The compact Earth system model OSCAR v2.2: description and first results - Sorbonne Université
Article Dans Une Revue Geoscientific Model Development Année : 2017

The compact Earth system model OSCAR v2.2: description and first results

Résumé

This paper provides a comprehensive description of OSCAR v2.2, a simple Earth system model. The general philosophy of development is first explained, followed by a complete description of the model's drivers and various modules. All components of the Earth system necessary to simulate future climate change are represented in the model: the oceanic and terrestrial carbon cycles – including a book-keeping module to endogenously estimate land-use change emissions – so as to simulate the change in atmospheric carbon dioxide; the tropospheric chemistry and the natural wetlands , to simulate that of methane; the stratospheric chemistry , for nitrous oxide; 37 halogenated compounds; changing tropospheric and stratospheric ozone; the direct and indirect effects of aerosols; changes in surface albedo caused by black carbon deposition on snow and land-cover change; and the global and regional response of climate – in terms of temperature and precipitation – to all these climate forcers. Following the probabilistic framework of the model, an ensemble of simulations is made over the historical period (1750–2010). We show that the model performs well in reproducing observed past changes in the Earth system such as increased atmospheric concentration of greenhouse gases or increased global mean surface temperature.
Fichier principal
Vignette du fichier
gmd-10-271-2017.pdf (10.33 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-01487927 , version 1 (13-03-2017)

Licence

Identifiants

Citer

Thomas Gasser, Philippe Ciais, Olivier Boucher, Yann Quilcaille, Maxime Tortora, et al.. The compact Earth system model OSCAR v2.2: description and first results. Geoscientific Model Development, 2017, 10 (1), pp.271 - 319. ⟨10.5194/gmd-10-271-2017⟩. ⟨hal-01487927⟩
1206 Consultations
524 Téléchargements

Altmetric

Partager

More