Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes equations

Abstract : This paper extends explicit a posteriori error estimators based on the variational multiscale theory to systems of equations. In particular, the emphasis is placed on flow problems: the Euler and Navier–Stokes equations. Three error estimators are proposed: the standard, the naive and the upper bound. Numerical results show that with a very economical algorithm the attained global and local efficiencies for the naive approach are reasonably close to unity whereas the standard and upper bound approaches give, respectively, approximate lower and higher error estimates.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, 〈10.1016/j.cma.2014.10.032〉
Liste complète des métadonnées

https://hal.sorbonne-universite.fr/hal-01580837
Contributeur : Daniel Fuster <>
Soumis le : samedi 2 septembre 2017 - 22:39:43
Dernière modification le : mercredi 21 mars 2018 - 18:58:23

Identifiants

Collections

Citation

Guillermo Hauke, Daniel Fuster, Fernando Lizarraga. Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, 〈10.1016/j.cma.2014.10.032〉. 〈hal-01580837〉

Partager

Métriques

Consultations de la notice

90