Crash Resilient and Pseudo-Stabilizing Atomic Registers - Sorbonne Université
Communication Dans Un Congrès Année : 2012

Crash Resilient and Pseudo-Stabilizing Atomic Registers

Résumé

We propose a crash safe and pseudo-stabilizing algorithm for implementing an atomic memory abstraction in a message passing system. Our algorithm is particularly appealing for multi-core architectures where both processors and memory contents (including stale messages in transit) are prone to errors and faults. Our algorithm extends the classical fault-tolerant implementation of atomic memory that was originally proposed by Attiya, Bar-Noy, and Dolev (ABD) to a stabilizing setting where memory can be initially corrupted in an arbitrary manner. The original ABD algorithm provides no guaranties when started in such a corrupted configuration. Interestingly, our scheme preserves the same properties as ABD when there are no transient faults, namely the linearizability of operations. When started in an arbitrarily corrupted initial configuration, we still guarantee eventual yet suffix-closed linearizability.
Fichier non déposé

Dates et versions

hal-00934144 , version 1 (21-01-2014)

Identifiants

Citer

Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, Sébastien Tixeuil. Crash Resilient and Pseudo-Stabilizing Atomic Registers. OPODIS 2012 - 16th International Conference on Principles of Distributed Systems, Dec 2012, Rome, Italy. pp.135-150, ⟨10.1007/978-3-642-35476-2_10⟩. ⟨hal-00934144⟩
700 Consultations
0 Téléchargements

Altmetric

Partager

More