Numerical and experimental study of a vibration driver due to electromagnetic forces on a rotary permanent magnet - Sorbonne Université Accéder directement au contenu
Article Dans Une Revue Sensors and Actuators A: Physical Année : 2011

Numerical and experimental study of a vibration driver due to electromagnetic forces on a rotary permanent magnet

Résumé

This paper presents the numerical modeling and the experimental verification of a rotary permanent magnet driver excited by an electromagnetic field. As the electromagnetic torque of the permanent magnetic rotor is a nonlinear function of external electromagnetic field and its rotation angle, it is difficult to compute it directly by using common electromagnetic analysis methods. Based on the concept of equivalent surface magnetic charge, the research explores a numerical method for calculating the drive torque of the rotary permanent magnet submitted to an electromagnetic field, and meanwhile, establishes the theoretical model for the electromagnetic torque due to the combined magnetic fields versus the excitation current and the rotation angle of the permanent magnet. This model may present the quasi-static and dynamic vibration drive process of the rotary permanent magnet under the electromagnetic field excitation. The research finally validates the theoretical analysis and the numerical modeling by experimental tests in terms of accuracy and feasibility of the driving system.

Dates et versions

hal-00670960 , version 1 (16-02-2012)

Identifiants

Citer

Bin-Tang Yang, Y.-M. Lu, Zhi-Qiang Feng, G. Meng, Zhuoxiang Ren. Numerical and experimental study of a vibration driver due to electromagnetic forces on a rotary permanent magnet. Sensors and Actuators A: Physical , 2011, 172 (2), pp.491 - 496. ⟨10.1016/j.sna.2011.09.018⟩. ⟨hal-00670960⟩
84 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More