Center conditions II: Parametric and model center problems - Sorbonne Université
Article Dans Une Revue Israel Journal of Mathematics Année : 1998

Center conditions II: Parametric and model center problems

M. Briskin
  • Fonction : Auteur
Y. Yomdin
  • Fonction : Auteur

Résumé

We consider an Abel equation (*)y’=p(x)y2 +q(x)y3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty0=y(0)≡y(1) for any solutiony(x) of (*). We introduce a parametric version of this condition: an equation (**)y’=p(x)y2 +εq(x)y3p, q as above, ℂ, is said to have a parametric center, if for any ε and for any solutiony(ε,x) of (**),y(ε,0)≡y(ε,1). We show that the parametric center condition implies vanishing of all the momentsmk(1), wheremk(x)=∫0xpk(t)q(t)(dt),P(x)=∫0xp(t)dt. We investigate the structure of zeroes ofmk(x) and on this base prove in some special cases a composition conjecture, stated in [10], for a parametric center problem.

Dates et versions

hal-01401543 , version 1 (23-11-2016)

Identifiants

Citer

M. Briskin, Jean-Pierre Françoise, Y. Yomdin. Center conditions II: Parametric and model center problems. Israel Journal of Mathematics, 1998, 118 (1), pp.61 - 82. ⟨10.1007/BF02803516⟩. ⟨hal-01401543⟩
157 Consultations
0 Téléchargements

Altmetric

Partager

More