Reduction of unsaturated compounds under interstellar conditions: chemoselective reduction of C≡C and C=C bonds over C=O functional group
Résumé
The knowledge of the H-addition reactions on unsaturated organic molecules bearing a triple or a double carbon–carbon bond such as propargyl or allyl alcohols and a CO functional group such as propynal, propenal or propanal may play an important role in the understanding of the chemical complexity of the interstellar medium. Why different aldehydes like methanal, ethanal, propynal and propanal are present in dense molecular clouds while the only alcohol detected in those cold regions is methanol? In addition, ethanol has only been detected in hot molecular cores. Are those saturated and unsaturated aldehyde and alcohol species chemically linked in molecular clouds through solid phase H-addition surface reactions or are they formed through different chemical routes? To answer such questions, we have investigated a hydrogenation study of saturated and unsaturated aldehydes and alcohols at 10 K. We prove through this experimental study that while pure unsaturated alcohol ices bombarded by H atoms lead to the formation of the corresponding fully or partially saturated alcohols, surface H-addition reactions on unsaturated aldehyde ices exclusively lead to the formation of fully saturated aldehyde. Such results show that in addition to a chemoselective reduction of C≡C and C=C bonds over the C=O group, there is no link between aldehydes and their corresponding alcohols in reactions involving H atoms in dense molecular clouds. Consequently, this could be one of the reasons why some aldehydes such as propanal are abundant in dense molecular clouds in contrast to the non-detection of alcohol species larger than methanol.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...