Skip to Main content Skip to Navigation
Journal articles

Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes equations

Guillermo Hauke Daniel Fuster 1 Fernando Lizarraga 
1 IJLRDA-FRT - Fluides Réactifs et Turbulence
DALEMBERT - Institut Jean le Rond d'Alembert
Abstract : This paper extends explicit a posteriori error estimators based on the variational multiscale theory to systems of equations. In particular, the emphasis is placed on flow problems: the Euler and Navier–Stokes equations. Three error estimators are proposed: the standard, the naive and the upper bound. Numerical results show that with a very economical algorithm the attained global and local efficiencies for the naive approach are reasonably close to unity whereas the standard and upper bound approaches give, respectively, approximate lower and higher error estimates.
Complete list of metadata

https://hal.sorbonne-universite.fr/hal-01580837
Contributor : daniel fuster Connect in order to contact the contributor
Submitted on : Saturday, September 2, 2017 - 10:39:43 PM
Last modification on : Tuesday, November 16, 2021 - 5:05:02 AM

Identifiers

Citation

Guillermo Hauke, Daniel Fuster, Fernando Lizarraga. Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, ⟨10.1016/j.cma.2014.10.032⟩. ⟨hal-01580837⟩

Share

Metrics

Record views

164