Crash Resilient and Pseudo-Stabilizing Atomic Registers

Abstract : We propose a crash safe and pseudo-stabilizing algorithm for implementing an atomic memory abstraction in a message passing system. Our algorithm is particularly appealing for multi-core architectures where both processors and memory contents (including stale messages in transit) are prone to errors and faults. Our algorithm extends the classical fault-tolerant implementation of atomic memory that was originally proposed by Attiya, Bar-Noy, and Dolev (ABD) to a stabilizing setting where memory can be initially corrupted in an arbitrary manner. The original ABD algorithm provides no guaranties when started in such a corrupted configuration. Interestingly, our scheme preserves the same properties as ABD when there are no transient faults, namely the linearizability of operations. When started in an arbitrarily corrupted initial configuration, we still guarantee eventual yet suffix-closed linearizability.
Complete list of metadatas
Contributor : Sébastien Tixeuil <>
Submitted on : Tuesday, January 21, 2014 - 3:52:39 PM
Last modification on : Tuesday, May 14, 2019 - 10:14:49 AM



Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, Sébastien Tixeuil. Crash Resilient and Pseudo-Stabilizing Atomic Registers. OPODIS 2012 - 16th International Conference on Principles of Distributed Systems, Dec 2012, Rome, Italy. pp.135-150, ⟨10.1007/978-3-642-35476-2_10⟩. ⟨hal-00934144⟩



Record views