Opacity for Linear Constraint Markov Chains
Abstract
On a partially observed system, a secret ϕ is opaque if an observer cannot ascertain that its trace belongs to ϕ. We consider specifications given as Constraint Markov Chains (CMC), which are underspec-ified Markov chains where probabilities on edges are required to belong to some set. The nondeterminism is resolved by a scheduler, and opacity on this model is defined as a worst case measure over all implementations obtained by scheduling. This measures the information obtained by a passive observer when the system is controlled by the smartest sched-uler in coalition with the observer. When restricting to the subclass of Linear CMC, we compute (or approximate) this measure and prove that refinement of a specification can only improve opacity.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|
Loading...