Performance du SVD pour débruiter les spectres RMN et Raman - Sorbonne Université Access content directly
Conference Papers Year : 2016

SVD performance to denoise NMR and Raman spectra

Performance du SVD pour débruiter les spectres RMN et Raman

Abstract

Singular Value Decomposition (SVD) is a mathematical tool that can be used to remove noise from spectra. In this article, we used it on Nuclear Magnetic Resonance and Raman spectra. The results proved that this technique can be very efficient, either on a single 1D spectrum or on an array of spectra and that it can be easily generalised. We compared execution time on a few processors and graphic cards with Java, Matlab and Python. Impressive differences were seen, probably due to the used optimisations. Execution time is now short enough to apply SVD on continuous experiments.
2016-01-20 - LAURENT_v1.pdf (3.78 Mo) Télécharger le fichier
LAURENT-C2i-2016.pdf (371.29 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Origin Files produced by the author(s)

Dates and versions

hal-01277387 , version 1 (01-03-2016)

Licence

Identifiers

  • HAL Id : hal-01277387 , version 1

Cite

Guillaume Laurent, William Woelffel, Virgile Barret-Vivin, Emmanuelle Gouillart, Christian Bonhomme. Performance du SVD pour débruiter les spectres RMN et Raman. c2i-2016 : 7ème Colloque Interdisciplinaire en Instrumentation, Jan 2016, Saint-Nazaire, France. pp.1-8. ⟨hal-01277387⟩
226 View
1017 Download

Share

Gmail Mastodon Facebook X LinkedIn More