Self-Assembly in Biosilicification and Biotemplated Silica Materials - Sorbonne Université Access content directly
Journal Articles Nanomaterials Year : 2014

Self-Assembly in Biosilicification and Biotemplated Silica Materials

Francisco M. Fernandes
Thibaud Coradin
Carole Aimé
  • Function : Author
  • PersonId : 741160
  • IdHAL : carole-aime


During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites.
Fichier principal
Vignette du fichier
Fernandes_2014_Self-Assembly_in.pdf (2.81 Mo) Télécharger le fichier
Origin Publication funded by an institution

Dates and versions

hal-01140406 , version 1 (08-04-2015)




Francisco M. Fernandes, Thibaud Coradin, Carole Aimé. Self-Assembly in Biosilicification and Biotemplated Silica Materials. Nanomaterials, 2014, 4 (3), pp.792-812. ⟨10.3390/nano4030792⟩. ⟨hal-01140406⟩
183 View
283 Download



Gmail Mastodon Facebook X LinkedIn More