Design and Cellular Fate of Bioinspired Au–Ag Nanoshells@Hybrid Silica Nanoparticles - Sorbonne Université
Journal Articles Langmuir Year : 2016

Design and Cellular Fate of Bioinspired Au–Ag Nanoshells@Hybrid Silica Nanoparticles

Stéphane Faucher
Carole Aimé
  • Function : Author
  • PersonId : 741160
  • IdHAL : carole-aime
Thibaud Coradin

Abstract

Silica-coated gold–silver alloy nanoshells were obtained via a bioinspired approach using gelatin and poly-l-lysine (PLL) as biotemplates for the interfacial condensation of sodium silicate solutions. X-ray photoelectron spectroscopy was used as an efficient tool for the in-depth and complete characterization of the chemical features of nanoparticles during the whole synthetic process. Cytotoxicity assays using HaCaT cells evidenced the detrimental effect of the gelatin nanocoating and significant induction of late apoptosis after silicification. In contrast, PLL-modified nanoparticles had less biological impact that was further improved by the silica layer, and uptake rates of up to 50% of those of the initial particles could be achieved. These results are discussed considering the effect of nanosurface confinement of the biopolymers on their chemical and biological reactivity.
No file

Dates and versions

hal-01475846 , version 1 (24-02-2017)

Identifiers

Cite

Samantha Soulé, Anne-Laure Bulteau, Stéphane Faucher, Bernard Haye, Carole Aimé, et al.. Design and Cellular Fate of Bioinspired Au–Ag Nanoshells@Hybrid Silica Nanoparticles. Langmuir, 2016, 32 (39), pp.10073 - 10082. ⟨10.1021/acs.langmuir.6b02810⟩. ⟨hal-01475846⟩
188 View
0 Download

Altmetric

Share

More