A consistent mass and momentum flux computation method for two phase flows. Application to atomization process
Abstract
This paper presents a new computational method for consistent calculation of mass and momentum fluxes in a two-phase flow simulation. The problem of inconsistency of the mass and momentum transfers has been long known in the two-phase flow context. Once the density ratio between fluid phases becomes high, and/or the momentum of one phase differs significantly from that of the other, a decoupling phenomenon causes a non-physical transfer of momentum, rendering most codes unstable. Original works of Rudman [31] have addressed this by proposing a way to couple the mass and momentum flux transport. To ensure this consistency between both fluxes in a staggered configuration, Rudman introduces a finer sub-grid to transport the volum of fluid. In our paper, we present a way to adopt Rudman's approach without this subgrid, but always in a stagerred grid. The method is presented along with validation test cases and example applications, including very demanding momentum-dominated 3D simulations.
Origin | Files produced by the author(s) |
---|
Loading...