On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory - Sorbonne Université
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2003

On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory

Résumé

Let ω be an open connected subset of R^2 and let θ be an immersion from ω into R^3. It is established that the set formed by all rigid displacements of the surface θ(ω) is a submanifold of dimension 6 and of class C^∞ of the space H^1(ω). It is shown that the infinitesimal rigid displacements of the same surface θ(ω) span the tangent space at the origin to this submanifold.

Dates et versions

hal-01077591 , version 1 (25-10-2014)

Identifiants

Citer

Philippe G. Ciarlet, Cristinel Mardare. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory. Comptes Rendus. Mathématique, 2003, 336, pp.959-966. ⟨10.1016/S1631-073X(03)00205-X⟩. ⟨hal-01077591⟩
58 Consultations
0 Téléchargements

Altmetric

Partager

More