Matrix-second order differential equations and chaotic Hamiltonian systems - Sorbonne Université
Article Dans Une Revue Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées Année : 1989

Matrix-second order differential equations and chaotic Hamiltonian systems

Résumé

We consider matrix-second order differential equations which are perturbations of the harmonic flow on the space of matrices. Experimental evidence of the non integrability of the two degrees of freedom Hamiltonian system provides an indication of the non existence of a Lax pair with commuting eigenvalues for perturbations of order six. This shows the specificity of quartic perturbations for which such a Lax pair was precedently obtained.

Dates et versions

hal-01403496 , version 1 (26-11-2016)

Identifiants

Citer

A. Celletti, Jean-Pierre Françoise. Matrix-second order differential equations and chaotic Hamiltonian systems. Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées, 1989, 40 (6), pp.925 - 930. ⟨10.1007/BF00945813⟩. ⟨hal-01403496⟩
133 Consultations
0 Téléchargements

Altmetric

Partager

More