Sparse Zero-Sum Games as Stable Functional Feature Selection

Abstract : In large-scale systems biology applications, features are structured in hidden functional categories whose predictive power is identical. Feature selection, therefore, can lead not only to a problem with a reduced dimensionality, but also reveal some knowledge on functional classes of variables. In this contribution, we propose a framework based on a sparse zero-sum game which performs a stable functional feature selection. In particular, the approach is based on feature subsets ranking by a thresholding stochastic bandit. We provide a theoretical analysis of the introduced algorithm. We illustrate by experiments on both synthetic and real complex data that the proposed method is competitive from the predictive and stability viewpoints.
Type de document :
Article dans une revue
PLoS ONE, Public Library of Science, 2015, 10 (9), pp.e0134683. 〈10.1371/journal.pone.0134683〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01223887
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mardi 3 novembre 2015 - 16:02:23
Dernière modification le : jeudi 21 mars 2019 - 12:28:05
Document(s) archivé(s) le : jeudi 4 février 2016 - 11:16:49

Fichier

journal.pone.0134683.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Nataliya Sokolovska, Olivier Teytaud, Salwa Rizkalla, Karine Clément, Jean-Daniel Zucker. Sparse Zero-Sum Games as Stable Functional Feature Selection. PLoS ONE, Public Library of Science, 2015, 10 (9), pp.e0134683. 〈10.1371/journal.pone.0134683〉. 〈hal-01223887〉

Partager

Métriques

Consultations de la notice

793

Téléchargements de fichiers

199