Dynamical Adaptation in Photoreceptors

Abstract : Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over , 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.
Type de document :
Article dans une revue
PLoS Computational Biology, Public Library of Science, 2013, 9 (11), pp.e1003289. 〈10.1371/journal.pcbi.1003289〉
Liste complète des métadonnées

Littérature citée [93 références]  Voir  Masquer  Télécharger

Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : vendredi 6 octobre 2017 - 10:48:56
Dernière modification le : vendredi 14 décembre 2018 - 01:23:31
Document(s) archivé(s) le : lundi 8 janvier 2018 - 13:46:30


Publication financée par une institution




Damon Clark, Raphael Benichou, Markus Meister, Rava Azeredo da Silveira. Dynamical Adaptation in Photoreceptors. PLoS Computational Biology, Public Library of Science, 2013, 9 (11), pp.e1003289. 〈10.1371/journal.pcbi.1003289〉. 〈hal-01611596〉



Consultations de la notice


Téléchargements de fichiers