS(p) = 1 |X| x real ∈X
ecs(p, x real ).

(3.5) Tab. 3.3 compares ECS results between our method and the two baselines. Importantly, notice how our method gives better scores for an editing method not utilized to supervise the loss (GANSpace), suggesting that the latent vector doesn't overfit to one editing method, but is encouraged to become "in-domain".

Human Evaluation

While automatic quantitative methods allow quick comparisons to baseline methods, many have observed (S. [START_REF] Zhou | HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models[END_REF]) that human judgment is still the most reliable metric for evaluating image quality. We thus performed a user study in which experts of photography were asked to judge photo edits between each other, each one corresponding to a different projection method. See Fig. 3.12 which shows the user interface to rate edits. One of the two edits were our method, while the other one was either produced by our ablated method (Eq. 3.3 without the MAGEC loss) or by Im2StyleGAN++ [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF]. Each edit operation consisted in changing one of 10 possible facial attributes to a random new value, using either GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF] or StyleFlow [START_REF] Abdal | Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF].

For fairness, InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] was not included in the edits, as this method was used to supervise our loss. When an expert judged an edit, a new proposition appeared immediately after and the survey automatically stopped after 5 minutes to ensure high-quality responses. In total, about 30 responses were collected from each expert. Tab. 3.4 shows the results. As we can see, the experts had a strong preference for our method. -Best and worst ecs scores for a given projection method. Here, the editing method is "to male" with GANSpace. Notice how the worst scores correspond to poorer editability, for example, the woman in the second row on the right did not transform into a man.

Displayed Methods % Preferred Ours Ours vs. w/o MAGEC 72% Ours vs. Im2StyleGAN++ 78%

Table 3.4. -Results of our human evaluation survey. 30 photography experts were questioned (as shown in Fig. 3.12) to rate our method compared to either our ablated method (Eq. 3.3 without the MAGEC loss) or to Im2StyleGAN++ [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF]. Each edit operation consisted in changing one of 10 possible facial attributes to a random new value, using either GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF] or StyleFlow [START_REF] Abdal | Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF]. For fairness, InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] was not included in the edits, as this method was used to supervise our loss.

The results show the strong preference for our method.

Figure 3.12. -Interface provided for human evaluators. 30 photography experts where presented with an original photo and an edit operation and were asked to choose their preferred edited image out of two choices. The user judged for five minutes and an average of 30 edit pairs were judged per user.

Limitations of our Method

Our method aims at producing an editable latent vector, which often means a vector within the domain of the pre-trained GAN. Using real images that are clearly out of domain produces low-quality results, both in terms of reconstruction and editability. This is because the trade-off between these two objectives is too strong, and our method struggles to find a suitable compromise. See the top row of Fig. 3.13 for an example. Our method also fails when faced with rare or challenging semantics. The MAGEC loss is not sufficient to push the z in the ideal direction, and some semantic concepts become lost. As we see in the bottom row of Fig. 3.13, the keffiyeh becomes semantically represented as hair.

Conclusion

We propose a novel GAN-inversion optimization strategy which allows supervision on two levels: the image space and the latent space. In this way, we are able to integrate editability directly in the loss term, resulting in more editable latent vectors when applying editing methods. In particular, editing methods not used to supervise the loss perform better than baseline methods, suggesting that performing optimization in this way discovers a more "in-domain" latent vector. We evaluate qualitatively and quantitatively, and notably introduce a novel edit consistency score which specifically evaluates the performance of a projection method in terms of editability. Our method takes a step forward in performing realistic and high-quality edits on real images.

In concurrent work on optimization-based methods, BDInvert (K. [START_REF] Kang | Gan inversion for out-of-range images with geometric transformations[END_REF] proposed an inversion method specifically to address the poor inversion for out-of-domain translated or rotated images, by extending the optimization space Figure 3.13. -Problematic images for our method. In the first row, an atypical face produces a low-quality reconstruction since the image space loss and the latent space loss oppose each other: the input image is too out-of-domain. In the second row, our method struggles to represent a challenging semantic concept (the keffiyeh). The projection represents the keffiyeh as hair, evidenced by the subsequent edits (straight hair, old age).

to include a feature map in the convolutional GAN, which is invariant to rotation and translation. Finally, later work [START_REF] Feng | Near perfect gan inversion[END_REF]) achieve state-of-the-art optimization-based inversion results, both in terms of editing and reconstruction. They propose a clever strategy which addresses the limitations posed in section 3.7 by first finding the closest latent z possible through an encoder-based method or optimization-based method, and then optimizing the parameters of the GAN itself to actually change and adapt its manifold to include out-of-domain images within its manifold. Because only small tweaking is required to adapt the pre-trained GAN's manifold, existing editing methods still work out-of-the-box.

Nevertheless, GAN inversion methods are still limited to images from restricted domains of a pre-trained GAN, largely limiting their use-case to practical settings. In the next chapter, we thus try to circumvent inversion completely and examine image editing through the lense of optimizing a VQ-GAN [START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF] encoded vector before decoding the edited embedding.

T E X T-G U I D E D I M A G E E D I T I N G

Introduction

Thus far, we have examined one way of performing semantic-image editing: generalizing latent manipulation methods of Generative Adversarial Network (GAN)s to real images. For this, we saw in the previous chapter that the real image must first be inverted into the latent space of a GAN, a task that is not trivial and will poorly respond to images out of the GAN's distribution. Moreover, we saw that in general, GANs are highly powerful in generating images of a restricted domain, they are much less efficient in generating high-quality and diverse images of a more diverse domain. However, we strive to perform image editing on any possible image.

In this chapter, we thus investigate the use of a recently proposed autoencoder, VQ-GAN [START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF], to bypass this issue and encode any image into a latent "code" directly. Specifically, we propose a unified framework which modifies an input image based on a user-defined text query of the form (S → T ), like cat → dog. For this semantic image translation task, the goal is to make minimal image modifications while transforming the image as requested. We leverage Contrastive Language-Image Pre-training (CLIP) [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF], which combines text and image representations in one powerful multimodal embedding space. This space is used to define our target point, based on the embeddings from the user input. We perform a per-image optimization procedure, using specific strategies to ensure image quality and relevance to the transformation query. Our method requires only fixed pre-trained components, and can thus be used off-the-shelf without requiring any training.

We also propose a quantitative evaluation protocol for the task of semantic image translation. Evaluation is based on three criteria: (i) the transformed image should correctly correspond to the text query, (ii) the output image should look natural, and (iii) visual elements irrelevant to the text query should remain unchanged. We thoroughly evaluate our model on ImageNet, and demonstrate 57 quantitatively and qualitatively the superiority of our method against baselines, broadening the horizon of text-driven image editing.

In this chapter, after quickly reviewing some related work, we discuss our framework for text-guided image editing by leveraging CLIP and VQ-GAN. Next, we will discuss our evaluation protocol and compare our method to existing baselines, showing our superior performance. We further discus our implementation, hyperparameter choices and perform an ablation study which show the rigour of our method. Finally, we discuss some limitations of our method and conclude. Our work has led to the following publication:

• Guillaume Couairon, Asya [START_REF] Couairon | FlexIT: Towards Flexible Semantic Image Translation[END_REF]. "FlexIT: Towards Flexible Semantic Image Translation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Related Work

Image latent space While GANs are highly effective as generative models, inference of the latent variable given an image is not trivial, as we have seen in Chapter 3. While joint learning of an inference network has been proposed, (Donahue et [START_REF] Van Den Oord | Neural Discrete Representation Learning[END_REF], which discretize the latent space, have been found to offer good reconstructions. The prior distribution is a categorical distribution and kept constant and uniform during sampling. The prior is not trained jointly with with VQ-VAE, and thus, unlike classical Variational Autoencoder (VAE)s (see 2.2.1), has no generative capacities until it is made autoregressive (which is done in a next step). VQ-GAN [START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF][START_REF] Chen | Wavegrad: Estimating gradients for waveform generation[END_REF]) further improves reconstructions by including an adversarial loss term to train the autoencoder. In our work, we adopt the VQ-GAN autoencoder, and edit images in its latent space.

CLIP and Text-Guided image editing

To align images and text, CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]) learns encoders that map both modalities to a shared latent space in which they can easily be compared and combined. Vision encoders are based on ResNets [START_REF] He | Deep residual learning for image recognition[END_REF]) and Vision Transformer (ViT)s [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF].

CLIP, trained on 400M web-crawled image/text pairs with a simple contrastive InfoNCE loss [START_REF] Oord | Representation Learning with Contrastive Predictive Coding[END_REF], can provide a robust differentiable signal for image synthesis and editing, used in conjunction with diffusion models (G. [START_REF] Kim | DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models[END_REF], and generators based on Bézier curve strokes [START_REF] Frans | CLIPDraw: exploring textto-drawing synthesis through language-image encoders[END_REF]. CLIP was also successfully used in conjunction with VQ-GAN to generate novel art images [START_REF] Crowson | VQGAN+CLIP[END_REF] or perform semantic style transfer (Crowson 2021a). Similarly to us, StyleCLIP [START_REF] Patashnik | StyleCLIP: Text-driven manipulation of StyleGAN imagery[END_REF]) transforms images based on text queries via alignment in CLIP's latent space. However it relies on the latent space of StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]) to optimize the image, which requires training a separate generative and latent space inference model per application domain, as we have seen in the previous chapter.

As previously discussed in 2.3, image editing can be guided by many conditions e.g. another image, a segmentation map, a class label. Allowing the user to provide unstructured free-form text queries is more challenging. Close to our objective, ManiGAN (B. Li et al. 2020) aims at performing text-based edits by training an editing model to refine the details of an image based on its textual description. Their model inputs a text prompt S and an input image I and modifies I according to S. However, their model is trained on aligned (image, text) pairs and rely on regularization terms to avoid generating the same image as the input image. Their GAN-based approach relies on progressive growing as well as attention and modulation when fusing image and text embeddings, which are learned through jointly trained text and image encoders. They train and evaluate on COCO (T.-Y. [START_REF] Lin | Microsoft COCO: Common Objects in Context[END_REF]) and CUB datasets [START_REF] Welinder | Caltech UCSD Birds 200[END_REF].

FlexIT framework for semantic editing

An overview of our image transformation approach is depicted in Figure 4.1. It relies on three pre-trained components. First, we edit the input image in a latent space, with the requirement that a wide range of images can be encoded and decoded back to an RGB image with minimal distortion. We chose the VQ-GAN autoencoder [START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF] for that purpose. Second, we embed the text query and input image in a multimodal embedding space, to define the optimization target for the modified image. We use the CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]) multimodal embedding spaces. Finally, to ensure that the modified image remains similar to the input, we control its distance to the input image with the LPIPS perceptual distance (R. [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF]) computed with a VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] backbone.

Optimization scheme

The core idea of the FlexIT method is to edit the input image in a latent space, guided by a high-level semantic objective defined in the We choose to use a multimodal embedding space since it allows text and image modalities to be combined together in a meaningful way: semantic transformations defined by textual embeddings can be applied to images with linear operations [START_REF] Jia | Scaling up visual and vision-language representation learning with noisy text supervision[END_REF]. In this context, our target point P can be seen as an image embedding that has been semantically modified with textual embeddings, by removing the source class information (-λ S C t (S)) and adding the target class information (+C t (T )). Since we don't know what is the optimal linear combination of image and text embeddings, we consider λ I and λ S as parameters which will be validated on our development set.

To find an output image which, when encoded in the multimodal embedding space, gets as close as possible to the target point, we optimize the embedding loss:

L emb (z) = ∥C i (D(z)) -P ∥ 2 2 . (4.2)
We add two regularization terms to the embedding loss, to encourage that only the content related to the transformation query is changed. Without regularization, the optimization scheme can alter any part of the image if this helps in getting closer to the multimodal target point, which we have found to yield unnatural artifacts. The distance to the input image I 0 is controlled with a LPIPS distance:

L perc (z) = d LPIPS (D(z), I 0 ). (4.3)
To enforce staying in parts of the latent space that are well decoded by our image decoder, we use a regularization term with respect to the initial latent code z 0 . We use a ℓ 2 norm at each spatial position i of the latent code, and sum these norms across spatial positions to obtain the loss:

L latent (z) = i ∥z i -z i 0 ∥ 2 . (4.4)
This loss encourages sparse z i changes, i.e. limiting changes in spatial locations, which is aligned with our objective to transform a localized part of the input image.

Finally, note that λ I in Eq. ( 4.1) also acts as a regularization parameter, by encouraging the input and output image to be close in the multi-modal embedding space.

The total loss we optimize can be written as:

L total (z) = L emb (z) + λ p L perc (z) + λ z L latent (z).
(4.5)

After initialization, the latent image variable z is updated via gradient descent with a fixed learning rate µ for a fixed number of steps N , while keeping all network weights frozen. Following the implementation of the Fast Gradient Method [START_REF] Dong | Boosting adversarial attacks with momentum[END_REF], we normalize the gradient before the update.

Image optimization space

The distance to the multi-modal target point is a differentiable loss that can be optimized via gradient descent. A straightforward approach consists in performing gradient descent directly in the pixel-space. However, this type of image representation lacks a prior on low-level image statistics. By optimizing over a latent variable instead, the image is obtained as the output of a neural-network based decoder. Choosing an autoencoder, like that of VQ-GAN, lets us (i) make use of the decoder's low-level priors, which guides the optimization problem towards images that exhibit at least low-level consistency; and (ii) encode and decode images in its latent space with little distortion. The spatial dimensions in the VQ-GAN latent space allows to edit specific parts of the image independently, contrary to GANs which typically rely on more global latent variables. Although GANs generate realistic images with stronger priors, it is problematic to optimize their latent space for two reasons: first, GANs work well on narrow distributions (such as human faces), but do not work as well when trained on a much wider distribution; second, even with a GAN trained on a wide distribution such as that of ImageNet, it is hard to faithfully reconstruct an image using its latent space.

Data

We report on experiments with optimization over raw pixels and GAN latent spaces in Section 4.7.

Experimental Setup

Implementation details

In FlexIT, we run the optimization loop for N = 160 steps, which we found enough to transform most images. We use a resolution of 288 for encoding images with VQ-GAN, which compresses the images in a latent space with dimensions (256,18,18).

We take advantage of various pre-trained CLIP models, and combine their embeddings with concatenation, as shown in Figure 4.2.

For the CLIP-based multimodal encoders, we have considered all CLIP networks freely available, listed in By default, we use three image embedding networks with two different ResNets and one ViT architectures, which implement complementary inductive biases.

To encode an image with a single CLIP network, we average the embeddings of multiple augmentations of the input image. For data augmentations, we use a random horizontal flipping and a random rotation between -10 and 10 degrees, followed by cropping the image (keeping at least 80% of the input image) with aspect ratio between 0.9 and 1.1.

For the regularization coefficients, we use λ z = 0.05, λ p = 0.15, λ S = 0.4, λ I = 0.2 as our default values. These coefficients are set using our ImageNet-based development set, and are fixed for all experiments.

These implementation choices are analysed in Section 4.7.4.

Evaluation dataset

We did not find a satisfying evaluation framework to study the problem of semantic image translation: existing dataset and metrics focus on narrow image domains, or random text transformation queries (B. Li et al. 2020;[START_REF] Patashnik | StyleCLIP: Text-driven manipulation of StyleGAN imagery[END_REF].

To overcome this, we have decided to build upon the ImageNet dataset (J. [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] for its diversity and its high number of classes: by defining which class labels can be changed into one another (like cat → tiger), we can build a set of sensible object-centric transformation queries.

We have selected a subset of the 273 ImageNet labels that we manually split into 47 clusters according to their semantic similarity as given by the WordNet hierarchy of classes. For instance, there is a cluster containing all kinds of vegetables. The resulting clusters are shown in Table 4.2. We have not included all ImageNet classes because (i) we wanted to reduce the large number of dog breed classes, and (ii) a lot of classes were "standalone classes" with no natural target for transformation among the other classes.

We only consider transformations S → T where S and T are in the same cluster, in order to avoid nonsensical transformations between unrelated objects, e.g. laptop → butterfly.

For each target label T we construct eight transformation queries by randomly sampling eight other classes {S i } within the same cluster, and sample a random image from each S i from the ImageNet validation set. This gives a total of 2,184 transformation queries that we split into a development set and a test set of equal size. We use the development set to tune various hyper-parameters of our approach, and report evaluation metrics on the test set.

For results, we report quantitative and qualitative results for images from the ImageNet test set. We also show qualitative results from the Stanford Cars dataset (Krause et al. 2013b). Finally, we also show that our method can used on any image in-the-wild, with the image of a sow's ear on Figure 4.3.

Metrics

We evaluate the success of the transformation by means of the Accuracy of an image classifier, which is possible since we use ImageNet class labels as the transformation targets. We use a DeiT [START_REF] Touvron | Training data-efficient image transformers and distillation through attention[END_REF] classifier, which has an ImageNet validation accuracy of 85.2%. We judge a transformation successful if, for the transformed image, class T has the highest probability among the 273 selected classes. The classifier takes images of size 384×384. Smaller images are upsampled before being passed to the classifier.

To assess naturalness of transformed images, we use the Frechet Inception Distance (FID) (Heusel et al. 2017b). In particular, because we use a small number of samples, we use the (Simplified FID (SFID)). In addition to the SFID, we use a class-conditional SFID score (CSFID) which is an average of the SFID scores computed for each target class separately. Please refer to 2.4.1 for a detailed description these metrics. Because we compute these scores with a low number of examples for many classes, the class-conditional SFID (CSFID) score has a high bias, low variance profile on our dataset [START_REF] Chong | Effectively unbiased fid and inception score and where to find them[END_REF]), and we have found it to be reliable and stable. We have noticed that the distance on standard deviations was not very discriminative: since we are modifying images and not generating images from scratch, we already have a lot of diversity in the generated images. Experimentally, using α > 0 of Equation 2.14 mostly consisted in adding a bias term in this metric, therefore we chose to use α = 0 in the (C)SFID scores.

Since the images we transform are extracted from the ImageNet validation set, we use the ImageNet training set as our reference distribution to compute the (C)SFID scores. The (C)SFID scores are computed at an image resolution of 256. The CSFID metric is a measure of both image quality and transformation accuracy, as it measures the feature distribution distance between the transformed images and the reference images from the target class in the training set. Editing should not change parts of the image that are irrelevant to the transformation defined in the text, e.g. the background. We use the LPIPS perceptual distance (R. [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] to measure deviation from the input image (see 2.4.1). As recommended by the authors, we use the AlexNet A. Krizhevsky et al. 2012 backbone to compute Learned Perceptual Image Patch Similarity (LPIPS) distance, when we use it as an evaluation metric. During training, so as to reduce bias in the LPIPS evaluation, we used the LPIPS distance based on VGG features.

The LPIPS distance is computed at an image resolution of 256, for both evaluation and optimization. All LPIPS scores which we will present have been multiplied by 100 for readability.

The LPIPS distance cannot distinguish edits which are relevant to the text query from those which are not; and we don't know the minimal LPIPS distance between an image and its closest successful transformation. Still, we argue that it should be as low as possible.

Baselines

We consider two extreme configurations as baselines, which only optimize one of these two criteria: (i) The Copy baseline, which simply copies the input image without any modification, and (ii) the Retrieve baseline that outputs a random validation image labelled with the target class T . We add the E n c o d e baseline that simply passes the input image through the VQ-GAN autoencoder. We also evaluate StyleCLIP [START_REF] Patashnik | StyleCLIP: Text-driven manipulation of StyleGAN imagery[END_REF], the most relevant text-driven image transformation algorithm from the literature. We consider the version most similar to our method that embeds images with an ImageNet-trained StyleGAN2 (see source in next section). We train our own e4e encoder (Tov et al. 2021b) to embed images into this latent space. StyleCLIP iteratively updates the StyleGAN2 latent representation to maximize the similarity with a given text in the CLIP latent space. Finally, we evaluate ManiGAN (B. Li et al. 2020), which we have trained on ImageNet with the implementation from the authors.

Assets

We provide a list of the assets used in our work (datasets, code, and models) in the Appendix in A.2.

Qualitative Results

Qualitative results of FlexIT transformations on ImageNet images are presented in Figures 4. 

Quantitative Results

Semantic image translation is inherently a trade-off between having the most relevant and natural output image (as measured by Accuracy, CSFID and SFID), while staying as close as possible to the input image (as measured by LPIPS).

Results are reported in Table 4.3. As expected, the copy baseline is ideal on LPIPS and SFID, but fails to adapt to the transformation target T , and thus fails on Accuracy and CSFID. For the same reason, the auto-encoding baseline also fails on Accuracy and CSFID, but demonstrates the non-trivial impact of using the VQ-GAN latent space on LPIPS and SFID. The R e t r i e v e baseline provides ideal metrics for Accuracy, CSFID and SFID, as it returns natural images of the target class. It fails on LPIPS, however, since the output image is unrelated to the input. Our FlexIT approach combines a low LPIPS (24.7 vs 17.5 for Encode) with an accuracy of 51.3% and a CSFID of 57.9, which is closer to the CSFID of R e t r i e v e (27.2) than that of Encode (107.5). The StyleCLIP scores are poor, with high SFID and CSFID scores which was expected as StyleCLIP has been designed to work well where GANs shine. The StyleGAN2 model we use, trained on ImageNet, is agnostic to class information and cannot synthesize realistic images for all Ima-geNet classes. ManiGAN works well when trained on narrow domains with color change transformation requests, but we find that it does not produce convincing edits when trained on ImageNet.

LPIPS ↓ Acc.%↑ CSFID

We argue that our evaluation protocol is well-suited for evaluating text-driven image editing because it (1): offers a list of sensible transformation queries and (2) offers a method for evaluating the quality and accuracy of the generated result. However, to further compare to ManiGAN (B. Li et al. 2020), we propose to compare our method while following their evaluation protocol used in their paper. This consists in using the COCO dataset and (1) choosing random COCO captions/image pairs and thus leading to noisy transformations and (2) calculating the image-text similarity score which was used as a loss term during their training, leading to bias in the final scores. We show the evaluation in Tab. 4.4. Here, SIM is the similarity between the output image and text prompt using their trained-encoders. DIFF corresponds to the L 1 pixel difference between the input and output image. Finally, MP is their manipulative precision metric which aims at having a high similarity between the output image and text prompt while preserving a small difference between the input and output images. Even with this evaluation, FlexIT improves upon the scores of ManiGAN by a large margin. Li et al. 2020) To provide insight into which transformations work well, and which less so, we group our 47 ImageNet clusters into 13 bigger groups and report the average CSFID and failure rate (1-accuracy) scores for each group in Figure 4.6. Generally, transformations among natural objects are more successful than transformations among man-made objects. We believe that this is mostly because the latter appear in a wider variety of shapes and contexts which leads to more difficult transformations. 

IS ↑ SIM ↑ DIFF ↓ MP ↑ ManiGAN (B.

Ablation studies

Regularizers

In Figure 4.7, we show the evolution of CSFID along the optimization steps, where we consider our method without regularization, with each regularization scheme separately, and with all regularizers (default configuration). Compared to not using regularization, the LPIPS regularization substantially improves the CSFID score along the optimization path, while also reducing LPIPS as expected.

The CLIP regularizer has a similar effect, but is able to reduce CSFID further while the LPIPS distance is only slightly reduced compared to our method without any regularization. These two regularizers are complementary: while the LPIPS loss mitigates image deviation for local features, the CLIP loss provides semantic guidance which helps to reconstruct recognizable objects. Using all regularizers allows us to obtain the lowest CSFID scores at low LPIPS. Corresponding qualitative examples are shown in Figure 4.8. We show that 160 optimization steps is a good value for LPIPS and CSFID scores. Figure 4.9 shows a qualitative example of the effect of optimization steps on the result. While many edits only require 32 steps to be completed, some edits benefit from longer optimization schemes.

Input Image

No regularization -Intermediate transformation results obtained with FlexIT. Note that most edits only require 32 steps to be completed; some edits benefit from longer optimization schemes, such as the spider and the banjo.

Only LPIPS regularization Main Method

In We study how different choices of CLIP image encoders impact the CSFID score. Our default configuration involves two ResNet-based networks and one ViT-based network to embed the image in the CLIP space. We experiment with a single ViT or ResNet, a combination of ViT with a single ResNet, and also using all available pre-trained CLIP networks, which comprises a ViT-B/16, a ViT-B/32, a ResNet50, ResNet50×4 and ResNet50×16, see [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] for details on the modules. For each CLIP network configuration, we experiment with either not using data augmentation, or using d ∈ {1, 8, 32} augmentations, as described in 4.4.1. Each of the N nets CLIP networks sees a different augmentation in each of the N steps optimization steps, resulting in a total of d × N nets × N steps augmentations of the input image.

From the results in Figure 4.10, we see that while the ViT and ResNet embedding networks lead to similar results, they are complementary and combining them leads to a substantial improvement. Adding additional networks leads to further improvements. Second, using data augmentation is very beneficial, and leads to a reduction in CSFID of 10 or more points for all network configurations. Using more than one augmentation does not improve results substantially: it suffices to use a different augmentation for each network at each optimization step.

In our other experiments we use the three smallest (and fastest) CLIP networks as our default setting.

In Table 4.6, we show ablations for combining multiple CLIP networks and using multiple data augmentations in the multimodal encoder. This table also reports the runtime needed for each algorithm, which plays a role in our choices. 

Image optimization space

We compare our choice of optimizing in the VQ-GAN latent space with using the latent spaces of StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]) and IC-GAN [START_REF] Casanova | Instance-Conditioned GAN[END_REF], as well as optimizing directly in the pixel space.

IC-GAN generates images similar to an input image, and uses a latent variable to allow for variability in its output. IC-GAN is naturally conditioned on the SwaV embedding [START_REF] Caron | Unsupervised Learning of Visual Features by Contrasting Cluster Assignments[END_REF] of the input image but does not offer direct inference of the latents for a given image. We thus take 1,000 samples from the latent prior, and keep the one yielding minimal LPIPS distance to the input image. We found that optimization to further reduce the LPIPS w.r.t. the input image from this point on was not effective.

For StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF], we use the same network pre-trained on Im-ageNet as we used for StyleCLIP. To embed the evaluation images into this latent space, we first obtain an initial prediction of the vector with the e4e encoder (Tov et al. 2021b), as in StyleCLIP, and then perform an additional 1,000 optimization steps to better fit the input image, following the GAN inversion procedure described in Karras et al. 2019. Figure 4.11 shows that using the VQ-GAN latent space allows to substantially decrease the CSFID score along the iterations, while only slightly increasing LPIPS. Using the raw pixel space is not effective to decrease the CSFID. IC-GAN has relatively good image synthesis abilities but it is hard to faithfully encode images in its latent space, yielding high LPIPS scores above 50. The StyleGAN2 latent space (W+) is bigger, allowing generated images to be closer to the input images; however its CSFID scores are not competitive with the other approaches. Figures 4.12 visually illustrates these different behaviors. -Transformation examples with various backbones for the image latent space. For each latent space, we show the initial image decoded from the initial point z 0 , and the resulting image after 160 optimization steps. At 0 steps, the three latent spaces differ substantially. The IC-GAN latent space produces natural images that are far from the input image due to the limited generator capacity and the smaller latent space size (2560 dim.). StyleGAN2 images preserve the input image appearance with its larger size of its latent space W+ (8192), but they contain unnatural artifacts (Tov et al. 2021b). Our choice of VQ-GAN leads to good reconstruction results. After 160 steps of optimization, StyleGAN2 is unable to achieve natural edits while IC-GAN is far away from the input images. The pixel-space method introduces high-frequency artifacts, without substantially modifying semantic image content, resembling adversarial examples. VQ-GAN, which we use in FlexIT, achieves aesthetic edits while preserving the overall image appearance. In Figure 4.13, we illustrate the effect of our hyper-parameters on the LPIPS, CSFID, and Accuracy metrics. For the three regularization parameters λ p , λ z , λ I , we observe that (i) the LPIPS distance with respect to the input image is smaller as the regularization gets stronger, as expected; (ii) less regularization allows more image modifications, yielding better accuracy scores, as illustrated in the bottom panel; (iii) there is a global minimum in CSFID scores when we vary each hyper-parameter independently (top panel). Regularization constraints are indeed useful to prevent inserting unnatural visual artifacts; however, too much regularization penalizes our algorithm as the distribution of output images gets closer to the input distribution, and thereby farther from the target distribution.

The parameter λ S , similarly to the regularization parameters, has an optimal value which minimizes the CSFID. It is beneficial to give a hint to the optimization algorithm which semantic content should be changed, however focusing too much this objective reduces image realism.

For our main experiments, we set our hyper-parameters to minimize the CSFID score on the development set. This is a natural choice given the convex shape of the CSFID scores, whereas optimizing for accuracy would remove the regularizers which is detrimental for image quality.

Limitations

While our method often offers compelling results, it can also fail in many cases, as shown in Figure 4.14. While our choice of hyperparameters work well globally, specific images may respond poorly to the regularization parameters, as shown in the first three columns of Figure 4.14. Our method is limited to the capacities of the multimodal embedding space CLIP, which, although more semantic than the the pixel space, can still be prone to overfitting despite our regularizers, as shown in Figure 4.14 (e) and Figure 4.4 (last two columns). Moreover, because FlexIT depends on CLIP, it could also inherit its biases, such as misclassifying human faces into non-human or crime-related categories, and producing gender biased associations. Our editing method could reflect such biases if prompted transformations such as doctor → newscaster.

Our method works best for semantic translation when the input image provides guidance, but has difficulties synthesizing realistic novel objects from scratch. Other transformations of interest could consider changing the action of a subject (person walking vs running), changing object attributes, adding or deleting objects, or consider more elaborate textual descriptions which require non-trivial grounding in the image ("change the color of car parked next to the bicycle."). Importantly, progress in this direction will require to identify the right data and evaluation metrics. 

Conclusion

We propose FlexIT, a novel method for semantic image translation. We also propose an evaluation protocol for semantic image translation, based on ImageNet, which we use to thoroughly evaluate our approach and its components. We have shown that with well-studied regularizers, we can give editing capabilities to a non-generative model (the autoencoder of VQ-GAN). This allows us to circumvent the problems inherent to GAN inversion, as seen in Chapter 3. By relying on an autoencoder latent space, rather than specialized GAN latent spaces, it can operate on a wide range of images. Using a general pre-trained multi-modal embedding space provides flexibility, giving FlexIT the ability to process free-text transformation queries without training.

However, because our image generator (the decoder of VQ-GAN) is not a generative model, realistic edits are not guaranteed. Later and concurrent works to this paper focus greatly on Diffusion Models. In early works on editing with Denoising Diffusion Probabilistic Model (DDPM)s, [START_REF] Meng | SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations[END_REF], for example, show that by modifying an image with strokes and then simply noising and denoising it (with the DDPM), we can leverage the generative capacities of the DDPM and turn the stroke into a realistic edit. This easy inversion scheme, combined with using an actual generative prior, makes Diffusion Models a perfect candidate for our work, not prone to the weaknesses of neither Chapter 3 nor this chapter. In the next chapter, we will explore these models for the general task of image inpainting. 

Introduction

In the previous chapters, we tried two approaches to perform image editing to real images. In Chapter 3, we inverted a real image into a powerful pre-trained Generative Adversarial Network (GAN) and thereafter applied known editing methods. However, although GAN inversion can produce high-quality edits for indomain images, fidelity to the real-image is time consuming and not guaranteed. In Chapter 4, we autoencoded a real image into a compact latent space and edited the resulting latent through the use of a pretrained Contrastive Language-Image Pre-training (CLIP) model and well-picked regularization terms. Although inversion in this case is instantaneous, the editing relies on regularization terms rather than a generative prior, which may create poor edits.

In this chapter, we leverage another family of generative models, Denoising Diffusion Probabilistic Model (DDPM), which can easily "invert" a real image into a DDPM by simply noising it. Concretely, we aim to leverage a powerful DDPM for the general task of inpainting. Inpainting consists in generating a missing part of a given image, given a binary mask indicating where the generation should take place. It is a fundamental task in computer vision, having obvious implications for image editing, image restoration, object removal, and so on. We argue that if we have a robust unconditional inpainting method, then the extension to a more controlled generation (like stroke-guided editing [START_REF] Meng | SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations[END_REF]) or text-guided editing (A. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF]) is also improved. The straightforward extension to real images, the strong generative power, and the iterative manipulation of spatial noise maps (which makes it easy to manipulate them with binary masks) of modern DDPMs are our motivation to use pre-trained DDPMs for this task.

There has been limited work in using pre-trained diffusion models for this task, and the typical approach [START_REF] Lugmayr | Repaint: Inpainting using denoising diffusion probabilistic models[END_REF][START_REF] Meng | SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations[END_REF]A. Nichol et al. 2021) is to guide the generative model by replacing values of the intermediate noise map with noised pixels of the input image outside the inpainting mask, based on the hope that the denoising process inside the inpainting mask will progressively be biased towards image parts that blend naturally with the known surrounding context. However, this strategy often produces unsatisfying results, which we believe is due to the diffusion model being strongly conditioned on the initial noise map [START_REF] Khrulkov | Understanding DDPM Latent Codes Through Optimal Transport[END_REF], therefore having difficulties harmonizing the generation when the initial random latent map is too mismatched with the input image.

In this chapter, we quickly discuss the related work to contextualize our approach. Then, we introduce our strategy for guiding pre-trained diffusion models to better perform inpainting tasks. Our method, dubbed GradPaint, optimizes the diffusion process by better harmonizing generated content inside the inpainting mask. Specifically, we define a "harmonization" loss which depends on the prediction of the DDPM itself. Similar to classifier-guidance (see 2.2.3.2), we use the gradient of this to guide the generation at every single step of the denoising process towards a more harmonized final image. We show extensive evaluation on various datasets, including CelebA-HQ [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF], FFHQ [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], ImageNet(J. [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF]), Places2(B. Zhou et al. 2017), and COCO(T.-Y. [START_REF] Lin | Microsoft COCO: Common Objects in Context[END_REF]. We discuss image diversity and generalization. Finally, we discuss some limitations and conclude.

Our work is currently in submission:

Asya [START_REF] Grechka | GradPaint: Gradient-Guided Inpainting with Diffusion Models[END_REF]. "GradPaint: Gradient-Guided Inpainting with Diffusion Models". In: arXiv preprint

Related Work

Inpainting

In 2.3, we discussed different editing methods. Particularly, inpainting can be seen as a particular case of image-to-image translation in which the input image is a masked image with missing parts and the goal is to "fill in" the missing parts while leaving the rest of the image untouched. Historically, inpainting was aimed at recovering small corruption errors in images and was addressed with matching or "borrowing" local color and texture around the masked region [START_REF] Perez | Poisson Image Editing[END_REF]Z. Xu et al. 2010). Evaluation consisted in calculating a distance metric with respect to the unmasked image. More recently, generative models have become capable of synthesizing realistic and diverse images, allowing the use of much larger masks when inpainting images. Generative models thus have more freedom to "imagine" a wide range of possibilities much different from the reference image, which is satisfactory (and oftentimes desired) so long as the resulting output looks realistic.

In recent years, inpainting has been primarily addressed with training deep encoder-decoder convolutional networks from scratch, often using a GAN(I. Goodfellow et al. 2014) loss to encourage plausibility. Most recent work consists in improving the typical convolutional architecture in the encoder and/or decoder to better leverage structural or textural information from the surrounding regions X. [START_REF] Hong | Deep fusion network for image completion[END_REF][START_REF] Hukkelås | Image inpainting with learnable feature imputation[END_REF]G. Liu et al. 2018;[START_REF] Ma | Regionwise Generative Adversarial Image Inpainting for Large Missing Areas[END_REF][START_REF] Sushko | You only need adversarial supervision for semantic image synthesis[END_REF]J. Yang et al. 2020;T. Yu et al. 2020;H. Zheng et al. 2022;M. Zhu et al. 2021. J. Li et al. 2020 proposes a progressive inpainting scheme which iteratively fills in the mask by using surrounding information in the deep feature space. [START_REF] Liao | Guidance and evaluation: Semantic-aware image inpainting for mixed scenes[END_REF][START_REF] Xiong | Foreground-aware image inpainting[END_REF] propose a framework to locate and leverage semantic information.

In another line of work similar to ours, image completion is effectuated with the help of existing priors not specifically trained for the task. [START_REF] Ulyanov | Deep image prior[END_REF] trains a randomly initialized convolutional network to generate the input image, stopping training before overfitting occurs. K. C. [START_REF] Chan | GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution[END_REF][START_REF] Richardson | Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation[END_REF][START_REF] Zhao | Large Scale Image Completion via Co-Modulated Generative Adversarial Networks[END_REF] utilize powerful pre-trained decoders like StyleGAN2 (Karras et al. 2020) and only train encoders to map the input image into the latent space of the decoder, which can produce more realistic results if the input image fits well to the distribution of the pre-trained decoder.

Diffusion models for downstream tasks

As discussed in 2.2.3, DDPMs have become state of the art in image generation, including large-scale text-to-image generation as well as unconditional generation where GANs have typically excelled. They can also be conditioned on various input data: for the specific task of inpainting, the input image and mask can be given as additional input to train a conditional diffusion model specialized on the inpainting task, as done in Saharia et al. 2022a. However, due to the computational cost of training generative models, it is appealing to find adaptation algorithms for downstream tasks without fine-tuning, especially for the task of inpainting which bears a lot of similarities with the unconditional generation task. A. [START_REF] Nichol | Glide: Towards photorealistic image generation and editing with text-guided diffusion models[END_REF][START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]Y. Song et al. 2021 propose to adapt pre-trained diffusion models to inpainting by injecting a guiding mechanism in the generative process, a strategy which we build upon in this paper. Lugmayr et al. 2022 also proposes to take advantage of pre-trained diffusion models with cycles of denoising and renoising operations, which we found computationally very expensive. Finally, in a parallel line of work most similar to ours, [START_REF] Chung | Improving Diffusion Models for Inverse Problems using Manifold Constraints[END_REF] similarly propose to guide the generation using the gradient of a "manifold constraint", which they apply to various downstream tasks like inpainting, colorization, and sparse view CT reconstruction. While our method has similarities to [START_REF] Chung | Improving Diffusion Models for Inverse Problems using Manifold Constraints[END_REF], we propose a guiding mechanism tailored to inpainting, outperforming their results.

GradPaint Method

Background: Inpainting-Guidance with Diffusion Models

Please refer to 2.2.3.1 for the general framework of DDPMs. In this subsection, we will build off the presented framework to describe the particular down-stream task of inpainting.

As presented in 2.2.3.1, the DDPM sampling equations are as follows:

x0 = 1 √ α t (x t - √ 1 -α t • ϵ θ (x t , t)),
(5.1)

x t-1 = (α t-1 -α t ) √ α t-1 α t-1 (1 -α t ) x0 + (1 -α t-1 ) √ α t (1 -α t ) √ α t-1 x t + σ t z, (5.2) 
This iterative refinement can be "guided" to impose constraints on the generated sample x 0 . In the case of inpainting, the aim is that the generated image exactly matches the input image outside a given inpainting region. The variable x0 , available at each timestep, represents the model's current estimation of what the denoised image will look at the end. For instance, A. Nichol et al. 2021 applies a mask-wise correction on x0 at each timestep: (5.3) where I is the input image and M is a binary image mask equal to 1 in the image regions that must be inpainted, 0 otherwise. The update rule for x t-1 is then adapted to use x′ 0 instead of x0 in Equation 5.2. This correction progressively biases the diffusion model to exactly match I outside the inpainting mask M . In the remaining of the paper, we refer to this method as combine-image since it combines the images x0 and I before interpolating with x t .

x′ 0 = M ⊙ x0 + (1 -M ) ⊙ I,
Alternatively, [START_REF] Lugmayr | Repaint: Inpainting using denoising diffusion probabilistic models[END_REF][START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]Y. Song et al. 2021 propose to directly correct x t-1 by replacing regions outside M with the noised regions of the input image I: (5.4) where ϵ ∼ N (0, I) is resampled at each step. This x ′ t-1 is then used as input for the next denoising step instead of x t-1 . We will refer to this method as combine-noisy since it combines x t-1 inside the mask with ground truth (noised) pixel values outside the mask. -GradPaint method overview. We propose to modify one step of the DDPM denoising process with a gradient descent update on x t to better match the masked input image, in turn producing a better matched noise map x t-1 for the next step. This improvement in the DDPM noise prediction thus allows for better fitting intermediate noise map predictions x t earlier in the DDPM denoising process, which ultimately produces a successful final inpainted image x 0 .

x ′ t-1 = M ⊙ x t-1 + (1 -M ) ⊙ ( √ α t-1 I + 1 -α t-1 ϵ),

GradPaint framework

Our strategy is built upon the combine-image zero-shot inpainting method presented in §5.3.1. Our key observation is that the most aesthetically-pleasing inpainting results are obtained when the collage M ⊙ x0 + (1 -M ) ⊙ I is coherent right from the beginning of the generation process. When this is not the case, there is a mismatch between the model's estimation in the inpainting region and the known regions of input image I. This mismatch is generally present from the beginning and is not fully corrected during the denoising generation process.

To enforce harmonization between the inpainted region and known regions of the input image, we introduce the GradPaint update. An overview of our method is presented in Fig. 5.1. At each denoising step, the variable x t is updated so that (i) x0 matches well known regions of I outside the mask; and (ii) the collage M ⊙ x0 + (1 -M ) ⊙ I does not present any discontinuity due to the copy-paste operation. This update consists in a one-step gradient descent update from two loss terms corresponding to the two objectives aforementioned.

Given a binary mask M ∈ R n×n and ⊙ denoting the element-wise product, we define our losses as follows:

Masked MSE loss. The first loss term is a mean squared error term outside the inpainting mask (1 -M ), taking as reference known regions of the input image:

L mse (I 1 , I 2 , M ) = 1 n 2 ∥I 1 ⊙ (1 -M ) -I 2 ⊙ (1 -M )∥ 2 2 .
(5.5)

Alignment loss. The "alignment loss" al(I, M ) measures the smoothness of image I on the boundaries of the inpainting mask M . It is defined as follows: (5.6) where D x and D y are the normalized image gradients:

al(I, M )= 1 n 2 ∥D x I ⊙ D x (1 -M ) + D y I ⊙ D y (1 -M )∥ 2 2 ,
   DxI DyI    (i,j) =        ∇I (i,j) ||∇I (i,j) ||2 , if ||∇I|| (i,j) > 0 [0 0] T , else
(5.7)

with ∇I = [∂ x I ∂ y I] T is the vector of gradients of I in the x and y directions respectively. When we minimize this loss, we aim to achieve the smoothest transition possible in the image I along the direction where M changes values. Since this loss al(I, M ) is defined for an image with only one color channel, we simply define the total alignment loss L al as the average loss over the three color channels for a regular RGB image.

GradPaint Update Our total loss is defined as: (5.8) with λ al being a hyperparameter controlling the relative strength of the alignment loss compared to the MSE loss.

L = L mse + λ al L al ,
At each step in the denoising process, we compute x t-1 as a function of x t as in the combine-image method. In between each step, we update the variable x t-1 with the normalized gradient of our total loss:

x ′ t-1 = x t-1 -α ∇ xt L(x 0 , x0 , M ) ∥∇ xt L(x 0 , x0 , M )∥ 2 , (5.9)
with α being a fixed learning rate.

Backpropagating through the diffusion model itself until variable x t is a crucial element of our method. Since x t is updated to produce a better estimation x0 when processed by the diffusion model, this property will also transfer to x t-1 which is, at each step, very close to x t .

Visualizations

Harmonization. The effect of the GradPaint update is illustrated in Fig. 5.2, which shows the intermediate DDPM predictions for x0 and x′ 0 at various timesteps. We compare GradPaint with the combine-noisy and combine-image methods presented in §5.3.1, where all three methods share the same DDPM model, parameters and initial noise maps. These baseline approaches require more steps to integrate the information from the input image, at which point it is often "too late" to construct a harmonized image -misalignment between the generation and the input image can no longer be corrected. In contrast, for GradPaint, the optimization step on x t quickly pushes the merged image x′ 0 to harmonizes well with the masked input image x 0 , producing an inpainting result without alignment artifacts.

Gradient visualization.

The two separate components of our loss have different effects on ∇x t , as we can see in Fig. 5.3. While the gradient of the masked MSE loss remains active throughout the denoising process, the gradient of the alignment loss becomes obsolete about halfway-through, thereafter only concentrating in a few local points in x t . The gradient of the alignment loss has a concentrated effect on the borders of the mask, but also affects the entire noise map x t globally, while the masked MSE loss has a much stronger effect in the unmasked region. The alignment loss encourages smoother and more gradual transitions in the final generation, as can be seen with the background in Fig. 5.4.

Evaluation Protocol

Pre-trained models and implementation details

We detail our setup for image-space diffusion models as well as latent-space diffusion models. We provide a detailed list of the assets used in our work (datasets, code, and models) in the Appendix in A.3.

Experiments on image-space diffusion models

We primarily use diffusion models from guided diffusion [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF], which operates on images of size 256 × 256. We use their pre-trained unconditional models (pre-trained on FFHQ, CelebaHQ, and Places2) as well as their class-conditional model trained on ImageNet.

We use a default number of 100 steps for DDPM sampling; the loss is computed with λ al = 400 during the first 45 steps of decoding (and disabled afterwards following our observations shown in 5.3). The gradient is updated with a fixed learning rate of 0.005. 

Extension to latent diffusion models

We also experiment with latent diffusion models [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]. We have observed that the latent spaces that we use have much less structure compared to real images, and that our alignment loss, whose role is to enforce smoothness on real images, cannot fulfill this role in latent spaces. Therefore, for all experiments with latent diffusion models, we only experiment with the masked MSE loss, which naturally extends to latent spaces by considering the encoded input image as reference in our MSE loss.

Latent diffusion models also operate on 256 × 256 images, but images are edited in a latent space with spatial dimensions of 64 × 64. We use pre-trained unconditional latent diffusion models on CelebAHQ and FFHQ. We use the class-conditional latent diffusion model pre-trained on ImageNet. Finally, for textconditional models, we use Stable Diffusion pre-trained on the public LAION-5B dataset [START_REF] Schuhmann | Laion-5b: An open large-scale dataset for training next generation image-text models[END_REF].

We use a default number of 100 steps for DDPM sampling; the loss is computed with λ mse = 1. The gradient is updated with a fixed learning rate of 0.005.
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Datasets

We evaluate our algorithm on five datasets: FFHQ, CelebaHQ, ImageNet, Places2 and COCO.

Given an image, the aim is to perform inpainting inside a random mask generated with the mask generator from Suvorov et al. 2022. We mainly evaluate on the difficult and more realistic thick masks, but also provide results for thin and medium masks, like Suvorov et al. 2022. We create 5000 masked images for all experiments.

For both image-space and latent diffusion models, we evaluate the FFHQ-pretrained model on a subset of CelebAHQ masked images. Inversely, we evaluate the CelebAHQ pre-trained model on a subset of FFHQ masked images. We evaluate the ImageNet pre-trained models on a subset ImageNet validation set and use the class label as conditioning.

For the image-space diffusion model pre-trained on Places2, we use a subset of the Places2 validation set for evaluation.

Finally, for the Stable Diffusion model pre-trained on LAION-5B, we use a subset of the COCO validation set and use the captions as conditioning text information for the diffusion model.

Metrics

For a set of images inpainted with a given method, we compute two core metrics that encapsulate the challenges of inpainting: the LPIPS distance (R. [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] between the inpainted image and the (unmasked) input image which measures the extent to which we correctly recover the masked regions, and the FID score (Heusel et al. 2017b) which measures the realism of output images. The primary requirement is that inpainted images should look as natural as possible, hence having the smallest possible FID score. For LPIPS distances, an inpainting result closer to the reference image is generally better, although realistic images further away from the reference image can also be satisfactory, especially for large masks.

Baselines

We compute the best and worst possible LPIPS and FID scores with two trivial measures: the COPY oracle measure, which simply copies the (unmasked) input image, gives an LPIPS score of 0 and a lower bound on possible FID scores; and the GREYFILL measure, which simply fills the region to be inpainted with uniform grey. We also add a Latent COPY oracle for latent diffusion models which consists in simply auto-encoding the input image. Without gradient-based optimization, our method is equivalent to the combine-image baseline for image inpainting, which we evaluate in our experiments along with its combine-noisy variant. Apart from these three closely related methods, we compare against the following state-of-the-art inpainting methods: LaMa (Suvorov et al. 2022), a GANbased method trained for inpainting; Palette (Saharia et al. 2022a), also trained for inpainting but with diffusion models, RePaint [START_REF] Lugmayr | Repaint: Inpainting using denoising diffusion probabilistic models[END_REF], another training-free inpainting algorithm that is much more computationally expensive, and finally MCG [START_REF] Chung | Improving Diffusion Models for Inverse Problems using Manifold Constraints[END_REF]), a parallel line of work to ours which is similarly training-free but with a different optimization scheme.

Quantitative results

Image-space Diffusion Models

Quantitative results on the FFHQ and CelebA datasets for image-space diffusion models are shown in Tab. 5.1, where GradPaint is compared against available competing methods (FFHQ-pretrained checkpoints are not available for Palette and LAMA) as well as the combine baselines. We present all mask types, although we argue that the setting with thick masks is the most interesting setting for practical applications. For thick masks, the benefit of our gradient update is visible when comparing to combine-image (same as ours without gradient updates): On FFHQ, the FID score is reduced from 7.30 to 5.65, a significant improvement given that the minimum obtainable FID score is 4.29 on 5000 images (COPY oracle measure).

Results on both datasets show similar gains. When comparing with competing methods on FFHQ, GradPaint obtains the state-of-the art FID score, outperforming methods specialized in inpainting (Palette, LAMA) as well as the training-free algorithms Repaint and MCG based on the same diffusion model as ours. LaMa obtains slightly better LPIPS scores but requires an inpainting-specific training (compared to simply using a pre-trained generative model). For thin and medium masks, our method also generally achieves the best FID score and a comparable LPIPS score even with LaMa's fully supervised method. Moreover, LaMa, unlike all other methods, has access at train time to the mask distribution that we use for testing.

We validate different components of our method with the ImageNet (J. [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] dataset and guided diffusion model, summarized in Tab. 5.2. This more difficult dataset was chosen to better analyze our different components as well as validate our method on class-conditioned diffusion models, where generation could be biased by the class. Our full method, and the alignment loss in particular, improves reconstruction and realism of generated images.

Latent Diffusion Models

Results on Latent Diffusion Models are presented in Tab. 5.3. As we can see, the latent space allows for very good image reconstruction (small LPIPS scores), so it is not a real limitation and GradPaint (latent) is still able to outperform competing methods (FID 5.97 on FFHQ thick masks). Overall, we observe large and consistent gains on all three datasets ImageNet, COCO and FFHQ datasets over the reference inpainting methods, for both FID and LPIPS. 5.6 Qualitative results

Image-space Diffusion Models

Figs. 5.5 and 5.6 and show qualitative results using our method for Places2 and ImageNet pre-trained models, respectfully. Note that without the gradientguidance of GradPaint, generations are unable to harmonize well. Images produced by RePaint [START_REF] Lugmayr | Repaint: Inpainting using denoising diffusion probabilistic models[END_REF] often lack global coherence, like the missing spider web in Fig. 5.6. Our method produces globally and locally harmonized images, without the heavy computation cost of [START_REF] Lugmayr | Repaint: Inpainting using denoising diffusion probabilistic models[END_REF] nor the specific supervised training of Suvorov et al. 2022. Note that we selected images where the thick masks masked out key parts of the input image to better appreciate the different results. Fig. 5.7 shows qualitative results on ImageNet-trained guided diffusion model for different components of our method. We note that the baseline combine-image is biased by the class-conditioning of the model without taking into account the context, like for the "red wolf" class. Adding gradient update as well as the alignment loss produces generations harmonized with the surrounding context. -Qualitative results for select images of ImageNet dataset. Baseline combine-image produces images with visible artifacts. Our gradient update using only the masked MSE loss improves the "copy-paste" effect, while the alignment loss produces better aligned transitions.

Figs. 5.8 and 5.9 show additional qualitative examples using thin and medium masks. With these smaller masks, the visual differences are sometimes harder to appreciate, and we recommend zooming when viewing results. We compare our method to the baselines combine-image, combine-noisy, LaMa, and RePaint. Baselines combine-noisy and combine-image clearly have harmonization issues. LaMa tends to have blurry artifacts typical of GANs in the generated areas. RePaint generally produces realistic generations, but which aren't always coherent with other elements of the image. Our method produces high-quality results at a much smaller computational cost than RePaint. where most methods fail to realistically integrate it with the hat. In (d), our method most successfully generates an eye which matches with the input eye. Finally, all methods struggle with the difficult example (e), as it is poorly represented in the training distriubtion. Nevertheless, our method is the sole one which attempts to reconstruct the hand as a separate entity from the face.

Fig. 5.10 shows additional select examples on FFHQ dataset. Notice that LaMa produces results close to the reference image, but generally containing blurry artifacts, explaining the generally higher LPIPS scores but lower FID scores than our method. RePaint's method, despite requiring over 5 minutes of compute time for a generation, produces smooth local changes but often fails to harmonize with the global structure of the image (rows 1, 2, 4, 5). Our method produces highquality and harmonized results, especially visible when the generation requires surrounding context, such as rows 1 and 5 which necessitate generating glasses. The combine-image baseline produces images with obvious "copy-/paste" effects. Even with the 4500 forward passes necessary for RePaint, global image coherence often fails. Our method produces a high-quality and harmonized generation.

Finally, we add an abundant amount of uncurated results to better appreciate our method. Figs. 5.11,5.12,5.13,and 5.14 show uncurated examples from on ImageNet comparing combine-image, RePaint, and GradPaint. GradPaint works particularly well when the task requires fine-grained texture alignment (see rows 1, 5, 12, 31) and tends to work significantly better for global image coherence compared to other methods (see rows 2,4,6,29,36,37). However, GradPaint sometimes fails with difficult tasks with unstandard context (see rows 14, 36). From time to time, we see that GradPaint may slightly add unneeded bias to the inpainting task from the background, e.g. row 41 produced a dog with a pink nose, influenced by the pink background. 

Latent Diffusion Models

Fig. 5.15 shows visual examples of our method using Stable Diffusion on COCO. Our method produces realistic and harmonized results compared to the baseline method.

Finally, Fig. 5.16 shows visual examples of our inpainting method using latent diffusion models on ImageNet. While the baseline method produces low-quality results, our method produces realistic and harmonized results. A method which well-harmonizes an image for the inpainting task will, naturally, produce less diverse images. This can be illustrated in Fig. 5.18. Because the baseline method poorly utilizes the surrounding context, samples are diverse but not realistic. On the other hand, our method leverages the surrounding context which produces a more natural result, implying more consistent generations. To further analyze the diversity of our samples, we used one single input image and generated 500 outputs, comparing our method with the baseline combine-image. We then extracted image features using the inception v3 pretrained model (Szegedy et al. 2016a) and display the average of the variance of these features. Tab. 5.5 shows the results. Our method gives diverse samples as the input mask sizes increases, but limits absurd and unharmonized results.

Inference Time Study

Our method requires approximately 3x the compute time of the gradient-free sampling baselines combine-image and combine-noisy, explained by the added backpropagation of every step of the denoising process. As illustrated in Figure 5.2, our method succeeds because the prediction x0 is aligned and harmonized with mask coverage (% of im.) 10% 25% 50% 75% combine-image 2.3 5.5 10.5 11.9 GradPaint 1.9 4.4 8.7 9.6

Table 5.5. -Variance of image features (in 10 -3 ) for GradPaint compared to the baseline method, for 500 generated results using the same input image and increasing-sized masks. Our method expectedly produces more diverse images as the inpainting mask increases, nearing the diversity of the baseline for large masks. -Performance vs. Time tradeoff, performed on ImageNet. We performed various settings where we early stopped the gradient calculation of GradPaint at 13%, 25%, 38%, 50%, 63%, 75% of the denoising process. The most important gains of GradPaint occurs thanks to the early gradient-guidance, and after 63%, gradient guiding no longer helps performance. A reasonable early-stopping at 50% of the denoising process reduces the initial time of GradPaint by 33%.

the input image early on in the diffusion process. We can improve the time of GradPaint by early-stopping the gradient calculation and letting the rest of the denoising process run as in combine-image. If the harmonization succeeded well-enough early on, then subsequent gradient calculations may not be necessary later in the denoising process, saving valuable compute time. We performed these experiments for various early stopping times of the total denoising process. Fig. 5.19 shows the performance in terms of LPIPS and FID for the various settings. Performing GradPaint after 63% of the denoising process doesn't improve performance, and significantly increases compute time. Stopping the gradient calculation at about 50% of the denoising process achieves the most important gains in performance and allows us to reduce the initial GradPaint time by 33%. This early stopping is referred to as "GradPaint-Fast" below.

Lastly, we compare the inference times of various methods in Table 5.6. Our method is faster than other diffusion-based methods, even those specifically trained for inpainting (Palette), especially when applied to LDMs. We remark that Re-Paint [START_REF] Lugmayr | Repaint: Inpainting using denoising diffusion probabilistic models[END_REF]) takes 313s (over 5 minutes!) per image, making it unfitting for practical use.

Method

Training 

Conclusion

We have presented GradPaint, a training-free algorithm that guides the generative process of diffusion to better perform inpainting operations when given real images. GradPaint improves upon baselines by better harmonizing generated content inside the inpainting mask with known regions of the input image, which is done via gradient descent computed from a dedicated harmonization loss. Extensive qualitative and quantitative experiments demonstrate the superiority of our method, which is able to outperform methods trained specifically for inpainting.

It is important to note that many open-source diffusion models are trained with large amounts of web-scraped data, thus inheriting their biases. Applying our method onto these models could potentially reinforce harmful cultural biases. We believe open-sourcing editing algorithms in a research context contributes to a better understanding of these biases and will aid the community to mitigate them in the future.

In our quest to perform real-image editing, our method GradPaint achieves perfect fidelity to the input image in regions outside of the mask and well-edited images thanks to our harmonization guidance. Our method benefits from an easy inversion scheme of iteratively denoising the input image (which avoids the drawbacks of Chapter 3) and benefits from a powerful generative prior (which avoids the drawbacks of Chapter 4). Our method can generalize well to many types of masks, unlike fully-supervised methods which perform poorly with masks outside of the training distribution. It's important to note, however, that GradPaint's editing scheme is still limited, mainly to object removal or addition. For example, if we wish to change a person's facial expression, changes would be required all across the face (eye expression, mouth shape, modified wrinkles, eyebrows lifted, etc.). Our strategy would thus not assure coherence to the input image with such a large mask. Nontheless, our method exploits the generative power of today's ever-growing generative models to effectively and realistically perform aeasthetic image inpainting.

C h a p t e r

C O N C L U S I O N

In this phD thesis, we approached semantic image-editing through different lenses. In this short conclusion, we briefly recapitulate our contributions and then investigate latest works in the field as well as explore future prospects.

Contributions

We would first like to remind the readers our three objectives when it comes to image editing:

1. Fidelity to the input image 2. High quality output image 3. Fidelity to the edit operation In Chapter 3, we aimed to leverage the strong generative powers of Style-GAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] to perform our editing. Latent space manipulation techniques, as described in 2.3.3, have been shown to produce powerful semantic edits for generated images. Examples include: changing expressions for faces, changing orientations for cars, changing background scenery for places. Naively inverting an image into the latent space of a Generative Adversarial Network (GAN), however, results in poor-quality edits when applying these same images. Our MAGEC strategy in Chapter 3 solved this problem for images within the domain of a pretrained GAN. Our method incorporates editing directly into the loss function when performing GAN inversion, which encourages the produced latent to not only generate the real image, but also remain editable. Finally, we introduced a more adapted metric to evaluate the editability of a GAN-inverted image. However, our method is costly, requiring about 35 seconds per image when working with a StyleGAN2 which generates 1024x1024 images. Finally, it fails on all 3 of the above objectives when the images are outside of the distribution of the pretrained GAN. Because GANs typically only work well for restricted distributions, this approach can be limiting for the complex images of the real world.

In Chapter 4, we decided to circumvent the inversion process altogether by using a vector-quantized variational autoencoders, specifically VQ-GAN [START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF], to represent the image in a compact latent space. Although the autoencoder of VQ-GAN has no generative powers in itself (an autoregressive model must be trained on the latent code to generate images), the compact, quantized and localized latent code makes it a suitable candidate for editing. To optimize the latent code of VQ-GAN, we used a user-given text prompt guided by Contrastive Language-Image Pre-training (CLIP) [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF], which embeds images and text in a common latent space. We showed that with well-studied regularizers, we can perform convincing edits of the input image only through text-instructions. We also made a step-forward in defining a robust and standardized evaluation protocol for the specific task of image editing based on ImageNet (J. [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF]. However, our method is again costly (requires 75 seconds per mediumsized image). Moreover, because our method lacks a strong generative prior and only relies on regularizers to assure meaningful edits, our method is not guaranteed to work, especially on images which present ambiguity for CLIP or images which respond suboptimally to our default parameters. And finally, while our method does produce robust reconstructions of real images, some fidelity to the input image is still compromised due to the nature of the autoencoder. Again, while our method indeed allows flexible editing for any image, these limitations may not satisfy the quality requirements expected by the general public.

Finally, in Chapter 5, we aimed to address the limitations of both methods by using a strong generative prior, a Denoising Diffusion Probabilistic Model (DDPM). We tacked the task of inpainting, where our goal was to realistically fill in a missing part of an image. Because of the nature of DDPM, we are able to achieve a perfect fidelity to the input image while our gradient-guided harmonizing strategy allowed high-quality generation of the output image. Moreover, our approach can be further controlled with text or class information by using a conditional DDPM. Our method produces aesthetic results and is on par with fully train-based methods and even outperforming them on masks outside of their training distribution. However, our method cannot make truly semantic edits to an object (like those we saw in Chapter 3), but is limited to object addition or removal without further control.

Current Context and Future Work

In the past year, generations from the latest large-scale text-to-image generative models have been flabbergasting everyone from everyday content creators to specialized Deep Learning (DL) researchers. While only a few years ago, models were trained on relatively little datasets, today's trends are to train larger models on larger datasets. In the past, GANs became especially popular since they allowed to generate images of unprecedented quality on restricted datasets. DDPMs and autoregressive Transformer models, however, are straightforward to scale-up and have now become the de-fact0 in large-scale image generation.

Recently, works on image editing using these large-scale pre-trained models have emerged. For example, Prompt-to-Prompt [START_REF] Hertz | Prompt-to-prompt image editing with cross attention control[END_REF]) "hijacks" a pre-trained DDPM by manipulating the cross-attention maps (between pixels and text tokens). They generate a first image with a source text, another image with a target text, and then copy/paste values from select cross-attention maps from the first generation into the second generation, thus changing word A into word B in the generated images. In a similar fashion to GradPaint, [START_REF] Couairon | Zero-shot spatial layout conditioning for text-to-image diffusion models[END_REF] guides the generation process of a DDPM by guiding the intermediate noise maps with the gradient of a loss which calculates the similarity of input-given segmentation maps and the cross attention maps within the UNet, allowing the user to draw images with segmentation maps. [START_REF] Brooks | InstructPix2Pix: Learning to Follow Image Editing Instructions[END_REF] creates a dataset from before and after images of Prompt-to-Prompt and trains an Image-to-Image editing network.

It is thus clear that these large-scale DDPMs have high-generative capabilities, and we are only beginning to see what kind of editing possibilities are possible through careful manipulation of the network. The manipulation, however, is seemingly less intuitive and native than the direct latent-space manipulation methods we applied in Chapter 3. For example, while the former requires dissecting internal attention maps, the latter only requires a change to the input of the StyleGAN(2) network. Moreover, they are costly: Prompt-to-Prompt, for example, requires three generations of a DDPM, an operation which takes several seconds to several tens of seconds depending on the model and resolution. While preliminary semantic manipulation methods are promising with DDPMs, they give less realistic results than the early latent manipulation works using StyleGAN(2).

The natural question thus emerges: can GANs, StyleGAN(2) in particular, be scaled up to generate images akin to DDPMs? We have seen in 2.2.2.2 that the inherent training instability of GANs and mode-seeking objective makes them scale poorly to bigger architectures and larger datasets. Very recent works (M. [START_REF] Kang | Scaling up GANs for Text-to-Image Synthesis[END_REF][START_REF] Sauer | StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets[END_REF], however, succeeded in significantly scaling up StyleGAN2 to large datasets. GigaGAN (M. [START_REF] Kang | Scaling up GANs for Text-to-Image Synthesis[END_REF] in particular scaled StyleGAN2 to 1B parameters and successfully trained it on LAION-5B [START_REF] Schuhmann | Laion-5b: An open large-scale dataset for training next generation image-text models[END_REF], outperforming large-scale DDPMs on standard benchmarks for text-to-image generation. Importantly, generation takes about a tenth of a second. Moreover, latent manipulation methods are native to this GAN, allowing highlevel semantic manipulation by just changing the latent vectors (in GigaGAN's case, a second latent vector represents the text prompt). Although works have not yet emerged to extend real-image editing to GigaGAN, it is likely that GAN in-version will be much more successful for this powerful model than the restricted StyleGANs of the past. The out-of-domain images which failed in Chapter 3 are likely easily represented by this large-scale GAN. Moreover, because these new generation of GANs are conditioned by text, a simple token-optimization could successfully work for a given image, allowing additional text-guided editing by re-utilizing and re-contextualizing the optimized token.

It is still unclear whether works will converge toward the GAN approach or continue their current trend in the DDPM approach, but one thing is for sure, we have only seen the beginning of this exciting era for real-image editing.
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Figure 1

 1 Figure 1.1. -Using Stable Diffusion (Rombach et al. 2022) to generate a photo of "a giraffe riding a unicycle on the moon"

Figure 2

 2 Figure 2.1. -Overview of three families of generative models used in this work.

Figure 2

 2 Figure 2.2. -DCGAN architecture. Generator (left) uses upsampling blocks with deconvolutional layers while the discriminator (right) is a mirror image of the generator and uses downsampling blocks composed of convolutional layers.

  Introduced in Miyato et al. 2018, spectral normalization consists in constraining the weights of the discriminator during training. This improves gradient flow during training and helps stability of training.

Figure 2

 2 Figure 2.3. -Progressive Growing of GANs. Figure taken from Karras et al. 2018

Figure 2

 2 Figure 2.4. -StyleGAN architecture. Figure taken from Karras et al. 2019.

Figure 2

 2 Figure 2.5. -Synthesis control from latent space manipulation. Figure taken from Karras et al. 2019

Figure 2

 2 Figure 2.6. -Precision and Recall. (a) shows the real distribution P r and generated distribution P g . (b) Precision: How likely that an image from P g falls within P r ? (c) Recall: How likely that an image from P r falls within P g ? Figure taken from Kynkäänniemi et al. 2019b

  Contrastive Language-Image Pre-training (CLIP) Radford et al. 2021 introduced a text and image encoder trained jointly on 400M web-crawled image/text pairs with a simple contrastive InfoNCE loss

  2019a; J.-Y. Zhu et al. 2016), which used an optimization-based approach initialized with an encoding. Bau et al. 2019b proposed an optimization-based inversion strategy which optimized the parameters of a GAN iteratively layer by layer. Abdal et al. 2019 and later Abdal et al. 2020 proposed an optimization-based method specifically to StyleGAN's style vector. For encoder-based methods, Richardson et al. 2021; J. Zhu et al. 2020 and Tov et al. 2021a recently made important progress towards encoder-based solutions, specifically tailored to the StyleGAN architecture, which considerably improved reconstruction quality compared to previous approaches. Recently, Alaluf et al. 2021 proposed an encoder-based method based on iterative refinement, which consists in iteratively improving the encoder-based code by feeding it through the encoder multiple times. This improved previous solutions and only required 10 forward calls, still much faster than optimization-based methods. Still, their method loses details of the input image compared to optimization-based methods.

Figure 3

 3 Figure 3.1.-Our proposed optimization framework. We initialize our z vector with z 0 . Then, we generate the associated image with the pre-trained generator to obtain the image-level loss. We predict the latent-level descriptor d ′ with our pre-trained LinkNet. We add a consistency loss of these features with the "ground-truth" features d evaluated from our feature-extractor network F . We add another consistency loss over the edited descriptors (using a differentiable editor e) and the "ground-truth" edits which we obtain by modifying d. This MAGEC loss gives us latent-level optimization which promotes editability and an in-domain output vector.

  ID is the ID loss introduced in Richardson et al. 2021; Tov et al. 2021a based on a pre-trained ArcFace (Jiankang Deng et al. 2019) network (or ResNet50 (He et al. 2016a) network trained with MOCOv2 (Xinlei Chen et al. 2020) for non-face images), and L F was the loss used to train the feature extractor F .

Figure 3

 3 Figure 3.2. -Comparison of our method vs Im2StyleGAN++. Left: original images. Top rows: Im2StyleGAN++ projection. Bottom rows: Our projection with MAGEC . Edits are made using GANSpace. While Im2StyleGAN++'s projection is accurate, edits present strong artifacts or absurdities. Our reconstructions are also accurate, but react correctly to editing operations, suggesting that it follows the native distribution of StyleGAN more closely.

  (a) Average latent vector from the pre-trained StyleGAN2 on FFHQ. (b) Average latent vector from the pre-trained StyleGAN2 on LSUN cars.

Figure 3

 3 Figure 3.3. -Average latent vectors from two different pre-trained StyleGANs '

Figure 3

 3 Figure 3.5. -InterfaceGAN (Shen et al. 2020) edits using various inversion methods. Our method gives the intended edits with high-quality results. Best viewed zoomed and in color.

Figure 3

 3 Figure 3.6. -StyleFlow (Abdal et al. 2021) edits using various inversion methods.Remark that here, the edits should be cumulative. Our MAGEC loss helps to produce accurate reconstructions as well as the intended edits with high-quality results.

Figure 3

 3 Figure 3.7.-GANSpace[START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF]) edits using various inversion methods. Image2StyleGAN++'s inversion method produces accurate reconstructions, but distorted and low-quality edits. Using our MAGEC loss greatly helps with reconstruction, but also helps to produce the intended change (notice male / female edits in particular).Best viewed zoomed and in color.

Figure 3 Figure 3

 33 Figure 3.8. -Interpolations (Karras et al. 2019) using various inversions. Take extra notice of the reconstructions, where our MAGEC loss clearly helps. In the first edit, only our edit gives a beard which clearly progressively disappears (rather than increasing then decreasing), suggesting stronger semantic information in the inverted latent. In the last case, notice the gradual background changes in the third set with our method, compared to the harsher change of Im2StyleGAN++'s edit. Best viewed zoomed and in color.

Figure 3 .

 3 Figure 3.10. -Calculating ecs. We perform 2 projections per ecs: 1 from the original image, and one from the edited latent. A better (lower) ecs means that d 3 is smaller than d 1 and d 2

Figure 3 .

 3 Figure 3.11.-Best and worst ecs scores for a given projection method. Here, the editing method is "to male" with GANSpace. Notice how the worst scores correspond to poorer editability, for example, the woman in the second row on the right did not transform into a man.

Figure 4

 4 Figure 4.1.-FlexIT optimization framework: components involving the multimodal latent space colored in green; those involving the image latent space in yellow; those involving the LPIPS distance in pink. Given a transformation query (I 0 , S, T ), we first compute a target point P in the multimodal embedding space, and we encode I 0 in the image latent space to get z 0 . Then, for a fixed number of steps, we update the latent variable z (initialized with z 0 ) to get closer to the target point P . We add two regularization terms: the LPIPS perceptual distance between the input image and the output image, and a latent distance between z and z 0 . All networks are frozen, only z is updated.

Figure 4

 4 Figure 4.2. -Architecture of our robust CLIP-based image encoder, which combines three different encoders by concatenation.

  3

  and 4.4.

  Figure 4.4 shows successful transformations as well as several failure cases. To demonstrate the generality of our approach, we also show examples of color transformations for images from the Stanford Cars dataset (Krause et al. 2013b) in Figure 4.5.

Figure 4 Figure 4 Figure 4

 444 Figure 4.3. -FlexIT transformation examples. From top to bottom: input image, transformed image, and text query.

Figure 4

 4 Figure 4.6. -Groupwise CSFID and Failure Rate (1-Accuracy), lower is better for both metrics. Dark colors: best possible values obtained with R et r i e v e baseline; medium colors: scores obtained with FlexIT; light colors: values obtained with C opy baseline.

Figure 4

 4 Figure 4.7. -CSFID obtained without regularization, with individual LPIPS, Latentand CLIP regularizers, and using all. Each dot corresponds to different amount of optimization steps on the dev. set.

Figure 4

 4 Figure 4.8. -Example transformations with different regularizers. Textual queries from top to bottom: Rottweiler → German shepherd, Electric guitar → Banjo, Red wolf → Grey fox.

Figure 4 .

 4 Figure 4.10. -CSFID for different CLIP networks combinations and number of data augmentations options. Default setting: ViT+2RN.

Figure 4

 4 Figure 4.11. -CSFID and LPIPS scores across iterations, using different latent spaces, or raw pixels, for optimization.

Figure 4

 4 Figure 4.13. -Effect on CSFID and Accuracy of hyper-parameters; default settings represented by the black dot, where all lines cross.

Figure 4

 4 Figure 4.14. -Representative failure cases of FlexIT. Columns (a)-(c) illustrate a too strong regularization with respect to the initial image. (d): the bell pepper was transformed instead of the cucumber, probably because the former is more centered, and has a better initial shape. Columns (e)-(g) show failure cases related to the CLIP embedding space. (e): "sax" have been written in the image. (f): a butterfly is synthesized on the head of the dog (CLIP optimized for both the dog breed papillon and the insect papillon). (g): saturated red was added to the image instead of the fox breed.

Figure 5

 5 Figure 5.1.-GradPaint method overview. We propose to modify one step of the DDPM denoising process with a gradient descent update on x t to better match the masked input image, in turn producing a better matched noise map x t-1 for the next step. This improvement in the DDPM noise prediction thus allows for better fitting intermediate noise map predictions x t earlier in the DDPM denoising process, which ultimately produces a successful final inpainted image x 0 .

Figure 5 Figure 5

 55 Figure 5.2. -DDPM predictions at different stages (indicated in %) of the denoising process. We compare two baselines (a) and (b) with GradPaint (the two last rows). GradPaint better harmonizes regions inside and outside the inpainting mask right from the beginning of the denoising process.

Figure 5

 5 Figure 5.4. -Intermediate DDPM predictions with GradPaint using separate components of our loss. The alignment loss encourages smooth and coherent transitions, as can be seen with the homologous background.

Figure 5 Figure 5

 55 Figure 5.5.-In-the-wild images for models trained on Places2. Note that combineimage, combine-noisy and GradPaint all use the same noise map for initialization. Note that LaMa was specifically trained using similar masks, contrary to our method.

  Figure 5.7. -Qualitative results for select images of ImageNet dataset. Baselinecombine-image produces images with visible artifacts. Our gradient update using only the masked MSE loss improves the "copy-paste" effect, while the alignment loss produces better aligned transitions.

Figure 5 Figure 5

 55 Figure 5.8. -Qualitative results with thin masks. Best viewed zoomed and in color. In (a), notice the quality of the text of the hat and the background face on the right in (b). Finally, in (c), (d), and (e), methods combine-noisy and combine-image have harmonization issues (see eyes, cheek/eyebrow, and lips respectively), while our method is on par with the costly RePaint.

Figure 5 .

 5 Figure 5.10. -Results on select images from FFHQ. All models were trained on CelebAHQ dataset. While the overall reconstruction of LaMa is decent, zooming on the image unveils visible artifacts typical of GANs.The combine-image baseline produces images with obvious "copy-/paste" effects. Even with the 4500 forward passes necessary for RePaint, global image coherence often fails. Our method produces a high-quality and harmonized generation.

Figure 5 .Figure 5

 55 Figure 5.11. -Uncurated results on ImageNet (1). Rows 1, 2, 4, 5, 6 display the superior ability of GradPaint to align fine details and global coherence.

Figure 5 .

 5 Figure 5.13. -Uncurated results on ImageNet (3). Our method works well on global coherence (row 29) and generating fine textures requiring alignment (row 31).

Figure 5

 5 Figure 5.14. -Uncurated results on ImageNet (4). Our method works well on global coherence (rows 36, 37) but sometimes fails on challenging tasks (row 35). From time to time, the background of the image may poorly influence the content to be generated (row 41).

Figure 5

 5 Figure 5.15. -Qualitative results using Stable Diffusion on COCO. As we can see, our method successfully corrects unharmonized inpainted images.

Figure 5

 5 Figure 5.18. -Diversity of select samples from 30 random samples. Images which are well-harmonized are less diverse, e.g. in (1), our method is encouraged to produce a blue background using the small available context, disregarded by the baseline method which produces more diverse but unharmonized backgrounds. Matching columns of samples of (b) and (c) are initialized identically.

  Figure 5.19. -Performance vs. Time tradeoff, performed on ImageNet. We per-formed various settings where we early stopped the gradient calculation of GradPaint at 13%, 25%, 38%, 50%, 63%, 75% of the denoising process. The most important gains of GradPaint occurs thanks to the early gradient-guidance, and after 63%, gradient guiding no longer helps performance. A reasonable early-stopping at 50% of the denoising process reduces the initial time of GradPaint by 33%.

  

  

•

  Individual subdatasets from LSUN (F.[START_REF] Yu | LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop[END_REF]. LSUN bedrooms, LSUN Churches, LSUN cars, LSUN horses are popular choices. Each subset dataset contains about 1M images of varying resolution. ImageNet[START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] about 1.2M images divided into 1000 classes. This dataset can be used for class-based editing.• COCO dataset[START_REF] Caesar | COCO-Stuff: Thing and Stuff Classes in Context[END_REF]) for text-based editing. This contains 330000 images, each annotated with 5 captions.It is worth noting that the recent open-source large-scale diffusion model Stable-Diffusion was trained on a filtered subset of the public dataset LAION-5B (Schuhmann et al. 2022), which contains 5 billion image-text pairs scraped off the web. Text-guided editing methods which use Stable-Diffusion, in addition to evaluating on the above datasets, often evaluate on custom-made datasets (Bar-Tal et al. 2022; Mokady et al. 2023) of more diverse nature which contain a variety of object categories and text prompts for editing.

	• Places2 (B. Zhou et al. 2017), especially a popular choice for training and
	evaluating inpainting tasks. It contains 10 million labeled images, covering
	a wide variety of indoor and outdoor scenes. The images are generally of
	high-resolution.
	•

  MSE ↓ LPIPS ↓ Nb opt. steps ↓ Time (s) ↓ Table 3.1. -Reconstruction evaluation of projection, showing averages per image.

	Full Method	0.0040 0.053	200	34.6
	w/o MAGEC	0.0094 0.062	200	29.7
	w/o MAGEC + extra opt. steps 0.0078 0.050	300	44.5
	Im2StyleGAN++	0.0012 0.018	2000	242.2

  Table 3.2. -Realism scores and "improved target" scores of random image edits.

		InterfaceGAN	StyleFlow	GANSpace Interpolations
		realism	t	realism	t	realism	realism
	Im2StyleGAN++	0.973 0.096 0.929 0.211	0.960	1.00
	w/o MAGEC loss 0.994 0.097 0.976 0.148	0.985	1.03
	Full Method	0.998 0.122 0.982 0.202	0.984	1.04

  Table 3.3. -ECS evaluation. Our MAGEC loss significantly improves ECS for all edits, notably ones not used to supervise our loss (GANSpace). Scores are evaluated on images not containing the target attribute.

				GANSpace
		Male ↓ Smile ↓ Male ↓ Smile ↓
	Im2StyleGAN++ 0.97	1.00	1.07	0.98
	w/o MAGEC	1.01	0.95	1.06	0.90
	Full Method	0.84	0.87	0.95	0.79

Table 4 .

 4 Table 4.1. 1. -Visual backbones used for the multimodal encoder. Our default configuration only includes the ViT-B/32, the RN50 and the RN50x4.

	Backbone Params. Latent dim.
	RN50	38M	512
	RN50x4	87M	640
	ViT-B/32	88M	512
	ViT-B/16	86M	512
	RN50x16	167M	768

Table 4 .

 4 2. -Groups and clusters of the ImageNet classes used to define the transformation queries.

  ↓ SFID ↓ Table 4.3. -Evaluation of FlexIT and baselines on ImageNet images.

	Copy	0.0	0.45	106.0	0.2
	Encode	17.5	1.6	107.5	3.0
	Retr iev e	72.4	90.6	27.2	0.2
	ManiGAN (B. Li et al. 2020)	21.7	2.0	123.8	17.0
	StyleCLIP (Patashnik et al. 2021)	33.4	8.0	146.6	35.8
	FlexIT (Ours)	24.7	51.3	57.9	6.8

  Table 4.4. -Evaluation of FlexIT and ManiGAN on ManiGAN evaluation protocol. They performed random edits on COCO (even if the edits are meaningless) and based their metrics off of their Image/Text encoders which were used for training. Despite this, we outperform ManiGAN on their evaluation protocol.

			14.96	0.087	0.216 0.068	
	FlexIT (Ours)		18.19	0.177	0.146 0.151	
	bird fungus dog mammal vehicle insect sea life reptile edible music instr. container device object					
	0	50	100	0%	50%	100%
		CSFID			Failure Rate	

  Table 4.5, we detail the ablation experiments for all FlexIT parameters.Table 4.5. -FlexIT ablation results. lr is the learning rate. Lines corresponding to our default configuration are marked in light grey. The norms ℓ 1 , ℓ 2 , and ℓ 2,1 refer to the distance used for regularization in the VQ-GAN latent space. Best values for each metric are shown in bold inside each group of parameter values.

	Acc.↑ LPIPS↓ CSFID↓ SFID↓ 4.7.2 CLIP embedding module and Data Augmentations
	λ I = 0		64.8	27.6	65.4	12.3
	λ I = 0.1		60.6	25.9	57.8	8.3
	λ I = 0.2		52.6	24.6	55.9	6.4
	λ I = 0.3		45.8	23.5	56.3	5.5
	λ I = 0.4		38.6	22.6	58.6	5.0
	λ S = 0.0		34.3	23.8	60.2	4.8
	λ S = 0.2		45.9	24.0	57.3	5.5
	λ S = 0.4		52.6	24.6	55.9	6.4
	λ S = 0.5		56.2	25.0	56.5	7.1
	λ S = 0.8		60.0	26.5	65.5	11.7
	λ z = 0.0		59.4	26.5	56.1	7.1
	λ z = 0.05		52.6	24.6	55.9	6.4
	λ z = 0.1		51.0	23.3	56.7	6.3
	λ p = 0.05		66.2	28.8	56.0	7.9
	λ p = 0.1		59.1	26.4	56.0	7.2
	λ p = 0.15 λ p = 0.2 ViT	RN	52.6 47.9	24.6 23.3 ViT + RN	55.9 57.5 ViT + 2 RN	6.4 2 ViT 6.3 + 3 RN
	ℓ 1		54.2	24.6	56.3	6.5
	ℓ 2		52.4	24.5	55.9	6.8
	ℓ 2,1		52.6	24.6	55.9	6.4
	lr = 0.025		47.6	22.5	58.3	6.0
	lr = 0.5		52.6	24.6	55.9	6.4
	lr = 0.1		60.4	27.6	54.8	7.2
	resolution 256	53.8	24.8	56.8	7.2
	resolution 288	52.6	24.6	55.9	6.4
	resolution 320	54.3	24.0	57.4	7.3

  Table 4.6. -Ablation results for the multimodal encoder components. d is the number of augmentations. d = 0 means that the encoder takes the unchanged image as input; For d = 1, the encoder takes only one (augmented image), which explains why the edit time is the same as d = 0. When considering n CLIP networks, we take the first n elements in the following list: RN50x4, ViT-B/32, RN50, ViT-B/16, RN50x16. Our default configuration is marked in light grey. Last column gives computation time per image in seconds.

							sec.
	networks d Acc.↑ PIPS↓ CSFID↓ SFID↓	/im
	ViT-B/32	0	9.4	21.8	92.7	7.4 27s
	ViT-B/32	1	37.5	26.4	76.5	11.1 27s
	ViT-B/32	8	35.1	25.4	76.9	10.7 33s
	ViT-B/32 32	35.5	25.0	77.7	10.8 53s
	RN50x4	0	13.4	23.8	91.6	11.8 35s
	RN50x4	1	32.5	27.4	80.2	13.7 35s
	RN50x4	8	31.0	25.2	77.3	12.3 53s
	RN50x4	32	27.0	24.2	79.1	11.7 122s
	2 nets	0	23.0	22.8	80.7	9.5 39s
	2 nets	1	50.6	26.4	63.2	8.9 39s
	2 nets	8	47.8	24.9	62.7	8.4 64s
	2 nets	32	47.4	24.2	62.9	8.1 160s
	3 nets	0	30.4	22.5	72.2	8.3 45s
	3 nets	1	54.9	26.0	56.7	6.7 45s
	3 nets	8	52.6	24.6	55.9	6.4 75s
	3 nets	32	51.7	24.0	56.7	6.7 190s
	5 nets	0	39.6	22.4	66.8	7.7 70s
	5 nets	1	60.3	25.5	51.9	5.5 70s
	5 nets	8	60.1	23.9	52.1	5.4 176s
	5 nets	32	52.0	22.8	52.7	5.2 560s

Table 5 .

 5 1. -Evaluation of various methods on FFHQ and CelebaHQ datasets. The COPY oracle and the GREYFILL measure are respectfully the lower and upper bounds for LPIPS and FID. LaMa and Palette are both training-based methods. RePaint, combine-noisy, combine-image, MCG and GradPaint are all training-free methods which all use the same model based on guided diffusion (Dhariwal et al. 2021). Best score is shown in bold and second best underlined.

  Table 5.3. -Evaluation of pre-trained latent diffusion models with thick masks.The COPY oracle measures the metrics on the ground-truth images, and the Latent COPY oracle does the same for autoencoded groundtruth images. As we can see, our modification for latent diffusion models yields significant improvements on all datasets.

	Dataset	ImageNet	COCO	FFHQ
		FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
	COPY (o.) 12.27	0.0	7.29	0.0	4.29	0.0
	Lat. COPY (o.) 12.00	0.034	7.71	0.041	4.98	0.018
	GREYFILL 34.51	0.269	29.97	0.264	77.43	0.257
	combine-noisy 17.17	0.195	11.12	0.241	8.73	0.132
	combine-image 17.37	0.207	12.68	0.257	6.832	0.127
	GradPaint (ours)	14.62	0.163	9.43	0.216	5.97	0.111

  Table 5.6. -Inference times for various methods. As we can see, our method is faster than other diffusion-based methods, especially when applied to Latent Diffusion Models

			-Free? Diffusion-based? Inference time per image (s)
	LaMa			0.02
	Palette		✓	56
	RePaint	✓	✓	313
	MCG	✓	✓	52
	GradPaint	✓	✓	66
	GradPaint-Fast	✓	✓	44
	GradPaint-Latent	✓	✓	7.2

Table A.6. -List of asset licenses.

Code and Models Nvidia Source Code License-NC StyleFlow Code and Models CC BY-NC-SA 4.0 License LPIPS Code and Models BSD-2-Clause License InterfaceGAN Code https://github.com/genforce/interfacegan/blob/master/LICENSE GANSpace Code Apache 2 license Realism Code Creative Commons BY-NC 4.0 License Code and Models BSD-2-Clause License FID Code and Models Apache-2.0 License DeiT Code and Models Apache License 2.0 CLIP Code and Models MIT License VQ-GAN Code and Models MIT License IC-GAN Code and Models Attribution-NonCommercial 4.0 International StyleGAN2 Code and Models Nvidia Source Code License-NC e4e Code MIT License Table A.4. -List of asset licenses. A.3 d e ta i l s o n a s s e t s u s e d i n c h a p t e r 5 Code and Models MIT License Latent Diffusion Code and Models MIT License Stable Diffusion Code and Model CreativeML Open RAIL-M LaMa Code and Models Apache License 2.0 Palette Code and Models MIT License LPIPS Code and Models BSD-2-Clause License FID Code and Models Apache-2.0 License FFHQ pre-trained model Model MIT License RePaint Code CC BY-NC-SA 4.0 License MCG Code Apache License 2.0

Further Studies

Impact of mask distribution

Training-free is particularly advantageous since such a method is is agnostic to any pre-defined mask distribution to train on, contrary to training-based methods. We illustrate this by comparing our method to LaMa [START_REF] Sushko | You only need adversarial supervision for semantic image synthesis[END_REF]) on masks outside of their pre-defined training distribution. Specifically, we create masks where each pixel has a 80% chance of being masked, masking considerable portions of the image. As we can see with Fig. 5.17, Suvorov et al. 2022 produces blurry and low-quality results while our method produces realistic images. This is further quantitatively validated in Tab. 5.4.