LIP6@CLEF2017: Multi-Modal Spatial Role Labeling using Word Embeddings Working notes

Éloi Zablocki 1 Patrick Bordes 1 Laure Soulier 1 Benjamin Piwowarski 2 Patrick Gallinari 1
1 MLIA - Machine Learning and Information Access
LIP6 - Laboratoire d'Informatique de Paris 6
2 BD - Bases de Données
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : We report our participation to the multi-modal Spatial Role Labeling (mSpRL) lab at CLEF 2017. The task consists in extracting and classifying spatial relationships from textual data and associated images. Our approach focuses on the classification part as we use a base-line system for the extraction of the relations: we train a linear Support Vector Machine (SVM) model to classify hand-crafted vectors representing spatial relations. We present the obtained experiments and discuss also the effect of model parameters. Finally, we conclude the paper and introduce ideas for future developments.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [9 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-01579493
Contributor : Eloi Zablocki <>
Submitted on : Thursday, August 31, 2017 - 11:29:12 AM
Last modification on : Thursday, March 21, 2019 - 1:07:26 PM
Document(s) archivé(s) le : Friday, December 1, 2017 - 6:09:21 PM

File

paper_76.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01579493, version 1

Citation

Éloi Zablocki, Patrick Bordes, Laure Soulier, Benjamin Piwowarski, Patrick Gallinari. LIP6@CLEF2017: Multi-Modal Spatial Role Labeling using Word Embeddings Working notes. CLEF 2017, 2017, Dublin, Ireland. ⟨hal-01579493⟩

Share

Metrics

Record views

497

Files downloads

121