LIP6@CLEF2017: Multi-Modal Spatial Role Labeling using Word Embeddings Working notes - Sorbonne Université
Communication Dans Un Congrès Année : 2017

LIP6@CLEF2017: Multi-Modal Spatial Role Labeling using Word Embeddings Working notes

Résumé

We report our participation to the multi-modal Spatial Role Labeling (mSpRL) lab at CLEF 2017. The task consists in extracting and classifying spatial relationships from textual data and associated images. Our approach focuses on the classification part as we use a base-line system for the extraction of the relations: we train a linear Support Vector Machine (SVM) model to classify hand-crafted vectors representing spatial relations. We present the obtained experiments and discuss also the effect of model parameters. Finally, we conclude the paper and introduce ideas for future developments.
Fichier principal
Vignette du fichier
paper_76.pdf (12.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01579493 , version 1 (31-08-2017)

Identifiants

  • HAL Id : hal-01579493 , version 1

Citer

Éloi Zablocki, Patrick Bordes, Laure Soulier, Benjamin Piwowarski, Patrick Gallinari. LIP6@CLEF2017: Multi-Modal Spatial Role Labeling using Word Embeddings Working notes. CLEF 2017, 2017, Dublin, Ireland. ⟨hal-01579493⟩
421 Consultations
88 Téléchargements

Partager

More