Skip to Main content Skip to Navigation
Journal articles

Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite

Abstract : Attenuated total reflectance (ATR) infrared spectra were measured on a synthetic and a natural fluorapatite sample. A modeling approach based on the computation of the Fresnel reflection coefficient between the ATR crystal and the powder sample was used to analyze the line shape of the spectra. The dielectric properties of the samples were related to those of pure fluorapatite using an effective medium approach, based on Maxwell–Garnett and Bruggeman models. The Bruggeman effective medium model leads to a very good agreement with the experimental data recorded on the synthetic fluorapatite sample. The poorer agreement observed on the natural sample suggests a more significant heterogeneity of the sample at a characteristic length scale larger than the mid-infrared characteristic wavelength, i.e., about 10 micrometers. The results demonstrate the prominent role of macroscopic electrostatic effects over fine details of the microscopic structure in determining the line shape of strong ATR bands.
Complete list of metadata

Cited literature [51 references]  Display  Hide  Download
Contributor : Gestionnaire Hal-Upmc Connect in order to contact the contributor
Submitted on : Monday, June 13, 2016 - 2:58:44 PM
Last modification on : Tuesday, April 13, 2021 - 3:11:29 AM


Files produced by the author(s)



Julie Aufort, Loïc Ségalen, Christel Gervais, Christian Brouder, Etienne Balan. Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite. Physics and Chemistry of Minerals, Springer Verlag, 2016, 43 (9), pp.615-626. ⟨10.1007/s00269-016-0821-x⟩. ⟨hal-01331139⟩



Record views


Files downloads