Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection - Sorbonne Université Accéder directement au contenu
Article Dans Une Revue Journal of Plasma Physics Année : 2016

Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

Résumé

Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic Particle-In-Cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations upon their initial condition. We show that, as the current sheet evolves from symmetric to asymmetric upstream plasmas, the reconnection rate is impacted, the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.
Fichier principal
Vignette du fichier
Dargent_2016_Full.pdf (1.75 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01400649 , version 1 (22-11-2016)

Identifiants

Citer

Jérémy Dargent, Nicolas Aunai, Gérard Belmont, Nicolas Dorville, B. Lavraud, et al.. Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection. Journal of Plasma Physics, 2016, 82 (03), pp.905820305. ⟨10.1017/S002237781600057X⟩. ⟨hal-01400649⟩
472 Consultations
204 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More