Storing structured sparse memories in a multi-modular cortical network model - Sorbonne Université
Article Dans Une Revue Journal of Computational Neuroscience Année : 2016

Storing structured sparse memories in a multi-modular cortical network model

Résumé

We study the memory performance of a class of modular attractor neural networks , where modules are potentially fully-connected networks connected to each other via diluted long-range connections. On this anatomical architecture we store memory patterns of activity using a Willshaw-type learning rule. P patterns are split in categories, such that patterns of the same category activate the same set of modules. We first compute the maximal storage capacity of these networks. We then investigate their error-correction properties through an exhaustive exploration of parameter space, and identify regions where the networks behave as an associative memory device. The crucial parameters that control the retrieval abilities of the network are (1) the ratio between the number of synaptic contacts of long-and short-range origins (2) the number of categories in which a module is activated and (3) the amount of local inhibition. We discuss the relationship between our model and networks of cortical patches that have been observed in different cortical areas.
Fichier principal
Vignette du fichier
Dubreuil_2016_Storing_structured.pdf (554.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01310368 , version 1 (02-05-2016)

Identifiants

Citer

Alexis M. Dubreuil, Nicolas Brunel. Storing structured sparse memories in a multi-modular cortical network model. Journal of Computational Neuroscience, 2016, 40 (2), pp.157-175. ⟨10.1007/s10827-016-0590-z⟩. ⟨hal-01310368⟩
114 Consultations
232 Téléchargements

Altmetric

Partager

More