Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes - Sorbonne Université Access content directly
Journal Articles Nature Communications Year : 2015

Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

Nader Yaacoub
Edwige Otero
Philippe Ohresser
Benoit Fleury
Laurent Lisnard

Abstract

Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5nm g-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2- pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nano- particles surface. Magnetic measurements indicate the significant enhancement of the ani- sotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.
Fichier principal
Vignette du fichier
ncomms10139.pdf (842.93 Ko) Télécharger le fichier
Origin : Publication funded by an institution
Loading...

Dates and versions

hal-01390543 , version 1 (06-01-2017)

Licence

Attribution

Identifiers

Cite

Yoann Prado, Niéli Daffé, Aude Michel, Thomas Georgelin, Nader Yaacoub, et al.. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes. Nature Communications, 2015, 6, pp.10139. ⟨10.1038/ncomms10139⟩. ⟨hal-01390543⟩
939 View
147 Download

Altmetric

Share

Gmail Facebook X LinkedIn More