Supramolecular polymer hydrogels induced by host–guest interactions with di-[cyclobis(paraquat-p-phenylene)] cross-linkers: from molecular complexation to viscoelastic properties
Résumé
Supramolecular polymer networks have been designed on the basis of a π-electron donor/acceptor complex: naphthalene (N)/cyclobis(paraquat-p-phenylene) (CBPQT4+ = B). For this purpose, a copolymer of N,N-dimethylacrylamide P(DMA-N1), lightly decorated with 1 mol% of naphthalene pendant groups, has been studied in semi-dilute un-entangled solution in the presence of di-CBPQT4+ (BB) crosslinker type molecules. While calorimetric experiments demonstrate the quantitative binding between N and B groups up to 60 °C, the introduction of BB crosslinkers into the polymer solution gives rise to gel formation above the overlap concentration. From a comprehensive investigation of viscoelastic properties, performed at different concentrations, host/guest stoichiometric ratios and temperatures, the supramolecular hydrogels are shown to follow a Maxwellian behavior with a strong correlation of the plateau modulus and the relaxation time with the effective amount of interchain cross-linkers and their dissociation dynamics, respectively. The calculation of the dissociation rate constant of the supramolecular complex, by extrapolation of the relaxation time of the network back to the beginning of the gel regime, is discussed in the framework of theoretical and experimental works on associating polymers.
Fichier principal
170630-rheodiBB-HAL.pdf (525.14 Ko)
Télécharger le fichier
170630-rheodiBB-SI-HAL.pdf (737.33 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|