Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity
Abstract
Several models estimating the strength of the interaction between proteins in a complex have been proposed. By exploring the geometry of contact distribution at protein-protein interfaces, we provide an improved model of binding energy. Local interaction signal analysis (LISA) is a radial function based on terms describing favorable and non-favorable contacts obtained by density functional theory, the support-core-rim interface residue distribution, non-interacting charged residues and secondary structures contribution. The three-dimensional organization of the contacts and their contribution on localized hot-sites over the entire interaction surface were numerically evaluated. LISA achieves a correlation of 0.81 (and a root-mean-square error of 2.35 ± 0.38 kcal/mol) when tested on 125 complexes for which experimental measurements were realized. LISA's performance is stable for subsets defined by functional composition and extent of conformational changes upon complex formation. A large-scale comparison with 17 other functions demonstrated the power of the geometrical model in the understanding of complex binding.
Domains
Cellular BiologyOrigin | Files produced by the author(s) |
---|
Loading...