
HAL Id: tel-04289532
https://hal.sorbonne-universite.fr/tel-04289532

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Contributions to polynomial system solving:
Recurrences and Gröbner bases

Jérémy Berthomieu

To cite this version:
Jérémy Berthomieu. Contributions to polynomial system solving: Recurrences and Gröbner bases.
Symbolic Computation [cs.SC]. Sorbonne Université, 2023. �tel-04289532�

https://hal.sorbonne-universite.fr/tel-04289532
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Sorbonne Université

Mémoire d’Habilitation à Diriger des Recherches
Mention Informatique

Contributions to polynomial system solving:
Recurrences and Gröbner bases

Par : Jérémy Berthomieu

Rapporteurs :

M. Bernard Mourrain, Dire­eur de recherche, INRIA & Université Côte d’Azur
M. Cordian Riener, Professeur, Universitetet i Tromsø – Norges arktiske universitet
M. Gilles Villard, Dire­eur de recherche, CNRS & École Normale Supérieure de Lyon

Examinateurs :

M. Alin Bostan, Dire­eur de recherche, INRIA
M. Manuel Kauers, Professeur, Johannes Kepler Universität Linz
Mme Fatemeh Mohammadi, Professeure, Katholieke Universiteit Leuven, Présidente
M. Mohab Safey El Din, Professeur, Sorbonne Université

Date de soutenance : 21 septembre 2023

ii

Thanks Thanks

This work would not have been possible without the support of many people.
I would like first to thank Mohab Safey El Din, for giving me so much advice which helped

me a lot and of course to be in the jury of this habilitation thesis. I also want to thank all my past
and current colleagues in the PolSys group with whom it is a pleasure to collaborate and work:
Christian Eder, Jean-Charles Faugère, Vincent Neiger, Ludovic Perret and Guénaël Renault.

Many thanks to Bernard Mourrain, Cordian Riener and Gilles Villard for reviewing this
manuscript!

I would also like to thank Alin Bostan for accepting to be in this jury and his advice and support
together with the other members of this jury: Manuel Kauers and Fatemeh Mohammadi.

I am lucky to be part of a very nice work environment. Thank you to all the other members of
the PolSys group in these last few years: Lorenzo Baldi, Olive Chakraborty, Andrew Fergu-
son, Jorge García Fontán, Sriram Gopalakrishnan, Dimitri Lesnoff, Rafael Mohr, Hadrien
Notarantonio, Pierre Pébereau, Rémi Prébet, Georgy Scholten, Thi Xuan Vu, Trung-Hieu
Vu. And thank you to the all the former and current members of the PEQUAN team, in particu-
lar Stef Graillat for all his support and the fun talking about our children, and also Dominique
Béréziat, Pierre Fortin, Fabienne Jézéquel, Thibault Hilaire Christoph Lauter, Théo Mary,
Valérie Ménissier-Morain and Marc Mezzarobba.

Thank you to all the administrative sta� of LIP6 for their help.
A little bit further, thank you to the members of MATHEXP and in particular Frédéric Chyzak

and Pierre Lairez.
More generally, thank you the whole Computer Algebra community, especially the members of

the GT Calcul Formel.
This works has been partly supported by joint ANR-FWF ANR-19-CE48-0015 ECARP and ANR-

22-CE91-0007 EAGLES proje­s, the ANR grants ANR-18-CE33-0011 Sesame and ANR-19-CE40-
0018 De Rerum Natura proje­s, European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement N. 813211 (POEMA), grant DIM-
RFSI 2021-02–C21/1131 of the Paris Île-de-France Region, grant FA8665-20-1-7029 of the EOARD-
AFOSR and PGMO grant CAMiSAdo.

On a personal level, I would like to thank my friends, my family in law, Amélie, Benjamin and
Nathalie, and my family, Arnaud, Géraldine, Juliette, Joséphine, Chloé, Thibault, Antoine, Baptiste
and my parents for their constant support.

Finally, my deepest thank and love for everything to Camille and our two beautiful sons, Tristan
and Paul.

iii

Thanks

iv

Contents Contents

1 Introdu­ion 1
1.1 Gröbner bases: a fundamental obje­ . 1
1.2 Solving polynomial systems . 2
1.3 Sequences . 2
1.4 Contributions . 4

1.4.1 Problem 1: Complexity of Sparse-FGLM for generic determinantal systems . 4
1.4.2 Problem 2: Complexity of Gröbner bases change of order 5
1.4.3 Problem 3: Computation of Gröbner bases of saturated ideals 5
1.4.4 Problem 4: Polynomial arithmetic for guessing C-relations 6
1.4.5 Problem 5: Minimization of number of queries 6
1.4.6 Problem 6: Stru­ured guessing . 7
1.4.7 msolve . 7

1.5 Organization . 7

2 msolve 9
2.1 State-of-the-art algorithms . 9

2.1.1 The F4 algorithm . 9
2.1.2 The Sparse-FGLM algorithm . 11

2.2 Experimental results . 14

3 Computing Gröbner bases 17
3.1 Gröbner bases change of order algorithms . 17

3.1.1 Complexity of Sparse-FGLM . 17
3.1.2 A polynomial-matrix algorithm . 19

3.2 Saturated and colon ideals . 20
3.2.1 Bayer’s algorithm . 21
3.2.2 F4SAT, an algorithm for saturated ideals . 21
3.2.3 Sparse-FGLM-colon, an algorithm for colon ideals 23

3.3 Parametrizations of the radical . 26

4 Guessing Gröbner bases 29
4.1 Uni-indexed sequences and the Berlekamp–Massey algorithm 29

4.1.1 Matrix viewpoints . 29
4.1.2 Polynomial viewpoint . 30

4.2 Extensions to multi-indexed sequences . 32
4.2.1 The BMS algorithm . 32
4.2.2 The Scalar-FGLM algorithm . 33
4.2.3 Adaptive algorithms . 34

4.3 Benchmarks . 35

5 Quasi-commutative Gröbner bases 37
5.1 P-relations and quasi-commutative polynomials . 37
5.2 Guessing P-relations . 38

5.2.1 A linear-algebra-based algorithm . 38
5.2.2 An hybrid approach . 38

5.3 Stru­ured sequences . 39

6 Research proje­ 41
6.1 msolve and fundamental algorithms . 41

6.1.1 Types for the coe�cients . 41

v

Contents
Contents

6.1.2 Gröbner bases for a degree order . 41
6.1.3 Change of order . 42
6.1.4 Saturation and colon ideals . 42
6.1.5 Exa­ solving on a GPU . 42

6.2 Faster change of order and guessing C-relations . 43
6.2.1 Guessing faster . 43
6.2.2 Guessing radical ideals . 44
6.2.3 Guessing with multiplicities . 44
6.2.4 Polynomial matrices with multiplicities . 44
6.2.5 Applications to guessing . 45

6.3 Algorithms for quasi-commutative Gröbner bases . 45
6.3.1 Moment approach . 45
6.3.2 E�cient Gröbner bases computation . 45

A Ideals of C-relations of small degrees 47
A.1 Uni-indexed sequences . 47
A.2 Bi-indexed sequences . 47

A.2.1 Single roots . 47
A.2.2 Root of multiplicity 2 . 48
A.2.3 Root of multiplicity 3 . 48

vi

Chapter 1. Introduction

Chapter 1

Introduction

This habilitation thesis deals with the research that I have done since I have been with the
PolSys group in Sorbonne Université.

On the one hand, polynomial systems arise in a wide range of areas of scientific domains such as
biology [39], chemistry [62], quantum mechanics [85], robotics [91], and computing sciences, includ-
ing coding theory [94], computer vision [72] and cryptography [51] to cite a few. On the other hand,
polynomial system solving is NP-hard, even when the ground field is finite [61, Appendix A7.2].
Moreover, the non-linearity of such systems make reliability issues topical, in particular when com-
plete and exhaustive outputs are required, in the context of numerical algorithms.

Likewise, sequences are a classical mathematical obje­ and computing linear recurrence re-
lations of a multi-indexed sequence or determining the nature of this sequence based on these
relations is a fundamental problem in coding theory [65, 94], computer algebra [52, 98, 100] and
enumerative combinatorics [28, 30, 31].

Whether it be for solving polynomial systems or for computing or guessing linear recurrence
relations, one aims to obtain nice generators of an ideal that are able to answer the following
questions. Is the number of solutions finite in an algebraic closure of the field of coe�cients?
How many initial terms and linear recurrence relations do one needs to compute any term of the
sequence?

These questions are easily answered when we have a Gröbner basis of the ideal at hand. This is
why, the main focus of my research is Gröbner bases computations with two main goals: solving
polynomial systems exa­ly and determining all the linear recurrence relations of a multi-indexed
sequence.

1.1 Gröbner bases: a fundamental obje­
Buchberger developed the theory of Gröbner bases and designed a first algorithm to compute

them in [35]. Since then, many e�cient Gröbner basis algorithms were developed.
While lexicographic Gröbner bases are the tool of choice to represent the solution set of a

polynomial system, often, they are the hardest Gröbner bases to compute. For n generic polynomials
of degree d in n variables, computing the ≺lex-Gröbner basis of the ideal they spanned is bounded
by C1dC2n3 , see [37], whereas computing the ≺drl-Gröbner basis of the same ideal is bounded by
C1dC2n2 , see [74].

As a caveat to that, Gröbner bases change of orders algorithms have been introduced. They
take as an input a Gröbner basis G1 for a monomial order ≺1 and another monomial order ≺2
and they return G2, a Gröbner basis of 〈G1〉 for ≺2. This yields the following framework, in the
zero-dimensional case, where f1, . . . , fs are the original polynomials that are given as an input to
Buchberger’s algorithm [35] or to Faugère’s F4 [47] or F5 [48] algorithms to compute the ≺drl-Gröbner
basis Gdrl. Then, Gdrl is converted into the ≺lex-Gröbner basis Glex using the so-called FGLM
algorithm [50] or faster variants like the Sparse-FGLM algorithm [52, 53] or more recently [83]
and [20]. This framework allows one to compute the ≺lex-Gröbner basis in C1dC2n2 operations as
well. 〈

f1, . . . , fs
〉

Gdrl Glex

Buchberger
Faugère’s F4/F5

Degree reverse
lexicographic

FGLM
Sparse-FGLM

Lexicographic

Figure 1.1: Classical Gröbner bases framework for 0-dimensional ideals

Nowadays, many computer algebra software propose implementations of algorithms for comput-
ing Gröbner bases, including F4, FGLM and/or Sparse-FGLM. We can cite Magma [24], Maple [9],

1

Chapter 1. Introduction
1.2. Solving polynomial systems

Singular [42], as general software, but also some e�cient C library like FGb [49] and msolve [13].

1.2 Solving polynomial systems
Let K be an algebraic closed field and n ∈ ℕ∗. We let x = (x1, . . . ,xn). We recall that an ideal

I ⊆ K [x] is zero-dimensional if the solution set
{
a ∈ Kn

��∀ f ∈ I , f (a) = 0
}
is finite.

With the convention that xn ≺lex · · · ≺lex x1, a ≺lex-Gröbner basis Glex of I allows one to
compute the coordinates of the above solution set. Indeed, for all 1 ≤ k ≤ n, Glex ∩ K [xk , . . . ,xn]
is a ≺lex-Gröbner basis of I ∩ K [xk , . . . ,xn]. That is, ≺lex-Gröbner bases extend the notion of
triangular basis for linear systems.

Assuming Glex is reduced, it su�ces then to compute the roots of the (unique) polynomial in
Glex ∩ K [xn] to obtain the last coordinate of each solution. Then, to replace xn by each of this
last coordinate in all the polynomials in Glex ∩K [xn−1,xn] to find the corresponding second-to-last
coordinate of each solution, and so on and so forth.

Furthermore, if I is radical, then after a generic change of coordinates, its reduced ≺lex-Gröbner
basis is said to be in shape position, i.e.

Glex =
{
gn (xn),xn−1 − gn−1 (xn), . . . ,x1 − g1 (xn)

}
,

with deg gn = deg I and for all 1 ≤ k ≤ n − 1, deg gk < deg gn . In other words, the last coordinate
parameterizes the other coordinates of the solutions.

Thanks to this, computing a ≺lex-Gröbner basis of a zero-dimensional ideal
〈
f1, . . . , fs

〉
is a

fundamental step for solving exa­ly a polynomial system f1 = · · · = fs = 0. Using the framework of
Figure 1.1, we are led to first compute a ≺drl-Gröbner basis of this ideal.

Under generic assumptions, the complexity of Gröbner bases change of order from ≺drl to ≺lex
is in Õ (Dl) [83] and O (tD2) [53], where D is the degree of the ideal and t ≤ D is the number of
monomials not in xn in the ≺drl-monomial basis. This parameter t is well-understood when the
ideal is spanned by n generic polynomials of degree d [53, Cor. 5.10].

In many applications, the polynomial system at hands is stru­ured. For instance, in polynomial
optimization, critical values of a polynomial map restri­ed to an algebraic sets are solutions of
determinantal systems deriving from maximal minors.
Problem 1 (Complexity of Sparse-FGLM for generic determinantal systems): Is it possible to give
asymptotics for t in generic cases for some of these stru­ured systems?

Furthermore, depending on the asymptotics on t and the theoretical or pra­ical values of l, it
is not clear which complexity is the better one between Õ (Dl) [83] and O (tD2) [53].
Problem 2 (Complexity of Gröbner bases change of order): Under the same generic assumptions,
is there an algorithm whose complexity is better than [53, 83] independently on the ratio t/D and
on the chosen bound for l?

In real algebraic geometry, computing sample points in singular real algebraic sets [92] or com-
puting their real dimension [73] require to compute limits of critical points of the restri­ion of a
polynomial map to some algebraic set depending on a parameter. This boils down to the compu-
tation of saturated ideals. State-of-the-art algorithms for a saturated ideal I : 〈i〉∞ [4, 90] rely on
the Gröbner basis computation of an augmented ideal containing I , introducing an extra variable
that must be eliminated later. Furthermore, running the F4 algorithm on this kind of ideal, we can
observe that the computations are not regular: there a lot of degree falls.
Problem3 (ComputationofGröbner bases of saturated ideals): Is it possible to compute a Gröbner
basis of I : 〈i〉∞ on the fly from the generators of I without introducing an extra variable?

1.3 Sequences
Let u ∈ Kℕn be a n-indexed sequence with values in K, that is u = (ui1,...,in) (i1,...,in) ∈ℕn . There

is a natural correspondence between finite linear combinations of terms of u and polynomials in
K [x1, . . . ,xn] = K [x]. For g =

∑
s ∈SWsx

s , with S a finite subset of ℕn , we write Eval
(
g ,u

)
B

2

Chapter 1. Introduction
1.3. Sequences∑
s ∈SWsus . Since

Eval
(
gx i ,u

)
=

∑
s ∈S

Wsus+i ,

shifting a linear combination of terms by an index i comes down to multiplying the associated
polynomial by x i . Observe that Eval is a bilinear operator from K [x] × Kℕn to K.
Definition-Proposition 1.1 (e.g. [12, Def. 2 and Prop. 4]): Let u ∈ Kℕn be a sequence. A polynomial
g ∈ K [x] defines a linear recurrence relation with constant coe�cients, or C-relation for short, on u if,
and only if, for all i ∈ ℕn , Eval

(
gx i ,u

)
= 0.

The set of all such polynomials is an ideal of K [x] called the ideal of C-relations of u and denoted
IC (u).
Definition-Proposition 1.2 (e.g. [11, Def. 2 and Prop. 3]): A sequence u ∈ Kℕn is said to be C-�nite
if together with a finite number of terms of u and a finite number of C-relations, one can recover
all the terms of u . This is equivalent to requiring IC (u) be 0-dimensional.

In some applications, like in combinatorics, error corre­ing code, but also in computer algebra
through polynomial system solving, one must deal with the ideal of C-relations of a n-indexed
sequence. In the last two applications, the ≺lex-Gröbner basis of this ideal is the target and its roots
the ultimate goal.

It is unclear, at this stage, if given an ideal I ∈ K [x], we can build a sequence u ∈ Kℕn such that
IC (u) = I . However, we have this following easy result.
Definition-Proposition 1.3: If u and v in Kℕn are such that IC (u) ⊆ I and IC (v) ⊆ I , then for any
_ ∈ K, IC (u + _v) ⊆ I , where u + _v = (ui + _vi)i∈ℕn . Hence, for an ideal I of K [x], there exists a
whole ve­or subspace of Kℕn , denoted SC (I) such that for u ∈ SC (I), IC (u) ⊆ I .
Remark 1.4: By convention, the zero sequence is the only sequence whose ideal of C-relations is 〈1〉.
Theorem 1.5: Let u and v in Kℕn . Let _, ` ∈ K. Then,

IC (u) ∩ IC (v) ⊆ IC (_u + `v).

Proof. Let g =
∑
s ∈SWsx

s ∈ IC (u) ∩ IC (v). By linearity, for all i ∈ ℕn , Eval
(
gx i ,_u + `v

)
=

_ Eval
(
gx i ,u

)
+ `Eval

(
gx i ,v

)
= 0. Hence, g ∈ IC (_u + `v). �

In this manuscript, most examples will come from sequences such as the following one.
Example 1.6: Let I =

〈
(x42 + x

3
2) (x

2
1 + x

2
2 − 1), (x1 − x

2
2 − x2) (x

2
1 + x

2
2 − 1)

〉
. It defines the unit cercle

with multiplicity 1, through the fa­or x21 + x
2
2 − 1 appearing in both spanning polynomials and

two points: the origin (0,0), with multiplicity 3, and (0,−1), with multiplicity 1, as the common
vanishing points of x42 + x

3
2 = x1 − x22 − x2 = 0. Notice that (0,−1) is also on the unit cercle and thus

it has multiplicity 2 in total.
Let i = x41 − x

4
2 − 2x

2
1 + 1 = (x21 + x

2
2 − 1) (x

2
1 − x

2
2 − 1) defining the union of the unit circle and the

unit hyperbola.
The ideal J = I : 〈i〉∞ defines the Zariski closure of the set di�erence of the variety defined

by I and that defined by i. The resulting ideal defines the origin, with multiplicity 3, and one can
proves that J =

〈
x32 ,x1 − x

2
2 − x2

〉
.

Now, let v ∈ SC (J). By the first polynomial, we have Eval
(
x i1x

j+3
2 ,v

)
= vi ,j+3 = 0 for all (i , j) ∈ ℕ2.

Moreover, by the second polynomial, we have vi+1,j = Eval
(
x i+11 x j2 ,v

)
= Eval

(
x i1x

j+2
2 + x i1x

j+1
2 ,v

)
=

vi ,j+2 + vi ,j+1 for all (i , j) ∈ ℕ2. Hence, there exist U0,0, U0,1 and U0,2 such that

v =

...
...

...
...

... . .
.

3 0 0 0 0 · · ·
2 U0,2 0 0 0 · · ·
1 U0,1 U0,2 0 0 · · ·
0 U0,0 U0,1 + U0,2 U0,2 0 · · ·

����i2
i1

0 1 2 3 · · ·

3

Chapter 1. Introduction
1.4. Contributions

Let us recall that not all ideals can be ideals of C-relations. For instance, any sequence u , built

from K =
〈
x21 ,x1x2,x

2
2

〉
, satisfies the relation Eval

(
(u0,1x1 − u1,0x2)x i1x

j
2 ,u

)
= u0,1ui+1,j − u1,0ui ,j+1 = 0

for all (i , j) ∈ ℕ2. We refer to Appendix A for more details. Hence K (IC (u), and K is not an
ideal of C-relations. More generally, [32, Prop. 3.3] proves that ideals of C-relations are exa­ly
Gorenstein ideals [63, 76] and problems occur only if the ideal has a zero of multiplicity at least 2.
The following theorem can also be found in [45, Th. 8.3].
Theorem 1.7: Let I ⊆ K [x] be a 0-dimensional ideal. The ideal I (resp. ring R = K [x]/I) is
Gorenstein if, equivalently,
(1) R and its dual are isomorphic as R-modules;

(2) there exists a K-linear form g on R such that the following bilinear form is non degenerate

R ×R→ K

(a,b) ↦→ g(a b).

In order to be self-contained, we detail in Appendix A the link between an ideal of C-relations
I and the general term of a sequence in SC (I).

Guessing the ideal of C-relations of a sequence u is the task of computing candidate polynomials
in IC (u) using only finitely many terms of u . In particular, we aim at guessing a ≺-Gröbner basis
of IC (u) for a given monomial order ≺. In the uni-indexed sequence case, guessing the essentially
unique C-relation can be modeled through the solving a Hankel system. Yet, the best algorithm,
which runs in time quasi-linear in the number of input sequence terms, uses fast polynomial arith-
metic and fast extended Euclidean algorithm [34].

In the multi-indexed setting, one can still guess the C-relations using linear algebra techniques
on a multi-Hankel matrix [11, 12] or a Gram–Schmidt process [81]. The so-called Berlekamp–
Massey–Sakata algorithm, due to Sakata [93, 95, 97], guesses the relations using polynomial addi-
tions and shifts by a monomial.
Problem 4 (Polynomial arithmetic for guessing C-relations): Can we model the guessing of C-
relations of multi-indexed sequences with multivariate polynomial arithmetic, including polynomial
multiplications and divisions?

In some applications, for instance the polynomial system solving one through the Sparse-FGLM
algorithm, the bottleneck of the algorithm is the computation of the sequence terms, and not the
guessing of the C-relations. It is thus essential that only terms stri­ly needed for the guessing be
computed.
Problem 5 (Minimization of number of queries): In the case where queries to the sequence are
expensive, can we relate the number of queries to the geometry of the staircase of the output
Gröbner basis?

In enumerative combinatorics, like 2D/3D-walks, the sequence comes with a stru­ure: the terms
are invariant by the a­ion of a group on the indices, the nonzero terms lie on a cone. In particular,
when many sequence terms are, this make the previously mentioned multi-Hankel matrix have a lot
of zero rows. This translates into guessed relations that might be fake as we would not guess them
with more terms at hand. Thus, we need to build a much larger matrix, for instance with many
more rows than columns, to prevent guessing these fake relations.
Problem 6 (Structured guessing): Can we exploit the sparsity of the nonzero terms in order to
guess fewer fake relations with fewer queries? What properties do the guess relations have?

1.4 Contributions

1.4.1 Problem 1: Complexity of Sparse-FGLM for generic determinantal
systems

In polynomial optimization, critical points methods require to compute the vanishing set of the
restri­ion of a linear map to an algebraic set defined by p generic polynomials by means of the
simultaneous vanishing of maximal minors of a truncated Jacobian matrix. More generally, we

4

Chapter 1. Introduction
1.4. Contributions

define below the class of generic determinantal sum ideals that contains this kind of ideals and we
provide an asymptotic on the parameter t for them.
Definition 1.8 (see also [10, Def. 8]): With K an infinite field, let I ⊂ K [x] be an ideal which is the
sum of m polynomials of degree at most d and the maximal minors of a matrix with polynomial
entries also of degree at most d . We say that I is a generic determinantal sum ideal if the following
three conditions hold:

• the ideal I is zero-dimensional and in shape position;

• the Hilbert series of K [x]/I is

H (g) = det(M (gd−1))
g (d−1) (m−12)

(1 − gd)m (1 − gd−1)n−m
(1 − g)n

where M (g) is the (m − 1) × (m − 1)-matrix whose (i , j)th entry is
∑
k
(m−i
k

) (n−1− j
k

)
gk ;

• for all e ≥ 1, the Hilbert series of (K [x]/I) /
〈
xen

〉
is equal to the series (1 − g)H truncated at

the first non-positive coe�cient.

Theorem 1.9 (see also [10, Th. 2]): Let I be a generic determinantal sum ideal of K [x] as in Defini-
tion 1.8. Let Gdrl be the reduced ≺drl-Gröbner basis of I . Let t be the number of polynomials in
Gdrl whose leading monomial is divisible by xn .

Then, for d = 2 and n ≥ m,

t =
m−1∑
k=0

(
n −m − 1 + k

k

) (
m

b3m/2c − 1 − j

)
.

Moreover, for d ≥ 3 and n →∞,

t ≈ 1√
(n −m)c

√
6

(d − 1)2 − 1
dm (d − 1)n−m

(
n − 2
m − 1

)
.

1.4.2 Problem 2: Complexity of Gröbner bases change of order
State-of-the-art FGLM algorithms uses multiplication matrices to compute the polynomial in the

reduced Gröbner basis for the target monomial order. These are matrices of size the degree of
the ideal and with scalar entries. Using a change of paradigm and relying on polynomial matrix
arithmetic, we design a new change of order algorithm whose complexity is in Õ (tl−1D) under the
same generic assumption as [53]. As a consequence, it is always asymptotically faster than both [53]
and [83]. Furthermore, for l close to 2, the complexity becomes quasi-linear in the size of the input.
Theorem 1.10 (see also [20, Th. 1.1]): Let I be a zero-dimensional ideal K [x] of degree D . Let Gdrl
(resp. Glex) be the reduced ≺drl- (resp. ≺lex-)Gröbner basis of I and Sdrl be the ≺drl-monomial
basis of K [x]/I . Assume that x1, . . . ,xn−1 are in Sdrl, and that for all monomials ` ∈ Sdrl, either
xn` is in Sdrl or it is the ≺drl-leading monomial of an element in Gdrl. Assume that I is in shape
position. Then, one can compute Glex using Õ

(
tl−1D

)
operations in K, where t is the number of

elements of Gdrl whose ≺drl-leading monomial is divisible by xn .

1.4.3 Problem 3: Computation of Gröbner bases of saturated ideals
Given generators f1, . . . , fs of an ideal I and a polynomial i, we propose an algorithm extending

Faugère’s F4 algorithm [47] that computes a partial ≺drl-Gröbner basis of I and uses this partial
information to find polynomials in I : 〈i〉 not in I using linear algebra. Then, adding these new
generators, it resumes the partial ≺drl-Gröbner basis computation of I : 〈i〉. Repeating this process,
it finds polynomials in (I : 〈i〉) : 〈i〉 and so on and so forth until it stabilizes and has computed
the ≺drl-Gröbner basis of I : 〈i〉∞. This is the F4SAT algorithm, Algorithm 3.2.

Furthermore, we modify the Sparse-FGLM algorithm so that it takes as an input the reduced
≺drl-Gröbner basis of an ideal I and perform linear algebra operations in the set of multiples of i
in K [x]/I in order to compute the reduced ≺lex-Gröbner basis of the zero-dimensional ideal I : 〈i〉.
This allows us to perform in one step a colon ideal computation and a change of order. Moreover,

5

Chapter 1. Introduction
1.4. Contributions

this new Algorithm 3.3, Sparse-FGLM-colon, does not assume that I is zero-dimensional, which
finds application in polynomial optimization.
Theorem 1.11 (see also [15, Th. 4.12]): Let I be a positive-dimensional ideal of K [x], let Gdrl be its
reduced ≺drl-Gröbner basis and Sdrl be the associated staircase. Let i ∈ K [x] \ I such that I : 〈i〉
is zero-dimensional of degree D ′ and in shape position.

Let Σ be a finite staircase of size N containing suppNF
(
x ini,Gdrl,≺drl

)
for all i ∈ ℕ, where

NF
(
f ,G ,≺

)
is the normal form of f w.r.t. G and ≺.

Let t be the number of monomials f in Σ such that xnf ∈ lm≺drl (Gdrl) and let u be the number
of monomials f in Σ such that xnf ∈

〈
lm≺drl (I)

〉
\ lm≺drl (Gdrl).

Then, for a generic choice of ve­or r ∈ KN , Algorithm 3.3 terminates and returns the reduced
≺lex-Gröbner basis of I : 〈i〉. To do so, it requires at most u + n normal form computations w.r.t.
Gdrl and ≺drl plus O ((t + u + n)ND ′) operations in K.

As a byprodu­, I designed and implemented in msolve an e�cient probabilistic test for the com-
putation of the parametrizations of x1, . . . ,xn−1 w.r.t. xn in

√
I . It relies on the algorithm of [29, 66]

using xn as the linear form. Since their algorithm assume that the linear form is generic, we cannot
assert that xn parameterizes the other variables. If it does not, the computed parametrizations
are meaningless. Hence the necessity for an e�cient validity check of the output. Furthermore,
the algorithm of [29, 66] builds a sequence before guessing the parametrizations and this sequence
building is the a­ual bottleneck. Thus, the main advantage of this validity check is that it avoids
building a brand new sequence. The following lemma gives the main idea.
Lemma 1.12 (see also [15, Lem. 4.15]): Let I be a zero-dimensional ideal of K [x]. Let _ ∈ K̄ be
generic. Then, for 1 ≤ k ≤ n, I = I : 〈xk + _〉.

It su�ces then to compute the parametrizations of such I : 〈xk + _〉 using the same sequence u
as for I . Indeed, I : 〈xk + _〉 is the ideal of C-relations of v =

(
Eval

(
(xk + _)x i ,u

))
i∈ℕn .

1.4.4 Problem 4: Polynomial arithmetic for guessing C-relations
While the Berlekamp–Massey–Sakata algorithm [93, 95, 97] performs multivariate polynomials

additions and multiplications by a monomial to compute a Gröbner basis of the ideals of C-relations,
it fails to generalize the extended Euclidean algorithm. Using the mirror of the truncated generating
series of the input multi-index sequence, we design an algorithm performing polynomial divisions
and normal forms to compute potential C-relations. Furthermore, we exhibit a criterion based on
leading monomials to ensure which of these potential C-relations are corre­ or not. Finally, when
called on a uni-index sequence, the algorithm comes down to performing a truncated extended
Euclidean algorithm. All in all, we have the following result.
Theorem1.13 (see also [19, Th. 1]): Let u be a sequence, ≺ be a weighted degree monomial order and
M be a monomial. Let us assume that the reduced ≺-Gröbner basis G of IC (u) and its associated
staircase S satisfy max(S ∪ lm≺ (G)) � M and for all m � M , s = maxf�M {f | fm � M }, we
have max(S) � s . Then, the variant of the Berlekamp–Massey–Sakata algorithm using polynomial
arithmetic terminates and computes GinO (#S (#S + # G)#T�M) operations in the base field, where
T�M is the set of monomials less or equal to M .

1.4.5 Problem 5: Minimization of number of queries
Assuming the first terms of the sequence are generic enough so that no fake C-relations are

wrongly guessed, we design an adaptive algorithm that follows the shape of the staircase of the
output Gröbner basis. It follows a strategy similar to the FGLM algorithm, which allows us to
minimize the number of queries to the sequence.
Theorem 1.14 (see also [19, Th. 26]): Let u be a sequence whose ideal of C-relations is zero-dimen-
sional. Let ≺ be a monomial order, G be the reduced ≺-Gröbner basis of IC (u) and S be the
associated staircase.

Assuming the Adaptive Scalar-FGLM algorithm called on u returns a Gröbner basis G′ with
staircase S ′ and #S ′ = #S , then S ′ = S and G′ = G. Furthermore, the algorithm does not need
more that # 2(S ∪lm≺ (G)) sequence queries andO ((#S +# G)2# 2S) operations to recover G, where
2S is the Minkowski sum of S with itself.

6

Chapter 1. Introduction
1.5. Organization

1.4.6 Problem 6: Stru­ured guessing
P-relations, linear recurrence relations with polynomial, in the indices, coe�cients can be repre-

sented by quasi-commutative polynomials. In this setting, we extend the notion of sparse Gröbner
basis of [7, 56]. This corresponds to P-relations between terms of the sequence that are all lying
in a predefined cone. This finds application for instance in enumerative combinatorics where the
indices of the nonzero terms are far from random but are a­ually all in a given cone. On the one
hand, this allows us to reduce the number of sequence queries to guess the relations and on the
other hand, this allows us to guess more relations that are corre­ and fewer that are fake. For
instance, for a subsequence of the Gessel walk, using 3 491 sequence terms in the full orthant, we
can guess 142 relations amongst which 136 are fake and only 6 are corre­. Whereas, taking only
sequence terms in a cone allows us to consider sequence terms much further, which in turn allow
us to guess more relations. Indeed, with 3 010 terms in a cone of the same sequence, we guess 21
relations and all of them are corre­. We refer to Table 5.1 for more details. Let us also notice
that these fake relations may hide corre­ ones as their leading monomials could divide the leading
monomials of corre­ relations.

1.4.7 msolve
msolve [13, 14] is a new e�cient open-source C library, developed by Christian Eder1, Mohab

Safey El Din2 and myself, for solving polynomial systems exa­ly. It provides implementations of
state-of-the-art algorithms for computing Gröbner bases such as F4 [47] for ≺drl-Gröbner basis and
Sparse-FGLM [52, 53] for ≺lex-Gröbner basis of zero-dimensional ideals.

I implemented in msolve the parametrization of the radical [29, 66], its probabilistic test, see
Lemma 1.12 and the Sparse-FGLM-colon algorithm for computing the ≺lex-Gröbner basis of
I : 〈i〉 whether I is zero- or positive-dimensional.

1.5 Organization
First, I start by presenting msolve in Chapter 2. I detail the state-of-the-art algorithms that

are available in msolve and compare it with other available implementations of Gröbner bases
algorithms. This is a joint development with Christian Eder1 and Mohab Safey El Din2.

Then, Chapter 3 is dedicated to the design of new algorithms for computing Gröbner bases in
order to solve polynomial systems and their complexity analyses. Some of these algorithms are
already available in msolve. This is based on joint collaborations with Alin Bostan3, Christian
Eder1, Andrew Ferguson4, Vincent Neiger2 and Mohab Safey El Din2.

In Chapter 4, I give an overview on di�erent algorithms for guessing Gröbner bases of ideal
of C-relations of sequences and their e�ciency. This is based on joint work with Brice Boyer5,
Jean-Charles Faugère3,6 and Mohab Safey El Din2.

In Chapter 5, I present extensions of works for guessing ideals of relations, but in the case of
relations with polynomial coe�cients. This is again related to polynomial ideals but in a ring where
variables quasi-commute. This is based on joint work with Jean-Charles Faugère3,6 and Mohab Safey
El Din2.

Finally, in Chapter 6, I propose my research proje­ for the forthcoming years based on in-
creasing the fun­ionalities of msolve by implementing existing state-of-the-art algorithms and also
on designing algorithms for computing Gröbner bases in the commutative and quasi-commutative
towards polynomial system solving and applications to sequences.

1Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
2Sorbonne Université
3INRIA
4former Ph.D. student at Sorbonne Université
5former Post-doc at Sorbonne Université
6CryptoNext Security

7

Chapter 1. Introduction
1.5. Organization

8

Chapter 2. msolve

Chapter 2

msolve

msolve [13, 14] is a an open source C library developed by Christian Eder1, Mohab Safey El
Din2 and myself, for solving multivariate polynomial systems, with a focus on those which have
dimension at most 0. It relies on computer algebra methods yielding algebraic parametrizations of
their solutions. This allows us to bypass the commonly encountered issues related to accuracy and
exhaustively met by numerical methods because of the non-linearity of the input.

This chapter is based on joint work with Christian Eder1 and Mohab Safey El Din2 and in
particular [13].

2.1 State-of-the-art algorithms
For positive-dimensional ideals, msolve computes their ≺drl-Gröbner basis using the F4 algo-

rithm [47]. For 0-dimensional ideals, it returns a parametrization of their solutions. In generic
coordinates, and for a radical ideal, this parametrization is close to the ≺lex-Gröbner basis of the
ideal. To compute it, it follows the framework of Figure 1.1. The change of order from ≺drl to
≺lex is performed thanks to the Sparse-FGLM algorithm [52, 53]. If the ideal is not radical, but
its radical is in shape position, then it computes the parametrizations thanks to [29, 66]. In this
latter case, we cannot ensure that the ideal is in generic coordinates, hence we designed and im-
plemented into msolve an e�cient probabilistic test to ensure that the computed parametrizations
are parametrizations of the radical ideal. The presentation of this test is postponed to Se­ion 3.3,
as it relies on algorithms presented in Chapter 3.

Since msolve is also now our tool of choice to implement and validate the new algorithms
that we design, some algorithms presented in the following chapters, for instance, F4SAT, see
Se­ion 3.2.2, and Sparse-FGLM-colon, see Se­ion 3.2.3, have been implemented and are also
available in msolve.

2.1.1 The F4 algorithm
In [35], Buchberger’s algorithm introduced the concept of critical pairs for computing Gröbner

bases. For two polynomials f1 and f2 in a set of generators of an ideal, the critical pair (f1, f2) leads
to a normal form computation of the S-polynomial

sp≺
(
f1, f2

)
=
lcm(lm≺ (f1),lm≺ (f2))

lt≺ (f1)
f1 −

lcm(lm≺ (f1),lm≺ (f2))
lt≺ (f2)

f2

w.r.t. the current intermediate basis. The degree of such a critical pair is defined as deg lcm(lm≺ (f1),
lm≺ (f2)). Notice that this bounds from above deg sp≺

(
f1, f2

)
.

In Algorithm 2.1 we state the pseudocode of Faugère’s F4 algorithm, highlighting (in red) the
main di�erences to Buchberger’s algorithm.

Observe that the termination of the F4 algorithm only relies on Buchberger’s first criterion:
G=

{
g1, . . . , gt

}
is a ≺-Gröbner basis of an ideal I if for all 1 ≤ i , j ≤ t , NF

(
sp≺

(
gi , g j

)
,G,≺

)
= 0,

see [41, Chap. 2, Sec. 6, Th. 6].
We detail the di�erences to Buchberger’s algorithm.
(1) One can choose several critical pairs at a time, stored in a subset L ⊆ P . The so-called

degree strategy chooses L to be the set of all critical pairs of minimal degree for a total degree
monomial order, typically ≺drl.

(2) For all terms of all the generators of the S-polynomials, one searches in the current interme-
diate Gröbner basis G for possible reducers. One adds those to L and again search for all of
their terms for reducers in G. This is the SymbolicPreprocessing fun­ion.

(3) Once all redu­ion data is colle­ed from the last step, one generates a Macaulay-like matrix

1Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
2Sorbonne Université

9

Chapter 2. msolve
2.1. State-of-the-art algorithms

Input: A list of polynomials f1, . . . , fs spanning an ideal I ⊆ K [x] and a total degree monomial order
≺.

Output: A ≺-Gröbner basis Gof I .
1 GB

{
f1, . . . , fs

}
.

2 P B
{
(fi , f j)

�� 1 ≤ i < j ≤ s
}
.

3 While P ≠ ∅ do
4 Choose a subset L of P .
5 P B P \ L.
6 L B SymbolicPreprocessing(L,G).
7 L B LinearAlgebra(L).
8 For h ∈ L with lm≺ (h) ∉ 〈lm≺ (G)〉 do
9 P B P ∪

{
(g ,h)

�� g ∈ G
}
.

10 GB G∪ {h}.

11 Return G.

Algorithm 2.1: Faugère’s F4

with columns corresponding to the monomials appearing in L (sorted by ≺) and rows corre-
sponding to the coe�cients of each polynomial in L. Gaussian Elimination is then applied to
reduce now all chosen S-polynomials at once. This is the LinearAlgebra fun­ion.

(4) Finally, one adds those polynomials associated to rows in the updated matrix to G whose
leading monomials are not already in lm≺ (G).

In order to optimize the algorithm one can now apply Buchberger’s produ­ and chain criteria,
see [36, 70]. Thus many useless critical pairs are removed before even being added to P and fewer
zero rows are computed during the linear algebra part of F4. Still, in general, there are many zero
redu­ions left.

Di�erent sele­ion strategies yield di�erent behavior of the algorithm. The degree strategy allows
one to compute truncated Gröbner bases of ideals in case of early terminations.
Definition 2.1: Let f1, . . . , fs be polynomials in K [x] and ≺ be a monomial order. Let ` be a
monomial and F` be the K-ve­or subspace of

〈
f1, . . . , fs

〉
defined as

F` =

{
s∑
i=1

hi fi

�����∀1 ≤ i ≤ s ,lt≺ (hi fi) � `

}
.

Then, G⊂ F` is a `-truncated ≺-Gröbner basis of
〈
f1, . . . , fs

〉
if for all p ∈ F`, there exists g ∈ G

such that lm≺ (g) | lm≺ (p) and p − lt≺ (p)
lt≺ (g) g is in F`.

Observe that taking a triangular basis of F` ordered increasingly w.r.t. ≺ naturally yields a
`-truncated ≺-Gröbner basis thereof.
Proposition 2.2: Let f1, . . . , fs be polynomials in K [x] and ≺ be a monomial order. Let ` be a
monomial and F` be the K-ve­or subspace of

〈
f1, . . . , fs

〉
F` =

{
s∑
i=1

hi fi

�����∀1 ≤ i ≤ s ,lm≺ (hi fi) � `

}
.

A subset G=
{
g1, . . . , gt

}
⊂ F` is a `-truncated ≺-Gröbner basis of

〈
f1, . . . , fs

〉
if, and only if,

F` ⊆ G` =


t∑
j=1

h j g j

������∀1 ≤ j ≤ t ,lm≺ (h j g j) � `

 .

and for all (gi , g j) ∈ G2 with i ≠ j , if lcm(lm≺ (gi),lm≺ (g j)) � `, then

NF
(
sp≺

(
gi , g j

)
,G,≺

)
= 0.

Remark 2.3: (1) If ≺ is a total degree monomial order, then for d ∈ ℕ, we can also define a
d -truncated ≺-Gröbner basis as a `-truncated ≺-Gröbner basis for ` the largest monomial of

10

Chapter 2. msolve
2.1. State-of-the-art algorithms

degree d .

(2) If G=
{
g1, . . . , gt

}
is a `-truncated ≺-Gröbner basis of

〈
f1, . . . , fs

〉
and

` � max
1≤i< j ≤t

lcm(lm≺ (gi),lm≺ (g j)),

then G is a ≺-Gröbner basis of
〈
f1, . . . , fs

〉
. Indeed, it spans the ideal and by Proposition 2.2,

all the S-polynomials reduce to 0 w.r.t. G and ≺. Hence, by Buchberger’s first criterion [41,
Chap. 2, Sec. 6, Th. 6], it is a ≺-Gröbner basis of

〈
f1, . . . , fs

〉
.

(3) Definition 2.1 depends greatly on the set of generators of the ideal. Consider f1 = xn , f2 =

(y −1)n and f3 = xy − y −1 for n ∈ ℕ\ {0,1}. By Proposition 2.2, G=
{
f1, f2, f3

}
is a n-truncated

≺drl-Gröbner basis of
〈
f1, f2, f3

〉
. Yet, this ideal is 〈1〉 hence {1} is a m-truncated ≺drl-Gröbner

basis of 〈1〉 for all m ∈ ℕ.
Lemma 2.4: Let f1, . . . , fs ∈ K [x] be the input polynomials of the F4 algorithm. Let d ∈ ℕ. Assume
that the F4 algorithm uses the degree sele­ion strategy and that, on line 4, L consists in all the
critical pairs of degree d .

If no new polynomial is added to G on line 10, then G is a d -truncated ≺drl-Gröbner basis of〈
f1, . . . , fs

〉
.

2.1.2 The Sparse-FGLM algorithm
In this subse­ion, the input Gröbner basis, Gdrl, is the reduced ≺drl-Gröbner basis of a zero-

dimensional ideal I of degree D . The output is the reduced ≺lex-Gröbner basis, Glex, of I . In [52]
and [53, Algo. 3], using [80], the authors observe that the map

K [x]/I → K [x]/I
f ↦→ NF

(
xn f ,Gdrl,≺drl

)
given in the basis Sdrl, the staircase associated to Gdrl, is represented by a matrix, Mxn , with a
special stru­ure given in the following two lemmas.
Lemma 2.5: Let I be a zero-dimensional ideal of K [x] of degree D , Gdrl be its reduced ≺drl-
Gröbner basis and Sdrl = {f0, . . . ,fD−1} be its associated staircase. Let Mxn be the matrix of the
linear map f ∈ K [x]/I ↦→ NF

(
xn f ,Gdrl,≺drl

)
∈ K [x]/I .

Then, one can build the matrix Mxn = (mi ,j)0≤i ,j<D with the following procedure:
• if xnf j = fk , then mk ,j = 1 and for all 0 ≤ i < D , i ≠ k , mi ,j = 0;

• otherwise for all 0 ≤ i < D , mi ,j is the coe�cient of fi in NF
(
xnf j ,Gdrl,≺drl

)
.

Lemma 2.6 ([52, 53, 80]): Let f1, . . . , fn be generic polynomials of K [x] of degrees at most d .
Let Gdrl be the reduced ≺drl-Gröbner basis of

〈
f1, . . . , fn

〉
. Then, the latter case of Lemma 2.5

only happens if there exists g ∈ Gdrl such that lm≺drl (g) = xnf j . As a consequence, one has
NF

(
xnf j ,Gdrl,≺drl

)
= xnf j − g .

Following, we can use Wiedemann algorithm [106] on Mxn to recover its minimal polynomial.
Furthermore, whenever the reduced ≺lex-Gröbner basis Glex is in shape position, i.e. there exist
gn , gn−1, . . . , g1 ∈ K [xn] such that

Glex =
{
gn (xn),xn−1 − gn−1 (xn), . . . ,x1 − g1 (xn)

}
,

and for all 1 ≤ k ≤ n − 1, deg gk < deg gn , then g1, . . . , gn−1 can be computed by solving Hankel
systems of size D . This can be done using the following two algorithms, Algorithms 2.2 and 2.3.
Proposition 2.7: Let M ∈ KD×D be a matrix with s nonzero coe�cients, r ∈ KD be a row-ve­or
and c0,c1, . . . ,cn−1 ∈ KD be n column-ve­ors. Then, Algorithm 2.2 is corre­ and computes the
sequences (rM ic0)0≤i<2D and (rM ick)0≤i<D for 1 ≤ k ≤ n − 1 in O (sD + nD2) operations in K.

Furthermore, if the ve­ors c0,c1, . . . ,cn−1 are ve­ors of the canonical basis, then this complexity
drops to O ((s + n)D).

Proposition 2.8: Let (v (0)i)0≤i<2D−1, (v
(1)
i)0≤i<D , . . . , (v

(n−1)
i)0≤i<D be the first terms of n sequences.

Assume that v (0) is linear recurrent of order D . Then, Algorithm 2.3 is corre­ and computes, for

11

Chapter 2. msolve
2.1. State-of-the-art algorithms

Input: A matrix M ∈ KD×D , a row-ve­or r ∈ KD and n column-ve­ors c0,c1, . . . ,cn−1 ∈ KD
Output: (rM c0)0≤i<2D , (rM c1)0≤i<D , . . . , (rM cn−1)0≤i<D , with 1 = (1,0, . . . ,0)T.

1 v (0)0 B r c0,v
(1)
0 B r c1, . . . ,v

(n−1)
0 B r cn−1.

2 For i from 1 to D − 1 do
3 r B rM .

4 v (0)i B r c0,v
(1)
i B r c1, . . . ,v

(n−1)
i B r cn−1.

5 For i from D to 2D − 1 do
6 r B rM .

7 v (0)i B r c0

8 Return (v (0)i)0≤i<2D , (v
(1)
i)0≤i<D , . . . , (v

(n−1)
i)0≤i<D

Algorithm 2.2: Sequences for Sparse-FGLM

Input: Sequences (v (0)i)0≤i<2D−1 and (v (k)i)0≤i<D for 1 ≤ k ≤ n − 1 with coe�cients in K.
Output: W0,k , . . . , WD−1,k for 1 ≤ k ≤ n − 1 such that for all 0 ≤ i < D ,

v (k)i = WD−1,kv
(0)
D−1+i + · · · + W0,kv

(0)
i .

1 For k from 1 to n − 1 do
2 Solve the Hankel linear system

©­­­­­­«
v (0)0 v (1)1 · · · v (0)D−1
v (0)1 v (1)2 · · · v (0)D
...

...
...

v (0)D−1 v (1)D · · · v (0)2D−2

ª®®®®®®¬
©­­­­«

W0,k
W1,k
...

WD−1,k

ª®®®®¬
=

©­­­­­­«
v (k)0
v (k)1
...

v (k)D−1

ª®®®®®®¬
.

3 Return Wi ,k for 0 ≤ i < D and 1 ≤ k ≤ n − 1.
Algorithm 2.3: Hankel system solving for Sparse-FGLM

12

Chapter 2. msolve
2.1. State-of-the-art algorithms

all 1 ≤ k ≤ n − 1, W0,k , . . . , WD−1,k such that

∀0 ≤ i < D , v (k)i = WD−1,kv
(0)
D−1+i + · · · + W0,kv

(0)
i

in O (M(D) (n + logD)) operations, where M(D) denote a cost fun­ion for multiplying univariate
polynomials of degree D with coe�cients in K.

We are now in a position to present the Sparse-FGLM algorithm in the shape position case.

Input: The reduced ≺drl-Gröbner basis Gdrl of a zero-dimensional ideal I and its associated
staircase Sdrl of size D .

Output: The reduced ≺lex-Gröbner basis of I , if it is in shape position.
1 Build the matrix M as in Lemma 2.5.
2 Pick r ∈ KD a row-ve­or at random.
3 1 B (1,0, . . . ,0)T. // the column-ve­or of coe�cients of NF (1,Gdrl,≺drl)
4 For k from 1 to n − 1 do
5 Build ck the column-ve­or of coe�cients of NF (xk ,Gdrl,≺drl).

6 Compute (v (0)i)0≤i<2D , (v
(1)
i)0≤i<D , . . . , (v

(n−1)
i)0≤i<D) with Algorithm 2.2 called on

M ,r ,1,c1, . . . ,cn−1.

7 gn B Berlekamp–Massey(v (0)0 , . . . ,v (0)2D−1).
8 If deg gn < D then Return “Not in shape position or bad ve­or”.
9 Compute g1 B WD−1,1xD−1n + · · · + W0,1, . . . , gn−1 B WD−1,n−1xD−1n + · · · + W0,n−1 with Algorithm 2.3

called on (v (0)i)0≤i<2D−1, (v
(1)
i)0≤i<D , . . . , (v

(n−1)
i)0≤i<D).

10 Return {gn (xn),xn−1 − gn−1 (xn), . . . ,x1 − g1 (xn)}.
Algorithm 2.4: Sparse-FGLM

Theorem 2.9: Let I be a zero-dimensional ideal of K [x] of degree D , Gdrl be its reduced ≺drl-
Gröbner basis and Sdrl be its associated staircase. Let Mxn be the matrix of the map f ∈ K [x]/I ↦→
NF

(
xn f ,Gdrl,≺drl

)
∈ K [x]/I in the monomial basis Sdrl.

Let us assume that there are t monomials f in Sdrl such that xnf ∈ lt≺drl (I) and that
x1, . . . ,xn−1 ∈ Sdrl, that Mxn is known and that the reduced ≺lex-Gröbner basis Glex of I is in
shape position. Then, Algorithm 2.4 computes Glex in O (tD2 + nM(D)) operations, where M(D)
denote a cost fun­ion for multiplying univariate polynomials of degree D with coe�cients in K.

Note that the Berlekamp–Massey algorithm and its faster variants return a fa­or of gn , so if the
computed polynomial has degree D , i.e. it is the chara­eristic polynomial of Mxn , then it is also
its minimal polynomial. Furthermore, based on a deterministic variant of Wiedemann’s algorithm,
one can also provide a deterministic variant of this algorithm to recover gn [53, Algo. 4].
Remark 2.10: In [29, 66], the authors consider the case where an ideal J is not in shape position
but its radical

√
J is. Let us recall that

√
J =

{
f ∈ K [x]

��∃k ∈ ℕ, f k ∈ J }, see [41, Chap. 4, Sec. 2,
Def. 4]. In that case, the ≺lex-Gröbner basis of

√
J can be computed in a similar fashion, it su�ces

to replace the call to Algorithm 2.3 on line 9 by a call to [66, Algo. 2].

Example 2.11: Let Hdrl =
{
x22 − x1 + x2,x1x2 − x1 + x2,x

2
1 − x1 + x2

}
be the ≺drl-Gröbner basis of the

ideal J . Its associated staircase is Tdrl = {1,x2,x1} and the matrix of the multiplication by x2 is

©­«
1 x2 x1

0 0 0 1

1 −1 −1 x2

0 1 1 x1

ª®¬
We build a sequence u with random initial coe�cients, e.g. u0,0 = 17, u1,0 = 5 and u0,1 = −3, thanks

13

Chapter 2. msolve
2.2. Experimental results

to Gdrl:

u =

...
...

...
...

... . .
.

3 0 0 0 0 · · ·
2 −8 0 0 0 · · ·
1 5 −8 0 0 · · ·
0 17 −3 −8 0 · · ·

����i2
i1

0 1 2 3 · · ·

The subsequence (u0,i2)i2∈ℕ satisfies the relation u0,i2+3 = 0 = Eval
(
x i2+32 ,u

)
for all i2 ∈ ℕ and no

relation of smaller order. Hence x32 ∈ J .
We now solve the Hankel system

©­«
u0,0 u0,1 u0,2
u0,1 u0,2 u0,3
u0,2 u0,3 u0,4

ª®¬ ©­«
W0
W1
W2

ª®¬ =
©­«
u1,0
u1,1
u1,2

ª®¬©­«
17 5 −8
5 −8 0
−8 0 0

ª®¬ ©­«
W0
W1
W2

ª®¬ =
©­«
−3
−8
0

ª®¬
to find W0 = 0 and W1 = W2 = −1. Hence, x1 − x22 − x2 is in J . Observe that we already knew this
though. Finally, Hlex =

{
x32 ,x1 − x

2
2 − y

}
.

2.2 Experimental results
In order to solve over rational numbers, a multi-modular approach with e�cient algorithms is

implemented. The F4 part of the computation is performed with a tracer modulo a first prime p1.
This first computation allows us to learn all the polynomials and their multiples that are needed at
each round and also those that are reduced to 0 or that are only used to reduce other polynomials
to 0. Modulo subsequent primes, we apply the tracer so that the matrices we handle are optimal:
we do not compute any redu­ion to 0. Furthermore, we know that this multi-modular approach
corre­ly computes the sought ≺drl-Gröbner basis over ℚ as long as its proje­ion modulo p1 was
corre­ly computed.

We compare msolve with two other computer algebra systems:
• magma -v2.23-6 [24]: using the command Variety().

• maple -v2019 [9]: using the command PolynomialSystem() from the module SolveTools
with option engine=groebner.

All compared implementations use Faugère’s F4 algorithm and variants of the FGLM algorithm and
then solve univariate polynomials.

All chosen systems are zero-dimensional with rational coe�cients. All computations are done
sequentially. First, Table 2.1 compares memory usage of msolve against maple and magma. It
illustrates the low memory usage of msolve. However, we emphasize that msolve is a specialized
library while maple and magma are general purpose computer algebra systems.

Overall, msolve performs very e�ciently on a wide range of input systems, using way less
memory than its competitors, allowing its users to solve polynomial systems which are not tra­able
by maple and magma.

Table 2.2 states various, partly well-known benchmarks, which di�er in their specific hardness,
like redu­ion process, pair handling, sparsity of multiplication matrices, etc. It also deals with
critical points computations, CP(d,nv,np) describes critical points for a system of np polynomials
in nv variables of degree d.

For each system we give its degree and if it is radical (all but one are radical). For msolve we give
specific timing information, also on the single modular computations: We apply msolve with the
tracer option, giving also the timings for the first modular computation learning and generating
the tracer (F4 (learn)) and the timings for the further modular computations applying only the

14

Chapter 2. msolve
2.2. Experimental results

Examples msolve maple magma Examples msolve maple magma
Katsura-9 15 271 71 Henrion-5 11 26 23
Katsura-10 25 276 223 Henrion-6 47 171 –
Katsura-11 66 2,279 – Henrion-7 3,428 – –
Katsura-12 229 1,123 – Noon-7 209 419 –
Katsura-13 1,037 – – Noon-8 881 1,227 –
Eco-10 27 210 213 CP(3,5,2) 17 525 –
Eco-11 82 428 354 CP(3,6,2) 55 7,885 –
Eco-12 117 1,027 – CP(3,7,2) 312 – –
Eco-13 318 8,654 – CP(4,4,3) 24 635 –
Eco-14 15,748 – – CP(4,5,3) 2,065 – –
Phuoc-1 176 – –

Table 2.1: Maximal memory usage given in MB

Examples
System data msolve single modular computation msolve overall maple single modular Others overall

degree radical F4 (prob.) F4 (learn) F4 (apply) FGLM # primes trace independent F4 FGLM maple magma
Katsura-9 256 yes 0.06 0.17 0.03 0.03 83 4.89 7.49 0.10 0.04 104 2,522
Katsura-10 512 yes 0.24 0.81 0.09 0.11 188 43.7 70.5 0.36 0.15 1,278 82,540
Katsura-11 1,024 yes 1.34 6.26 0.45 0.49 388 424 814 1.82 0.74 7,812 −
Katsura-12 2,048 yes 8.61 56.1 3.10 3.96 835 6,262 11,215 8.50 5.40 120,804 −
Katsura-13 4,096 yes 52.8 425 18.9 30.6 1,772 89,390 148,372 60.9 35.7 − −
Katsura-14 8,192 yes 318 3,336 128 210 3,847 1,308,602 2,007,170 393 271 − −
Eco-10 256 yes 0.10 0.28 0.05 0.02 161 12.5 21.2 0.14 0.03 26.3 6,520
Eco-11 512 yes 0.39 1.21 0.17 0.07 327 90.3 161 0.56 0.12 312 214,770
Eco-12 1,024 yes 2.25 11,619 1.07 0.34 530 877 1,619 2.97 0.85 4,287 −
Eco-13 2,048 yes 11.7 67.3 6.61 2.12 1,225 12,137 19,553 15.1 6.70 66,115 −
Eco-14 4,096 yes 67.1 516 34.8 25.9 2,670 167,798 254,389 104.8 69.1 − −

Henrion-5 100 yes 0.01 0.01 0.004 0.01 83 0.71 0.83 0.01 0.01 2.7 93
Henrion-6 720 yes 0.11 0.22 0.07 0.11 612 138 157 0.17 0.16 1,470 −
Henrion-7 5,040 yes 9.55 27.5 6.51 20.46 4,243 117,803 127,456 12.8 27.1 − −
Noon-7 2,173 yes 1.66 5.3 0.93 1.95 1,305 4,039 5,045 1.97 3.13 432 −
Noon-8 6,545 yes 26.6 153 17.5 72.3 6,462 598,647 640,177 32.4 76.2 5,997 −
Phuoc-1 1,102 no 4.01 4.65 3.42 2.59 753 4,467 5,056 4.60 5.91 − −

CP(3,5,2) 288 yes 0.03 0.04 0.01 0.03 326 18.1 19.2 0.06 0.05 249 −
CP(3,6,2) 720 yes 0.22 0.59 0.12 0.16 1,042 390 450 0.31 0.22 23,440 −
CP(3,7,2) 1,728 yes 1.97 8.18 1.23 1.20 3,037 9,643 11,511 2.78 2.54 − −
CP(3,8,2) 4,032 yes 18.5 111.5 12.2 19.6 8,211 269,766 323,838 24.6 25.3 − −
CP(4,4,3) 576 yes 0.04 0.86 0.03 0.07 339 40.9 41.8 0.08 0.11 916 −
CP(4,5,3) 3,456 yes 3.24 8.60 2.23 4.83 2,747 21,528 23,559 4.33 9.21 − −
CP(3,6,6) 729 yes 0.18 0.42 0.11 0.15 779 255 294 0.30 0.23 − −
CP(4,6,6) 4,096 yes 7.70 25.6 5.44 14.09 3,476 71,472 77,941 10.2 16.71 − −
CP(3,7,7) 2,187 yes 2.49 8.97 1.58 1.86 2,795 12,412 14,375 3.27 3.75 − −

Table 2.2: Benchmark timings given in seconds.

15

https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat9-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion5.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat10-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion6.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat11-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion7.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat12-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/noon7-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat13-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/noon8-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco10-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_5_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco11-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_6_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco12-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_7_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco13-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_4_p_3.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco14-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_5_p_3.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/phuoc1.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat9-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat10-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat11-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat12-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat13-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/kat14-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco10-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco11-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco12-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco13-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/eco14-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion5.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion6.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/henrion7.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/noon7-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/noon8-qq.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/phuoc1.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_5_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_6_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_7_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_8_p_2.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_4_p_3.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_5_p_3.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_6_p_6.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_6_p_6.ms
https://gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_3_n_7_p_7.ms

Chapter 2. msolve
2.2. Experimental results

tracer (F4 (apply)). We also use msolve with independent modular computations, applying the
probabilistic linear algebra in each modular F4 (F4 (prob.)) In any case, we apply the same FGLM
implementation. Furthermore, we state the number of primes needed by msolve to solve over ℚ.
For maple and magma we just give the overall timings. Symbol ’−’ means that the computation was
stopped after waiting more than 10 times the runtime of msolve. For all systems, the bottleneck has
been the computation of either a ≺lex-Gröbner basis in shape position or a rational parametrization
of the solution set.

First thing to note is that magma is in all instances slower than msolve or maple. Although, for
some examples, magma’s modular F4 computation is even a bit faster than the other two, magma’s
bottleneck is both a not optimized FGLM combined with the fa­ that magma seems to lift a ≺lex-
Gröbner basis instead of a rational parametrization (the latter one having in general coe�cients of
significantly smaller bit size).

For nearly all systems, msolve is faster, sometimes by an order of magnitude, than maple. We
report on modular timings of maple for F4 (which is based on a probabilistic linear algebra) and
FGLM. It appears that msolve’s modular implementations of both F4 and FGLM are faster than
the ones in maple (with a speed-up sometimes close to 2, sometimes less). It seems that in the
multi-modular process, maple uses its probabilistic variant of F4 while msolve takes advantage of
its tracer. Also, maple’s documentation indicates that on some examples, an algorithm computing
a so-called rational univariate representation (preserving multiplicities), instead of FGLM, may be
used. It is likely that on most examples we tried, FGLM is not used. Note also that maple lifts a
whole ≺drl-Gröbner basis over ℚ while msolve avoids this step. Furthermore, our tracer shares
some similarities with [86].

There are, of course, few examples, where msolve is not competitive. In particular, for some
systems, msolve may need to introduce a generic linear form as previously explained while a
rational parametrization can be obtained without it (but up to computing normal forms). Also
some systems admit a triangular representation, and/or can be split. It seems that maple can dete­
and sometimes take advantage of such situations. This is typically the case for the Noon-n examples.

16

Chapter 3. Computing Gröbner bases

Chapter 3
Computing Gröbner bases

In this chapter, I present some works that I have done on algorithms for computing Gröbner
bases.

First, Se­ion 3.1 is dedicated to change of order algorithms, whether my coauthors and I studied
its complexity in some special cases or we designed new algorithms. In Se­ion 3.2, we shall look at
the problems of saturating or quotienting ideals. From a geometric point of view, saturating comes
down to removing a subvariety and then taking the Zariski closure of the remaining set. Then,
in Se­ion 3.3, I present an e�cient verification of the computation of the parametrization of the
radical of an ideal when we cannot ensure that this radical is in shape position.

This chapter is based on joint work with Alin Bostan1, Christian Eder2, Andrew Ferguson3,
Vincent Neiger4 and Mohab Safey El Din4, [10, 13, 15, 20].

3.1 Gröbner bases change of order algorithms
Change of order algorithms can be divided into two categories, depending on the dimension of

the ideal I . In positive dimension, we can mention the Gröbner walk [38] whose goal is to update
step by step the Gröbner basis when “walking” along a path from ≺1 to ≺2 in the Gröbner fan of the
ideal. In dimension zero, most algorithms rely on linear algebra in the finite-dimensional quotient
algebra, following the idea of [50] yielding the so-called FGLM algorithm.

This original algorithm had a complexity O (nD3), where D is the degree of the ideal, i.e. the
dimension of the algebra over the base field. Let us recall that if the ideal is spanned by n generic
polynomials of degree d , then D = dn . Under the assumption that the change of order is from ≺drl
to ≺lex in shape position and some other genericity assumptions, the complexity of the change of
order has been improved in [46] to Õ (Dl), where l is the matrix multiplication exponent. More
recently, Neiger and Schost [83] proposed a general change of order algorithm with complexity
Õ (Dl) that only requires a stability assumption on the ≺1-Gröbner basis and no assumption on the
≺2-Gröbner basis. This stability assumption is for all monomial `,

∀1 ≤ i < j ≤ n, x j ` ∈ lm≺1 (I) =⇒ xi ` ∈ lm≺1 (I).

3.1.1 Complexity of Sparse-FGLM
Together, Propositions 2.7 and 2.8 and Theorem 2.9 yield the complexity of the Sparse-FGLM

algorithm in the shape position situation. While it is not easy to estimate exa­ly the number s
of nonzero coe�cients of the matrix Mxn , we can give an upper bound of it. Indeed, from the
procedure of Lemma 2.5, s ∈ O (tD), where t is the number of normal forms to perform. Using now
Lemma 2.6, we obtain that for an ideal spanned by n generic polynomials of given degrees, t is
exa­ly the number of polynomials in Gdrl whose leading monomials are divisible by xn . Therefore,
one obtains a bound of the complexity of the Sparse-FGLM algorithm based on the input Gröbner
basis.

This opens a new branch of research to estimate t in order to have a finer complexity estimate
of the Sparse-FGLM algorithm in di�erent situations. In their paper [53, Cor. 5.11], the authors
bound t for generic systems of n polynomials of degree d in K [x] and find that as d tends to +∞, t
grows as

√
6
ncd

2n−1. This is to compare with D that grows as dn . More recently, new estimates for
t have been given, especially for polynomial systems that have some of their generators as minors
of a multivariate polynomial matrix.

1INRIA
2Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
3former Ph.D. student at Sorbonne Université
4Sorbonne Université

17

Chapter 3. Computing Gröbner bases
3.1. Gröbner bases change of order algorithms

In a joint work with Alin Bostan5, Andrew Ferguson6 and Mohab Safey El Din7, we study a case
of polynomial ideals that encompass systems defining the critical points of the restri­ion of a linear
map to an algebraic set defined by p generic polynomials by means of the simultaneous vanishing
of maximal minors of a truncated Jacobian matrix. For instance, we consider f1, . . . , fm ∈ K [x], the
Jacobian matrix

J=

©­­­­­«
1 0 · · · 0
mf1
mx1

mf1
mx2

· · · mf1
mxn

...
...

...
mfm
mx1

mfm
mx2

· · · mfm
mxn

ª®®®®®¬
of i1, the proje­ion on the x1-axis, f1, . . . , fm and the ideal I =

〈
f1, . . . , fm

〉
+ 〈MaxMinorsJ〉.

Definition 1.8 (see also [10, Def. 8]): With K an infinite field, let I ⊂ K [x] be an ideal which is the
sum of m polynomials of degree at most d and the maximal minors of a matrix with polynomial
entries also of degree at most d . We say that I is a generic determinantal sum ideal if the following
three conditions hold:

• the ideal I is zero-dimensional and in shape position;

• the Hilbert series of K [x]/I is

H (g) = det(M (gd−1))
g (d−1) (m−12)

(1 − gd)m (1 − gd−1)n−m
(1 − g)n

where M (g) is the (m − 1) × (m − 1)-matrix whose (i , j)th entry is
∑
k
(m−i
k

) (n−1− j
k

)
gk ;

• for all e ≥ 1, the Hilbert series of (K [x]/I) /
〈
xen

〉
is equal to the series (1 − g)H truncated at

the first non-positive coe�cient.

Under some regularity assumptions, the ideal defining the set of critical values of a generic
polynomial map restri­ed to a smooth algebraic set falls in this class, see [10]. Thus, determining
an asymptotic for t for such systems allows us to estimate the complexity of the Sparse-FGLM
algorithm in this situation and in particular for computing the critical values of the restri­ion of a
generic polynomial map.

Relying on manipulations of the Hilbert series given in Definition 1.8, we simplified this expres-
sion in order to show that this Hilbert series is unimodal, which allowed us to prove the following
theorem.
Theorem 3.1 (see also [10, Th. 1]): Let I be a generic determinantal sum ideal of K [x] as in Defi-
nition 1.8. Let Gdrl be the reduced ≺drl-Gröbner basis of I . Then, the latter case of Lemma 2.5
only happens if there exists g ∈ Gdrl such that lm≺drl (g) = xnf j . As a consequence, one has
NF

(
xnf j ,Gdrl,≺drl

)
= xnf j − g .

As a consequence, the matrix of the multiplication by xn is obtained for free from the ≺drl-
Gröbner basis, as in Lemma 2.6 for generic systems. Taking this stru­ure into account, we then
prove that this number t is equal to the largest coe�cient of the Hilbert series. Finally, using
combinatorial techniques, we obtain formulae for t for such generic determinantal sum ideals.
Theorem 1.9 (see also [10, Th. 2]): Let I be a generic determinantal sum ideal of K [x] as in Defini-
tion 1.8. Let Gdrl be the reduced ≺drl-Gröbner basis of I . Let t be the number of polynomials in
Gdrl whose leading monomial is divisible by xn .

Then, for d = 2 and n ≥ m,

t =
m−1∑
k=0

(
n −m − 1 + k

k

) (
m

b3m/2c − 1 − j

)
.

5INRIA
6former Ph.D. student at Sorbonne Université
7Sorbonne Université

18

Chapter 3. Computing Gröbner bases
3.1. Gröbner bases change of order algorithms

Moreover, for d ≥ 3 and n →∞,

t ≈ 1√
(n −m)c

√
6

(d − 1)2 − 1
dm (d − 1)n−m

(
n − 2
m − 1

)
.

In Table 3.1, we show the pra­ical accuracy of the formulae in Theorem 1.9, for the parameter
t . For d = 2 we use our exa­ formula, while for d ≥ 3 we use the asymptotic formula. The column
A­ual is the true density of the matrix of the multiplication by xn for ≺drl. The column Theoretical
is an approximation given by the ratio t/D and the column Asymptotic is another one given by the
asymptotic of t divided by D . The column A­ual was already present in [53, Tab. 2], while the
other two columns were added in [10]. Let us recall that in this setting, D = dm (d − 1)n−m

(n−1
m−1

)
,

see [84, Th. 2.2].

Parameters Degree Matrix Density
(d ,m,n) D A­ual Theoretical Asymptotic
(2,4,9) 896 30.17% 30.80% 30.80%
(2,4,10) 1344 31.13% 31.77% 31.77%
(2,4,11) 1920 31.86% 32.50% 32.50%
(3,3,6) 2160 17.52% 18.52% 27.73%
(3,3,7) 6480 17.39% 18.31% 26.62%
(3,3,8) 18144 17.63% 18.72% 25.50%
(4,2,5) 1728 14.46% 15.45% 21.24%
(4,2,6) 6480 14.11% 15.13% 19.56%
(5,2,5) 6400 11.00% 11.94% 15.47%
(6,2,5) 18000 8.80% 9.63% 12.22%

Table 3.1: Density of matrix of the multiplication by xn for generic critical point systems

Let us also mention that during his Ph.D., Andrew Ferguson8, with Le, extended this analysis
of the asymptotic of t for ideals spanned by (r + 1)-minors of a polynomial symmetric matrix
(fi ,j)1≤i ,j ≤m , where the fi ,j ’s are in n =

(m−r+1
2

)
variables and of degree d , see [58]. As above, their

asymptotics are derived from the unimodality of the Hilbert series. As the Hilbert series is only
known in the cases r = m − 2, r = m − 1 and r = 1, their asymptotics hold in these cases. For the
other cases, they hold if the Hilbert series is rightfully conje­ured to be unimodal.

3.1.2 A polynomial-matrix algorithm
Under the stability assumption, two algorithms, more e�cient than the original FGLM algo-

rithm, are at our disposal. The Faugère and Mou’s Sparse-FGLM algorithm [52, 53], which requires
that the reduced ≺lex-Gröbner basis is in shape position and whose complexity is in O (tD) and
Neiger and Schost’s algorithm [83] whose complexity is in Õ (Dl).

Despite the pra­ical e�ciency of the Sparse-FGLM algorithm and the asymptotics on t [10,
53], the recent improvements on l, the best known bounds are l ≤ 2.37 285 96 [1] or even l ≤
2.37 188 [43], make Neiger and Schost’s algorithm the fastest.

In this subse­ion, I present a change of order algorithm designed by Vincent Neiger9, Mohab
Safey El Din9 and myself from ≺drl to ≺lex with complexity Õ (tl−1D), assuming that the ≺drl-
Gröbner basis satisfies the stability assumption and that the ≺lex-Gröbner basis is in shape position.
Since t ≤ D , this complexity makes it asymptotically faster than the two aforementioned algorithms,
independently on the value of l and the ratio t/D .

To do so, we push forward the study of the properties of the multiplication matrix Mxn by xn .
Let Sdrl be the monomial basis of K [x]/I obtained from the reduced ≺drl-Gröbner basis Gdrl of
I . Under the stability assumption, its columns are either unit ve­ors (for those ` ∈ Sdrl such that
xn` ∈ Sdrl) or ve­ors of coe�cients of polynomials in Gdrl (for those ` ∈ Sdrl such that xn` is
a leading monomial of one element in Gdrl). The latter ones are usually referred to as a “dense”

8former Ph.D. student at Sorbonne Université
9Sorbonne Université

19

Chapter 3. Computing Gröbner bases
3.2. Saturated and colon ideals

columns, [53, Sec. 5] and [101, Sec. 4]. This is a well-known matrix stru­ure in K-linear algebra,
called a shifted form in [88, 89], and studied in particular in the context of the computation of the
chara­eristic polynomial or the Frobenius normal form of a matrix over K, see [102, Sec. 9.1].

Exploiting the algebraic stru­ure itself, we relate it to operations in a K [xn]-submodule of I .
Following a classical constru­ion in [102, Sec. 9.1], instead of the multiplication matrix Mxn which
is in KD×D , we consider a univariate polynomial matrix Pxn in K [xn]t×t whose average column
degree is D/t . This polynomial matrix can be seen as a “compression” of Mxn , or more precisely
of the chara­eristic matrix xnIdD −Mxn , with smaller matrix dimension but larger degrees.

Under a less restri­ive assumption than the stability one, and which is also included in the
assumptions of the Sparse-FGLM algorithm of [52, 53] and of [46], we can build Pxn for free from
Gdrl. Then, we retrieve Glex using K [xn]-linear algebra operations on Pxn .
Theorem 1.10 (see also [20, Th. 1.1]): Let I be a zero-dimensional ideal K [x] of degree D . Let Gdrl
(resp. Glex) be the reduced ≺drl- (resp. ≺lex-)Gröbner basis of I and Sdrl be the ≺drl-monomial
basis of K [x]/I . Assume that x1, . . . ,xn−1 are in Sdrl, and that for all monomials ` ∈ Sdrl, either
xn` is in Sdrl or it is the ≺drl-leading monomial of an element in Gdrl. Assume that I is in shape
position. Then, one can compute Glex using Õ

(
tl−1D

)
operations in K, where t is the number of

elements of Gdrl whose ≺drl-leading monomial is divisible by xn .

Example 3.2: Let Hdrl =
{
x22 − x1 + x2,x1x2 − x1 + x2,x

2
1 − x1 + x2

}
be the ≺drl-Gröbner basis of J .

Then, the associated staircase is {1,x2,x1} and D = 3. One can read the matrix of the multiplication
by x2 in K [x1,x2]/ J in this monomial basis dire­ly from Hdrl. It is

Mx2 =
©­«

1 x2 x1

0 0 0 1

1 −1 −1 x2

0 1 1 x1

ª®¬ ∈ KD×D ,

where the i th column is the image of the i th monomial of the staircase by its multiplication by x2.
The univariate polynomial matrix Px2 is obtained from the polynomials in Hdrl whose leading

monomials are multiples of x2, i.e. the first t = 2 polynomials of Hdrl, and decomposed in the
K [x2]-module K [x2] + x1K [x2]. It is

Px2 =
(
x22 + x2 x2 1

−1 x2 − 1 x1

)
∈ K [x2]t×t .

Its Hermite normal form is (
x32 −x22 − x2 1

0 1 x1

)
,

which allows us to read that the polynomials x32 and x1 − x
2
2 − x2 are both in J and K [x2] + x1K [x2].

Thus, they form the ≺lex-Gröbner basis of J .

3.2 Saturated and colon ideals
Let I be an ideal of K [x] and i ∈ K [x]. The colon and saturation ideals of I w.r.t. i are defined

as

I : 〈i〉 = {h ∈ K [x] | hi ∈ I } , I : 〈i〉∞ =

{
h ∈ K [x]

���∃k ∈ ℕ, hik ∈ I } .
Let us recall that by [41, Chap. 4], the algebraic set V (I : 〈i〉∞) ⊂ K

n
is the Zariski closure of the

set di�erence V (I) \V (i).
Computing algebraic representations of saturated ideals arises in many applications ranging

from experimental mathematics to engineering sciences (see [33, 60, 87]) since some natural alge-
braic modelings come with parasite solutions which one excludes through some saturation process.
For instance, modeling that some (p × q)-matrix with polynomial entries has rank r through the
simultaneous vanishing of its (r + 1)-minors will include those points at which the matrix has rank
less than r .

20

Chapter 3. Computing Gröbner bases
3.2. Saturated and colon ideals

Since

I : 〈i〉 = 1
i
(I ∩ 〈i〉) = (tI + 〈(1 − t)i〉) ∩ K [x]

I : 〈i〉∞ = (I + 〈1 − ti〉) ∩ K [x],

using Rabinowitsch’s trick [90] and [41, Chap. 4, Sec. 4, Th. 14, (ii)], one can compute Gröbner
bases of these ideals choosing a monomial order eliminating t and keeping all polynomials not
involving t , see also [41, Chap. 3, Sec. 1, Th. 2 and Ex. 6].

This se­ion is about the computational problem of computing a Gröbner basis associated to
I : 〈i〉∞ or I : 〈i〉 without introducing an extra variable. This is joint work with Christian Eder10
and Mohab Safey El Din11.

3.2.1 Bayer’s algorithm
If I is homogeneous, i.e. it is spanned by a set of homogeneous polynomials, Bayer’s algorithm [4]

allows one to compute I : 〈xn〉∞. If it is not, then one can still recover a Gröbner basis of I : 〈xn〉∞
using Algorithm 3.1, still called Bayer’s algorithm:

Input: A list of polynomials f1, . . . , fs spanning an ideal I ⊆ K [x].
Output: A ≺drl-Gröbner basis of I : 〈xn〉∞.

1 Homogenize f1, . . . , fs with variable x0 to obtain f h1 , . . . , f hs .

2 Compute G , the ≺drl-Gröbner basis of
〈
f h1 , . . . , f hs

〉
with xn ≺drl · · · ≺drl x1 ≺drl x0.

3 For each g in G h do
4 While xn | g do g B g /xn .
5 Set x0 to 1 in g .

6 Return G .

Algorithm 3.1: Bayer’s algorithm
When i ≠ xn , one introduces a slack variable xn+1, computes the saturation of I + 〈xn+1 − i〉

w.r.t. xn+1 and eliminate xn+1.
Rabinowitsch’s trick and Bayer’s algorithm constitute the state-of-the-art algorithms for comput-

ing saturations of ideals. Note that they do not take advantage of intermediate data obtained during
the Gröbner basis computations since these are used as black boxes.

3.2.2 F4SAT, an algorithm for saturated ideals
After the first step of the F4 algorithm in degree d , if no new polynomial of degree at most d is

discovered, then the current Gröbner basis G is a d -truncated ≺-Gröbner basis of I . Therefore, we
have a partial information on the staircase of I , and thus of I : 〈i〉∞, for ≺ since we know monomials
that are outside of this staircase. The F4SAT algorithm searches for polynomials in I : 〈i〉∞ whose
supports are entirely included in the given staircase using the fa­ that

(
I : 〈i〉∞

)
: 〈i〉 = I : 〈i〉∞.

If new polynomials are found, they are added to G and the necessary critical pairs are added to
the set of pairs to handle. Then, we resume the F4 algorithm.

The search of new polynomials is done through linear algebra computations. From a d -truncated
Gröbner basis of an ideal J , I ⊆ J ⊆ I : 〈i〉∞, we compute a bound B on the degree of the
polynomials in the reduced Gröbner basis of J : 〈i〉∞ = I : 〈i〉∞ using the ComputeMaxDegree
subroutine based on [79, Sec. 4.5, Cor.]. Then, we compute NF (fi,G,≺) for all monomials f in
the associated staircase S of degree at most B . Finally, we search for vanishing linear combinations
thereof. Indeed, if

NF (si,G,≺) −
∑
f∈Sd
f≺s

cf NF (fi,G,≺) = 0,

then
(
s −∑

f∈Sd ,f≺s cff
)
i ∈ J . This yields Algorithm 3.2.

Theorem 3.3 ([15, Th. 3.1]): Let f1, . . . , fs be a generating family of an ideal I ⊆ K [x], i ∈ K [x] be
a polynomial and ≺ be a total degree monomial order. Then, Algorithm 3.2 terminates and returns

10Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
11Sorbonne Université

21

Chapter 3. Computing Gröbner bases
3.2. Saturated and colon ideals

Input: A list of polynomials f1, . . . , fs spanning an ideal I ⊆ K [x], a polynomial i ∈ K [x] and a total
degree monomial order ≺.

Output: A ≺-Gröbner basis Gof I : 〈i〉∞.
1 GB

{
f1, . . . , fs

}
.

2 b B true // tracks if Ghas changed

3 P B
{
(fi , f j)

�� 1 ≤ i < j ≤ s
}

4 While P ≠ ∅ do
5 Choose a subset L of P .
6 P B P \ L.
7 L B SymbolicPreprocessing(L,G).
8 L B LinearAlgebra(L).
9 For h ∈ L with lm≺ (h) ∉ 〈lm≺ (G)〉 do
10 P B

{
(g ,h)

��g ∈ G
}
.

11 GB G∪ {h}.
12 b B true.

13 If b then // new information on
〈
lm≺ (I : 〈i〉∞)

〉
14 b B false.
15 B B ComputeMaxDegree(G, i). // bounds the degrees in the sought Gröbner basis
16 For f ∉ lm≺ (G) and degf ≤ B do
17 qf B NF (fi,G,≺).
18 Build the matrix M whose rows are given by polynomials qf and columns by each monomials

in their support in decreasing order.
19 Compute a lower triangular basis K of the left-kernel of M .
20 For each k ∈ K do
21 h B

∑
f∉〈lm≺ (G) 〉 kff. // the polynomial whose ve­or of coe�cients is k

22 P B
{
(g ,h)

�� g ∈ G
}
.

23 GB G∪ {h}.
24 b B true.

25 Return G.

Algorithm 3.2: F4SAT

22

Chapter 3. Computing Gröbner bases
3.2. Saturated and colon ideals

a ≺-Gröbner basis of I : 〈i〉∞.
Example 3.4: Let us call the F4SAT algorithm on the reduced ≺drl-Gröbner basis Gdrl =

{
(x22 −

x1 + x2) (x21 + x
2
2 − 1), (x

2
1 − x1x2 − x

2
2 + x1 − x2) (x

2
1 + x

2
2 − 1)

}
and i = x41 − x

4
2 − 2x

2
1 + 1 in order to

compute the reduced ≺drl-Gröbner basis of I : 〈i〉∞ with

I =
〈
(x42 + x

3
2) (x

2
1 + x

2
2 − 1), (x1 − x

2
2 − x2) (x

2
1 + x

2
2 − 1)

〉
.

From Gdrl, we have the staircase Sdrl = {1,x2,x1,x22 ,x1x2,x
2
1 ,x

3
2 ,x1x

2
2 ,x

2
1x2,x

3
1 ,x

4
2 ,x1x

3
2 ,x

3
1x2,x

5
2 ,x1x

4
2 ,

x62 ,x1x
5
2 , . . .}. Since this staircase is infinite, we first need a degree bound for the considered mono-

mials in Sdrl. Let us choose the maximal degree in Gminus one, i.e. 3.
The normal form of hi w.r.t. G and ≺drl, where h of degree 3 has its support in Sdrl is 0, if,

and only if,

h = c3 (x22 − x1 + x2) + c5 (x
2
1 − x1x2) + c6 (x

3
2 − x1x2 + x1 − x2) + c7x1x

2
2 + c8x

2
1x2 + c9x

3
1 .

Thus, we have found new polynomials in I : 〈i〉∞. We build the ideal I ′, spanned by I and these
polynomials, and compute its reduced ≺drl-Gröbner basis G′drl =

{
x22 − x1 + x2,x

2
1 − x1x2

}
. The new

associated staircase is S ′drl = {1,x2,x1,x1x2}, which is now finite.
The normal form of hi w.r.t. G′drl and ≺drl, where h has its support in S ′drl, is 0 if, and only if,

h = c3 (x1x2 − x1 + x2).

We have found a new polynomial x1x2 − x1 + x2 and compute the reduced ≺drl-Gröbner basis
Hdrl =

{
x22 − x1 + x2,x1x2 − x1 + x2,x

2
1 − x1 + x2

}
of J = I ′ + 〈x1x2 − x1 + x2〉. The new associated

staircase is Tdrl = {1,x2,x1} and we cannot find a nonzero polynomial h with support in Tdrl
whose normal form w.r.t. Hdrl and ≺drl is 0. Therefore Hdrl is the reduced ≺drl-Gröbner basis of
I : 〈i〉∞ = J =

〈
x32 ,x1 − x

2
2 − x2

〉
.

In Table 3.2, we present timings for di�erent systems with coe�cients inℚ. The F4SAT algorithm
is implemented in msolve with a multi-modular approach using a tracer. This tracer requires two
learning phases modulo two di�erent primes before being able to run its apply phase modulo
subsequent primes. We compare it with Rabinowitsch’s trick implemented in msolve either with
probabilistic linear algebra or with the tracer, and with Maple and Singular. Most of the time
in the first learning phase is due to the last saturation step, i.e. checking in line 19 that no new
polynomial are found in the saturated ideal. As we can see, the apply phase of F4SAT is the fastest
implementation by an order of magnitude. The SOS systems are obtained by making a polynomial
f as the sum of the squares of p random polynomials of degree d . Then, we consider the ideals〈
f , mf

mx1
, . . . ,

mf
mxs

〉
or

〈
mf
mx1

, . . . ,
mf
mxs

〉
, for s ≤ n − 1, saturated by mf

mxn
.

3.2.3 Sparse-FGLM-colon, an algorithm for colon ideals
For an ideal I =

〈
f1, . . . , fs

〉
and a polynomial i, the colon ideal of I by i is

I : 〈i〉 = {h |hi ∈ I } .

This ideal contains I and is included in I : 〈i〉∞ defined in Se­ion 3.2.2. In fa­, there exists an
integer N such that I :

〈
iN

〉
= I :

〈
iN +1

〉
= · · · = I : 〈i〉∞, see [41, Chap. 4].

Let Gdrl be the reduced ≺drl-Gröbner basis. We assume that the colon ideal I : 〈i〉 is zero-
dimensional, thus i ∉ I , and that its reduced ≺lex-Gröbner basis Hlex is in shape position: There
exist h1, . . . ,hn ∈ K [xn], with deghk < deghn for 1 ≤ k ≤ n − 1, such that

Hlex = {hn (xn),xn−1 − hn−1 (xn), . . . ,x1 − h1 (xn)} .

With my co-authors, Christian Eder12 and Mohab Safey El Din13, we designed a new algorithm
in [15] for computing Hlex from Gdrl, even when I is positive-dimensional. Our approach is to
build a matrix M̃xn so that applying Wiedemann’s algorithm allows us to recover Hlex, similarly to
the Sparse-FGLM algorithm [52, 53], see also Algorithms 2.2 and 2.3.

12Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
13Sorbonne Université

23

Chapter 3. Computing Gröbner bases
3.2. Saturated and colon ideals

Sys-SOS
F4SAT msolve msolve Maple

Singular
(learn1) (learn2) (apply) (prob.) (learn) (apply) (prob.)

positive-dimensional to 0-dimensional
Steiner 115 134 67.2 204 614 153 239 3,642
d3-n6-p3 82.4 127 56.7 51.5 191 32.6 67.4 8,226
d3-n6-p4 1,592 1,776 810 2,123 5,284 1,720 3,585 –
d3-n6-p5 9,646 7,032 3,321 7,485 16,711 6,466 7,226 –
d4-n6-p2 720 1,581 536 120 520 60.6 135 24,532
d4-n6-p3 45,749 38,657 18,123 40,646 190,009 35,835 38,466 –
d2-n7-p6 18.9 41.85 10.8 31.8 101 19.5 41.4 1,773
d3-n7-p2 28.2 45.2 23.9 5.02 11.6 2.63 8.09 961
d3-n7-p3 1,462 2,688 937 953 5,851 875 1,108 –
d3-n7-p4 48,907 65,035 22,844 40,383 248,889 34,670 39,729 –
d2-n8-p4 2.68 5.04 1.89 3.55 10.1 2.02 4.12 500
d2-n8-p5 47.7 171.9 37.1 62.9 270 45.3 48.8 8,333
d2-n8-p6 287 820 169 420 1,599 301 350 54,567
d2-n8-p7 1,018 1,841 442 907 3,198 683 871 –
d3-n8-p2 300 585 266 32.4 105 20.4 50.7 9,812
d3-n8-p3 18,152 42,436 11,285 15,502 71,595 8,478 15,182 –

positive-dimensional to 1-dimensional
d3-n6-p2 1.31 0.41 0.31 0.77 2.40 0.40 1.12 52.2
d3-n6-p3 43.7 5.55 1.84 25.2 142 16.6 35.4 2,902
d3-n6-p4 533 53.1 19.7 171 882 126 223 39,501
d3-n6-p5 1,863 184 104 276 1,145 183 394 42,854
d4-n6-p2 972 107 77 253 1,176 191 394 28,043
d4-n6-p3 31,101 1,316 596 7,444 43,803 6,336 8,817 –
d2-n7-p6 5.13 1.82 0.77 3.01 15.3 1.84 4.95 443
d3-n7-p2 13.4 3.61 2.23 9.59 54.1 5.29 12.5 872
d3-n7-p3 1,263 164 32.4 533 3,647 406 984 –
d3-n7-p4 22,296 2,235 469 6,605 47,286 5,348 10,001 –
d3-n7-p5 126,006 137,724 2,881 29,740 204,718 22,925 33,635 –
d2-n8-p5 11.7 8.37 1.79 15.1 99.9 7.92 20.4 3,972
d2-n8-p6 95.7 63.7 10.5 54.3 387 33.8 63.1 15,950
d2-n8-p7 265 79.6 22.2 81.9 556 47.2 122 15,125
d3-n8-p2 228 276 18.1 98.3 787 71.7 135 15,252
d3-n8-p3 25,593 3,716 471 11,050 107,744 8,984 13,705 –

positive-dimensional to 2-dimensional
d2-n8-p5 620 157 43 147 663 87 166 26,746
d2-n9-p4 82 119 28 35 139 20 50 4,563
d2-n9-p5 2,889 1,617 448 924 4574 726 735 –
d2-n9-p6 40,352 8,290 2,155 8,775 40,921 7,010 6,969 –
d2-n10-p4 202 472 69 101 530 64 142 14,237
d2-n10-p5 11,347 11,512 2,801 3,373 19,465 2,710 3,148 –

positive-dimensional to 3-dimensional
d2-n9-p4 284 100 22 75 325 46 77 10,014
d2-n9-p5 5,157 758 201 747 3,422 333 845 –
d2-n10-p4 738 481 108 180 981 109 185 28,688
d2-n10-p5 66,845 12,082 2,141 25,707 60,054 23,100 6,885 –

Table 3.2: Timings in seconds, ≺drl-Gröbner bases of saturated ideals.

The main ideal is twofold. First, the Sparse-FGLM algorithm builds a sequence u from Gdrl,
hence unless I is not Gorenstein and the initial terms of u are not random enough, IC (u) = I .
Then, we create a new sequence v =

(
Eval

(
ix i ,u

))
i∈ℕn and prove that it satisfies

IC (v) = IC (u) : 〈i〉 = I : 〈i〉 .

Finally, it remains to recover the relations satisfied by v . This is where the zero-dimensionality
assumption appears, we know that only finitely many monomials m are linearly independent in
K [x]/(I : 〈i〉), which is equivalent to saying that finitely many polynomials NF (mi,Gdrl,≺drl) are
linearly independent in K [x]/I . Thus, we can work in a finite-dimensional subspaceW of K [x]/I
spanned by a set of monomials that allows us to determine Hlex.

The shape position assumption on Hlex is of upmost importance to mimic the Sparse-FGLM
algorithm by building only one matrix, related to the multiplication by xn . SinceW need not be
stable by the multiplication by xn , we consider the map multiplication by xn composed with the
proje­ion onW . AssumingW is large enough, this new map, and its associated matrix, allow us
to determine Hlex by tweaking Algorithm 2.2 as follows in Algorithm 3.3.
Theorem 1.11 (see also [15, Th. 4.12]): Let I be a positive-dimensional ideal of K [x], let Gdrl be its
reduced ≺drl-Gröbner basis and Sdrl be the associated staircase. Let i ∈ K [x] \ I such that I : 〈i〉
is zero-dimensional of degree D ′ and in shape position.

Let Σ be a finite staircase of size N containing suppNF
(
x ini,Gdrl,≺drl

)
for all i ∈ ℕ, where

NF
(
f ,G ,≺

)
is the normal form of f w.r.t. G and ≺.

Let t be the number of monomials f in Σ such that xnf ∈ lm≺drl (Gdrl) and let u be the number
of monomials f in Σ such that xnf ∈

〈
lm≺drl (I)

〉
\ lm≺drl (Gdrl).

Then, for a generic choice of ve­or r ∈ KN , Algorithm 3.3 terminates and returns the reduced
≺lex-Gröbner basis of I : 〈i〉. To do so, it requires at most u + n normal form computations w.r.t.
Gdrl and ≺drl plus O ((t + u + n)ND ′) operations in K.

As a pra­ical optimization, we show that any zero column of the matrix M̃ can be removed,
together with its associated row. Repeating this process can lead to considering a much smaller

24

Chapter 3. Computing Gröbner bases
3.2. Saturated and colon ideals

Input: The reduced ≺drl-Gröbner basis Gdrl of a generic ideal, a polynomial i ∈ K [x], and a finite

staircase Σ of size N containing suppNF
(
xkni,Gdrl,≺drl

)
for all k ∈ ℕ.

Output: The reduced ≺lex-Gröbner basis of I : 〈i〉, if it is in shape position.
1 Build the matrix M̃ of the multiplication by xn followed by the proje­ion on the space spanned by Σ.
2 Pick r ∈ KN a row-ve­or at random.
3 Build > the column-ve­or of coe�cients of i restri­ed to Σ.
4 For k from 1 to n − 1 do
5 Build 7k the column-ve­or of coe�cients of NF (xki,Gdrl,≺drl) restri­ed to Σ.

6 Compute (w (0)i)0≤i<2N , (w (1)i)0≤i<N , . . . , (w (n−1)i)0≤i<N) with Algorithm 2.2 called on
M̃ ,r ,>,71, . . . ,7n−1.

7 hn ← Berlekamp–Massey(w (0)0 , . . . ,w (0)2D−1), D
′ B deghn .

8 If NF (hni,Gdrl,≺drl) ≠ 0 then Return “Bad ve­or”.
9 Compute h1 B WD ′−1,1xN −1n + · · · + W0,1, . . . ,hn−1 B WD ′−1,n−1xN −1n + · · · + W0,n−1 with Algorithm 2.3

called on (w (0)i)0≤i<2D ′−1, (w
(1)
i)0≤i<D ′ , . . . , (w

(n−1)
i)0≤i<D ′).

10 For k from 1 to n − 1 do
11 If NF ((xk − hk (xn))i,Gdrl,≺drl) ≠ 0 then Return “Not in shape position”.

12 Return {hn (xn),xn−1 − hn−1 (xn), . . . ,x1 − h1 (xn)}.
Algorithm 3.3: Sparse-FGLM-colon

submatrix. In Table 3.3, we give an example where a 81 068 × 81 068-matrix is replaced by a
32 184 × 32 184-submatrix for instance.
Example 3.5: Let G′drl =

{
x22 − x1 + x2,x

2
1 − x1x2

}
be the ≺drl-Gröbner basis of the ideal I ′ and

i = x41 −x
4
2 −2x

2
1 +1. We build a sequence u with random initial coe�cients, e.g. u0,0 = −4, u1,0 = 10,

u0,1 = −3 and u1,1 = −8, thanks to G′drl:

u =

...
...

...
...

... . .
.

5 5 0 0 0 · · ·
4 −5 0 0 0 · · ·
3 5 0 0 0 · · ·
2 −13 0 0 0 · · ·
1 10 −8 0 0 · · ·
0 −4 −3 −8 0 · · ·

����i2
i1

0 1 2 3 · · ·

We now consider the auxiliary sequence v =

(
Eval

(
x i11 x

i2
2 i,u

))
(i1,i2) ∈ℕ2

, i.e. vi1,i2 = ui1+4,i2 − ui1,i2+4 −

2ui1+2,j + ui1,i2 for all (i1,i2) ∈ ℕ2, to find the ≺lex-Gröbner basis Hlex of I ′ : 〈i〉 = J ,

v =

...
...

...
...

...
... . .

.

4 0 0 0 0 0 · · ·
3 0 0 0 0 0 · · ·
2 −8 0 0 0 0 · · ·
1 5 −8 0 0 0 · · ·
0 17 −3 −8 0 0 · · ·

����i2
i1

0 1 2 3 4 · · ·

By Example 2.11, we have Hlex =
{
x32 ,x1 − x

2
2 − x2

}
.

In Table 3.3, we compare Algorithm 3.3 for computing a ≺lex-Gröbner basis of the zero-di-
mensional colon ideal I : 〈i〉 = I : 〈i〉∞ for ≺lex with Maple [9] using the Groebner:-Basis
command followed by the Groebner:-FGLM command. The considered input generators are I =〈
f , mf

mx1
, . . . ,

mf
mxn−1

〉
and i =

(
mf
mxn

)M
for M large enough, with f the sum of p squares of polynomials

of degree d in n variables. The columns #Σ and #Σ′ correspond to the size of the set Σ before and

25

Chapter 3. Computing Gröbner bases
3.3. Parametrizations of the radical

after redu­ions by removing the zero columns, while column D ′ gives the degree of the saturated
ideal. Whether it is between #Σ and #Σ′ or between #Σ′ and D ′, we can observe ratios going up
to around 5. Therefore, it is clear that the algorithm would not be as e�cient if one were to work
with Σ dire­ly. Still, it would be even more beneficial to reduce further the size of Σ′ to be as close
as possible to D ′.

For msolve, we give proportions of time spent to compute the ≺drl-Gröbner basis of I with F4,
to compute the normal form of corre­ power of i, to build the multiplication matrix, including
the computation of extra normal forms, and then to compute the ≺lex-Gröbner basis. We also give
the time for Maple in seconds using Rabinowitsch’s trick [90] and give the time for computing a
≺drl-Gröbner basis and then for the change of order step to obtain a ≺lex-Gröbner basis.

We can notice that the Sparse-FGLM-colon algorithm approach is most e�cient when either
the change of order step is the most time-consuming or when the ratios between #Σ, #Σ′ and D ′

are the smallest. In the former case, the algorithm benefits from the regularity of the computation
of the reduced ≺drl-Gröbner basis of I compared to the one of I + 〈1 − ti〉 in the Rabinowitsch’s
trick approach. In the latter case, when Σ or Σ′ are large compared to D ′, the overhead in the
linear algebra part becomes overwhelming. Clearly, in a multi-modular approach, one would want
to consider an even smaller subset of Σ′ to perform the computations, once D ′ is known. All in all,
we can see speed-ups that are significant and sometimes higher than 10.

sizes msolve Maple Groebner
#Σ #Σ′ D′ F4 Sat. order Mat. FGLM Total Basis FGLM Total

d2-n8-p5 5746 2636 1516 60% 20% 7% 13% 21 96% 4% 56
d2-n8-p6 7901 5100 3756 35% 9% 6% 50% 140 88% 12% 350
d2-n8-p7 8841 7340 6444 33% 9% 6% 52% 320 79% 21% 890
d2-n9-p5 11748 4548 2308 56% 14% 8% 22% 150 68% 32% 410
d2-n9-p6 18829 10372 6788 40% 7% 8% 45% 1200 91% 9% 3200
d2-n9-p7 24332 17540 13956 33% 5% 7% 55% 4400 83% 17% 12000
d2-n10-p4 9724 1996 652 67% 27% 5% 1% 42 99% 1% 68
d2-n10-p5 22408 7372 3340 52% 11% 9% 28% 900 97% 3% 1200
d2-n10-p6 40946 19468 11404 42% 7% 9% 42% 9900 92% 8% 17000
d3-n5-p3 3034 1320 672 39% 33% 9% 19% 1.1 97% 3% 4
d3-n5-p4 3750 2616 1968 27% 27% 11% 35% 4.3 95% 5% 43
d3-n6-p3 10773 3792 1632 60% 11% 8% 21% 50 96% 4% 77
d3-n6-p4 16271 9192 5952 37% 5% 6% 52% 500 89% 11% 1300
d3-n6-p5 18897 14862 12432 12% 5% 6% 77% 1200 82% 18% 5600
d3-n7-p3 35117 10320 3840 52% 9% 8% 31% 1300 95% 5% 1100
d3-n7-p4 62104 29760 16800 19% 4% 11% 66% 12000 91% 9% 31000
d4-n5-p3 15881 7560 4104 41% 6% 5% 48% 200 94% 6% 620
d4-n5-p4 19274 14088 11016 32% 4% 4% 60% 1000 86% 14% 4700
d4-n6-p2 41189 8424 1944 74% 5% 9% 12% 590 97% 3% 224
d4-n6-p3 81068 32184 14904 16% 3% 12% 69% 11000 92% 8% 27000
d5-n4-p3 7235 4540 3040 13% 24% 11% 52% 9 93% 7% 180
d5-n5-p3 54787 27360 15360 8% 4% 7% 81% 5100 92% 8% 22000

Table 3.3: Timings in seconds, ≺lex-Gröbner bases, positive-to-0-dimensional case.

3.3 Parametrizations of the radical
Proposition 3.6 (see also [15, Prop. 4.17]): Let I be a positive-dimensional ideal of K [x], let Gdrl
be its reduced ≺drl-Gröbner basis and Sdrl be the associated staircase. Let i ∈ K [x] \ I such that
I : 〈i〉 is zero-dimensional, let Hlex be its reduced ≺lex-Gröbner basis and let hn ∈ Hlex ∩ K [xn].

If
√
I : 〈i〉 is in shape position, then one can compute its reduced ≺lex-Gröbner basis calling the

Sparse-FGLM-colon algorithm with the following modifications:
(1) On line 7, hn is the squarefree part of the polynomial returned by the Berlekamp–Massey

algorithm.

(2) On line 9, hk is obtained thanks to [66, Algo. 2], see also [29].

In pra­ice, when an ideal J is not in shape position, it is not easy to check that
√
J is. There-

fore, using the following lemma is the cornerstone of our probabilistic verification algorithm in
msolve [13, 14] when J is not in shape position but its radical might be, see [13, Sec. 4.4].
Lemma 1.12 (see also [15, Lem. 4.15]): Let I be a zero-dimensional ideal of K [x]. Let _ ∈ K̄ be
generic. Then, for 1 ≤ k ≤ n, I = I : 〈xk + _〉.

We proceed as follows.
(1) Compute the polynomials xk − gk (xn) in

√
J for 1 ≤ k ≤ n − 1, with deg gk minimal.

(2) Compute the polynomials xk−g ′k (xn) in
√
J : 〈xk + _〉 for _ picked at random and 1 ≤ k ≤ n−1,

26

Chapter 3. Computing Gröbner bases
3.3. Parametrizations of the radical

with deg g ′k minimal.

(3) Check whether gk = g ′k for 1 ≤ k ≤ n − 1.
By Lemma 1.12, for a generic _ , J = J : 〈xk + _〉, hence both radical ideals are the same. Further-
more, if they are in shape position, then gk = g ′k for 1 ≤ k ≤ n −1. Therefore, any discrepancy must
come from the fa­ that

√
J is not in shape position and the polynomials xk − gk (xn) and xk − g ′k (xn)

are meaningless.

27

Chapter 3. Computing Gröbner bases
3.3. Parametrizations of the radical

28

Chapter 4. Guessing Gröbner bases

Chapter 4
Guessing Gröbner bases

This chapter is devoted to guessing Gröbner bases of ideals of C-relations of sequences. That is,
given a finite number of terms of a sequence, the goal is to discover the linear recurrence relations,
given by polynomials, satisfied by these few terms.

In some applications, like the Gröbner bases change of order one, see Se­ions 2.1.2 and 3.1, or
in coding theory [23, 65, 96], a bound on the sizes of the relations is known. Therefore, testing the
relations with su�ciently enough terms ensures that these are satisfied by the whole sequence. In
other cases, like in combinatorics or number theory [3, 25, 30, 31] no a priori bound is known. In
which case, one must prove afterwards the validity of the relations.

We first recall how to guess C-relations for uni-indexed sequences using the seminal Berlekamp–
Massey algorithm [8, 77] and its faster variants [34] in Se­ion 4.1. Then, we describe extensions of
this algorithm to multi-indexed sequences, where my contributions lie, in Se­ion 4.2.

This chapter is based on joint work with Brice Boyer1, Jean-Charles Faugère2,3 and Mohab Safey
El Din4 [11, 12, 17, 19, 21].

In all this chapter, multi-Hankel matrices will be used. These generalize the notion of Hankel
matrices to multi-indexed as follows: given two sets of monomials T1 and T2 in x and a sequence u ,

HT1,T2 =
©­­­«
· · · x j ∈T2 · · ·

...
. . .

... . .
.

x i ∈T1 · · · Eval
(
x ix j ,u

)
· · ·

... . .
. ...

. . .

ª®®®¬
4.1 Uni-indexed sequences and the Berlekamp–Massey algo-

rithm
Let u = (ui)i ∈ℕ be a one-dimensional sequence that we assume C-finite. The goal is to find the

unique polynomial Gxd = x
d + Wxd−1xd−1 + · · · + W1 with d minimal such that IC (u) =

〈
Gxd

〉
. Though,

in general d is not known and only the first N terms of u : u0, . . . ,uN −1 are known. Therefore, we
aim to guess Gxd using the fa­ that it must satisfies

Eval
(
Gxd ,u

)
= · · · = Eval

(
Gxd x

N −d−1,u
)
= 0. (4.1)

4.1.1 Matrix viewpoints
Requiring that d is minimal and W1, . . . , Wxd−1 are such that Equation (4.1) is satisfied is equivalent

to looking for the largest colle­ion of ve­ors

©­­­­­­«

W1
...

Wxd−1
1
0
0
...
0

ª®®®®®®¬
,

©­­­­­­«

0
W1
...

Wxd−1
1
0
...
0

ª®®®®®®¬
, . . . ,

©­­­­­­«

0
0
...
0
W1
...

Wxd−1
1

ª®®®®®®¬
in the kernel of

H{1},{1,...,xd−1,xd ,xd+1,...,xN −1 } =
(1 · · · xd−1 xd xd+1 · · · xN −1

1 u0 · · · ud−1 ud ud+1 · · · uN −1
)
.

1former Post-doc at Sorbonne Université
2INRIA
3CryptoNext Security
4Sorbonne Université

29

Chapter 4. Guessing Gröbner bases
4.1. Uni-indexed sequences and the Berlekamp--Massey algorithm

Equivalently, one also looks for the smallest integer d such that

HT�xN −d−1 ,T�xd

©­­­­«
W1
...

Wxd−1

1

ª®®®®¬
=

©­­­­«

1 · · · xd−1 xd

1 u0 · · · ud−1 ud
x u1 · · · ud ud+1
...

...
...

...

xN −d−1 uN −d−1 · · · uN −2 uN −1

ª®®®®¬
©­­­­«
W1
...

Wxd−1

1

ª®®®®¬
= 0,

where T�m denotes the set of all monomials less or equal to m for ≺, the only monomial order on
K [x].

With this modeling of the problem, we are led to a polynomial viewpoint.

4.1.2 Polynomial viewpoint
The Hankel matrix-ve­or produ­ can be extended into

©­­­­­­­­­­­«

u0 · · · ud−1 ud
u1 · · · ud ud+1
...

...
...

uN −d−1 · · · uN −2 uN −1
uN −d · · · uN −1 0
... . .

.
. .
. ...

uN −1 0 · · · 0

ª®®®®®®®®®®®¬

©­­­­«
W1
...

Wxd−1

1

ª®®®®¬
=

©­­­­­­­­­­­«

0
0
...

0
rxd−1
...

r1

ª®®®®®®®®®®®¬
, (4.2)

representing the produ­ of the two polynomials PT�xN −1
=

N −1∑
i=0

uixN −i−1, given by the sequence

terms, and Gxd = xd + ∑d−1
k=0 Wxk x

k , giving the C-relation, modulo B = xN . This can rewritten as
follows, there exists Q ∈ K [x] such that

Q · xN +Gxd
N −1∑
i=0

uixN −i−1 = R, degR < d , (4.3)

which is a Bézout relation between xN and PT�xN −1
, where we ask that the degree of the right-hand

side member, or equivalently its leading term, is less than that of the cofa­or of PT�xN −1
.

The main advantage of this viewpoint is that we can now compute d andGxd using the extended
Euclidean algorithm on xN and PT�xN −1

and stop the algorithm when a Bézout relation satisfies
Equation (4.3).

This viewpoint gives rise to Algorithm 4.1, which is a variant of the BM algorithm and a modified
extended Euclidean algorithm. While, as written, its complexity is quadratic in N , one can use fast
Euclidean algorithm [34] to improve the time complexity to O (M(n) logn).

Input: u0, . . . ,uN −1, the first N terms of a sequence u .
Output: A polynomial C of degree d , with d minimal such that Eval

(
Cxi ,u

)
= 0 for all

0 ≤ i ≤ N − d − 1.
1 m B 1/x, Lm B

[
xN ,0

]
.

2 m′ B 1, Lm′ B
[
N −1∑
i=0

uixN −i−1,1
]
.

3 While degLm′,2 ≤ degLm′,1 do
4 Q B Quo(Lm,1,Lm′,1).
5 Lm′ lm≺ (Q) B Lm −QLm′ .
6 m,m′ B m′,m′ lm≺ (Q).
7 Return Lm′,2.

Algorithm 4.1: Berlekamp–Massey/ Extended Euclidean algorithm

30

Chapter 4. Guessing Gröbner bases
4.1. Uni-indexed sequences and the Berlekamp--Massey algorithm

Example 4.1: Let us consider the sequence w = (wi)i ∈ℕ,

w =
i 0 1 2 3 4 5 6 7 8 · · ·
−4 10 −13 5 −5 5 −5 5 −5 · · ·

and assume N = 9.
With the matrix viewpoint, the kernel of

H{1},{1,x ,x2,x3,x4,x5,x6,x7,x8 } =
(1 x x2 x3 x4 x5 x6 x7 x8

1 −4 10 −13 5 −5 5 −5 5 −5)
,

gives us the colle­ion of ve­ors
©­­­­«
0
0
0
1
1
0
0
0
0

ª®®®®¬
,

©­­­­«
0
0
0
0
1
1
0
0
0

ª®®®®¬
,

©­­­­«
0
0
0
0
0
1
1
0
0

ª®®®®¬
,

©­­­­«
0
0
0
0
0
0
1
1
0

ª®®®®¬
,

©­­­­«
0
0
0
0
0
0
0
1
1

ª®®®®¬
, hence IC (w) =

〈
x4 + x3

〉
.

Equivalently, we have that

H{1,x ,x2,x3,x4 },{1,x ,x2,x3,x4 }

©­­­­­«
0
0
0
1
1

ª®®®®®¬
=

©­­­­­«

1 x x2 x3 x4

1 −4 10 −13 5 −5
x 10 −13 5 −5 5
x2 −13 5 −5 5 −5
x3 5 −5 5 −5 5
x4 −5 5 −5 5 −5

ª®®®®®¬
©­­­­­«
0
0
0
1
1

ª®®®®®¬
= 0

but

H{1,x ,x2,x3,x4,x5 },{1,x ,x2,x3 } =

©­­­­­­­«

1 x x2 x3

1 −4 10 −13 5
x 10 −13 5 −5
x2 −13 5 −5 5
x3 5 −5 5 −5
x4 −5 5 −5 5
x5 5 −5 5 −5

ª®®®®®®®¬

has full rank, ensuring that no relation given by a polynomial of degree 3 exists.
With the polynomial viewpoint, we perform the extended Euclidean algorithm on x9 and PT�x8

and find

L1/x = [x9,0]
L1 = [−4x8 + 10x7 − 13x6 + 5x5 − 5x4 + 5x3 − 5x2 + 5x − 5,1]
Lx = [24x7 − 55x6 + 15x5 − 15x4 + 15x3 − 15x2 + 15x − 25,2x + 5]
Lx2 = [−1 237x6 + 285x5 − 285x4 + 285x3 − 285x2 + 45x − 595,48x2 + 110x + 119]
Lx3 = [−2 560x5 + 2 560x4 − 2 560x3 − 3 625x2 + 2 200x − 1 600,

1 237x3 + 285x2 − 120x + 320]
Lx4 = [−5x3,x4 + x3] = [Rx4 ,Gx4],

and Gx4 = x
4 + x3 is a valid relation.

Remark 4.2: The BM algorithm always returns a non-zero relation. If no pair LxX = [RxX ,GxX]
satisfies the requirements, then it will return a pair Lxd with lm≺ (Gxd) � xN −1. From a matrix
viewpoint, it returns an element of the kernel of the empty matrix H∅,T�xd .

31

Chapter 4. Guessing Gröbner bases
4.2. Extensions to multi-indexed sequences

4.2 Extensions to multi-indexed sequences
This se­ion is devoted to several extensions of the uni-indexed case to the multi-indexed one.

It is based on several joint works with Brice Boyer5, Jean-Charles Faugère6, 7 and Mohab Safey El
Din8.

A first extension to the BM algorithm was proposed by Sakata for bi-indexed sequences [93] and
then was extended to n-indexed sequences [95, 97]. This is the so-called Berlekamp–Massey–Sakata
(BMS) algorithm. Then, Brice Boyer5, Jean-Charles Faugère6, 7 and I designed a linear-algebra-based
one, called Scalar-FGLM, in [11, 12] and an adaptive variant thereof. Mourrain also proposed an-
other algorithm using a Gram–Schmidt process in [81], called AGbb. Finally Jean-Charles Faugère6, 7
and I on one hand and Mohab Safey El Din8 and I on another hand proposed several extensions
and improvements of the Scalar-FGLM algorithm in [17, 19, 21].

We assume now that ≺ is a monomial order such that for any monomial x i ∈ ℕn , the set T�x i
is finite. Such orders compare first monomials by (weighted) degrees, like ≺drl. While ≺lex is not
such a monomial order, one can choose a monomial order ≺ such that the ≺-Gröbner basis and the
≺lex-Gröbner basis coincide by putting large weights on the first variables. Though, these weights
will depend on the ideal of C-relations one is dealing with.

4.2.1 The BMS algorithm
Given a multi-indexed sequence u = (ui)i∈ℕn , a monomial order ≺ and a monomial M =

xa11 · · · x
an
n , the BMS algorithm extends the BM algorithm by computing ve­ors in the kernel of

a multi-Hankel matrix

H{1},T�M =
(1 · · · M

1 u0,...,0 · · · ua1,...,an
)
,

corresponding to having relations Eval
(
Gmx i ,u

)
= 0, with lm≺ (Gm) = m minimal for the division

and for all x i such that mx i � M .
While the BMS algorithm computes the C-relations using polynomial multiplications by mono-

mials and additions, Jean-Charles Faugère6, 7 and I proposed in [17, 19] the following polynomial
interpretation. This is a key argument towards the design of our algorithm that guesses the C-
relations using polynomial arithmetic, including multivariate polynomial redu­ions, which extends
the univariate Euclidean division.

Guessing a ≺-Gröbner basis of IC (u) comes down to finding the least (for the partial order |)
monomials m1, . . . ,mr � M such that dimkerHT�sk ,T�mk

> 0 with sk the greatest monomial such that
skmk � M for all k , 1 ≤ k ≤ r . Indeed, by the minimality of the leading monomials, if su�ciently
many terms of u are known, these polynomials form a minimal ≺-Gröbner basis of IC (u).

Then, each multi-Hankel matrix-ve­or produ­ can be extended further as in equation (4.2), tak-
ing the multi-Hankel matrixHT�M ,T�mk

and replacing by zero any sequence term ui+ j = Eval
(
x ix j ,u

)
that we do not know, i.e. whenever x ix j � M . This yields the linear system

©­­­­­­­­­­­­­­­«

Eval (1,u) · · · Eval
(
m−k ,u

)
Eval (mk ,u)

Eval (1+,u) · · · Eval
(
1+m−k ,u

)
Eval (1+mk ,u)

...
...

...

Eval (sk ,u) · · · Eval
(
skm−k ,u

)
Eval (skmk ,u)

Eval
(
s+k ,u

)
· · · Eval

(
s+km

−
k ,u

)
0

... . .
. ...

Eval (M ,u) 0 · · · 0

ª®®®®®®®®®®®®®®®¬

©­­­­«
W1
...

Wm−k
1

ª®®®®¬
=

©­­­­­­­­­­­«

0
0
...

0
fM/s+k
...

fM/a

ª®®®®®®®®®®®¬
, (4.4)

where M = lcm(T�M) = xN1
1 · · · x

Nn
n and where, for a monomial `, `− (resp. `+) is its preceding

5former Post-doc at Sorbonne Université
6INRIA
7CryptoNext Security
8Sorbonne Université

32

Chapter 4. Guessing Gröbner bases
4.2. Extensions to multi-indexed sequences

(resp. following) monomial for ≺. Let us notice that Eval
(
s+km

−
k ,u

)
can also be a 0 if s+km

−
k � M and

that, more generally, the gray zeroes need not be diagonally aligned like they are in the univariate
case.

Such produ­ represents the produ­ of the polynomials PT�M =
∑
x i �M ui

M
x i and Gmk = mk +∑

x i ≺mk Wx ix
i modulo B = (xN1

1 , . . . ,xNnn). The requirement for Gmk to encode a valid relation is now
that lm≺ (Rmk) ≺ M

sk
with Rmk = PT�MGmk mod B . To compute these relations, one start with the

pairs L1/xi = [xNii ,0] for all 1 ≤ i ≤ n and L1 = [PT�M ,1]. Then, one computes S-polynomials and
polynomial redu­ions on the first coordinates of the pairs, and report the operations on the second
coordinates of the pairs until finding all pairs Lm = [Rm ,Gm], where the leading monomial of Rm is
small enough for Gm to encode a valid relation, for all m minimal for the partial order |.
Theorem1.13 (see also [19, Th. 1]): Let u be a sequence, ≺ be a weighted degree monomial order and
M be a monomial. Let us assume that the reduced ≺-Gröbner basis G of IC (u) and its associated
staircase S satisfy max(S ∪ lm≺ (G)) � M and for all m � M , s = maxf�M {f | fm � M }, we
have max(S) � s . Then, the variant of the Berlekamp–Massey–Sakata algorithm using polynomial
arithmetic terminates and computes GinO (#S (#S + # G)#T�M) operations in the base field, where
T�M is the set of monomials less or equal to M .

Remark 4.3: As for the BM algorithm, the BMS algorithm will always return a relation Gm with
lm≺ (Gm) = m a pure power in each variable. Therefore, it can returnGm withm � M , corresponding
to a ve­or in the kernel of the empty matrix H∅,T�m .

4.2.2 The Scalar-FGLM algorithm
In [11, 12], Brice Boyer9, Jean-Charles Faugère10, 11 and I designed an algorithm, Scalar-FGLM,

that computes the reduced ≺-Gröbner basis of IC (u) by means of linear algebra. Together with u ,
it takes as an input a set of monomials T , ordered for ≺, and it computes the right kernel of the
multi-Hankel matrix HT ,T . Ve­ors in this kernel can be seen as polynomials in K [x] and these
polynomials with a leading term minimal for the partial order induced by the division are the ones
returned by the algorithm. Furthermore, if T contains the staircase and the leading monomials
of the reduced ≺-Gröbner basis of IC (u), then the Scalar-FGLM algorithm returns this Gröbner
basis.

Input: A sequence u = (ui)i∈ℕn with coe�cients in K, a monomial ordering ≺, a su�ciently large
staircase T and ordered for ≺.

Output: A reduced Gröbner basis of the ideal of C-relations of u .
1 Build the matrix HT ,T .
2 Compute the set S ⊆ T of smallest monomials, for ≺, such that rankHS ,S = rankHT ,T .
3 For all m ∈ T \ S do // stabilize S for the division
4 If ∃s ∈ S such that m | s then S B S ∪ {m}.
5 L B T \ S sorted for ≺.
6 G B ∅.
7 While L ≠ ∅ do
8 m B min≺ L
9 Solve the linear system HS ,S $ +HS ,{g } = 0.

10 G B G ∪ {m +∑
s ∈S Ws s }.

11 Remove m and any of its multiples from L.

12 Return G .

Algorithm 4.1: Scalar-FGLM

The algorithm computes the column rank profile of the matrix HT ,T , that is the set of leftmost
linearly independent columns of the matrix. Since these columns are independent from the previous

9former Post-doc at Sorbonne Université
10INRIA
11CryptoNext Security

33

Chapter 4. Guessing Gröbner bases
4.2. Extensions to multi-indexed sequences

ones, their labels cannot be the leading monomial, for ≺, of any polynomial in the ideal of C-
relations, thus they are in the associated staircase of the reduced ≺-Gröbner basis of this ideal.
Example 4.4: Let

v =

...
...

...
...

...
... . .

.

4 0 0 0 0 0 · · ·
3 0 0 0 0 0 · · ·
2 −8 0 0 0 0 · · ·
1 5 −8 0 0 0 · · ·
0 17 −3 −8 0 0 · · ·

����i2
i1

0 1 2 3 4 · · ·

and assume we want to guess its reduced ≺drl-Gröbner basis knowing that it contains no polynomial
of degree higher than 3. We build the multi-Hankel HT ,T where T contains all the monomials of
degree at most 3 and then determine its column-rank-profile, i.e. the leftmost independent columns,

HT ,T =

©­­­­­­­­­­­­­­­«

1 y x y2 xy x2 y3 xy2 xy2 x3

1 17 5 −3 −8 −8 −8 0 0 0 0
y 5 −8 −8 0 0 0 0 0 0 0
x −3 −8 −8 0 0 0 0 0 0 0
y2 −8 0 0 0 0 0 0 0 0 0
xy −8 0 0 0 0 0 0 0 0 0
x2 −8 0 0 0 0 0 0 0 0 0
y3 0 0 0 0 0 0 0 0 0 0
xy2 0 0 0 0 0 0 0 0 0 0
x2y 0 0 0 0 0 0 0 0 0 0
x3 0 0 0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

.

Clearly, the first 3 columns are independent, then the other columns, labeled with y2, xy , . . . linearly
depend on them. Thus,

{
1,y ,x

}
= Sdrl. The leading monomials of the reduced ≺drl-Gröbner basis

are y2, xy and x2 and we find the polynomials y2 − x + y , xy − x + y and x2 − x + y .
The polynomial viewpoint presented in Se­ion 4.2.1 for the BMS algorithm is in fa­ more

general. Taking the same notation as in Se­ion 4.2.1, consider the more subtle condition for a
relation to be valid: the leading monomial of Rm , after discarding some monomials, is su�ciently
small. Then, the polynomial viewpoint allows one to compute ve­ors in the kernel of a more
general multi-Hankel, as those encountered in the Scalar-FGLM algorithm. We refer the reader
to [17, 19] for more details.

When the nonzero terms of the sequence all lie in a cone C, we can decide to restri­ the
constru­ion of the multi-Hankel matrix to monomials in the associated algebra, i.e. the set of
monomials T(C) =

{
x i

�� i ∈ C
}
. In that setting, instead of guessing classical ≺-Gröbner bases, the

guessed polynomials form a ≺-sparse Gröbner basis, as defined in [7, 56].
Theorem 4.5 (see also [21, Th. 3.2]): Let C be cone which is also a submonoid of ℕn . Let ≺ be a
monomial order on the monomials in x . Let T ⊆ T(C) be a set of monomials stable by division.

Let u be a C-finite sequence such that IC (u) has a reduced ≺-sparse Gröbner basis Gwith support
in T . Then, the Scalar-FGLM algorithm called on u , T and ≺ computes G.

4.2.3 Adaptive algorithms
In many applications, including the change of order one when the ideal is not in shape posi-

tion, computing sequence terms is expensive so that building such a large multi-Hankel matrix is
prohibitive. In [11, 12], my co-authors and I proposed an adaptive algorithm that starts with a
1 × 1-matrix given by T = {1}. Then, it makes it grow by adding a monomial in T . If the rank of
the matrix grows, then we know that this new monomial is in the staircase of the sought Gröbner
basis. Otherwise, we have guessed a polynomial in the target Gröbner basis.

This approach is similar to the original FGLM algorithm, though we might find fake C-relations
when the first terms of the sequence are not generic.

34

Chapter 4. Guessing Gröbner bases
4.3. Benchmarks

5 10 15 20 25 30

50

100

500

1000

d

#
A
ri
th
m
.
O
p/
(#

S)
2

Re­angle L shape Simplex

Scalar-FGLM

BMS

AGbb

Polynomial variant

5 6 7 8 9 10 11 12 13 14 15

50

100

500

1000

5000

d
#
A
ri
th
m
.
O
p/
(#

S)
2

Figure 4.1: Numbers of arithmetic operations (2D/3D)

Later, Jean-Charles Faugère12, 13 and I designed an adaptive variant of the BMS algorithm in [18]
which can avoid testing some candidate relations, and thus requiring some sequence terms, when
a bound of the degree of the zero-dimensional ideal of C-relations is known. Furthermore, in [19],
we used the polynomial viewpoint of the Scalar-FGLM algorithm of [17] and Se­ion 4.2.2 to have
an adaptive algorithm using only multivariate polynomial arithmetic. In particular, we prove the
following theorem.
Theorem 1.14 (see also [19, Th. 26]): Let u be a sequence whose ideal of C-relations is zero-dimen-
sional. Let ≺ be a monomial order, G be the reduced ≺-Gröbner basis of IC (u) and S be the
associated staircase.

Assuming the Adaptive Scalar-FGLM algorithm called on u returns a Gröbner basis G′ with
staircase S ′ and #S ′ = #S , then S ′ = S and G′ = G. Furthermore, the algorithm does not need
more that # 2(S ∪lm≺ (G)) sequence queries andO ((#S +# G)2# 2S) operations to recover G, where
2S is the Minkowski sum of S with itself.

4.3 Benchmarks
In Figure 4.1, we consider three families of ≺drl-Gröbner basis based on the shape of their

staircase:
Re­angle: lm≺ (G) =

{
y bd/2c ,xd

}
in dimension 2 and lm≺ (G) =

{
z dd/3e ,y bd/2c ,xd

}
dimension 3. This

case is the best for the size of the Gröbner basis compared to the size of the staircase.

L shape: lm≺ (G) =
{
x y ,yd ,xd

}
in dimension 2 and lm≺ (G) =

{
y z ,x z ,x y ,zd ,yd ,xd

}
in dimension

3. This case is the worst for the number of sequence queries compared to the sizes of the
staircase and the Gröbner basis.

Simplex: lm≺ (G) =
{
yd ,x yd−1, . . . ,xd

}
in dimension 2 and lm≺ (G) =

{
zd ,y zd−1,x zd−1, . . . ,yd ,

x yd−1, . . . ,xd
}
in dimension 3, i.e. all the monomials of degree d . This case is the best for the

number of sequence queries and the worst for the size of the Gröbner basis, both compared
to the size of the staircase.

The polynomial variant of the BMS and Scalar-FGLM algorithms performs fewer arithmetic

12INRIA
13CryptoNext Security

35

Chapter 4. Guessing Gröbner bases
4.3. Benchmarks

operations than the others, for large d . More precisely, its number of operations appears to be
linear in (#S)2 = O (#S (#S + # G)) in fixed dimension suggesting that the complexity estimate in
Theorem 1.13 is pessimistic. This can be related to the uni-indexed case: the naive BM algorithm,
based on naive extended Euclidean algorithm, is only quadratic in the number of sequence terms
that one considers. This is the starting point of a work-in-progress of a new collaboration between
Romain Lebreton14 and me that I detail in Se­ion 6.2.

14Université de Montpellier

36

Chapter 5. Quasi-commutative Gröbner bases

Chapter 5
Quasi-commutative Gröbner bases

This chapter is dedicated to quasi-commutative polynomials, their link with linear recurrence
relations with polynomial coe�cients, or P-relations of a sequence and how to compute or guess them.

5.1 P-relations and quasi-commutative polynomials
Linear recurrence relations with polynomial, in the indices, coe�cients is a large class of lin-

ear recurrence relations containing the class of C-relations. As a classical example, the binomial

sequence
((i1
i2

))
(i1,i2) ∈ℕ2

satisfies, for all (i1,i2) ∈ ℕ2,

(i1 − i2 + 1)
(
i1 + 1
i2

)
= (i1 + 1)

(
i1
i2

)
, (i2 + 1)

(
i1

i2 + 1

)
= (i1 − i2)

(
i1
i2

)
.

The Eval operator, see also Se­ion 1.3, can be extended to deal with these relations by adding a
new set of variables % = (X1, . . . , Xn) with the property that Xℓ = xℓ m

mxℓ
for all 1 ≤ ℓ ≤ n. The 2n

variables satisfy the following quasi-commutative rules for all 1 ≤ k ,ℓ ≤ n, k ≠ ℓ ,

xkxℓ = xℓ xk , Xk Xℓ = Xℓ Xk ,

xk Xℓ = Xℓ xk , Xkxk = xk (Xk + 1).

As a consequence, the polynomials in % and x with coe�cients in K form a quasi-commutative ring,
denoted K [%] 〈x〉.

These polynomials allow us to represent P-relations through the Eval operator

Eval

(∑
r ∈R,s ∈S

Wr ,s %
rx s ,u

)
=

∑
r ∈R,s ∈S

Wr ,s s rus .

Observe that %rx s %kx i = (% − s)k%rx s+i . Therefore, for any g ∈ K [%] 〈x〉,

Eval
(
g %kx i ,u

)
= ik Eval

(
gx i ,u

)
.

Thus, multiplying g on the right by %kx i shifts the recurrence relation by i and multiplies it by ik .

We deduce that if g is such that Eval
(
gx i ,u

)
= 0 for all i ∈ ℕn , then Eval

(
g %kx i ,u

)
= 0 for all

k ∈ ℕn and i ∈ ℕn . Hence, the set of polynomials that represent P-relations satisfied by a sequence
u is a right ideal of K [%] 〈x〉 called the ideal of P-relations of u and denoted IP (u).

From %rx s %kx i = (% − s)k%rx s+i , we also notice that for ≺, a monomial order on the variables
% and x , we have lm≺ (gh) = lm≺ (g) lm≺ (h) for any two polynomials g and h. Furthermore, the
notion of Gröbner basis can be defined for right ideals with the property that a finite subset G of
an ideal I is a Gröbner basis I w.r.t. ≺ if for any f ∈ I , there exist g ∈ G and a monomial m such
that lm≺ (f) = lm≺ (g)m.

In particular, Buchberger’s algorithm and criteria can be extended to this setting, see [75].
Example 5.1: From (i1 + 1 − i2)

(i1+1
i2

)
− (i1 + 1)

(i1
i2

)
= 0 and (i2 + 1)

(i1
i2+1

)
− (i1 − i2)

(i1
i2

)
, we deduce that

g1 = (X1 − X2)x1 − (X1 + 1) and g2 = X2x2 − (X1 − X2) are in the ideal of P-relations of the binomial
sequence.

Observe that in K(%) 〈x〉 = K(%) ⊗ K [%] 〈x〉, that is % and x still quasi-commute but we allow
rational fra­ions in %, these two polynomials are linear in x and linearly independant. They thus
span a zero-dimensional ideal that contains g1x2 + g2 = (X1 − X2)x1x2 − (X1 − X2 + 1)x2 − (X1 − X2) =
(x1x2 − x2 − 1) (X1 − X2) and thus x1x2 − x2 − 1 representing the, so-called Pascal’s rule, C-relation:

∀ (i1,i2) ∈ ℕ2,

(
i1 + 1
i2 + 1

)
=

(
i1

i2 + 1

)
+

(
i1
i2

)
.

37

Chapter 5. Quasi-commutative Gröbner bases
5.2. Guessing P-relations

5.2 Guessing P-relations
In the uni-indexed case and a sequence u = (ui)i ∈ℕ, one can compute a basis of IP (u) using the

Beckermann-Labahn algorithm [6] and its recent improvements [68], based on a divide-and-conquer
approach. Many computer algebra systems propose an implementation of guessing P-relations
algorithms, whether be it in the univariate or the multivariate case. We can cite for instance [99] in
Maple [9], [71] in Mathematica [67]. Some also have dedicated arithmetic for quasi-commutative
polynomials like Maple or SageMath [103] through a package [69].

5.2.1 A linear-algebra-based algorithm
With Jean-Charles Faugère1,2, I designed an extension to the Scalar-FGLM algorithm in order

to guess P-relations or C-relations between several sequences. For P-relations satisfied by u , the
idea is to build a generalized multi-Hankel matrix HT ,Θ, where T and Θ are sets of monomials in
respe­ively K [x] and K [%] 〈x〉. The entry at the interse­ion of the column labeled with %rx s and
the row labeled with x i is Eval

(
%rx sx i ,u

)
= (s + i)rus+i . Therefore, a ve­or in the right kernel of

this matrix represents a polynomial G ∈ K [%] 〈x〉 such that Eval
(
Gx i ,u

)
= 0 for all x i ∈ T .

Example 5.2: Consider the binomial sequence
((i1
i2

))
(i1,i2) ∈ℕ2

, Θ = {1, X2, X1,x2,x1, X2x2, X1x2, X2x1,
X1x1} is the set of all monomials of bidegree at most (1,1) in % and x for an order ≺ eliminating x
and breaking ties on % and on x using ≺drl. We take T to be the set of all monomials of degree at
most 3 so that T is larger than Θ.

HT ,Θ =

©­­­­­­­­­­­­­­­«

1 X2 X1 x2 x1 X2x2 X1x2 X2x1 X1x1

1 1 0 0 0 1 0 0 0 1
x2 0 0 0 0 1 0 0 1 1
x1 1 0 1 1 1 1 1 0 2
x22 0 0 0 0 0 0 0 0 0

x1x2 1 1 1 0 2 0 0 2 4
x21 1 0 2 2 1 2 4 0 3
x32 0 0 0 0 0 0 0 0 0

x1x22 0 0 0 0 1 0 0 2 2
x21x2 2 2 4 1 3 2 2 3 9
x31 1 0 3 3 1 3 9 0 4

ª®®®®®®®®®®®®®®®¬

.

From this matrix, we can see the relations X2x2 − (X1 − X2) and (X1 − X2)x1 − (X1 + 1).
More rencently, a divide-and-conquer algorithm was designed and proposed in [82] which gen-

eralizes the Beckermann-Labahn algorithm to multi-indexed sequences.

5.2.2 An hybrid approach
In the combinatorics context, the ultimate goal is not always to guess the whole Gröbner basis

of the ideal of P-relations for a specific monomial order, but rather to determine if the sequence is
P-finite or not. For instance, a necessary condition is that the ideal of P-relations in K(%) 〈x〉 is zero-
dimensional. Therefore, providing an adaptive algorithm that minimizes the number of sequence
terms is of upmost importance.

In a similar fashion as in Se­ion 4.2.3, we can discover, step by step, which monomials are in the
staircase of the ideal of P-relations of K [%] 〈x〉 of the input sequence for the input monomial order
≺. In [16], Jean-Charles Faugère1,2 and I proposed an hybrid approach based on Gröbner bases
computations for quasi-commutative polynomials to discover new P-relations without any extra
queries to the sequence. The idea is that if two polynomials g1, g2 ∈ K [%] 〈x〉 encode P-relations
satisfied by the sequence, then any polynomial in

〈
g1, g2

〉
also encodes a P-relation. Therefore, as

soon as two P-relations g1 and g2 are guessed, the goal is to compute a Gröbner basis
{
g1, g2, . . . , gr

}
of

〈
g1, g2

〉
. This will yield polynomials, namely g3, . . . , gr , whose leading monomials are not in〈

lm≺ (g1),lm≺ (g2)
〉
. The advantage of this method is twofold. First, since lm≺ (g3), . . . ,lm≺ (gr) �

1INRIA
2CryptoNext Security

38

Chapter 5. Quasi-commutative Gröbner bases
5.3. Structured sequences

lm≺ (g1),lm≺ (g2), they require more queries to the sequence to be corre­ly guessed. Yet, such a
Gröbner basis computation does not require any more queries. Then, these P-relations may help us
determine that the ideal of P-relations is 0-dimensional in K(%) 〈x〉, which is a necessary condition
for the table to be P-finite.

5.3 Stru­ured sequences
In many applications, like in enumerative combinatorics with 2D/3D-walks, the studied se-

quences are highly stru­ured. For instance, they have a lot of zero-terms. From a linear algebra
viewpoint, these zero terms induce void conditions on the C-relations or P-relations and thus drops
of ranks in the generalized multi-Hankel matrix that one deals with to guess the relations. There-
fore, we need to build matrices with many more rows than columns to recover corre­ relations, i.e.
C-relations or P-relations that do not prove to be fake after further testings.

The goal is thus to only deal with the nonzero terms from the beginning. These nonzero terms
lie in general in a cone Cwhich is a submonoid of ℕn , i.e. 0 ∈ C and for all i , j ∈ C,

(
i + j

)
∈ C.

In [21], Mohab Safey El Din3 and I extended the Scalar-FGLM algorithm, and its variants,
adaptive and for P-relations, so that it only considers terms of a sequence lying in a cone. In this
paper, we make the connexion with sparse Gröbner bases as defined in [7, 56] and extend them to
the context of quasi-commutative polynomials in K [%] 〈x〉 for P-relations.

Given such a cone C and polynomials with support in its associated set of monomials T(C) ={
x i ∈ T

��i ∈ C
}
, one may want to perform all the polynomial operations with monomials in T(C)

in order to take advantage of the stru­ure of the support when computing a Gröbner basis of the
ideal they span. While this is not always possible, one can achieve this goal by considering the ideal
the polynomials span in the algebra

K [C] =
{
f =

∑
s ∈C

fsx s
����� supp f is finite

}
.

The ideal spanned by f1, . . . , fm ∈ K [C] is defined as〈
f1, . . . , fm

〉
C
=

{
m∑
k=1

fkqk

����� q1, . . . ,qm ∈ K [C]
}
.

Given a monomial order ≺, a ≺-sparse Gröbner basis of
〈
f1, . . . , fm

〉
C
is a finite subset thereof

whose properties extend those satisfied by a Gröbner basis, in the context of the algebra K [C]. In
particular, the divisibility property on the leading monomials in T(C) is still satisfied.
Definition 5.3 ([56, Def. 3.1] and [7, Def. 3.3]): Let C ⊆ ℕn be a submonoid, f1, . . . , fm ⊆ K [C] be
polynomials and ≺ be a monomial order. Let I =

〈
f1, . . . , fm

〉
C
. Then, a ≺-sparse Gröbner basis of I

is a generating set G =
{
g1, . . . , gt

}
⊆ K [C] such that for all f ∈ I , lm≺ (f) = lm≺ (g)x i for some

g ∈ G and x i ∈ C.
The associated staircase of G is the set of monomials s in T(C) such that for any g ∈ G, there

is no monomial x i ∈ T(C) such that s = lm≺ (g)x i .
Let us notice that for C = ℕn , K [C] = K [ℕn] = K [x] and sparse Gröbner bases are classical

Gröbner bases. Furthermore, like classical Gröbner bases, sparse Gröbner bases allow one to solve
the ideal membership problem in K [C] in an e�e­ive way.
Example 5.4: The cone C =

{
(i1,i2) ∈ ℕ2

�� i1 ≤ 2i2,i2 ≤ 2i1
}
is spanned by (1,1),(2,1) and (1,2) as

a submonoid of ℕ2. Although x1x2 divides both x21x2 and x1x
2
2 in K [x], it does not in K [C] as the

respe­ive quotients are x1 and x2, which are not in T(C).
Theorem5.5 (see also [21, Th. 3.2]): Let C be a submonoid cone of ℕn spanned by a finite minimal
set of generators. Let ≺ be a monomial ordering on T, the set of monomials in n variables, and let
T ⊂ T(C) be a set of monomials ordered for ≺ stable by division.

Then, the Scalar-FGLM algorithm called on sequence u , T and ≺ returns a set of polynomials
G with support in T(C), such that for all s ∈ T \ 〈lm≺ (G)〉, s is in the associated staircase of a

3Sorbonne Université

39

Chapter 5. Quasi-commutative Gröbner bases
5.3. Structured sequences

≺-sparse Gröbner basis of IC (u).
Furthermore, if the ideal of C-relations of u is 0-dimensional and has a reduced ≺-sparse Gröbner

basis with support in T , then the output of the Scalar-FGLM algorithm called on u and T is this
reduced ≺-sparse Gröbner basis.

As an illustration, we consider walks in 2D- and 3D-spaces, namely Gessel planar walk g in
the nonnegative quadrant ℕ2 with steps in {(1,0), (1,1), (−1,0), (−1,−1)} and the 3D-space Walk-43
w of [25] in the nonnegative o­ant ℕ3 with steps in {(−1,−1,−1), (−1,−1,1), (−1,1,0), (1,0,0)}. In
particular, we restri­ ourselves to a subsequence of each where one index is 0. These walks come
naturally with a cone stru­ure: for instance whenever n ≠ 2n′ + 2 j , then gn,0,j = 0. Likewise,
whenever n ≠ 8n′ + 2 j + 4k , then wn,0,j ,k = 0. Thus, it makes sense to look for the relations given by
the sequence terms g2n′+2 j ,0,j and w8n′+2 j+4k ,0,j ,k .

Type Cone Full Orthant

Matrix size Queries
Relations

Matrix size Queries
Relations

Fake Corre­ Fake Corre­
gn,0,j 444 × 441 866 11 0 496 × 495 946 48 0
gn,0,j 631 × 564 1 174 0 0 1 326 × 661 1 942 84 0
gn,0,j 721 × 711 1 408 15 8 726 × 715 1 386 67 0
gn,0,j 1 951 × 1 089 3 010 0 21 2 556 × 1 001 3 491 136 6
wn,0,j ,k 223 × 211 430 7 1 220 × 210 395 24 0
wn,0,j ,k 444 × 253 552 2 1 680 × 267 912 37 0
wn,0,j ,k 406 × 400 799 11 6 406 × 400 771 27 0
wn,0,j ,k 806 × 522 1 320 2 6 1 540 × 589 2 073 68 0

Table 5.1: Guessing fake and corre­ P-relations

In Table 5.1, we can see that considering only terms in the cone allows us to almost only discover
corre­ relations compared to the full orthant case, even when the generalized multi-Hankel matrices
are almost square.

40

Chapter 6. Research project

Chapter 6
Research project

I want to develop my research proje­ on computing and guessing Gröbner bases in the com-
mutative and quasi-commutative setting relying on msolve as a validation tool. The main goal
is to develop general implementations on the one hand and specific ones for applications from
combinatorics, cryptography or robotics on the other hand.

I present my research proje­ in three axes. The first one, in Se­ion 6.1, is about msolve and its
development. I see it as a transverse axis. The goal is to implement existing algorithms presented
in the previous chapters but also new ones that shall be designed in the other axes. Furthermore,
I shall exploit high-performance computing hardware to enhance the computation capabilities of
msolve.

As a second axis, Se­ion 6.2, I aim to accelerate guessing algorithms, especially for C-relations,
in order to provide theoretical and pra­ical complexity estimates on the Sparse-FGLM algorithms
when roots have multiplicities. In particular, we will trade the information on the multiplicities for
the e�ciency and vice versa, when a second multiplication matrix is required. A polynomial matrix
extension is also targeted.

The last axis, Se­ion 6.3, is dedicated to Gröbner bases for quasi-commutative polynomials in
order to deal with P-relations. The main obje­ive is to bring the complexity of ≺drl-Gröbner bases
for quasi-commutative polynomials to that of classical polynomials.

6.1 msolve and fundamental algorithms
A first goal for msolve is to increase its fun­ionalities by implementing state-of-the-art tech-

niques for general ideals which are not covered yet. Furthermore, at the moment the modular
implementation uses native integer types which allow us to handle large chara­eristic but with
computations that are slower than those using floating-point types.

6.1.1 Types for the coe�cients
For the moment, msolve uses native integer types to represent modular integers with primes

of size at most 31 bits. While some fast Central Processing Unit (CPU) instru­ions (like AVX2
or AVX512) are available for integer types, current CPUs are such that even faster instru­ions are
available to floating-point types. These types allow us to handle modular arithmetic for lesser prime
(up to 26 bits for double-precision floating-point numbers). Assuming not too many bad primes
are picked during a multi-modular Gröbner basis computation, using these types could speed the
computations up before lifting the result over ℚ.

Likewise, for cryptographic applications, we shall need a dedicated implementation over F2. In
fa­, we may have to introduce ways to compute over non-prime finite fields. This is why, I want
to integrate fast univariate polynomial-matrix operations in order to deal with computations over
finite extension of finite fields, defined by a single polynomial.

6.1.2 Gröbner bases for a degree order
While the classical framework of polynomial system solving relies on computing first a ≺drl-

Gröbner basis, see Figure 1.1, in some applications, a monomial order ≺ distin­ from ≺drl might
be more convenient for the computation. This can be a 2-block ≺drl-order, which is already imple-
mented in msolve, or a weighted degree order, see also [54, 55, 105]. When the input system is
quasi-homogeneous for a system of weights, one can take advantage of this quasi-homogeneity to
improve the runtime and the complexity estimates of the F4 and F5 algorithms [47, 48] by a fa­or
depending on the produ­s of the weight. We want to benefit from this by implementing this kind of
weighted degree monomial orders in msolve in order to tackle systems coming from applications
such as robotics where the weights are naturally coming from dimensional homogeneity.

Another approach to speed Gröbner bases computations up for (quasi-)homogeneous systems
is to use Hilbert-driven Gröbner bases algorithms. These algorithms, such as Traverso’s [104], see

41

Chapter 6. Research project
6.1. msolve and fundamental algorithms

also [41, Chap. 10, Sec. 2], assume that the Hilbert series of the ideal is already known and provide
a criterion based on the degree of a critical pair to discard it without computing its redu­ion to 0.
Combined with the F4 algorithm, this allows us to handle Macaulay-like matrices with both fewer
rows and fewer columns. Note, however, that the expe­ed speed-ups may only be observed in
positive chara­eristic or, in the case of chara­eristic 0, during the learning phase modulo the first
prime.

6.1.3 Change of order
For the moment, the implemented change of order step relies on the sparse-FGLM algorithm [52,

53] in the shape position case. This assumption rises issues when the solutions of the system
have multiplicities: even after introducing a generic linear form, the ideal might not be in shape
position. Thus we may not compute the ≺lex-Gröbner basis of the ideal. While we can compute the
parametrizations of the solutions, through the radical of the ideal, this makes us lose the information
on the multiplicity. To this end, we want to provide more general change of order algorithms in
msolve. A first step will be to implement the seminal FGLM algorithm [50] before considering the
algorithms I developed based on linear algebra and in particular, the adaptive algorithm of [11, 12],
see also Se­ion 4.2.2.

In order to provide an e�cient implementation of the guessing algorithms, I want to use the
stru­ure of the multi-Hankel matrix and in particular, its quasi-Hankel stru­ure. Indeed, if the
univariate polynomial in xn in the reduced ≺lex-Gröbner basis has a large degree, i.e. of the same
magnitude order as the degree of the ideal D , the multi-Hankel matrix will be quasi-Hankel with a
small displacement rank. We can thus compute its ve­or in its kernel, and thus C-relations, fast
using [26, 27]. Furthermore, depending on the geometry of the ≺drl- and ≺lex-staircases, computing
the coe�cients of this multi-Hankel matrix can just require Algorithm 2.2 with only one matrix, the
one of the multiplication by xn , but extra column-ve­ors. All-in-all, when D is exponential in n, the
expe­ed complexity will still be dominated by the computation of the ve­ors of Algorithm 2.2 in
O (tD2) operations.

In addition to this, I want to implement a multi-modular approach for sequences with coe�cients
in ℚ. The idea is that the purpose of the adaptive algorithm is to find, at a low cost, the support
of the reduced ≺lex-Gröbner basis. Once this has been computed modulo a first prime, we can
switch to the general Scalar-FGLM with one big multi-Hankel matrix whose rows and columns
are labeled by the monomials in this support. This shall allow us to compute exa­ly the number
of sequence terms required to recover the sought Gröbner basis modulo subsequent primes.

6.1.4 Saturation and colon ideals
With my coauthors, we want to push forward the e�ciency of F4SAT by investigating compu-

tational tricks to avoid “computing zero”. For instance, we want to provide an early termination
criterion to reduce the time spent in the last saturation step.

Likewise, we want to study a signature approach, as in Faugère’s F5 algorithm [44, 48], to mini-
mize the redu­ions to 0 of S-polynomials.

I also want to provide a multi-modular approach and a tracer for Sparse-FGLM-colon for
systems over ℚ in msolve. The goal is to learn how to minimize Σ and Σ′ to the a­ual set of
required monomials to write the ≺lex-Gröbner basis of the colon ideal but also to compute the
exa­ number of necessary sequence terms in the Wiedemann part of the algorithm. This will make
computations in the apply phase modulo all the primes but the first one optimal and thus the fastest
implementation.

6.1.5 Exa­ solving on a GPU
Graphics Processing Units (GPUs) are, by design, well-suited to process large blocks of data

in parallel and thus to perform linear algebra routines, more so than CPUs. Furthermore, they
natively handle double-precision floating-point number arithmetic but only simulate long integer
ones through short integer arithmetic, which comes with an overhead. For instance, Nvidia CUDA

42

Chapter 6. Research project
6.2. Faster change of order and guessing C-relations

and Tensor cores, natively, only have 8-bit integer types, whereas they, natively, have 64-bit floating-
point types1. Furthermore, it has been shown that GPUs are very e�cient for corre­ly rounding
fun­ions evaluations [59], reinforcing even more the advantage of using floating-point arithmetic in
order to simulate a modular one. Thus, we aim to take advantage of their computational power to
transpose the linear algebra code of our polynomial system solver msolve to e�ciently work with
GPUs.

The main obje­ive of this task is the design of fast Gröbner bases computation algorithms,
based on high performance linear algebra algorithms, in particular exploiting GPUs, and their
integration into msolve in order to tackle applications challenges such as multivariate cryptography
or robotics. This is Dimitri Lesno�2’s Ph.D. subje­, who I have been supervising jointly with Stef
Graillat3 and Théo Mary4 since O­ober 2022. We shall first revisit modular arithmetic at the core
of exa­ algorithms relying on fast low-precision arithmetics such as fp16, bfloat16, fp8, . . . for
floating-points numbers and int8, int4 for integers. This part will be done in parallel for CPUs,
as in Se­ion 6.1.1 and for GPUs. Then, we will adapt the block-Wiedemann approach [40, 66] of
the Sparse-FGLM algorithm. Since the matrix at hand is very particular, it can be seen as the
concatenation of a permutation matrix and a dense matrix after reordering the columns, we will
study how to balance more e�ciently the CPU load and the GPU load to iterate the produ­ of
this matrix with some ve­ors or very thin matrices. We also target the design of a sparse matrix
arithmetic which is both e�cient for handling Macaulay matrices for the F4 algorithm and dedicated
to a GPU or a CPU + GPU archite­ure.

In order to tackle very large problems whose solving will unlock new advances in critical ap-
plications, we have to handle large matrices that cannot even be stored on the GPU. We plan to
devise new algorithms that exploit a memory representation of these Macaulay matrices that suits
our computations but also the limited RAM, a few tens of gigabytes, of a graphic card. Moreover,
computing Gröbner bases at scale will require the use of multiple GPUs and CPUs in parallel. We
will therefore work on making the algorithms scalable in a parallel context. Notably, we will mini-
mize memory communication between the CPU and the GPU, by adapting cache-oblivious storing
and algorithms [2] to a larger scale such as the RAM of the graphic card.

6.2 Faster change of order and guessing C-relations

6.2.1 Guessing faster
While the polynomial point of view allows us to bring the guessing of C-relations for multi-

indexed sequences closer to the fast guessing for uni-indexed sequences, there is still a complexity
gap. Indeed, the stated complexity in Theorem 1.13 becomes cubic, instead of quasi-linear, for
uni-indexed sequences. This is due to the complexity analysis that relies, first, on a linear number
of polynomial redu­ions and, second, on naive polynomial redu­ions. In fa­, this cubic complex-
ity stated in Theorem 1.13 comes from an overestimation on the number of needed polynomials
to reduce a new one, while in pra­ice, this is not observed, especially on sequences of prescribed
ideal of C-relations but with random initial terms. Thus, as an on-going collaboration with Romain
Lebreton5, I want to improve this algorithm by handling univariate polynomials instead of multi-
variate ones, in order to take advantage or their fast arithmetic while reestimating the number of
redu­ions to target a complexity which is only quadratic in the number of input sequence terms
or the size of the output Gröbner basis.

As a second goal, I want to guess P-relations using polynomial arithmetic instead of linear
algebra [16]. From the generating series of a sequence and its derivatives, or more precisely the
mirror polynomials of a truncation of these series, the goal is to find algebraic combinations thereof
which are small modulo the monomial ideal 〈xD1

1 , . . . ,xDnn 〉, whereD1, . . . ,Dn depend on the sequence
terms we allow ourselves to use.

1https://www.nvidia.com/en-us/data-center/tensor-cores/
2Ph.D. student at Sorbonne Université
3Sorbonne Université
4CNRS
5Université de Montpellier

43

https://www.nvidia.com/en-us/data-center/tensor-cores/

Chapter 6. Research project
6.2. Faster change of order and guessing C-relations

E�ciency of guessing algorithms is based on two aspe­s: the number of performed operations
and the number of sequence terms that are needed. Indeed, in many applications, computing the
sequence is the bottleneck. Thus, to make this approach the most e�cient, we shall closely look
at the number of di�erent sequences terms that are needed to corre­ly guess the relations. Fur-
thermore, to optimize the number of operations, we shall rely on e�cient algorithms for univariate
polynomials and uni-indexed sequences. The main goal is to reach a complexity at most quadratic
in the size of the output instead of only cubic.

These guessing algorithms may find fake relations, this happens in general when too few terms
are used or when most of the terms are 0. This can be circumvent by stru­ured guessing relations
using mainly the nonzero sequence terms as in [21]. We will pay attention to these bad sequences
so that our new algorithm avoids these fake relations as much as possible.

6.2.2 Guessing radical ideals
Radical ideals are important in the polynomial system solving applications as the solutions have

all multiplicities 1. Therefore, numerical methods to approximate the real or complex solutions
behave much better with this kind of ideals.

In collaboration with Alin Bostan6, Manuel Kauers7 and Christoph Koutschan8, I want to inves-
tigate an extension of [29] to more general radical ideals. Indeed, in this paper, given a sequence
u , the authors propose an algorithm for guessing the ≺lex-Gröbner basis of

√
IC (u) if it is in shape

position. Yet, the output is meaningless if this radical is not in shape position. While BMS and
Scalar-FGLM allow us to guess IC (u), this may require many sequence terms, especially if the
ideal has a large degree. Thus, we want to propose a trade-o� between the number of queries to
the sequence and the quality of the output by allowing to guess polynomials only in

√
IC (u).

6.2.3 Guessing with multiplicities
In some situations where the system has roots with multiplicities, the sought ≺lex-Gröbner basis

cannot be in shape position, even after a generic linear change of variables. Such a system is called
2-thick in [5] and it requires a second stru­ured D ×D -matrix, of a similar kind, to be computed: the
matrix of the multiplication by xn−1, which has O (gD) nonzero coe�cients. Furthermore, in most
situations the stability property is still satisfied which means that the computation of this second
matrix is cheap. However, it does not ensure (a­ually it almost never can) that this second matrix
is computed for free.

A first goal is to derive a sharp complexity estimate on the computation of this second ma-
trix based on the ≺drl-Gröbner basis, exploiting the stability property and the work of Moreno-

Socías [80], for the first matrix. For instance, whenever
〈
lm≺lex (I)

〉
=

〈
xDnn ,xDn−1n−1 ,xn−2, . . . ,x1

〉
or〈

lm≺lex (I)
〉
=

〈
xDnn ,xnxn−1,x2n−1,xn−2, . . . ,x1

〉
which seem to be simplest cases.

As a by-produ­, we will obtain complexity bounds on the computation of the sequence terms
that appear in the multi-Hankel matrix built by Scalar-FGLM [11, 12] to recover the ≺lex-Gröbner
basis. Then, as a second goal, we will rely on the quasi-Hankel stru­ure of this multi-Hankel matrix,
and fast algorithms for quasi-Hankel matrices [26, 27], to analyze the complexity on the computation
of the sought ≺lex-Gröbner basis. All in all, we will have a complete description and complexity
estimate of Faugère and Mou’s [52, 53] Sparse-FGLM algorithm for generic 2-thick systems.

6.2.4 Polynomial matrices with multiplicities
A first goal is to adapt the polynomial-matrix algorithm for the change of order, see [20] and

Se­ion 3.1.2, to take into account stru­ures. For instance, in [57] and [21], the authors tweak
respe­ively the FGLM and the Sparse-FGLM algorithms for ideals that are globally invariant under
the a­ion of a finite abelian group. The main idea is to split the multiplication matrices into block-
matrices, improving the complexity by a fa­or that depends on the size of the group.

Another obje­ive is to be able to compute the ≺lex-Gröbner basis of a zero-dimensional ideal

6INRIA
7Johannes Kepler Universität Linz
8Österreichische Akademie der Wissenschaften

44

Chapter 6. Research project
6.3. Algorithms for quasi-commutative Gröbner bases

I : 〈i〉 from the ≺drl-Gröbner basis of a, potentially positive-dimensional, ideal I using also the
polynomial-matrix algorithm for change of order. We also want to investigate the computation of a
parametrization of the radical ideal when I is not radical, in order to remove multiplicities. How
can we take advantage of the polynomials to add to I to span

√
I in this polynomial matrix in order

to compute the ≺lex-Gröbner basis of
√
I .

Then, a last obje­ive, as a follow-up to Se­ion 6.2.3, is to deal with the matrix of the multipli-
cation by xn−1 in this polynomial matrix change of order algorithm. That is, we will develop this
approach by considering a polynomial matrix Pxn−1 instead of Mxn−1 . However, this matrix should
lie in K [xn−1,xn] and thus, e�cient bivariate-polynomial matrices operations would have to be de-
veloped in order to make this algorithm faster, theoretically and pra­ically, than the Sparse-FGLM
algorithm.

6.2.5 Applications to guessing
I also want to target applications such as coding theory and optimization problems. In the

former case, I want to extend the existing algorithms for guessing recurrences in order to decode
extensions of cyclic codes such as those defined on an algebraic variety. As a first step, I will
consider algorithms relying on linear algebra in order to understand the stru­ure of the matrix at
hand. In the latter case, I want to adapt our algorithms, in particular Scalar-FGLM, to handle
numerical sequences coming from the moment approach [64]. The main di�culty will be to return
non-trivial relations and we shall take inspiration from approximate gcd algorithms to overcome
it, see [22].

6.3 Algorithms for quasi-commutative Gröbner bases

6.3.1 Moment approach
As a starting collaboration with Lorenzo Baldi9 and Pierre Lairez10, we want to use the theory of

holonomic fun­ions, or sequences satisfying P-relations, to provide a general and e�cient method
for computing the moments of measures that are useful for the applications. To do so, we want
to exploit the fa­ that when computing the volume defined by several polynomial inequalities
f1, . . . , fr ≥ 0 in the hypercube [0,1]n , we are led to computing the integrals

∫
[0,1]n f

k1
1 · · · f

kr
r dx

for many indices k1, . . . ,kr . Yet, the sequence of integrals satisfies P-relations. These relations are
fundamental and we want to guess them by computing first a few moments and then exploit them
to compute more moments in order to find larger relations.

6.3.2 E�cient Gröbner bases computation
Another topic I want to investigate is the computation of Gröbner bases for a total degree mono-

mial order of ideals in a quasi-commutative setting and its theoretical and pra­ical e�ciency in rela-
tion with Se­ion 5.2.2. A longer term goal is then to implement Gröbner bases of quasi-commutative
polynomials into msolve in order to solve applications from combinatorics and physics.

Following [75] and the generalization of Buchberger’s criteria, the goal will be to dive into the
understanding of how Faugère’s F4 algorithm [47] behaves or can be extended from the commutative
setting to this one.

To do so, I want to study the module of trivial syzygies in order to get information on the sizes
of the matrices that are built in F4. What kind of information the commutation rules provide on
the syzygies?

Hilbert series and Hilbert polynomials are powerful tools that allow one to understand the
complexity of computing Gröbner bases. In the commutative case, one can derive a bound on the
degree of the polynomials in a reduced Gröbner basis for a total degree order, thanks to them,
see [79, Se­ion 4.5, Corollary]. We will investigate how knowing in advance the Hilbert series can
speed the Gröbner bases computations up, or how together with the Hilbert polynomials, they can
give us a bound on the degrees of the polynomials in the reduced ≺drl-Gröbner basis.

9Post-doc at Sorbonne Université
10INRIA

45

Chapter 6. Research project
6.3. Algorithms for quasi-commutative Gröbner bases

In the particle physics and algebraic statistics application, computing representants of the quo-
tient K(%) 〈x〉 / J , where J is a 0-dimensional ideal allows one to determine the twisted cohomol-
ogy defined by a likelihood fun­ion, see [78]. In this paper, the authors need to compute the
contiguity matrices of J , which a­ually correspond to the matrices of multiplication by x1, . . . ,xn in
K(%) 〈x〉 / J . Therefore, I want to study how to e�ciently build these matrices from a ≺drl-Gröbner
basis of J . Furthermore, depending on the shape of the ≺drl-staircase, some of these matrices are
obtained from free, for instance the one for xn , like in the commutative case, see [80]. As a longer
term goal, I would like to study these conditions in this setting.

46

Appendix A. Ideals of C-relations of small degrees

Appendix A
Ideals of C-relations of small degrees

A.1 Uni-indexed sequences

For d ∈ ℕ∗, it is clear that SC
(〈
xd

〉)
= {(U0, . . . ,Ud−1,0,0, . . .) | U0, . . . ,Ud−1 ∈ K}, whereas for

a ∈ K∗, it is well-known that SC
(〈
(x − a)d

〉)
=

{((
U0 + · · · + Ud−1id−1

)
ai

)
i ∈ℕ

���U0, . . . ,Ud−1 ∈ K
}
.

Theses sequences
(
U(i)ai

)
i ∈ℕ generalize the class of geometric sequences with initial term U0 and

common ratio a, which are the case d = 1, and the class of arithmetic sequences with initial term U0
and common di�erence U1, which are the case d = 2 and a = 1. For the sake of the completeness,

we recall that if u ∈ SC
(〈
(x − a)d

〉)
for a ∈ K and u ∉ SC

(〈
(x − a)d−1

〉)
, then IC (u) =

〈
(x − a)d

〉
.

Such a sequence will be denoted ua,d .
Using Theorem 1.5, we can deduce the general case.

TheoremA.1: Let K be algebraically closed and g ∈ K [x]. Assume g fa­ors as

g =

m∏
k=1

(x − ak)dk ,

then u ∈ SC (
〈
g
〉
) if, and only if, there exist unique ua1,e1 , . . . ,uam ,em with e1 ≤ d1, . . . ,em ≤ dm such

that

u =

m∑
k=1

uak ,dk .

As we can see, the roots of the polynomial, and their multiplicities, completely determine the
form of the sequence terms.

A.2 Bi-indexed sequences

From the uni-indexed case and small computations, we can see that SC
(〈
(x1 − a1)d1 , (x2 − a2)d2

〉)
is the ve­or space of sequences ua1,e1 ⊗ ua2,e2 =

(
U1 (i1)U2 (i2)ai11 a

i2
2

)
(i1,i2) ∈ℕ2

where e1 ≤ d1, e2 ≤ d2
and degU1 = e1, degU2 = e2. While such a polynomial ideal has (a1,a2) as its unique root with
multiplicity d1d2, this does not encompass all the cases. Before diving into multiplicities, we shall
deal with the case of distin­ single roots.

To simplify the presentation, we mostly consider the case a1 ≠ 0 and a2 ≠ 0, but the results on
the ideals still hold whenever a1, a2 or both are 0.

A.2.1 Single roots
Let us consider two distin­ points (a1,a2), (b1,b2) ∈ K2, then we can look at the ideal of poly-

nomials vanishing on these points. This is the ideal I = 〈(x2 − a2) (x2 − b2), (a2 − b2) (x1 − a1)
− (a1 − b1) (x2 − a2), (x1 − a1) (x1 − b1)〉. Observe how, if a2 ≠ b2, the first two polynomials form a
Gröbner basis of I for x2 ≺ x1, otherwise the last two do. Hence, SC (I) is a two-dimensional ve­or
space and u ∈ SC (I) is uniquely determined by u0,0 and, u0,1 in the former case or u1,0 in the latter
one.

More generally, the sequence obtained as a linear combination, with nonzero coe�cients, of
the sequences (ai11,1a

i2
1,2) (i1,i2) ∈ℕ2 , . . . , (ai1k ,1a

i2
k ,2) (i1,i2) ∈ℕ2 has its ideal of C-relations which is exa­ly the

radical ideal of all polynomials vanishing on (a1,1,a1,2), . . . , (ak ,1,ak ,2).
It remains to deal with multiplicities. As we shall see, even the multiplicity-2 case is broader

than for uni-indexed sequences.

47

Appendix A. Ideals of C-relations of small degrees
A.2. Bi-indexed sequences

A.2.2 Root of multiplicity 2
The sequences whose ideal of C-relations only admits (a1,a2) as a root, and with multiplicity 2,

are all of the type u =

(
(U0,0 + U1,0i1 + U0,1i2)ai11 a

i2
2

)
(i1,i2) ∈ℕ2

with U1,0 and U0,1 not both 0. The ideal

of C-relations of such a sequence u is

J (a1,a2) ,2,(U1,0,U0,1) =
〈
(x1 − a1)2,U0,1â2 (x1 − a1) − U1,0â1 (x2 − a2), (x2 − a2)2

〉
,

where b̂ equals 1 if b = 0 and b otherwise. Notice that if U1,0 ≠ 0, the first two polynomials span the
ideal, otherwise U0,1 ≠ 0 and the last two polynomials span it.

A.2.3 Root of multiplicity 3
The sequences whose ideal of C-relations only admits (a1,a2) as a root, and with multiplicity 3,

are all of the type u =

(
(U0,0 + U1,0i1 + U0,1i2 + U2,0i21 + U1,1i1i2 + U0,2i22)a

i1
1 a

i2
2

)
(i1,i2) ∈ℕ2

with U2,0U0,2 =

4U2
1,1 and U2,0 and U0,2 not both 0. The ideal of C-relations of such a sequence u is

J (a1,a2) ,3,(U2,0,U0,2) =
〈
(x1 − a1)3,
â21 (x2 − a2) − V1,2â2 (x1 − a1)2 − V1,1â1â2 (x1 − a1),
â22 (x1 − a1) − V2,2â1 (x2 − a2)2 − V2,1â1â2 (x2 − a2),
(x2 − a2)3

〉
,

where the V i ,j ’s are polynomials in the Ui ,j ’s with 1 ≤ i + j ≤ 2. Furthermore, the V i ,j ’s are such
that either the first two or the last two polynomials span the ideal.

Geometrically, there exists another ideal whose only root is (a1,a2), and with multiplicity 3.
This is K (a1,a2) ,3 =

〈
(x1 − a1)2, (x1 − a1) (x2 − a2), (x2 − a2)2

〉
.

Proposition A.2: Let (a1,a2) ∈ K2 and K (a1,a2) ,3 =
〈
(x1 − a1)2, (x1 − a1) (x2 − a2), (x2 − a2)2

〉
. Then,

there is no sequence u such that IC (u) = K (a1,a2) ,3.

Proof. Let u be such that K (a1,a2) ,3 ⊆ IC (u). Since K (a1,a2) ,3 contains
〈
(x1 − a1)2, (x2 − a2)2

〉
, u =

ua1,e1 ⊗ ua2,e2 with e1 ≤ 2 and e2 ≤ 2. Assuming a1,a2 ≠ 0, then there exist U, V ,W,X ∈ K such that

∀ (i1,i2) ∈ ℕ2, ui1,i2 = (U + V i1 + Wi2 + Xi1i2)a
i1
1 a

i2
2 .

Since x1x2 − a2x1 − a1x2 + a1a2 = (x1 − a1) (x2 − a2) ∈ K (a1,a2) ,3,

u1,1 = a2u1,0 + a1u0,1 − a1a2u0,0
(U + V + W + X)a1a2 = (U + V)a1a2 + (U + W)a1a2 − Ua1a2

Xa1a2 = 0

and X = 0. Now, we saw that if W ≠ 0, then IC (u) ⊇ J (a1,a2) ,2,V/W =

〈
x1 − V

W
x2 +

(
V

W
− 1

)
, (x2 − a2)2

〉
)

K (a1,a2) ,3 and otherwise IC (u) ⊇ J (a1,a2) ,2,∞ =
〈
(x1 − a1)2,x2 − a2

〉
) K (a1,a2) ,3.

If either a1 = 0 or a2 = 0, then this proof can be adapted using the appropriate sequence
ua1,e1 ⊗ ua2,e2 . This concludes the proof that no sequence has K (a1,a2) ,3 as its ideal of C-relations. �

48

Bibliography Bibliography

[1] J. Alman and V. Vassilevska Williams. A Refined Laser Method and Faster Matrix Multipli-
cation. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
522–539, 2021.

[2] M. Bader and C. Zenger. Cache oblivious matrix multiplication using an element ordering
based on a peano curve. Linear Algebra and its Applications, 417(2):301–313, 2006. Special
Issue in honor of Friedrich Ludwig Bauer.

[3] C. Banderier and P. Flajolet. Basic analytic combinatorics of dire­ed lattice paths. Theoret.
Comput. Sci., 281(1–2):37–80, 2002. Sele­ed Papers in honour of Maurice Nivat.

[4] D. A. Bayer. The Division Algorithm and the Hilbert Scheme. PhD thesis, Harvard University,
USA, 1982. AAI8222588.

[5] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The shape of the shape lemma. In
Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’94,
pages 129–133, New York, NY, USA, 1994. ACM.

[6] B. Beckermann and G. Labahn. A uniform approach for the fast computation of matrix-type
pade approximants. SIAM J. Matrix Anal. Appl., 15(3):804–823, 1994.

[7] M. R. Bender, J.-Ch. Faugère, and E. Tsigaridas. Towards mixed Gröbner basis algorithms:
The multihomogeneous and sparse case. In Proceedings of the 2018 ACM International Symposium
on Symbolic and Algebraic Computation, ISSAC ’18, pages 71–78, New York, NY, USA, 2018.
ACM.

[8] E. Berlekamp. Nonbinary BCH decoding. IEEE Trans. Inform. Theory, 14(2):242–242, 1968.

[9] L. Bernardin, P. Chin, P. Demarco, K. O. Geddes, D. E. G. Hare, K. M. Heal, G. Labahn,
J. Mccarron, M. B. Monagan, D. Ohashi, and S. M. Vorkoetter. Maple programming guide,
1996.

[10] J. Berthomieu, A. Bostan, A. Ferguson, and M. Safey El Din. Gröbner bases and critical
values: The asymptotic combinatorics of determinantal systems. J. Algebra, 602:154–180,
2022.

[11] J. Berthomieu, B. Boyer, and J.-Ch. Faugère. Linear algebra for computing gröbner bases of
linear recursive multidimensional sequences. In Proceedings of the 2015 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages 61–68, New York, NY,
USA, 2015. ACM.

[12] J. Berthomieu, B. Boyer, and J.-Ch. Faugère. Linear Algebra for Computing Gröbner Bases
of Linear Recursive Multidimensional Sequences. Journal of Symbolic Computation, 83(Supple-
ment C):36–67, 2017. Special issue on the conference ISSAC 2015: Symbolic computation
and computer algebra.

[13] J. Berthomieu, Ch. Eder, and M. Safey El Din. Msolve: A library for solving polynomial
systems. In Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’21, pages 51–58, New York, NY, USA, 2021. Association for Computing
Machinery.

[14] J. Berthomieu, Ch. Eder, and M. Safey El Din. msolve: A library for solving polynomial
systems, 2021. https://msolve.lip6.fr/.

[15] J. Berthomieu, Ch. Eder, andM. Safey El Din. New e�cient algorithms for computing Gröbner
bases of saturation ideals (F4SAT) and colon ideals (Sparse-FGLM-colon). preprint, 2022.

49

https://msolve.lip6.fr/

Bibliography
Bibliography

[16] J. Berthomieu and J.-Ch. Faugère. Guessing Linear Recurrence Relations of Sequence Tuples
and P-Recursive Sequences with Linear Algebra. In Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pages 95–102, New York, NY,
USA, 2016. Association for Computing Machinery.

[17] J. Berthomieu and J.-Ch. Faugère. A polynomial-division-based algorithm for computing linear
recurrence relations. In Proceedings of the 2018 ACM International Symposium on Symbolic and
Algebraic Computation, ISSAC ’18, pages 79–86, New York, NY, USA, 2018. ACM.

[18] J. Berthomieu and J.-Ch. Faugère. In-depth comparison of the Berlekamp–Massey–Sakata
and the Scalar-FGLM algorithms: The adaptive variants. Journal of Symbolic Computation,
101:270–303, 2020.

[19] J. Berthomieu and J.-Ch. Faugère. Polynomial-division-based algorithms for computing linear
recurrence relations. Journal of Symbolic Computation, 109:1–30, 2022.

[20] J. Berthomieu, V. Neiger, and M. Safey El Din. Faster Change of Order Algorithm for Gröb-
ner Bases under Shape and Stability Assumptions. In Proceedings of the 2022 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’22, pages 409–418, New York, NY,
USA, 2022. Association for Computing Machinery.

[21] J. Berthomieu and M. Safey El Din. Guessing Gröbner bases of stru­ured ideals of relations
of sequences. Journal of Symbolic Computation, 111:1–26, 2022.

[22] P. Boito and O. Ruatta. Extended Companion Matrix for Approximate GCD. In Proceedings of
the 2011 International Workshop on Symbolic-Numeric Computation, SNC ’11, pages 74–80, New
York, NY, USA, 2012. Association for Computing Machinery.

[23] R. Bose and D. Ray-Chaudhuri. On a class of error corre­ing binary group codes. Information
and Control, 3(1):68–79, 1960.

[24] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J.
Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London,
1993).

[25] A. Bostan, M. Bousquet-Mélou, M. Kauers, and S. Melczer. On 3-dimensional lattice walks
confined to the positive o­ant. Annals of Combinatorics, 20(4):661–704, 2016.

[26] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and E. Schost. On matrices with displacement
stru­ure: Generalized operators and faster algorithms. SIAM Journal on Matrix Analysis and
Applications, 38(3):733–775, 2017.

[27] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving Toeplitz- and Vandermonde-like Linear
Systems with Large Displacement Rank. In C. W. Brown, editor, ISSAC ’07, pages 33–40.
ACM Press, 2007.

[28] A. Bostan, K. Raschel, and B. Salvy. Non-D-finite excursions in the quarter plane. J. Combin.
Theory Ser. A, 121:45–63, 2014.

[29] A. Bostan, B. Salvy, and É. Schost. Fast Algorithms for Zero-Dimensional Polynomial Systems
Using Duality. Appl. Algebra Eng. Commun. Comput., 14(4):239–272, 2003.

[30] M. Bousquet-Mélou andM.Mishna. Walks with small steps in the quarter plane. In Algorithmic
probability and combinatorics, volume 520 of Contemp. Math., pages 1–39. Amer. Math. Soc.,
Providence, RI, 2010.

[31] M. Bousquet-Mélou and M. Petkovšek. Walks confined in a quadrant are not always d-finite.
Theoret. Comput. Sci., 307(2):257–276, 2003. Random Generation of Combinatorial Obje­s
and Bije­ive Combinatorics.

50

Bibliography
Bibliography

[32] J. Brachat, P. Comon, B. Mourrain, and E. P. P. Tsigaridas. Symmetric tensor decomposition.
Linear Algebra Appl., 433(11-12):1851–1872, 2010.

[33] P. Breiding, B. Sturmfels, and S. Timme. 3264 conics in a second. Notices of the American
Mathematical Society, 67(1):30–37, 2020.

[34] R. P. Brent, F. G. Gustavson, and D. Y. Yun. Fast solution of Toeplitz systems of equations
and computation of Padé approximants. Journal of Algorithms, 1(3):259–295, 1980.

[35] B. Buchberger. Ein Algorithmus zum Au�nden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.

[36] B. Buchberger. A Criterion for Dete­ing Unnecessary Redu­ions in the Constru­ion of
Gröbner Bases. In EUROSAM ’79, An International Symposium on Symbolic and Algebraic Manip-
ulation, volume 72 of Le­ure Notes in Computer Science, pages 3–21, Berlin, 1979. Springer.

[37] L. Caniglia, A. Galligo, and J. Heintz. Some New E�e­ivity Bounds in Computational Geom-
etry. In Proceedings of the 6th International Conference, on Applied Algebra, Algebraic Algorithms and
Error-Corre­ing Codes, AAECC-6, pages 131–151, Berlin, Heidelberg, 1988. Springer-Verlag.

[38] S. Collart, M. Kalkbrener, and D. Mall. Converting Bases with the Gröbner Walk. J. Symbolic
Comput., 24(3):465–469, 1997.

[39] C. Conradi, E. Feliu, M. Mincheva, and C. Wiuf. Identifying parameter regions for multista-
tionarity. PLOS Computational Biology, 13(10):e1005751, 2017.

[40] D. Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiedemann
algorithm. Math. Comp., 62(205):333–350, 1994.

[41] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in
Mathematics. Springer, New York, fourth edition, 2015. An introdu­ion to computational
algebraic geometry and commutative algebra.

[42] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-2 — A computer
algebra system for polynomial computations. http://www.singular.uni-kl.de, 2019.

[43] R. Duan, H. Wu, and R. Zhou. Faster Matrix Multiplication via Asymmetric Hashing, 2022.

[44] Ch. Eder and J.-Ch. Faugère. A survey on signature-based algorithms for computing gröbner
bases. Journal of Symbolic Computation, 80:719–784, 2017.

[45] M. Elkadi and B. Mourrain. Introdu­ion à la résolution des systèmes polynomiaux, volume 59 of
Mathématiques et Applications. Springer, 2007.

[46] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Sub-Cubic Change of Ordering for Gröbner
Basis: A Probabilistic Approach. In Proceedings ISSAC 2014, pages 170–177. ACM, 2014.

[47] J.-Ch. Faugère. A New E�cient Algorithm for Computing Gröbner bases (F4). Journal of Pure
and Applied Algebra, 139(1):61–88, 1999.

[48] J.-Ch. Faugère. A New E�cient Algorithm for Computing Gröbner Bases Without Reduc-
tion to Zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’02, pages 75–83, New York, NY, USA, 2002. ACM.

[49] J.-Ch. Faugère. FGb: A Library for Computing Gröbner Bases. In K. Fukuda, J. v. d. Hoeven,
M. Joswig, and N. Takayama, editors,Mathematical Software – ICMS 2010, pages 84–87, Berlin,
Heidelberg, 2010. Springer.

[50] J.-Ch. Faugère, P. Gianni, D. Lazard, and T. Mora. E�cient Computation of Zero-dimensional
Gröbner Bases by Change of Ordering. J. Symbolic Comput., 16(4):329–344, 1993.

51

http://www.singular.uni-kl.de

Bibliography
Bibliography

[51] J.-Ch. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryp-
tosystems Using Gröbner Bases. In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003,
Le­ure Notes in Computer Science, pages 44–60, Berlin, Heidelberg, 2003. Springer.

[52] J.-Ch. Faugère and C. Mou. Fast algorithm for change of ordering of zero-dimensional gröbner
bases with sparse multiplication matrices. In Proceedings of the 36th International Symposium
on Symbolic and Algebraic Computation, ISSAC ’11, pages 115–122, New York, NY, USA, 2011.
ACM.

[53] J.-Ch. Faugère and C. Mou. Sparse FGLM algorithms. Journal of Symbolic Computation,
80(3):538–569, 2017.

[54] J.-Ch. Faugère, M. Safey El Din, and Th. Verron. On the Complexity of Computing Gröbner
Bases for Quasi-Homogeneous Systems. In Proceedings of the 38th International Symposium on
Symbolic and Algebraic Computation, ISSAC ’13, pages 189–196, New York, NY, USA, 2013.
Association for Computing Machinery.

[55] J.-Ch. Faugère, M. Safey El Din, and Th. Verron. On the complexity of computing Gröbner
bases for weighted homogeneous systems. Journal of Symbolic Computation, 76:107–141, 2016.

[56] J.-Ch. Faugère, P.-J. Spaenlehauer, and J. Svartz. Sparse Gröbner bases: The unmixed case.
In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC
’14, pages 178–185, New York, NY, USA, 2014. ACM.

[57] J.-Ch. Faugère and J. Svartz. Gröbner bases of ideals invariant under a commutative group:
The non-modular case. In Proceedings of the 38th International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’13, pages 347–354, New York, NY, USA, 2013. ACM.

[58] A. Ferguson and H. P. Le. Finer complexity estimates for the change of ordering of gröbner
bases for generic symmetric determinantal ideals. In Proceedings of the 2022 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’22, pages 399–407, New York, NY,
USA, 2022. Association for Computing Machinery.

[59] P. Fortin, M. Gouicem, and S. Graillat. GPU-Accelerated Generation of Corre­ly Rounded
Elementary Fun­ions. ACM Trans. Math. Softw., 43(3), 2016.

[60] J. García Fontán, A. Nayak, and M. Briot, S. Safey El Din. Singularity Analysis for the
Perspe­ive-Four and Five-Line Problems. International Journal of Computer Vision, 2022.

[61] M. R. Garey and D. S. Johnson. Computers and Intra­ability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., USA, 1990.

[62] K. Gatermann and B. Huber. A Family of Sparse Polynomial Systems Arising in Chemical
Rea­ion Systems. Journal of Symbolic Computation, 33(3):275–305, 2002.

[63] D. Gorenstein. An arithmetic theory of adjoint plane curves. Trans. Amer. Math. Soc.,
72:414–436, 1952.

[64] D. Henrion, J.-B. Lasserre, and C. Savorgnan. Approximate Volume and Integration for Basic
Semialgebraic Sets. SIAM Review, 51(4):722–743, 2009.

[65] A. Hocquenghem. Codes corre­eurs d’erreurs. Chi�res, 2:147–156, 1959.

[66] S. G. Hyun, V. Neiger, H. Rahkooy, and É. Schost. Block-Krylov techniques in the context of
sparse-FGLM algorithms. Journal of Symbolic Computation, 98:163–191, 2020. Special Issue on
Symb. and Alg. Comp.: ISSAC 2017.

[67] W. R. Inc. Mathematica, Version 13.1. Champaign, IL, 2022.

52

Bibliography
Bibliography

[68] C.-P. Jeannerod, V. Neiger, and G. Villard. Fast computation of approximant bases in canon-
ical form. Journal of Symbolic Computation, 98:192–224, 2020. Special Issue on Symbolic and
Algebraic Computation: ISSAC 2017.

[69] M. Kauers, M. Jaroschek, and F. Johansson. Ore Polynomials in Sage. In J. Gutierrez,
J. Schicho, and M. Weimann, editors, Computer Algebra and Polynomials: Applications of Algebra
and Number Theory, pages 105–125, Cham, 2015. Springer International Publishing.

[70] C. Kollreider and B. Buchberger. An improved algorithmic constru­ion of Gröbner-bases for
polynomial ideals. SIGSAM Bull., 12:27–36, 1978.

[71] Ch. Koutschan. Holonomicfun­ions (user’s guide). Technical Report 10-01, Johannes Kepler
Universitä Linz, 2010.

[72] Y. Kuang, Y. Zheng, and K. øAström. Partial Symmetry in Polynomial Systems and Its
Applications in Computer Vision. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pages 438–445, 2014.

[73] P. Lairez and M. Safey El Din. Computing the dimension of real algebraic sets. In Proceedings
of the 46th International Symposium on Symbolic and Algebraic Computation, ISSAC ’21, pages
257–264, New York, NY, USA, 2021. Association for Computing Machinery.

[74] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equa-
tions. In Computer algebra (London, 1983), volume 162 of Le­ure Notes in Comput. Sci., pages
146–156. Springer, Berlin, 1983.

[75] V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, ap-
plications and implementation. PhD thesis, Technische Universität Kaiserslautern, 2005.

[76] F. S. Macaulay. Modern algebra and polynomial ideals. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 30:27–46, 1934.

[77] J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory, it-
15:122–127, 1969.

[78] S.-J. Matsubara-Heo and S. Telen. Twisted cohomology and likelihood ideals, 2023.

[79] H. M. Möller and F. Mora. Upper and lower bounds for the degree of groebner bases.
In J. Fitch, editor, EUROSAM 84, pages 172–183, Berlin, Heidelberg, 1984. Springer Berlin
Heidelberg.

[80] G. Moreno-Socías. Degrevlex Gröbner bases of generic complete interse­ions. Journal of Pure
and Applied Algebra, 180(3):263–283, 2003.

[81] B. Mourrain. Fast algorithm for border bases of artinian gorenstein algebras. In Proceedings
of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’17,
pages 333–340, New York, NY, USA, 2017. ACM.

[82] S. Naldi and V. Neiger. A divide-and-conquer algorithm for computing gröbner bases of
syzygies in finite dimension. In Proceedings of the 45th International Symposium on Symbolic and
Algebraic Computation, ISSAC ’20, pages 380–387, New York, NY, USA, 2020. Association for
Computing Machinery.

[83] V. Neiger and É. Schost. Computing syzygies in finite dimension using fast linear algebra.
Journal of Complexity, 60:101502, 2020.

[84] J. Nie and K. Ranestad. Algebraic degree of polynomial optimization. SIAM J. Optim.,
20(1):485–502, 2009.

[85] S. Odake and R. Sasaki. Exa­ly solvable quantum mechanics and infinite families of multi-
indexed orthogonal polynomials. Physics Letters B, 702(2):164–170, 2011.

53

Bibliography
Bibliography

[86] B. Parisse and R. De Graeve. Giac/Xcas, version 1.5.0, 2018. http://www-fourier.
univ-grenoble-alpes.fr/~parisse/giac.html.

[87] B. Pascual-Escudero, A. Nayak, S. Briot, O. Kermorgant, Ph. Martinet, M. Safey El Din,
and F. Chaumette. Complete Singularity Analysis for the Perspe­ive-Four-Point Problem.
International Journal of Computer Vision, 129(4):1217–1237, 2021.

[88] C. Pernet and A. Storjohann. Faster Algorithms for the Chara­eristic Polynomial. In Pro-
ceedings ISSAC 2007, pages 307–314. ACM, 2007.

[89] C. Pernet and A. Storjohann. Frobenius form in expe­ed matrix multiplication time over
su�ciently large fields. unpublished report, 2007.

[90] J. Rabinowitsch. Zum Hilbertschen Nullstellensatz. Mathematische Annalen, 102:520–520,
1930.

[91] M. Raghavan and B. Roth. Solving Polynomial Systems for the Kinematic Analysis and
Synthesis of Mechanisms and Robot Manipulators. Journal of Mechanical Design, 117(B):71–79,
1995.

[92] M. Safey El Din. Computing Sampling Points on a Singular Real Hypersurface using La-
grange’s System. Research Report RR-5464, INRIA, 2005.

[93] S. Sakata. Finding a minimal set of linear recurring relations capable of generating a given
finite two-dimensional array. J. Symbolic Comput., 5(3):321–337, 1988.

[94] S. Sakata. N -dimensional Berlekamp-Massey algorithm for multiple arrays and constru­ion of
multivariate polynomials with preassigned zeros. In T. Mora, editor, Applied Algebra, Algebraic
Algorithms and Error-Corre­ing Codes, volume 357 of Le­ure Notes in Computer Science, pages
356–376. Springer Berlin Heidelberg, 1989.

[95] S. Sakata. Extension of the Berlekamp-Massey algorithm to N Dimensions. Inform. and
Comput., 84(2):207–239, 1990.

[96] S. Sakata. Decoding binary 2-D cyclic codes by the 2-D Berlekamp-Massey algorithm. IEEE
Trans. Inform. Theory, 37(4):1200–1203, 1991.

[97] S. Sakata. The bms algorithm. In M. Sala, S. Sakata, T. Mora, C. Traverso, and L. Perret,
editors, Gröbner Bases, Coding, and Cryptography, pages 143–163. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[98] B. Salvy. Linear Di�erential Equations as a Data Stru­ure. Foundations of Computational
Mathematics, 19:1071–1112, 2019.

[99] B. Salvy and P. Zimmermann. GFUN: A Maple Package for the Manipulation of Generating
and Holonomic Fun­ions in One Variable. ACM Trans. Math. Softw., 20(2):163–177, jun 1994.

[100] T. Sauer. Prony’s method in several variables: Symbolic solutions by universal interpolation.
Journal of Symbolic Computation, 84:95–112, 2018.

[101] A. K. Steel. Dire­ solution of the (11, 9, 8)-MinRank problem by the block Wiedemann
algorithm in magma with a tesla GPU. In Proceedings of the 2015 International Workshop on
Parallel Symbolic Computation, PASCO 2015, Bath, United Kingdom, July 10-12, 2015, pages 2–6.
ACM, 2015.

[102] A. Storjohann. Algorithms for Matrix Canonical Forms. Phd thesis, Swiss Federal Institute of
Technology – ETH, 2000.

[103] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1), 2020.
https://www.sagemath.org.

54

http://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html
http://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html
https://www.sagemath.org

Bibliography
Bibliography

[104] C. Traverso. Hilbert Fun­ions and the Buchberger Algorithm. Journal of Symbolic Computation,
22(4):355–376, 1996.

[105] Th. Verron. On the computation of Gröbner bases for matrix-weighted homogeneous systems,
2022.

[106] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory,
32(1):54–62, 1986.

55

Abstra­

This habilitation thesis deals with polynomial system solving through Gröbner bases computations.
It focuses on the link between multivariate polynomials and linear recurrence relations satisfied by
a multi-indexed sequence for computing Gröbner bases.

Our contributions mainly lie on the theoretical and pra­ical aspe­s on these Gröbner bases
computations. First, we present msolve, a new open source C library, for solving polynomial systems
using Gröbner bases. Second, we describe new algorithms and complexity estimates for computing
Gröbner bases either for a total degree order or the lexicographic one. Then, we present linear
algebras-based and polynomial-division-based algorithms for guessing linear recurrences with con-
stant or polynomial coe�cients, in generic and stru­ured situations.

Finally, we detail our research proje­ for the forthcoming years on these aspe­s.

Résumé

Cette thèse d’habilitation traite de la résolution de systèmes polynomiaux via le calcul de bases de
Gröbner. Elle se concentre sur le lien entre les polynômes multivariés et les relations de récurrence
linéaires satisfaites par une suite multi-indexée pour calculer des bases de Gröbner.

Nos contributions portent principalement sur les aspe­s théoriques et pratiques de ces calculs
de bases de Gröbner. Tout d’abord, nous présentons msolve, une nouvelle bibliothèque C open
source, pour la résolution de systèmes polynomiaux en utilisant les bases de Gröbner. Ensuite, nous
décrivons de nouveaux algorithmes et donnons des estimations de complexité pour le calcul des
bases de Gröbner soit pour un ordre de degré total, soit pour l’ordre lexicographique. Ensuite, nous
présentons des algorithmes basés sur l’algèbre linéaire et sur la division de polynômes pour deviner
les récurrences linéaires à coe�cients constants ou polynomiaux, dans des situations génériques et
stru­urées.

Enfin, nous détaillons notre projet de recherche pour les années à venir sur ces aspe­s.

	Introduction
	Gröbner bases: a fundamental object
	Solving polynomial systems
	Sequences
	Contributions
	pb:fglmcrit: Complexity of Sparse-FGLM for generic determinantal systems
	pb:fglm: Complexity of Gröbner bases change of order
	pb:f4sat: Computation of Gröbner bases of saturated ideals
	pb:sfglm: Polynomial arithmetic for guessing C-relations
	pb:queries: Minimization of number of queries
	pb:ssfglm: Structured guessing
	msolve

	Organization

	msolve
	State-of-the-art algorithms
	The F4 algorithm
	The Sparse-FGLM algorithm

	Experimental results

	Computing Gröbner bases
	Gröbner bases change of order algorithms
	Complexity of Sparse-FGLM
	A polynomial-matrix algorithm

	Saturated and colon ideals
	Bayer's algorithm
	F4SAT, an algorithm for saturated ideals
	Sparse-FGLM-colon, an algorithm for colon ideals

	Parametrizations of the radical

	Guessing Gröbner bases
	Uni-indexed sequences and the Berlekamp–Massey algorithm
	Matrix viewpoints
	Polynomial viewpoint

	Extensions to multi-indexed sequences
	The BMS algorithm
	The Scalar-FGLM algorithm
	Adaptive algorithms

	Benchmarks

	Quasi-commutative Gröbner bases
	P-relations and quasi-commutative polynomials
	Guessing P-relations
	A linear-algebra-based algorithm
	An hybrid approach

	Structured sequences

	Research project
	msolve and fundamental algorithms
	Types for the coefficients
	Gröbner bases for a degree order
	Change of order
	Saturation and colon ideals
	Exact solving on a GPU

	Faster change of order and guessing C-relations
	Guessing faster
	Guessing radical ideals
	Guessing with multiplicities
	Polynomial matrices with multiplicities
	Applications to guessing

	Algorithms for quasi-commutative Gröbner bases
	Moment approach
	Efficient Gröbner bases computation

	Ideals of C-relations of small degrees
	Uni-indexed sequences
	Bi-indexed sequences
	Single roots
	Root of multiplicity 2
	Root of multiplicity 3

