Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes equations - Sorbonne Université
Article Dans Une Revue Computer Methods in Applied Mechanics and Engineering Année : 2015

Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes equations

Guillermo Hauke
  • Fonction : Auteur
Daniel Fuster
Fernando Lizarraga
  • Fonction : Auteur

Résumé

This paper extends explicit a posteriori error estimators based on the variational multiscale theory to systems of equations. In particular, the emphasis is placed on flow problems: the Euler and Navier–Stokes equations. Three error estimators are proposed: the standard, the naive and the upper bound. Numerical results show that with a very economical algorithm the attained global and local efficiencies for the naive approach are reasonably close to unity whereas the standard and upper bound approaches give, respectively, approximate lower and higher error estimates.
Fichier non déposé

Dates et versions

hal-01580837 , version 1 (02-09-2017)

Identifiants

Citer

Guillermo Hauke, Daniel Fuster, Fernando Lizarraga. Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2015, ⟨10.1016/j.cma.2014.10.032⟩. ⟨hal-01580837⟩
185 Consultations
0 Téléchargements

Altmetric

Partager

More