Conditional inference in parametric models - Sorbonne Université Access content directly
Preprints, Working Papers, ... Year : 2012

Conditional inference in parametric models


This paper presents a new approach to conditional inference, based on the simulation of samples conditioned by a statistics of the data. Also an explicit expression for the approximation of the conditional likelihood of long runs of the sample given the observed statistics is provided. It is shown that when the conditioning statistics is sufficient for a given parameter, the approximating density is still invariant with respect to the parameter. A new Rao-Blackwellisation procedure is proposed and simulation shows that Lehmann Scheff\'{e} Theorem is valid for this approximation. Conditional inference for exponential families with nuisance parameter is also studied, leading to Monte carlo tests. Finally the estimation of the parameter of interest through conditional likelihood is considered. Comparison with the parametric bootstrap method is discussed.
Fichier principal
Vignette du fichier
Texte_Stat_26-01-12.pdf (204.02 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00666425 , version 1 (04-02-2012)



Michel Broniatowski, Virgile Caron. Conditional inference in parametric models. 2012. ⟨hal-00666425⟩
129 View
239 Download



Gmail Facebook X LinkedIn More