Nuclear Quantum Effects in Water Reorientation and Hydrogen-Bond Dynamics - Sorbonne Université
Article Dans Une Revue Journal of Physical Chemistry Letters Année : 2017

Nuclear Quantum Effects in Water Reorientation and Hydrogen-Bond Dynamics

Résumé

We combine classical and ring polymer molecular dynamics simulations with the molecular jump model to provide a molecular description of the nuclear quantum effects (NQEs) on water reorientation and hydrogen-bond dynamics in liquid H2O and D2O. We show that while the net NQEs is negligible in D2O, it leads to a ∼13% acceleration in H2O dynamics compared to a classical description. Large angular jumps exchanging hydrogen-bond partners are the dominant reorientation pathway (just as in a classical description); the faster reorientation dynamics arise from the increased jump rate constant. NQEs do not change the jump amplitude distribution and no significant tunneling is found. The faster jump dynamics are quantitatively related to decreased structuring of the OO radial distribution function when NQEs are included. This is explained, via a jump model analysis, by a competition between the effects of water’s librational and OH stretch mode zero point energies on the hydrogen-bond strength.
Fichier principal
Vignette du fichier
Wilkins_2017_Nuclear_Quantum.pdf (826.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01527210 , version 1 (24-05-2017)

Identifiants

Citer

David Mark Wilkins, David E. Manolopoulos, Silvio Pipolo, Damien Laage, James T. Hynes. Nuclear Quantum Effects in Water Reorientation and Hydrogen-Bond Dynamics. Journal of Physical Chemistry Letters, 2017, ⟨10.1021/acs.jpclett.7b00979⟩. ⟨hal-01527210⟩
245 Consultations
446 Téléchargements

Altmetric

Partager

More