Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity - Sorbonne Université
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2013

Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity

Philippe G. Ciarlet
  • Fonction : Auteur
  • PersonId : 839110
Cristinel Mardare
  • Fonction : Auteur
  • PersonId : 962097

Résumé

In a previous work, it was shown how the linearized strain tensor field e := (∇u^T +∇u)/2 ∈ L^2(Ω) can be considered as the sole unknown in the Neumann problem of linearized elasticity posed over a domain Ω ⊂ R3 , instead of the displacement vector field u ∈ H^1 (Ω ) in the usual approach. The purpose of this Note is to show that the same approach applies as well to the Dirichlet–Neumann problem. To this end, we show how the boundary condition u = 0 on a portion Γ_0 of the boundary of Ω can be recast, again as boundary conditions on Γ_0, but this time expressed only in terms of the new unknown e∈L^2(Ω).
Fichier non déposé

Dates et versions

hal-01077095 , version 1 (23-10-2014)

Identifiants

Citer

Philippe G. Ciarlet, Cristinel Mardare. Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity. Comptes Rendus. Mathématique, 2013, 351, pp.329-334. ⟨10.1016/j.crma.2013.04.015⟩. ⟨hal-01077095⟩
46 Consultations
0 Téléchargements

Altmetric

Partager

More