Learning Concept-Driven Document Embeddings for Medical Information Search

Abstract : Many medical tasks such as self-diagnosis, health-care assessment , and clinical trial patient recruitment involve the usage of information access tools. A key underlying step to achieve such tasks is the document-to-document matching which mostly fails to bridge the gap identified between raw level representations of information in documents and high-level human interpretation. In this paper, we study how to optimize the document representation by leveraging neural-based approaches to capture latent representations built upon both validated medical concepts specified in an external resource as well as the used words. We experimentally show the effectiveness of our proposed model used as a support of two different medical search tasks, namely health search and clinical search for cohorts.
Type de document :
Communication dans un congrès
Conference on Artificial Intelligence in Medicine (AIME 2017), Jun 2017, Vienna, Austria
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01517094
Contributeur : Laure Soulier <>
Soumis le : mardi 2 mai 2017 - 16:20:42
Dernière modification le : jeudi 22 novembre 2018 - 14:04:53
Document(s) archivé(s) le : jeudi 3 août 2017 - 13:31:33

Fichier

AIME17_GH.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01517094, version 1

Citation

Gia-Hung Nguyen, Lynda Tamine, Laure Soulier, Nathalie Souf. Learning Concept-Driven Document Embeddings for Medical Information Search. Conference on Artificial Intelligence in Medicine (AIME 2017), Jun 2017, Vienna, Austria. 〈hal-01517094〉

Partager

Métriques

Consultations de la notice

471

Téléchargements de fichiers

232